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Azimuthal asymmetries for quark pair production in pA collisions
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We study the azimuthal asymmetries for quark pair production in proton-nucleus collisions using a
hybrid approach in which the nucleus is treated in the color glass condensate framework, while the
Lipatov approximation is applied on the proton side. Our treatment goes beyond the large-N, limit. We
particularly focus on the so-called correlation limit where the imbalance of the transverse momentum of
the quark pair is much smaller than the outgoing individual quark transverse momenta. In this kinematic
region, a matching between the hybrid approach and a factorization in terms of transverse momentum-
dependent parton distributions has been found. It is shown which of the various unpolarized and linearly
polarized gluon transverse momentum-dependent parton distributiondistributions contribute to cos 2¢ and

cos 4¢ modulations of quark pair production.
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I. INTRODUCTION

Attempting to understand the internal structure of the
nucleon and of nuclei in terms of quarks and gluons—the
fundamental degrees of freedom of QCD—has been and
still is a very active area of hadronic/nuclear high-energy
physics. The information on this structure is encoded, e.g.,
in different types of parton distribution functions which, in
the most important twist-2 cases, can be interpreted as
number densities of partons inside a nucleon/nucleus.
The best known objects are the so-called forward parton
distribution functions, which, however, provide only a one-
dimensional picture of a hadron, depending merely on the
longitudinal momentum fraction x carried by the partons
and the resolution of the probe (i.e., on Q?). A natural next
step in complexity are transverse momentum-dependent
parton distributions (TMDs). They contain information
on transverse parton motion, novel transverse spin corre-
lations, etc., and depend on x and the transverse parton
momentum k; (as well as the relevant Q? of the probe).
Understanding the Q? evolution of TMDs as well as con-
trolling higher-order/higher-twist contributions and TMD
factorization in general is technically rather difficult [1-4].

At present, many issues of phenomenological interest
are still basically unsettled. In this paper we concentrate on
gluon TMDs (more precisely, linearly polarized gluon
TMDs at small x), of which hardly anything is known,
and we will study their relevant factorization properties. As
the data from the p + Au runs at LHC are in the process of
getting published (see, e.g., Ref. [5]) such studies are of
potentially topical interest. As we will not address evolu-
tion, the subtleties which made the understanding of TMD
factorization difficult for many years are not relevant for
us. In fact, TMD factorization is still not completely under-
stood, despite the progress made in recent years. Most
importantly, it was shown in Refs. [6,7] that it gets violated
for di-jet production in hadron-hadron collisions in higher
orders. So, much work still has to be done to reach a
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complete and precise theoretical understanding, but we
are for the time being primarily interested in identifying
experimental signatures and their approximate magnitude.
To do so, we base our study on well-established models.
Comparable model-based studies, e.g., in Refs. [8,9]
(and references therein), have already generated valuable
insights, and we try to add to these.

The major obstacle to achieve a TMD factorization
for the processes discussed in Ref. [7] is in fact caused
by the longitudinally polarized gluon attached to the hard-
scattering part from both incoming nucleons, which cannot
be disentangled and absorbed into the gauge links appear-
ing in the matrix-element definition of gluon TMDs. For
the same reason, we will encounter similar problems in the
nucleon-nucleus collisions, but in the small-x region; they
can be avoided to some extent, as we will explain next,
following the arguments of Refs. [10,11].

If the momentum fraction of the parton becomes
sufficiently small the QCD splitting of partons and their
recombination is expected to be in balance. In such a
small-x limit, the nonlinear saturation effects become
very crucial to describe the dynamics of the hadronic/
nuclear systems. An effective field theory—the so-called
color glass condensate (CGC) approach—has been developed
(see, e.g., Ref. [12]) and was widely used to study the
saturation physics. Due to the existence of a semi-hard
scale, namely the saturation scale, the gluon TMD distri-
butions with different gauge-link structures can be pertur-
batively calculated in the small-x region within the CGC
framework. Moreover, an effective TMD factorization has
recently been established at small x for di-jet production in
nucleon-nucleus collisions [10,11]. As a consequence, the
gluon TMDs can be extracted by measuring the transverse
momentum imbalance of di-jets produced in nucleon-
nucleus collisions. Comparing them with those derived in
the CGC approach provides a unique chance to test satu-
ration physics.
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To achieve such an effective TMD factorization, one first
has to calculate hard-scattering amplitudes in the CGC
framework and then extrapolate the full CGC result to
the so-called correlation limit where the k; imbalance of
di-jets is much smaller than each of the jet transverse
momenta. The key observation was that in the correlation
limit two outgoing jets stay very close in position space,
such that multiple-point functions appearing in the CGC
formalism collapse into the two-point function. The de-
rivative of the two-point function with respect to the trans-
verse coordinate was related to the various gluon TMDs.
Following this line of argument one would conclude that
the basic building blocks are gluon multiple-point func-
tions—namely the Wilson line—rather than gluon TMDs.
Note that the multiple soft gluon interaction between the
nucleon and the active partons is neglected in the CGC
calculation since the background gluon field inside a large
nucleus is much stronger than that inside a nucleon. This
leads to the absence of contributions that cause a violation
of generalized TMD factorization [7]. A comprehensive
review covering (among others) the relation between the
CGC formalism and TMD factorization can be found in
Ref. [13].

In this paper, following the same spirit, we study quark
pair production in the correlation limitin pA collisions, with
a special focus on the polarized case. Quark pair produc-
tion in high-energy hadron-hadron collisions has been in-
vestigated in the framework of collinear factorization in
Refs. [14,15] and in k; factorization in Refs. [16-18].
Later, a CGC calculation showed that for quark pair produc-
tion in nucleon-nucleus collisions, the result for k| factori-
zation can be recovered from the CGC one in the dilute limit
where the gluon densities are not too high, but that this fails
in a dense medium [19,20]. In addition to the two-point
function, three-point functions and four-point functions
also show up in the CGC calculation. These multiple-point
functions provide a deep access into the saturation physics in
the kinematical region beyond the correlation limit.

We will first reproduce the full CGC result using a
hybrid approach [21] in which the nucleus is treated in
the CGC framework [12,22], while the Lipatov approxima-
tion [16,17,23,24] is applied on the proton side. The second
step is to extrapolate this result to the correlation limit by
using a power expansion of the hard coefficients. The fact
that the hard coefficients become independent of the gluon
transverse momentum enables us to integrate out one or two
gluon transverse momenta. Correspondingly, the three-
point functions and four-point functions collapse and can
be expressed as derivatives of the two-point function. The
latter can be related to the various gluon TMDs. Using the
different polarization tensor structures, the gluon TMDs are
classified into an unpolarized gluon distribution and the
distribution of linearly polarized gluons. The latter one is
responsible for cos2¢ and cos4¢ azimuthal asymmetries
for quark pair production in proton-nucleus collisions.
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The linearly polarized gluon distribution [25,26] (hllg in
the notation of Ref. [27]) has recently attracted quite a lot of
attention. It is the only spin-dependent gluon TMD for an
unpolarized nucleon/nucleus, and may be considered as the
counterpart of the quark Boer-Mulders function hqu(x, ki)

[28]. However, in contrast to the latter, hng is time-reversal-
even, implying that initial/final state interactions are not
needed for its existence [29,30]. Despite this fact, it does
receive the contributions from the initial/final state interac-
tion, leading to the process-dependent gauge links. This
distribution function is of phenomenological interest,
especially for small-x physics at the Relativistic Heavy-
Ton Collider (RHIC) and LHC because a calculation in the
saturation model [31] showed that its contributions are (at
small-x) as large as those proportional to the unpolarized
gluon distribution. The saturation-model calculation also
reveals that the linearly polarized gluon distributions with
different gauge-link structures differ significantly at low
transverse momentum, though they all recover the normal
perturbative tail at high transverse momentum.

A few ways of accessing hlig have been put forward,
namely through measuring azimuthal cos 2¢) asymmetries
in processes such as jet or quark pair production in
electron-nucleon scattering as well as nucleon-nucleon
scattering [32,33]. Other promising observables are
cos2¢ asymmetries in photon pair production in hadron
collisions [34] and in virtual photon-jet production in
nucleon-nucleus collisions [31]. Such measurements
should be feasible at RHIC, LHC, and a potential future
Electron Ton Collider [8,9]. More recently, it has been
found that the linearly polarized gluon distribution may
affect the transverse momentum distribution of Higgs bo-
sons produced from gluon fusion [21,35,36], color-neutral
particles produced in nucleus-nucleus collisions [37], and
heavy quarkonium produced in hadronic collisions [38].
The authors of Ref. [35] proposed that the effect of linearly
polarized gluons on the Higgs transverse momentum dis-
tribution can even be used, in principle, to determine the
parity of the Higgs boson experimentally. Transverse
momentum-dependent factorization has been re-examined
by taking into account the perturbative gluon-radiation
correction to hllg [36]. The complete TMD factorization
results for Higgs boson production are consistent with
earlier findings based on the Collins-Soper-Sterman for-
malism [39] and soft-collinear effective theory [40]. Also,
the transverse momentum resummation formalism applied
to di-photon production in pp collisions [41] is closely
related. A recent development[42] has shown that it might
also be promising to perform the resummation procedure
on the light cone.

The article is organized as follows. In the next section,
we start by reviewing our version of the hybrid approach
which allows us to describe effects caused by the finite
gluon transverse momentum on the proton side. Then we
reproduce the known result for the quark pair production
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amplitude in pA collisions using this hybrid approach. The
next step is a power expansion in the correlation limit. We
show that the resulting differential cross section depends
only on gluon TMDs rather than higher multiple-point
functions. We particularly focus on the polarized cross
section which contains the linearly polarized gluon distri-
butions. Our treatment goes beyond the large-N,. limit used
in earlier studies. In Sec. III, we discuss our result in the
dilute limit, the forward limit, and the large-N,. limit. It is
shown that our expressions are consistent with the existing
results in these different limits. In Sec. IV, we rederive the
cross section in the TMD factorization framework. As
expected, a matching between the CGC formalism and
the TMD factorization approach is found in the correlation
limit. The phenomenological implication of our work is
briefly discussed at the end of this section. In Sec. V we
summarize our results.

II. QUARK PAIR PRODUCTION IN
THE CGC FRAMEWORK

Let us first consider the general case of quark pair
production,

T(PB) + ﬂ(PA/per nucleon)—>q(ll) + q(lz) +X. (1)

We assume that the nucleus is moving with a velocity very
close to the speed of light in the positive z direction, while
the proton is moving in the opposite direction. It is conve-
nient to use light-cone coordinates for which P} = P} p#
and Py = Pzn*, with p = (1,0,0,0) and n = (0, 1, 0, 0).
The corresponding partonic subprocess is represented by
ga(ky) + g,(ky) = g(l)) + G(1y), where ki = x, Pj + kiz
denotes the total momentum carried by multiple gluons
from the nucleus, and k5 = x,P}; + kb, is the momentum
of the gluon from the proton. In the following the notations
ki, and k,, are used to denote three-dimensional vectors,

with k2, = —k?, and k3, = —k3;. To simplify the calcu-
lation, we choose to work in the light-cone gauge of the
proton (A~ = 0). Correspondingly, the polarization tensor

of a gluon carrying momentum / is given by
~IY + prit
+ P ThY .

et (l) = —gm”
p-l

2)

As mentioned in the introduction, to facilitate our
calculation, a hybrid approach [21] has been adopted in
which the nucleus is treated in the CGC model, while on
the side of the dilute projectile proton one makes the
so-called Lipatov approximation [16,17,23,24]. At small
x, the gluon-radiation cascade shows a strong ordering in
rapidity. In other words, the radiating color source carries a
much larger longitudinal momentum than the radiated
gluon. It has been shown that a fast-moving color source
can be treated as an eikonal line in the strongly rapidity-
ordered region. Making such a replacement is referred to as
the Lipatov approximation [17].
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FIG. 1. Feynman rules for the eikonal line, which is repre-
sented by a double line. a, b, and ¢ denote color indices.

For the process of gluon production in pA collisions, the
relevant eikonal line is the past-pointing one, which is built
up through initial-state interactions between the color
sources inside the proton and the background gluon field.
The interaction between the classical gluon field and the
final state gluon emitted from the color source inside
the proton does not change this general statement because
the imaginary part of the scattering amplitude cancels
between the different cut diagrams once the final states
are integrated out. The prescription to treat the eikonal
propagator is fixed by this choice. The relevant Feynman
rules, illustrated in Fig. 1, were given in Ref. [17]. Note
that the prescription for past-pointing eikonal propagators
differs from that for future-pointing eikonal lines.

The multiple scattering between the outgoing quark pair
and the classical color field of the nucleus can be readily
resummed to all orders [43,44]. This gives rise to a path-
ordered gauge factor along the straight line that extends in
x~ from minus infinity to plus infinity. More precisely, for
a quark with incoming momentum / and outgoing momen-
tum [ + k, the path-ordered gauge factor reads

278k ) pHU — 1](k}), 3)
with

[U - 1](ky) = j Pxpe M n[UGx) 1] @)

and

Uley) = (Pe e Jotrato, )

where AT = A¢, with ¢ being the generators in the
fundamental representation. Similarly, multiple scattering
between the incoming gluon (or eikonal line) and the
classical color field of the nucleus can also be resummed
to all orders,

278k )pH[U — 1](ky), (6)

with
[0 — 1](ky) = j Pxpe M [0G) 1] ()

and

Otey) = (Pe @ Jotr AT, - qg)

where (A™),, = AF(—if®*), with fe¢ being the genera-
tors in the adjoint representation.
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FIG. 2. The diagrams contributing to quark pair production. The gluon line terminated by a ® denotes a classical field insertion. The
contributions from all other diagrams disappear because the multiple poles are located in the same half plane.

We use these as the building blocks to compute the
amplitude for quark pair production in high-energy pA
collisions. It is straightforward to obtain the production
amplitude for diagram (a), illustrated in Fig. 2,

(@)= —_jo 3 psa Lk —m t—1
MO = ity B AU~ 1)
€ o‘(kZ) (,kz'p
Xv(lz)ikg_l_ie o ¢, (x2, k1), )

L=k +m

where the factor 27&(k;) is suppressed. m is the
quark mass and k, = [; + [, — k; denotes the momentum
of the gluon from the proton, with /; and /, being the
quark and antiquark momentum, respectively. ¢ (x5, k5 )
represents the probability amplitude for finding a gluon
carrying a certain momentum inside the proton, with
x,8(x2, ky1) = ¢,¢5,. The other diagrams shown in
Fig. 2 give

MO = —ig a(ly) pLU — 1](k; 1)

Spo(kz) ,,kz P
L T po £ -

yPtu(ly) & p(x2, kp1), (10)

(I, — ky)? — m? + ie kK +ie p-n
d*k] L—K+K+m L—K —m
MO = LSk )a(l) pLu — 1(k,, — k! L A M P ' Ut —1]!
85 (277_)3 ( 1 )I/t( l)l‘[ ]( 1L lJ_)(ll_kl+k/1)2_m2+ie (lz_k/l)z_mz_,’_lelﬁ[ ]( lJ.)
€ o’(k) k *
X (L) 222 L g k), (11

K +ie p-n

1 Spt)'(k2 + kl)

MD = —iga(l,)yPttv(ly)

kl'n_iﬁ(k2+k1)2+i6

Spp’(kZ + kl) 80'0'/(kZ)

k ki) - -
e 2;,;) PIo - 1)tk )d, 0 ko). (12)

M@ = —igii(l))y P v(ly)

(ky + k)> + i€ k3 + i€

7l k : 7
b Auponvﬁ[u — ek )by 02 ko). (13)

Putting all these terms together, we obtain the following expression for the complete production amplitude:
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M=MD 4+ M® + MO + M + e

Ay [ s J—k+ K +m
(2 )3{5(’<1 )”(11)15(11 —ky + ky)? = wrie” G

g(k ) » K
XﬁW&u—MﬁﬁmwlﬂUﬁ” 2o 2L
y [ &,y (ky + ky) So.o.r(kz)pMAMp/o_/ N 1 &po(ky + ky) ]n
(ky + k)* + i€ k3 + i€ ky-n—ie (ky + k)? + ie
To arrive at the above formula, we have made use of the Dirac equation of motion obeyed by the free spinors and the
following identity for the Wilson lines in the different representations:

U()CJ_)I“UT(XJ_) = thba()CJ_).
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/K —m

—Kky)? —m* +ie

¢Anbﬂ}i&ﬂmwﬁwmmdhﬂ

ky-p
p-

¢ (x2, kp1 ).

(14)

(15)

After some algebra, this production amplitude can be further rewritten in a more conventional form,

ky &K
M = ig, L g oo ko T k10 Oyl ) + [ T yglbr k60U = K DU KT, (6)
where

dk/ dkH— ll - ](1 + ]{l +m l2 - k/ — m
T,.(kyy, kyy, = S(ki~ L L X 17
aalkor kin ki) = ‘/ ( )’5 I~k + K2 —m? + ie (zz—k',)Z—mzﬂe" 17

1 K2, — (kyy + kyy)? K2 1

T,(kyi, kyy) = [li — 2L r{+2]6 ]——. (18)

g L (ky + ky)? ky-p 4 ky - i kz'Pﬁ

This result is in agreement with the production amplitude obtained in Ref. [20] up to a trivial prefactor. Note that
qu(kZJ_ =0, k]J_’ k/u_) + Tg(kZJ_ =0, li_) = 0.
Squaring the amplitude, we obtain the following expression for the pair production cross section:

do _
dP.S.

T
N2 — 1

2k, , LK K
2m)’ Qm*  Qw)?

5 fdzxj_dzyldlej_dzylle—ixl-(kll—k’”_) iy LK i (k) iy K

21 82(kyy + kot — q1)x28(xp k)

< LT, + mT

21
+ Te[(fy + m)T 5l — m)y°TE y°1C(xy, y1, ¥, ¥y) + Tel(ly + m)T,(f
+ Te[(fy + m)To(f, — m)y° TS y°1C(xe 1, x1, ¥, ¥

where g(x,, k,| ) denotes the unintegrated gluon distribu-
tion of a proton. In the phase-space factor dP.S. =
d’l,, d*l,, dy,dy,, the quantities y,, y, are the rapidities
of the produced quark and antiquark, respectively. The
quark-pair imbalance is defined as ¢, = [;; + I,;. The
factor 2/(2)? associated with the phase-space 1ntegr2at10n
is chosen such that for a single gluon target, j 24 ky ‘i X
(U(k,l)UT(kll»g,uon x;8(1 — x;) at the lowest nontrl—
vial order (see, for example, Ref. [45]). To obtain the above
result, we have defined the normalization factor and the
flux factor to be k3, /(2k, - p(N? — 1)) and 1/(2k; - p),
respectively, rather than k3| k3, /(4x;x,P4 - Pg(N2 — 1)?)
and 1/(4x,x,P, - Pg), as was used in Ref. [17], since the
Lipatov approximation is only applied on the proton side.

U — mYO Ty 1CGe s, v, v, X))

— m)YO Ty 1C(x s, x 1, v, X))
(19)

[
We have omitted the arguments of 7z, T,, and T’
denote the same quantities w1th ki, replaced by k’l’ |- The
four-point function C(x, y;,y', x,) is defined as
Clxp,y1, Y, x) =TrlUe ) U (y UG UL )),-
(20)
Here Tr, is a trace over the color indices. The longitudinal
momentum fraction of the proton and the nucleus carried
by the incoming gluons are constrained by the kinematics
[y Lle ™+ |l  [e™ |7y 1 leX +11) |e
X = , Xy = ,
1 \/E 2 \/E

where /s is the center-of-mass energy.

21
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With this derived, full CGC result, we proceed to the correlation limit where |P| | = |l;; — 1,1 1/2 > |q1/2. In this
kinematical region, we may systemically neglect the terms suppressed by powers of ko |/IP |, [k /1P L1, [k} /1P L],
and |k7 | |/|P | in the four hard coefficients. We first perform a Taylor expansion of the hard coefficients in terms of &, .
By dropping all terms suppressed by powers of |k, |/|P| |, one ends up with

do @, dzk deI dzk//
iP.S. NP —1 (2771)i d*kyy (2 ) 8% (kL +hos — q1)xa8 (s kat)

X fdledzyldzx'J_dzy’J_e_ixL'(kll_k/u) —iyLkyy pix (kL =k ) iy K|

ATl + m)T 5l — m)y° Ty T, —oClxi, y 1.y, X))

+ T (/; + m)qu(lz - m)yOT 0]ku=0C(vaYL’J’J_,YJ_)

+ Tr[(ll + m)Tg(IZ - m)yOTTqyO]kZL OC(-XJ_"XJ. yJ_’-xJ_)

+ Tr[(/), + m)Tg(lz - m)?’OTg ')’O]ku=0C(xJ_,xJ_,yl’yl)}’ (22)

and with T;, T, given by

qq°

gtk u“’f%éuw h-k+K+m b b=k —m

, 23
(11—kl+k’1)2—m2+i6(k2'p)(lz—k'l)z—mz-i-ielj ( )

Tg(kll) =

1 _2k 1L ° kQJ_ ~
(ky + X2PB)2|: ky-p p 2k ] &9
where ky| =k /|k, | is a unit vector.

Now let us move on to discuss the power expansion on the nucleus side. The fact that the integrations over k| |, k|
are dominated by the kinematical region |k} | ~ |k, | ~ Q;—because the typical small-x gluon transverse momentum
is characterized by the saturation momentum—allows us to employ the power expansion in the correlation limit Q; ~
lki1 + k1 1/2 < |P . To facilitate the power expansion, we replace T,;(k 1, k), To(k;1) with the following two
expressions with the help of Ward identities (gauge-invariance-violation terms in the amplitude are proportional to the
gluon off-shellness ~k% 1 » and thus can be neglected in the correlation limit):

k'~ dk'* K-k Lh-K+K+m by h-K-m K

T (kiy, =T (kiy, — 5 k'
aalkiL ki) aalkiL ki) = ,[ 27 ( )(x1—x’l)PX(ll—kl+k’1)2—m2+ie(k2-p)(lz—k’1)2—m2+iex’1PX

Vi L—K+m ]ézJ. ] ; ;
= — - (kl _k/l )
I:X1PX (L, —k)?—m?>+ie(ky - p)liy, =0 =

) — — 2
. [ ]ézl l %1 Yi ] klll_L n O(k )
(kz'p) (12 k )2—m +l€x1P ki1 =0 P2

qql(k — Kkl )+T§q1k’1’l, (25)

_ _ 1 K 1 —2ky, ; :
T, ki )=T,k - 2+ ! k! T . 26
elkis) elkis) (ky + X2PB)2( )CNCZPHDB)IQl [(kl +xPg)? kytp I{Iku—o H e (0

with i denoting the transverse index. By making the above replacement, the differential cross section can be rewritten in the
form
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do O [dzku_dzkzL
(NZ=1)

82(kyy +kay —q1)x28(x2, kpp)

dP.S. 2m)*
. / ~ ~ ! azcx » 1 /)xl
X | d*x dx'y e Gl AT () + m)TA (, — m)y°TAY 30T, 4 2o (xy YL)L 1)
1 1 1 qg,i 2 Y q4,j 21,K11 oxt ax/,/ YL =y
1941 FLTYLX TV
- ~pi F92C(x 1, v,y x) )]
PTG+ m)TA (=m0 A 0], [ YLy
’ ’ ' L ox' ayf dx) =y, x =y
1 1L LA T
7B 0FAt .0 _82C(xJ_,YJ_,le_yx/J_)-
+ Tty +m)T5; (= m) YT ¥l k=0 T
B 0y', ox dx =y, ¥ =y
yl 1 1L=YLX, =Y
7B 0Bt 0 [02C(x 1,y 1YL X))
+ Tty +m)T5, (= m) YT o7 ¥l k=0 T
B A dx =y, x =y
yi10y) 1=yLx =y
5 iy F02C(x 1, y1,x,x))T
+ T/, +m)T2,;,iClz—m)YOT;,jYO]ku,kuzo o ax/jl L B
- 1 1 =X1=yL
5 b [92C(xy, ., ), %))
+Tr[(11"‘m)qu,i(lz—m)YOT;,jYO]ku,kuzo 4 ,jl :
- ayllaxl <X =y
3 g F02C(x 1, x1,y),%))T
+Tr[(ll+m)Tg,i(lz_m)YOquT,ﬂO]ku,ku:O - ,,-l =
L axlaxl A =y
. .y F92C(x [, x1,y),x))]
+Tr[(l1+m)Tg,i(/2—m))’OTB]L,'YO]ku,kuzo . ,<l L
a9, 9xt 9 J Il
- X19Y1 1T
. ey 92C(x ,x 1, x\,x")
+ Ty +m)T g (s = m)y°TE 7 Ty, k0, =o0 =L 27)
&I axt ax"

where the transverse momenta k|, and k|| have been integrated out. As a result, the four-point functions collapse into the
two-point functions. The calculation of the Dirac traces in the above formula is rather easy, while the evaluation of the soft
part in the McLerran-Venugopalan (MV) model is a bit more involved. In general, the tensor structure of the soft part can
be decomposed in the following way:

9*Clx1, y1, Y, X)) 8 N 1 .
fl: dx ;0 ’l . ] - %Fl(xl’ ki) + (kukju - E‘SZ)Hl(xl,ku), (28)
X1,i0X] xi =y . =y
where [ denotes [ d?x) d?x'| e”" a7 ff | s aunit vector, k)| = ki | /lk;1|,and 8 = — gV + (p'n/ + pini)/p - n.

The four-point function C(x, y;, ', x/,) has been evaluated in the MV model in Ref. [20]. With the derived four-point
function, the coefficients F; and H; can be computed in a tedious but straightforward way. One finds

aZC , , l’ / B aZCx , , /,)C/ -
Flzf[ (x1 Y1 ZL XL):I 51:[[ ( L)L Z’l l)] 51, (29)
dx'| dx; xi=yLx| =y ay' ayy X1 =y =Y
02C(xy,y, Y, x y 2C(xy, v,y X .
Fy = ][ SEER AR “)] 5 = f[ o yn ) i)] 5, (30)
dx’y Iy X1 =y =Y, ay' ay'] e
Fo— 2C(xy, xp, ¥\, x)) i — *C(xp, x1, ¥, x)) S5 — 92C(xy, yp, x), x)) 5
3T axt ax’ R i ol R il 1
)C_LaXJ_ X =y aylaxl X, =y aylaxL X1=y1
_ [[82C(XJ_,yJ_,x/J_,x'J_)] sii =lf[azc(XL,xL,xl,xl)]aij 31)
ay’ ax" R ) axt ax't +
and
9*Clxy,y1,y),x)) Y i 2C(x 1, v,y x) a y
my = [ L] e e ] kK, -8, 32)
XL,i0%] ; x =y =y ay' dyj X1 =y =y
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azc(x »y ryl )xl) NN ij azc(x »y ’yl :xl) Ny ij
m= [ 8 H, -t = [[ )] kLR, ~ 50, (33
ax'| ay| xi=yix =y, ay' ayy X =y LX) =Y
aZC , , /, / B 82C , , /’ / -
Hy = [[PER ] iy - = [T o g - o
aXI_LaXJ'_ XL_)L ay’laxl xl )L
- [P ) oy - = ([P )] o -
i j i 1j 1L 1
aylaxl X1 =y aylaxl X1 =y,
1 (To*Clxy, xl,x’l,x’l)] A .
= i (2K, k], — &), (34)
2 /[ ax’léx'f_ L +
with
4 4 2
Fy =27 N axx| Gpp(xy, k1) + (1 — N2 Gyg(xy, kyy) + mwa(xl, ki) | (35)
4 4 2
Fy = 27N agx;| Gpp(x;, k1) — (1 - N2 Gyg(xy, ki1) — mwa(xl, ki) | (36)
Fy =27*N a,x[2Gpp(xy, ki 1)], (37)
4 4 2 1,
Hy = 27N ax, 1DP(X1, ki) +(1- N qu(xl, ki) +— N2 1,WW(xl’ ki) | (38)
4
H, = 27T4Ncasxl|:htlgjp(xl’ ki) — (1 - m)htjq(xl: kir) — jhtévw(xl’ ku):ly (39)
H3 = 27T4Nc.asx1|:2hf]§P(x1, li_)]' (40)

To amve at the results given above we have neglected the logarithmic dependence of the saturation momentum
on r3 . Gpp, Gww, hf‘DP, and h1 ww are the unpolarized gluon dipole distribution, the Weizsidcker-Williams (WW)-type
unpolarized gluon distribution, the dipole-type linearly polarized gluon distribution, and the WW-type linearly polarized
gluon distribution, respectively. In the MV model, they read [31,46,47]

2 Q?

CrS, &Pr|

leDP(xl’kll) lDP(xl’li.) 2 2 (2 )2 _lle'rJ_e— J-4 y (41)
N? -1 s
x1Gww(xy, ki) = [dzr et ’l—(l — e ) 42)
N. 477 a rJ_
J (Ik 17 )l A
b (e, k) = Sl[d LT (1 e —) 43)
|V¢|Q

Here S is the transverse area of the target nucleus. Q? = a ;N 4 In [1 /(3 AéCD)] is the gluon saturatlon scale, with w4
being a common CGC parameter. J, is the second-order Bessel function. Note that our convention for h1 wy differs from
that in Ref. [31] by a factor 1/2. The WW-type gluon distributions have a clear physical interpretation as the number
density of gluons inside a hadron/nucleus, while the dipole-type distribution does not. On the other hand, the dipole-type
unpolarized gluon distribution in the adjoint representation enters the single gluon production cross section in pA
collisions [48]. Besides these widely used gluon TMDs, two novel ones are given by

CrS d’r,  _ i Q‘
)Cleg(-xl, li_) = F2 1 [(277-;‘ ikyyry Q2 ’ 44)
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2 02
J_Q

N2
it k) = sy [ dirstaalr sl i e

(45)

Collecting all the pieces together, the differential cross section for quark pair production can be written in the following
general form:

do alN,
= e A+

PSP - — B(ql) cos2¢ + C(g%) cos 4¢] (46)

Pq

where ¢ is the azimuthal angle between the transverse momenta ¢, and P . The coefficients A(q? ), B(q3 ), and C(q7)
contain convolutions of various gluon TMDs. Instead of presenting the full results for these coefficients, we neglect all
higher powers in m?/P?

(@ + ) [(i - 2)?
ﬂ(Qi):/dzkukou(Sz(ku+k2l_6ﬂ)ng()€2,k2l) 07 { 2 x1Gpp(xy, ki 1)
4 2
+x1[(1 N2>qu(x1’ku)+N2GWW(x1’kll)]}’ (47)

B — ] Py oy 82Ky 1+ by — g8 0o kat)

(7 —a)7?

20k, - g1)* = 1]
d (=

(f—a)3

4 2
xlhijjlg)P(xl’ ki) + X1[(1 - m)h%qq(xp kil) +— N2 hl,{g;vw(xp ku)])

c

4 2
+[2(kyy - G1)% — 1]( xGpp(xy, ki) + x1[<1 - m)qu(xlv kil) + WGWW(XI’ kll)])}, (48)

c c

P, 1
Clqd) = f Py dkyy 82k s + Koy — q1)xag (o ku)[(z(q R)@ ) — Ry ) - —]

2
PPV}
X {%xlhigp(xl» kyy) + x1[<1 - iz)hijjq(xl’ ki) + izhié}w(xl, ku_)il}, (49)
S N; N;
[
where § = (x;P4 + x,Pp)?, 1= (x,Pp — [,)?, and o = (c) The cos2¢ azimuthal asymmetry is proportional to
(x, P, — 1,)? are kinematical variables defined in the usual the mass of the produced quark. Therefore, it might
way. This is the main result of our paper. be optimal to study this asymmetry for charm and

A few remarks are in order on the above analytical bottom quark-antiquark pair production at RHIC

result. and LHC.

(a) One notices that six different types of TMD gluon (d) It is worthwhile to point out that, as observed in
distributions are involved in the azimuthal angle- Ref. [36], one automatically takes into account the
dependent differential cross section, among which contribution from the linearly polarized gluon TMD
three are unpolarized gluon TMDs and the rest are in the k, factorization. In other words, the usual
linearly polarized gluon distributions. They differ unpolarized gluon distribution of the nucleon is
due to the different gauge-link structures arising the same as its linearly polarized gluon distribution
from the initial-/final-state interaction. Thus, by in the Lipatov approximation.
measuring the di-jet imbalance and the azimuthal (e) Finally, we would like to mention that it is also
asymmetries one can investigate how the gluon feasible to take into account the small-x evolution
transverse momentum spectrum is affected by effect [49,50].

initial-/final-state interaction.

(b) We have taken into account the N_-suppressed terms
in both the unpolarized and polarized cross sections.
As discussed in the next section, the N, .-suppressed
terms play an important role for low transverse In this section, we show how the obtained complete
momentum. Therefore, the large-N, limit adopted  analytical results reduce to the existing results in the
in Refs. [10,11] is actually not a good approximation literature in the dilute limit and the large-N, limit in the
in certain kinematical regions. nucleon forward region.

III. THE DILUTE LIMIT, FORWARD LIMIT,
AND LARGE-N, LIMIT
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We first discuss the expression in the dilute limit. In the
correlation limit, the low-gluon-densities limit is reached
in the kinematic region Q? < k7, < P%. When Q7 <
k% I all six gluon distribution functions become identical,
though they differ significantly at low k|,

x1G(xy, k)= xlhfﬁp(xp kyy) =x1hf§‘,w(x1, kyy)
le
=x1h1,2q(x1, ki1)=x1Gpp(xy, ki1)

=x1Gww(x1, k1) :Xleq(xl,ku)

NZ—1 py

) 50
4773 k%l (50)

=8 ——

Note that the well-known bremsstrahlung spectrum 1/ k% 1
is recovered for all types of gluon TMD distributions in the
dilute limit. This is because, when the gluon densities of
the nuclear target are not too large, the multiple-gluon
rescattering plays a less important role in describing the
gluon transverse momentum spectrum. By replacing the
various gluon distributions appearing in the coefficients
A(q%), B(g%), and C(g?%) with the above dilute gluon
distribution, we have

Ag})= ]dzku_dzku 82(ky L + kot — q1)x28(xa, kay )xy

P +i?

N2—1
g ] 51)

2N2 it

XG(xlyku)I:

B(g7) = fdzklldzkzl 82(ky 1tk —q1)xg(xa kay )xy

N2—1 fal .~ .
XG(X1:k1¢)4|: N2 —?][Z(ku'éu)z

+2(kyy - 41)* 2], (52)

Clgh) = ]dzkudzku 82 (ki1 +kyy —q1)x28(x0, kyy )xg

N2

XG(X1,/<1¢)4|: N2

LI ek @)

~hykr -5 ] (53
Here the known unpolarized Born cross section for gg
production through gluon fusion has been recovered for
the unpolarized term, as it should be. Agreement is also
found between our results and the explicit expressions of
the polarized cross section given in Refs. [32,33], provided
that these results are extended to the small-x region and the
same dilute limit is taken. As mentioned in the previous
section, one automatically takes into account the linearly
polarized gluons inside a proton in the Lipatov approxi-
mation. The results presented in Refs. [32,33] were com-
puted in the TMD factorization approach. In principle,
the gluon TMDs associated with different hard scattering

PHYSICAL REVIEW D 87, 054010 (2013)

processes contain different gauge-link structures.
However, the nontrivial initial-/final-state interaction ef-
fects encoded in the gauge links were not quantitatively
analyzed in Refs. [32,33]. Therefore, by observing these
consistencies, we conclude that in the dilute limit the
contribution from initial-/final-state interactions encoded
in the gauge links can be neglected, and single-gluon
exchange dominates the processes.

Let us now discuss the expressions we obtain in the
nucleon forward limit. Since the gluon intrinsic transverse
momentum k,, inside a nucleon can be neglected in the
forward limit as compared to that from the gluon distribu-
tion of a nucleus, we may make the approximation
&8%(ky, +ky —qy) = 8%(ky, —q,) and integrate out
ki1 and k, . In doing so, we essentially recover a hybrid
approach widely used in the CGC calculation, in which one
applies the collinear factorization for the integrated gluon
or quark distributions inside the dilute proton at large x,,
while the CGC formalism is used on the nucleus side. After
making such approximations, one ends up with the follow-
ing simplified result:

l/t2 2 _ 2
A ) =gl ){“ )

~ leDP(xl’qj_)
ot §2

+x1[< Nz)qu(Jﬁ q1)

Nszw(X1 CIJ_)]} (54)
2 a2
B(qzi):ng(XZ){%xlhigp(xhh)
4 2
+x1[<1_N_) “ifi(xl’qL)+N2 1,€vw(x1»ql)]},
(55)
C(‘]i) =0, (56)

where g(x,) is the integrated gluon distribution function for
the proton. It is shown that the cos 4¢ modulation arising
from the product of two linearly polarized gluon distribu-
tions from both the nucleon and nucleus drops out in the
forward limit. This is because the linearly polarized gluon
distribution of the nucleon disappears after integrating over
the gluon transverse momentum.

In order to compare with existing results for quark pair
production in pA collisions in the forward limit, we further
take the large-N, limit,

(@ Az){(t— a)?

207 ’o) leDP(xl:qj_)
4it §

A (¢7) =x,8(x,)

+x1G g, qL)}, 57)
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G- 1,
B (Clzl) = ng(xz){TMh]f)p(xl, q1)
lg
+xih g QJ_)}, (58)

Clq1) =0, (59)

where the unpolarized cross section is in agreement
with that obtained in Ref. [11] if one uses the rela-

. 2

tions x;Gpp(xy, q1) = ((g? - .nggz and x,G5(xy, q1) =
FU + FE which are valid in the large-N, limit. Fby
and ,’]-"(gz; are expressed as a convolution between the

dipole gluon distribution and a Gaussian form and are
given by [11]

|
Fox,q0) = [d2611Ld2612L52(‘1L —q11—q21)

X x1Gpp(x1, 41 1)F(q2), (60)

FAxy,q1) = — [d261ud2612l52(61¢ —q11 — 4921)

x %xﬁnpm 7 )F(),  (61)
1L

where F(q,) is a Gaussian and its definition can be found in
Ref. [11]. At this point, we would like to emphasize that the
large-N, limit is not necessarily a good approximation. In
particular, N_.-suppressed terms could be the dominant
contribution in the dense-medium region. This can be
best seen by investigating how the various gluon TMDs
involved in unpolarized and polarized cross sections scale
at low kq:

xGpp(xy, k1) = X1hﬁ1§p(xh ki)~ ki, /03,

x1Gy5(xy, ki) ~ constant,
x1Gww(xy, ki) ~In(Q2/k%)),
xlhll,afw(xl,ku)lehijg(xl,le)NMA/Q?- (62)

Clearly, the term proportional to the WW-type unpolarized
gluon distribution is the dominant one in the unpolarized
differential cross section at low transverse momentum, as it
keeps rising like the logarithm of 1/ k% | in the saturation
regime where all other gluon distributions either approach
a constant or vanish. In contrast to the unpolarized case, the
subleading N, contribution is indeed suppressed by a factor
of 2/N? as compared to the leading N, contribution in the
cos 2¢-dependent differential cross section at low trans-
verse momentum.

IV. QUARK PAIR PRODUCTION IN TMD
FACTORIZATION

Roughly speaking, transverse momentum-dependent
factorization applies in the hard scattering processes

PHYSICAL REVIEW D 87, 054010 (2013)

when a hard scale involved in the corresponding processes
is much larger than the parton intrinsic transverse mo-
menta. This is indeed the case for quark pair production
in pA collisions in the correlation limit where the individ-
ual quark transverse momentum serves as the hard scale of
the process and is much larger than the transverse momen-
tum imbalance of the quark pair related to the incoming
gluon transverse momenta. In general, the differential
cross section computed in the TMD factorization frame-
work can be factorized into the hard partonic cross section
and the various spin- and transverse momentum-dependent
parton distributions. Hard parts are perturbatively calcu-
lable, while the parton TMDs are normally regarded as
universal nonperturbative objects. The proper gauge-
invariant definitions of TMDs involve nonlocal operators
containing path-ordered exponentials—the gauge links—
which result from resumming all longitudinally polarized
gluons into the soft parts. The gauge link has important
physical effects, and particularly plays a central role in the
description of transverse single-spin asymmetries as well
as transverse momentum broadening in high-energy colli-
sions involving a large nucleus [51].

However, it has been realized that standard TMD facto-
rization fails in di-jet production in hadronic collisions [6].
Since the structure of gauge links generally depends on the
process, TMD distributions are essentially process depen-
dent, implying a breakdown of universality. A solution
to this problem has been proposed by introducing the
so-called generalized TMD factorization [52], in which
the basic factorized structure is assumed to remain valid,
but with TMD distributions that contain nonstandard,
process-dependent gauge-link structures. In the framework
of generalized TMD factorization, the modified gauge
links are obtained by resumming longitudinally polarized
gluons into parton correlation functions on each nucleon
side separately. However, recent work has shown that it is
impossible to do so for di-jet production in nucleon-
nucleon collisions because the initial-/final-state interac-
tion will not allow a separation of gauge links into the
matrix elements of the various TMDs associated with each
incoming hadron. This has been explicitly illustrated by a
concrete counterexample in Ref. [7].

Similarly, for quark pair production in hadronic
collisions, generalized TMD factorization is not valid any
longer. However, in pA collisions, if one only takes into
account the interaction between the active partons and the
background gluon field inside a large nucleus while ne-
glecting the longitudinal gluons attached to the proton side,
the type of graph (for example, Fig. 11 in Ref. [7]) that can
produce a violation of generalized TMD factorization
disappears. In this section, we use this approximation.
Admittedly, we cannot quantify the systematic errors in-
troduced by it. After neglecting the extra gluon attachment
on the proton side, the multiple gluon rescattering between
the hard part and the nucleus can be resummed to all orders
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FIG. 3. The diagrams contributing to quark pair production in the TMD factorization approach. The gauge-link structure of gluon
TMD distributions associated with each diagram are different. The mirror diagrams are not shown.

in the form of a process-dependent gauge link. Due to the
different color structures, the gluon TMDs associated with
different Feynman diagrams correspond to different gauge-
link structures. For example, the gluon TMD correlation
function associated with graph Fig. 3(a) takes the form [52]

(I)U — zfdér dgl IX]P —iki €L
8@ Qm)* P}
‘ N2 T Ut
X ( P|TrF ¢ (-]
(prred (f)[Ng_1 v
1 ‘
- v Jpout e (63)

where i, j denote the gluon polarization index. The gauge
links UL), UL~] are defined as

U] = poigs [5 a0 AN 00 p i, [L dim AT 6L

(64)

Ul-1= P8 f;wdeW(,Ol)r.pe*ig.\- ji;d{7A+(§7v§L) (65)

and UIP] = plHlgl=1t = pl=1t yl+] emerges as a Wilson
loop. At small x, this gluon TMD can be expressed as the
derivative of a multiple-point function and subsequently be
computed in the MV model. In order to derive this relation,
we make use of the Fierz identities,

Cler,y 1YL ) =Tr(U ) Uy DU UT ()

:%Trcwf(xg)wxl»nxuf<yl>u<y1>>

(UG )UT DU DUT)),

(66)

1
2N,

and the formula

() = —ig, f°° dx U[—0,x" x, ]

X AT (x7, x )U[x ™, 00, x ] (67)
With the help of the above two identities, one finds
P — 2N.. z d’x | d? xJ_ ks ()
@ N-la,) @m)
2
x[icm LYY )] (68)
dxy;0x L,j e X1 =y1x) =y,

The normalization on the right-hand side of the equation is
fixed according to the arguments made in Ref. [11].
Following a similar procedure, for the gluon distribution
correlation functions associated with other diagrams
shown in Fig. 3 we obtain

3 dzxj-dle e il —x)
Qm)*

C(xl,yi,yg,xg)] . (69)

— /=
X1L=YLX, =)

62
X [i
9y 1,i9y] ;

d’x, d*x'
q)lj _2N f 1 *lku_(xl —x)
(2m)*

CleryL, yl,xl)] . (70)

xp=yLx) =y,

oy
axi,iayi,

dledz
@ N.a,)] Qm)*

X —tku_(xl x\)
Qm)*

C(xl,xbx;,x’l)], a1

82
x [7
axl‘,»axl,j
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ij

2 2
_ii Me*iku()u*xl)
(e) N, a,

(2m)*

62
X [7C(XJ_,XJ_,)’/J_;X/J_)] ’ (72)
axLiax’lyj X/J.:yrj_

ij

2 2
22 (dxidx -0
() N, a,

(2m)*

2
X| ————Cx,x1,y), % . 73

I:axl,iaylj_,j (xp,xg Y1 l)]x’l—yl (73)
With these relations, all of the unpolarized and linearly
polarized gluon TMDs can be calculated in the MV model.
On the other hand, it is straightforward to compute the
partonic hard cross section contributions from each
diagram in Fig. 3. Combining the derived gluon TMDs
and hard parts and summing the contributions from all
diagrams, we obtain the finial result in the TMD factoriza-
tion framework. In order to compare the obtained TMD
factorization result with that calculated in the CGC formal-
ism, we have to take the same dilute limit on the proton
side, which means that the unpolarized gluon distribution
and the linearly polarized gluon distribution inside a proton
become identical. After making this assumption, a perfect
matching between the CGC formalism and TMD factori-
zation is found in the correlation limit. We emphasize that
this conclusion is valid beyond the large-N, limit.

As an effective TMD factorization is established in the
quark pair production process, the measurement of the
azimuthal asymmetries in pA collisions allows one to
probe directly the distribution of the linearly polarized
gluons inside a large nucleus. Such measurements provide
us with a first chance to explore the gluon polarization
effect in the saturation regime. Since the magnitude of
various linearly polarized gluon distributions are of
the same magnitude as the unpolarized ones at small x
(this becomes evident in the dilute limit where polarized
and unpolarized distributions become identical), we also
anticipate that these asymmetries are quite sizeable, sug-
gesting a promising prospect for the extraction of polarized
gluon distributions from the quark pair production process.
By comparing the gluon distributions extracted from this
process with that probed in the other processes, like di-jet
production in eA collisions, one could deduce how the
gluon transverse momentum spectrum is affected by the
different initial-/final-state interactions.

To emphasize the phenomenological relevance of our
results, let us add that recently a strong back-to-back
decorrelation of the two hadrons in dAu collisions in the
forward rapidity region of the deuteron was discovered by
STAR and PHENIX [53,54]. However, at RHIC energy, the
dominant channel is gg¢ — ¢gg in the forward region. The
g8 — qq channel only becomes relevant in the central
rapidity region at RHIC. Apart from this, the effects
caused by the polarized gluon distributions can not be
isolated by only looking at the angular deviation from the

PHYSICAL REVIEW D 87, 054010 (2013)

back-to-back situation, but depend on the jet transverse
energy [32]. Finally, it is important to mention that the
small-x evolution effect has to be taken into account at
LHC since the MV model is only a good model for high-
energy scattering when x is not smaller than 0.01 for a
large nucleus. It should be feasible to measure these
polarization-dependent observables at RHIC and LHC.
We plan to perform a complete set of phenomenological
studies to investigate this possibility in the future.

V. SUMMARY

In this paper, we have studied quark pair production in
high-energy proton-nucleus collisions in the central rapid-
ity region and in the correlation limit where the total
transverse momentum of the quark pair (g;) is much
smaller than the transverse momenta of the individual
quarks (= P;). Our main focus lay on the polarized
case. We first used a hybrid approach to reproduce the
full CGC result for quark pair production beyond the
correlation limit. Our hybrid approach allowed us to take
into account finite gluon transverse momentum effects on
the proton side in a certain approximation. Employing a
power expansion in the correlation limit, the multiple-point
functions appearing in the full CGC result collapse into
two-point functions and are thus given by a combination of
gluon TMDs. All finite N, terms are kept in our calcula-
tion. The resulting cross section contains cos2¢- and
cos4¢-dependent terms, where ¢ is the azimuthal angle
between the transverse momenta ¢ | and P . In addition to
WW- and dipole-type linearly polarized gluon distribu-

tions, the novel linearly polarized gluon distribution hf;jé

also generates cos 2¢ and cos 4¢ modulations. Such asym-
metries could be measured at RHIC and LHC.

We further discussed our results in the dilute limit, the
forward limit, and the large-N, limit, and found consis-
tency with existing results in the different limits. The
physical implications of the observed consistences were
also addressed. In the end, we showed that a calculation
based on TMD factorization leads to the same result as that
obtained in the hybrid approach. The technique introduced
in this paper can be extended to study di-jet production in
other channels for pA collisions (e.g., di-jets initiated by
different partons and/or various polarization channels). For
these the linearly polarized gluon TMDs with different
gauge-link structures may also manifest themselves
through cos2¢ or cos4¢ azimuthal dependencies of the
cross sections. We would expect that exploring these po-
larization obervables at small x will open a new path to
investigate spin physics as well as saturation physics.
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