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We present the thermodynamic properties of strongly interacting matter in finite volume in the

framework of Polyakov loop enhanced Nambu-Jona-Lasinio model within mean field approximation.

We considered both the 2 flavor and 2þ 1 flavor matter. Our primary observation was a qualitative change

in the phase transition properties that resulted in the lowering of the temperature corresponding to the

critical endpoint. This would make it favorable for detection in heavy-ion experiments that intend to create

high density matter with considerably small temperatures. We further demonstrate the possibility of

obtaining chiral symmetry restoration even within the confined phase in finite volumes.
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I. INTRODUCTION

The strongly interacting matter is supposed to have a
rich phase structure at finite temperatures and densities [1].
While our Universe at the present epoch contains a signifi-
cant fraction of color singlet hadrons, color nonsinglet
states especially quarks and gluons may have been preva-
lent in the past—a few microseconds after the big bang [2].
The temperature of the Universe at that epoch is estimated
to be�200 MeV. A similar state of matter is also expected
to exist inside the core of super-massive stars in the pre-
sent day Universe, where the density is �10 times that of
normal nuclear matter. A direct study of such natural
phenomenon is out of bounds even to modern astrophysi-
cists. Fortunately experimental facilities at CERN (France/
Switzerland), BNL (USA) and recently at GSI (Germany)
are exploring the possibilities of creating and studying the
properties of such exotic states of matter in a controlled
environment. The key differences that appear in such ex-
periments as compared to the natural phenomenon are the
lifetime of matter created in the exotic state and its volume.
Whereas in natural phenomenon the lifetime of the exotic
matter may be large compared to the interaction time
scale, it is usually very small in an experimental situation.

Some effects of the enhanced lifetime on the physical
aspects of the system relating to the onset of equilibrium
of weak interactions were discussed by us in Ref. [3]. Here
we shall discuss the effects of finite volume on the prop-
erties of strongly interacting matter.
In the following we shall generically define the matter

with color confined states as the hadronic phase and the
exotic state with colored degrees of freedom as the quark-
gluon plasma. In the experiments this exotic phase may be
produced by ultra relativistic collisions of heavy ions. The
volume of the system thus created would depend on the
nature of the colliding nuclei, the center of mass energy
(

ffiffiffi
s

p
) and the centrality of collision. Once created, the

system expands until the constituents are so far separated
that their interaction ceases and they flow out as free
streaming particles. The distribution of particles thus
freezes out, except for some further decays to smaller
particles. There have been a large number of efforts to
estimate the system size at freeze-out for different

ffiffiffi
s

p
and

different centralities. The most popular way of doing so is
to measure the Hanbury-Brown-Twiss radii (see, e.g.,
Refs. [4,5] for reviews). In Ref. [6] it has been shown
that the freeze-out volume increases as the

ffiffiffi
s

p
increases.

Here the authors have estimated the freeze-out volume and
found it to vary from 2000 fm3 to 3000 fm3. In a very
recent paper [7] the volume of homogeneity has been
calculated using UrQMD model [8] and compared with
the experimentally available results. The

ffiffiffi
s

p
considered

was in the range of 62.4 to 2760 GeV for lead-lead colli-
sions at different centralities. The system volume has been
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found to vary from 50 fm3 to 250 fm3. Given that these are
the freeze-out volumes, one can trace back to the initial
equilibration time and expect an even smaller system size.
In fact one cannot even consider the whole fireball, which
is an isolated system to be in thermodynamic equilibrium.
One has to choose a proper rapidity interval to act as the
system under consideration. Therefore it becomes impor-
tant to study how the various thermodynamic quantities
in a strongly interacting matter depend on the volume of
the system. Specifically we know that finite system sizes
would lead to smoothening of any singularities appearing
at a phase transition [9]. Thus important signatures of such
transitions must be reanalyzed with the help of finite size
scaling analysis [10]. In the context of heavy ion collisions
such a possible analysis has been discussed in the literature
(see, e.g., Refs. [11–13]).

On the theoretical side a study of finite volume effects
was done in Ref. [14] with a bag of noninteracting quarks
and gluons and it was found that the effective degrees of
freedom are reduced. In Ref. [15] a two model equation
of state was used to show that the separation between
the hadronic and quark-gluon plasma phases around the
critical temperature loses its sharpness resulting in a soft
effective equation of state. A few first principle study of
pure gluon theory on space-time lattices were performed,
showing the possibility of significant finite size effects
[16,17]. Similar studies are going on in various QCD
inspired models. In Refs. [18,19] the quark mass gap
equation has been studied with Schwinger-Dyson equation
parallel to equivalent Lattice QCD (LQCD) calculations
and various meson properties are found to have significant
volume dependence. In the context of chiral perturbation
theory the implications of finite system size have been
discussed [20,21]. Then there are studies with four-Fermi
type interactions, like the Nambu-Jona-Lasinio (NJL) [22]
models [11,23,24], linear sigma models [12,25,26] and
Gross-Neveu models [27]. While in Ref. [25] the scaling
behavior of chiral phase transition for finite and infinite
volumes has been studied, the character of phase diagram
has been studied in Refs. [11,12,26,27]. In Refs. [23,24]
the authors have studied the chiral properties as a function
of the radius of a finite droplet of quark matter. The
stability of such a droplet in the context of strangelet
formation within the NJL model has been addressed in
Ref. [28]. Size dependent effects of difermion states within
2-dimensional NJLmodel has been studied in Ref. [29] and
that of magnetic field is discussed in Ref. [30]. Recently in
a 1þ 1 dimensional NJL model the induction of charged
pion condensation phenomenon in dense baryonic matter
due to finite volume effects has been studied in Ref. [31].

In this work we shall use the Polyakov loop enhanced
NJL (PNJL) model to study the thermodynamic properties
of the strongly interacting matter in a finite volume. This
model originated from the NJL model [32–34] which in-
corporates the global symmetries of QCD quite nicely.
A four quark interaction term in the NJL Lagrangian is

able to generate the physics of spontaneous breaking of
chiral symmetry—a property of QCD which is manifested
as the nondegenerate chiral partners of the low-mass had-
rons. However a reasonable description of the physics of
color confinement is missing. With the introduction of a
background field in the NJL model, motivated by the dy-
namics of the Polyakov Loop [35], one obtains the PNJL
model which describes a number of features of confine-
ment physics quite satisfactorily (see e.g., Refs. [36–44]).
Certain aspects of finite volume effects in the PNJL

model has been discussed in Ref. [45] through a coarse
graining of the Lagrangian, followed by a Monte Carlo
simulation. This method goes on similar lines as the
numerical studies of LQCD. Normally this would involve
the same kind of complex determinant problem that
has plagued the direct LQCD computations for nonzero
baryon number densities. So it may be desirable to keep
using the saddle point approximation in PNJL model to
study the finite volume effects. Here we make the first case
study, albeit with some simplified assumptions toward that
direction.
We organize our paper as follows. In the next section we

briefly describe the PNJL model and the modifications for
finite volume. In Sec. III we describe phase transition at
finite volume and in Sec. IV we discuss the thermodynamic
properties. The pion and sigma meson masses and the pion
decay constant at finite volume have been discussed in
Sec. V. In Sec. VI we summarize and conclude.

II. THE PNJL MODEL

We shall consider the PNJL model with light flavors
(2 flavor) and light plus strange flavors (2þ 1 flavor). In the
PNJL model the gluon physics comes into play through the
chiral point couplings between quarks (present in the NJL
part) and a background field which represents Polyakov
Loop dynamics. The Polyakov line is represented as,

Lð �xÞ ¼ P exp

�
i
Z �

0
d�A4ð �x; �Þ

�
; (1)

where A4 ¼ iA0 is the temporal component of Eucledian
gauge field ð �A; A4Þ, � ¼ 1

T , and P denotes path ordering.

Lð �xÞ transforms as a field with charge one under global
Z(3) symmetry. The Polyakov loop is then given by � ¼
ðTrcLÞ=Nc, and its conjugate by �� ¼ ðTrcLyÞ=Nc. The
gluon dynamics can be described as an effective theory of
the Polyakov loops. The Polyakov loop potential can be
expressed as

U0ð�½A�; ��½A�; TÞ
T4

¼ Uð�½A�; ��½A�; TÞ
T4

� � ln ðJ½�; ���Þ; (2)

whereUð�Þ is a Landau-Ginsburg type potential commen-
surate with the Z(3) global symmetry. Here we choose a
form given in Ref. [37],
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Uð�; ��; TÞ
T4

¼ �b2ðTÞ
2

���� b3
6
ð�3 þ ��3Þ

þ b4
4
ð ���Þ2; (3)

where

b2ðTÞ ¼ a0 þ a1

�
T0

T

�
þ a2

�
T0

T

�
2 þ a3

�
T0

T

�
3
; (4)

b3 and b4 being constants. The second term in Eq. (2) is the
Vandermonde term which replicates the effect of SU(3)
Haar measure and is given by

J½�; ���¼ ð27=24�2Þ½1�6� ��þ4ð�3þ ��3Þ�3ð� ��Þ2�:
The corresponding parameters were earlier obtained in

the above mentioned literature by choosing suitable values
by fitting a few physical quantities as function of tempera-
ture obtained in LQCD computations. The set of values
chosen here are

a0 ¼ 6:75; a1 ¼ �1:95; a2 ¼ 2:625;

a3 ¼ �7:44; b3 ¼ 0:75; b4 ¼ 7:5;

T0 ¼ 190 MeV; � ¼ 0:2ðfor 2 flavorÞ;
� ¼ 0:13ðfor 2þ 1 flavorÞ:
For the quarks we shall use the usual form of the

NJL model except for the substitution of a covariant
derivative containing a background temporal gauge field.
Thus the 2 flavor version of PNJL model is described by
the Lagrangian,

L ¼ X
f¼u;d

�c f��iD
�c f �

X
f

mf
�c fc f þ

X
f

�f�0
�c fc f

þ gS
2

X
a¼1;2;3

½ð �c �ac Þ2 þ ð �c i�5�
ac Þ2�

�U0ð�½A�; ��½A�; TÞ: (5)

For 2þ 1 flavor the Lagrangian may be written as

L ¼ X
f¼u;d;s

�c f��iD
�c f �

X
f

mf
�c fc f

þX
f

�f�0
�c fc f þ gS

2

X
a¼0;...;8

½ð �c�ac Þ2

þ ð �c i�5�
ac Þ2� � gD½det �c fPLc f0

þ det �c fPRc f0 � �U0ð�½A�; ��½A�; TÞ; (6)

where f denotes the flavors u or d or s, respectively.
The matrices PL;R ¼ ð1� �5Þ=2 are respectively the left-

handed and right-handed chiral projectors, and the other
terms have their usual meaning, described in detail in
Refs. [39,41,43,46–48]. This NJL part of the theory is
analogous to the BCS theory of superconductor, where
the pairing of two electrons leads to the condensation
causing a gap in the energy spectrum. Similarly in the

chiral limit, the NJL model exhibits dynamical breaking
of SUðNfÞL � SUðNfÞR symmetry to SUðNfÞV symmetry

(Nf being the number of flavors). As a result the composite

operators �c fc f pick up nonzero vacuum expectation

values. The quark condensate is given as

h �c fc fi ¼ �iNcLty!xþðtrSfðx� yÞÞ; (7)

where trace is over color and spin states. The self-
consistent gap equation for the constituent quark masses
are

Mf ¼ mf � gS	f þ gD	fþ1	fþ2; (8)

where 	f ¼ h �c fc fi denotes chiral condensate of the

quark with flavor f. Here if we consider 	f ¼ 	u, then

	fþ1 ¼ 	d and 	fþ2 ¼ 	s. Similarly if 	f ¼ 	d then

	fþ1 ¼ 	s and 	fþ2 ¼ 	u, if 	f ¼ 	s then 	fþ1 ¼ 	u

and 	fþ2 ¼ 	d. The expression for 	f at zero temperature

(T ¼ 0) and chemical potential (�f ¼ 0) may be written

as [42]

	f ¼ � 3Mf

�2

Z � p2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þM2

f

q dp; (9)

� being the three-momentum cutoff. This cutoff have
been used to regulate the model because it contains
dimensionful couplings rendering the model to be
nonrenormalizable.
Because of the dynamical breaking of chiral symmetry,

N2
f � 1 Goldstone bosons appear. These are the pions and

kaons whose masses, decay widths etc. from experimental
observations are utilized to fix the NJL model parameters.
The parameter values have been listed in Table I. Here we

consider the �, �� and 	f fields in the mean field approxi-

mation where the mean field are obtained by simulta-
neously solving the respective saddle point equations.
Now that the PNJL model is described for infinite vol-

umes, we discuss how we implement the finite volume
constraints. Ideally one should choose the proper boundary
conditions—periodic for bosons and antiperiodic for fer-
mions. This would lead to a infinite sum over discrete
momentum values pi ¼ �ni=R, where i ¼ x, y, z and ni
are all positive integers and R is the lateral size of a cubic
volume. This implies a lower momentum cutoff pmin ¼
�=R ¼ � (say). One should also incorporate proper effects
of surface and curvatures. In this first case study we shall
however take up a number of simplifications listed below:

TABLE I. Parameters of the fermionic part of the model.

Model mu MeV ms MeV � MeV gS�
2 gD�

5

2 flavor 5.5 0 651 4.27 0

2þ 1 flavor 5.5 134.76 631 3.67 9.33
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(i) We shall neglect surface and curvature effects.
(ii) The infinite sum will be considered as an integration

over a continuous variation of momentum albeit
with the lower cut-off.

(iii) We shall not use any modifications to the mean-
field parameters due to finite size effects. Our phi-
losophy had been to hold the known physics at zero
T, zero � and infinite V fixed. That means we treat
V as a thermodynamic variable in the same footing
as T and �. Therefore any variation due to change
in either of these thermodynamic parameters were
translated into the changes in the effective fields of
	f, � etc. and through them to the meson spectra.

The values of meson masses and decay constants
used to fix the model parameters were thus natu-
rally expected to be the values strictly at T ¼ 0 and
� ¼ 0 and V ¼ 1. Thus the Polyakov loop poten-
tial as well as the mean-field part of the NJL model
would remain unchanged. They shall feel the effect
of changing volume only implicitly through the
saddle point equations.

III. PHASE TRANSITION

To study the finite volume effects on the thermodynamic
properties of strongly interacting matter we begin by
writing down the thermodynamic potential in mean field
approximation.
The expression is given by

�0ð�; ��; 	f; T;�fÞ
¼ U0½�; ��; T� þ 2gS

X
f¼u;d;s

	2
f �

gD
2
	u	d	s

� T
X
n

Z 1

�

d3p

ð2�Þ3 Tr ln
S�1ði!n; �pÞ

T
; (10)

where !n ¼ �Tð2nþ 1Þ are Matsubara frequencies
for fermions. The inverse quark propagator is given in
momentum space by

S�1 ¼ �0ðp0 þ �̂� iA4Þ � ~� � ~p� M̂ (11)

using the identity Tr ln ðXÞ ¼ ln det ðXÞ, we get

�0 ¼ U0½�; ��; T� þ 2gS
X

f¼u;d;s

	2
f �

gD
2
	u	d	s � 6

X
f

Z �

�

d3p

ð2�Þ3 Epf
�ð�� j ~pjÞ

� 2
X
f

T
Z 1

�

d3p

ð2�Þ3 ln

�
1þ 3

�
�þ �� exp

��ðEpf
��fÞ
T

��
exp

��ðEpf
��fÞ
T

�
þ exp

��3ðEpf
��fÞ

T

��

� 2
X
f

T
Z 1

�

d3p

ð2�Þ3 ln

�
1þ 3

�
��þ�exp

��ðEpf
þ�fÞ
T

��
exp

��ðEpf
þ�fÞ
T

�
þ exp

��3ðEpf
þ�fÞ

T

��

¼ �� �T4 ln J½�; ���; (12)

where Epf
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þM2

f

q
is the single quasiparticle energy.

In the last line � contains all the terms of �0 except the
Vandermonde term.

We now search for the saddle point of the thermody-
namic potential which gives the temperature and density
dependence of the fields. For all the system sizes, at zero
baryon density, we found that the order parameters for
both chiral (	 ¼ h �uui þ h �ddi) and deconfinement (�)
transition smoothly passes from the hadronic phase to
the quark phase. This indicates that the system does not
have a real phase transition, rather there is a smooth
crossover. The crossover temperature is identified to be
the point of inflection of 	u and � with temperature. In
Fig. 1 we have plotted d�=dT and d	u=dT for 2 flavor
and 2þ 1 flavor matter for different system sizes. The
peak position of these plots give respective inflection
points. Note that, the deconfinement and chiral transitions
do not take place exactly at the same temperature. Here
we take the average of these two temperatures as Tc. The
results are shown in Table II, where we quote the different
values of the crossover temperatures corresponding to
different system sizes.

From Table II it can be seen that the Tc has a strong
dependence on system size. For 2 flavors the Tc varies from
167 to 186 MeV which means a change of about 10%.
A similar result is observed for 2þ 1 flavor. One should
note that the shift in the Tc is mainly due to the shift in the
transition temperature of the chiral phase transition. The
transition temperature of the deconfining phase transition
almost does not change. This result is similar to that
obtained with PNJL model on the lattice [45]. This is
somewhat expected as the Polyakov loop potential feels
the effect of changing volume only indirectly through the

fields � and ��.
In Fig. 2 we have plotted the temperature dependence of

the constituent quark masses for both 2 flavors and 2þ 1
flavors. Below the crossover temperature they exhibit very
strong volume dependence. Smaller the volume, smaller is
the constituent mass. In the 2þ 1 flavor case, the masses of
the light flavors drop faster than the strange quark. It thus
seems that the chiral symmetry is gradually getting
restored as one looks into smaller and smaller volumes.
This is also the reason why the Tc itself is lowered for
smaller volumes given in Table II. A similar feature has
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also been observed in NJL models [23,24]. Given that the
quark condensation is similar to the superconducting con-
densate it is interesting to note that there are in fact certain
superconductors which show similar decrease of band gap
with the system size [49].

Let us now take a look into the situation at nonzero
quark chemical potential �q ¼ P

f�f=Nf. For infinite

volume the phase transition is of first order and one ob-
serves a gap in the order parameter at sufficiently high
chemical potential. At some smaller �q, the first order

transition ends at a critical endpoint (CEP). At this point
the system undergoes a second order transition. At even
smaller �q we have only a crossover. As the volume of the

system is lowered we find the phase transition character-
istics fade away. Even the crossover characteristics start to
die down. This is clear from the Fig. 3 where we plot
d	u=dT and d�=dT for �q ¼ 300 MeV as a function of

temperature. In Fig. 4 the phase diagram as a function of
system size is shown. Note that the CEP gradually shifts
towards higher �q and lower T and finally disappears as

the volume is reduced. This is an encouraging fact for the
critical point search in heavy-ion collision experiments.
To attain such high densities one needs to collide the ions at
low

ffiffiffi
s

p
, which means the temperature attained is lower.

So if it were an infinite system one would have been far
away from the CEP. Fortunately the experiments would
produce small system volumes and this may lead to the
location of the respective CEP possible. Thereafter one
would need to do the finite size scaling analysis to extrapo-
late to the CEP for infinite volumes. The location of CEP
for different volumes is collected in Table III.

IV. THERMODYNAMICS

In this section we discuss the behavior of a few thermo-
dynamic observables namely pressure, energy density,
specific heat, speed of sound etc. for different system sizes.
The pressure inside a volume V may be written as,

PðT;�qÞ ¼ � @ð�ðT;�qÞVÞ
@V , where T is the temperature and

�q is the quark chemical potential. In the top left panel of

TABLE II. Transition temperatures for different system sizes.

R ¼ 2 fm R ¼ 2:5 fm R ¼ 3 fm R ¼ 5 fm R ¼ 1
Tc (MeV) (2 flavor) 167 171 180 184 186

Tc (MeV) (2þ 1 flavor) 160 167 174 180 181
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FIG. 1 (color online). Derivatives of order parameters for chiral and deconfinement phase transition for different system sizes.
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Fig. 5 we plot the temperature dependence of scaled pres-
sure (P=T4) for a 2 flavor system. As can be seen there is a
significant change in scaled pressure for small system
sizes. For example at Tc the P=T4 for a system with
R ¼ 2 fm is almost half of that of an infinite system. As
the temperature increases the difference slowly diminishes.
The decrease of scaled pressure with increasing volume
may be a surprise given that the constituent quark masses
were shown to decrease drastically with decreasing vol-
ume, which should imply increase in pressure. This can be
understood as follows. With decreasing volume, not only
the constituent masses decrease, but also the lowest
momentum increases due to the infrared cutoff. These

two conditions somehow seem to keep the lowest available
energy of the quark quasi-particles almost the same for
different volumes. Thus the pressure does not increase with
decreasing volume. However, when plotted against T=Tc it
seems to decrease because the Tc itself is smaller for
smaller volumes, and therefore the pressure at the corre-
sponding T=Tc for smaller volume is smaller than that for a
larger volume.
The volume dependence is also quite strong for the

energy density 
 ¼ �T2 @ð�=TÞ
@T jV ¼ �T @�

@T jV þ�. In the

top right panel of the Fig. 5 we have plotted the 
=T4

as a function of T=Tc for different system sizes. It has
similar characteristics as P=T4 but the difference seems to
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FIG. 3 (color online). Derivatives of order parameters for chiral and deconfinement phase transition for 2 flavor at finite �q.
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FIG. 2 (color online). Constituent masses of quarks as a function of temperature for different system sizes.
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diminish faster with increasing temperature. As the system
size becomesR ¼ 5 fm both the scaled pressure and scaled
energy density converge to the R ! 1 case for almost all
temperatures.

It is well known that for infinite volumes the definition
of pressure simplifies to, PðT;�qÞ ¼ ��ðT;�qÞ, which is
commonly used in the literature for PNJLmodels at infinite
volumes. However, since we are considering finite volumes
here it would be interesting to check how much difference
will it make if we keep using this definition rather than the
correct one with a volume derivative. In the bottom two
panels of Fig. 5 we have made a comparison of ��=T4

and P=T4. For R ¼ 2 fm we see that these two quantities
differ by about 10%. Again, as the size goes close to
R ¼ 5 fm this difference is almost washed out.

Let us now consider the quantity 
� 3P. In our mean
field approach this is the trace of the energy-momentum
tensor given by, T �� ¼ 
� 3P. In a conformally sym-

metric theory, for example a theory of free massless quarks
and gluons the energy momentum tensor is supposed to be
zero as it signifies the conservation of the conformal
currents. Thus 
 ¼ 3P in that limit. In QCD however the
conformal symmetry is broken due to nonzero quark
masses as well as quantum anomalies as evident from the
presence of a scale in the running coupling constant
[50,51]. Thus the energy-momentum tensor does not re-
main traceless. This was also found to be true in the PNJL
models that have been reported in our earlier studies and
compared with LQCD results [39,41,46]. The PNJL model
is however not QCD and the reason for the scale symmetry
breaking is the introduction of an ultraviolet cutoff in the
NJL part, a temperature scale T0 in the Polyakov loop part
and of course a quark mass term similar to that in QCD.

The physical implication of the two different scales in
the quark and Polyakov sector is to give rise to separate
crossover temperatures for the two sectors. To compare
quantities obtained in the PNJL model against LQCD
results one then averages out two crossover temperatures
as done by us here in the last section. Now for finite system
sizes we have introduced an infrared cutoff which should
further enhance the effect of conformal symmetry break-
ing. In Fig. 6 we show the variation of the conformal
measure C ¼ ð
� 3PÞ=
 with temperature for both 2 fla-
vor and and 2þ 1 flavor matter for different system sizes.
That the smaller system sizes lead to larger conformal
symmetry breaking effects is evident, except for the
anomalous behavior of the lowest size of R ¼ 2 fm.
(Though not shown in the figure we found that the anoma-
lous behavior starts at a size between 2 fm � R � 2:5 fm.
The reason for this behavior is not clear at the moment and
requires further investigation.)
The specific heat at constant volume CV ¼ @


@T jV is

shown in Fig. 7. We find that with the change in volume,
CV changes prominently up to the temperature correspond-
ing to the crossover region. For smaller volumes the spe-
cific heat is smaller indicating a higher rise in temperature
for the same rise in energy density. Obviously this can be
correlated with the temperature dependence of energy
density discussed earlier in Fig. 5. We found that a given
amount of scaled energy density is obtained at a higher
scaled temperature for a smaller volume. This can be of
interest in heavy-ion collision experiments. A given energy
density deposited in the finite volume would create a
plasma with temperature somewhat higher than that ex-
pected in a similar volume inside an infinite volume system
having the same energy density.

TABLE III. Location of chiral CEP for different system sizes.

R ¼ 2 fm R ¼ 2:5 fm R ¼ 3 fm R ¼ 5 fm R ¼ 1
Tc (MeV), �qc (MeV) (2 flavor) No CEP 32, 339 52, 335 69, 330 72, 329

Tc (MeV), �qc (MeV) (2þ 1 flavor) No CEP 32, 328 60, 324 86, 316 93, 313
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The specific heat is also a measure of energy fluctua-
tions in the system [52]. Fluctuations tend to rise sharply
near a phase transition. For a crossover they are some-
what subdued. Obviously for finite volumes a true phase
transition is not possible and as one keeps on decreasing
the volume all signatures even for a crossover should
die down. This is exactly the behavior of CV as presented
in Fig. 7.

The squared speed of sound v2
s ¼ @P

@
 is shown in Fig. 8.

At large temperatures the v2
s reaches its maximum value as

the system becomes almost ideal. Interactions grow with
decreasing temperatures resulting in the lowering of v2

s .
The conformal measure C may be considered as a measure
of the strength of the interaction in the system. Thus lower
the value of C, higher should be the value of v2

s . This is
evident from Fig. 8, where we find the v2

s to decrease with
decreasing temperature, just opposite to the behavior of C
shown in Fig. 6. This correlation between C and v2

s is also
apparent for variation in volume. With decreasing volume
the speed of sound decreases. (In fact an anomalous be-
havior for the smallest size R ¼ 2 fm is also apparent for
v2
s). A smaller speed of sound for smaller volumes would

mean a slower flow for finite size systems created in heavy-
ion collisions.

V. PROPERTIES OF NONSTRANGE MESONS

For infinite volumes the meson properties in the PNJL
model has been discussed for 2 flavors [53,54] as well as
for 2þ 1 flavors [43,55]. In this section we describe the
properties of nonstrange mesons at finite volumes in the
PNJL model. A detailed account of the calculational pro-
cedure for meson masses at finite temperatures and den-
sities in the PNJL model may be found in Ref. [43]. Here
we sketch the outline of the task.

The collective excitations, the fluctuation of the mean
field around the vacuum can be handled within the random
phase approximation [56]. In this approximation, which is
equivalent to summing over the ring diagrams, the retarded
correlation function for a meson M is given by

DR
M ¼ �M

1� 2GM�
M : (13)

Here GM is the suitable coupling constant and �Mðk2Þ is
the one-loop polarization function for the mesonic channel
under consideration. Within the random phase approxima-
tion, �M may be written as

�M �
Z �

�

d4p

ð2�Þ4 Tr½�MSðpþ qÞ�MSðqÞ�; (14)

where SðpÞ is the Hartree quark propagator, �M is the
appropriate combination of gamma matrices of different
mesonic channels and the trace is taken over the Dirac and
color spaces. The lower limit on the integration is now
required for finite volume studies.
Here we concentrate on the scalar (	) and pseudoscalar

(�) channels. These contributions can be written as

�ab
� ðq2Þ ¼

Z �

�

d4p

ð2�Þ4 Trði�5�
aSðpþ qÞi�5�

bSðqÞÞ

�	ðq2Þ ¼
Z �

�

d4p

ð2�Þ4 TrðSðpþ qÞSðqÞÞ: (15)

The pole mass can be obtained by solving

1� 2GM�
Mð! ¼ mM; ~q ¼ 0Þ ¼ 0; (16)

where mM is the mass of a particular meson. The detailed
expression for �M and GM for � and 	 mesons may be
found in Ref. [43].
In the upper panels of Fig. 9 we have plotted the masses

of pion (m�) and sigma (m	) as a function of temperature
for different system sizes. In any given volume we see that
for low temperatures the masses of pion and sigma are
different and they become degenerate above Tc where
chiral symmetry is expected to get restored. With decrease
in volume we find the pion mass to increase. However
above 1:2Tc the pion mass for infinite volume suddenly
shoots up above those for the finite volumes. This may
have important consequences in heavy-ion reactions where
system size is small. Whereas for infinite volume the fast
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increasing mass of pion would drastically reduce the
chances of obtaining pion-like bound states, the same may
not be true for finite volume. We note here that the increase
of pion mass with decreasing volume has also been observed
in computations with chiral perturbation theory [57] and
renormalization group methods in quark-meson model [58].

While the mass of pion increases with decreasing vol-
ume at low temperatures, the mass of sigma is found to
decrease quite fast. One can actually see a trend to the
masses of the two chiral partners becoming closer to each
other with decreasing volume. This, yet again, shows that
chiral symmetry breaking effects reduce with decreasing
volumes.

The pion decay constant may be obtained from
the matrix element h0jJa�;5j�bðkÞi ¼ i�abf�k�, where

Ja�;5 ¼ �c���5
�a

2 c is the chiral current. At finite tempera-

ture and for a particular volume it can be written as (see
Refs. [32,33] and including the low momentum cut-off �)

f2� ¼ 3M2
u

2�2

�Z �

�

p2dp

E3
p

� 2
Z 1

�

p2dp

E3
p

fðEpÞ
�
; (17)

where Ep ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þM2

u

p
is the single particle energy of a

light quark and fðEpÞ is the distribution function properly

modified due to Polyakov loop interaction.
As shown in the lower panels of Fig. 9, the pion decay

constant decreases both with the decrease in temperature
and with that of system size. The decrease of f� with

temperature has also been observed in other effective
models [54,59], Dyson-Schwinger approaches [60] as
well as in LQCD [61]. This is also an indication of the
restoration of chiral symmetry as f� is directly propor-
tional to the divergence of the chiral current.
The tendency of chiral symmetry getting restored in

finite volumes may also be noted by comparing Fig. 9
with Fig. 2. At low temperatures the constituent quark
masses decrease with decreasing volume. It so happens
that the light constituent quark masses become smaller
than the pion mass for the smallest sizes studied here.
These quarks should then become thermodynamically
more favored than the pions. Though fortunately in the
PNJL model, such constituent quarks will be suppressed
due to the presence of the Polyakov loop, the pions
would still lose their significance as the lightest particles
that made them suitable candidates for becoming the
Goldstone bosons. Thus what seems to happen is that the
decrease of volume restores the spontaneous breaking of
chiral symmetry in the same way as increase in tempera-
ture. The critical size Rc for such symmetry restoration
would be somewhere between 2 and 2.5 fm. From Fig. 2 it
may be noted that this range of sizes is almost equal to the
respective constituent quark masses. This observation is
commensurate with the expectation from chiral perturba-
tion theory that chiral symmetry restoration may take place
once the quark masses become equal to the inverse of
system size [62].
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With all the strong indication of a possible chiral
symmetry restoration with decreasing volume it would
be interesting to see what happens to the Gell-Mann
Oakes Renner (GMOR) [63] relation, which in the lowest
order of chiral expansion is given by f2�m

2
� ¼ mu	u þ

md	d. Normally with increase in temperature as the
spontaneously broken part of the chiral symmetry gets
restored the GMOR relation should start to break down.
This is exactly what we find in our calculations and
shown in Fig. 10. But surprisingly we find that similar
effect is not observed for the decrease in volume and
the GMOR relation holds good for the all the ranges of
volumes we considered almost up to temperatures as high
as 0:8Tc. In fact even at higher temperatures the GMOR
relation is violated the most for infinite volumes. The way
one can understand this is that for a physical chiral expan-
sion a quantity m�=M is required, where M is some
suitable scale. In chiral perturbation theory M is usually
the nucleon mass, in zero temperature NJL or PNJL models
it is the high momentum cutoff �, etc. For finite tempera-
tures one can then consider T to play the role of M. Thus,
given a temperature if the corresponding m� in a given
volume is less than T, chiral identities would work properly
(see e.g., Ref. [64]). So here we have a situation where
chiral symmetry is getting restored while partial conserva-
tion of axial current is still maintained.

VI. CONCLUSION

We have tried to understand the dynamics of strongly
interacting matter inside finite volume in the framework
of the PNJL model with saddle point approximation.
Several interesting results were observed that can have
important implications for heavy-ion collision experi-
ments. Our major finding was that the spontaneously
broken chiral symmetry may be restored at much lower
temperatures in small volume. This was shown through
the computation of various thermodynamic observables
as well as certain hadron properties.

Changes in the equation of state and speed of sound
may have important consequences in the flow properties of
the exotic medium created in the experiments. A measure
of the specific heat in heavy-ion experiments is the trans-
verse momentum fluctuations. We find the specific heat to
decrease with decreasing volume indicating that the
momentum fluctuations may not be as large as expected
at a given T=Tc.
From the variation of the phase boundary with changing

volume we demonstrated a stronger possibility of finding
the signatures of a critical endpoint in low energy experi-
ments that intend to create high baryonic densities where
the expected temperature is not too high.
Finally from the hadron properties we observed the

possibility of obtaining a chiral symmetric but confined
phase in small volumes. We hope that a combination of
heavy ion collisions and not-so-heavy ion collisions at
similar center of mass energies, followed by an appropriate
finite size scaling study may give us a better understanding
of the QCD phase structure.
As discussed earlier we made a couple of simplified

assumptions in this work. The Polyakov loop potential
used here does not have an explicit volume dependence.
The discrete momentum states in the quark potential was
replaced with a continuum, and the only explicit depen-
dence on system size was through the lower momentum
cutoff. Though we believe that these assumptions would
not affect the gross features observed, we hope to address
these issues in future. It would be of highly desirable to
have a concurrent study of finite size effects in Polyakov-
Quark-Meson models [65] to further understand the
systematics of model artifacts.
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