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The existence and the properties of self-bound quark matter in the Nambu-Jona-Lasinio model at

zero temperature are investigated in the mean-field approximation, focusing on inhomogeneous structures

with one-dimensional spatial modulations. It is found that the most stable homogeneous solutions which

have previously been interpreted as schematic quark droplets are unstable against the formation of a

one-dimensional lattice of domain-wall solitons. The solitons repel each other, so that the minimal energy

per quark is realized in the single-soliton limit. The properties of the solitons and their interactions are

discussed in detail, and the effect of vector interactions is estimated. The results may be relevant for the

dynamics of expanding quark matter.
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I. INTRODUCTION

The Nambu–Jona-Lasinio (NJL) model [1] is a popular
tool for studying low-energy properties of strongly inter-
acting matter, like spectra and scattering of light hadrons,
or the phase diagram at nonvanishing temperatures or
densities (for reviews, see Refs. [2–5]). While being rela-
tively simple, the NJL model shares the global symmetries
of QCD, in particular chiral symmetry, which is considered
to be the most important feature of the model. On the other
hand, it is well known that the NJL model lacks confine-
ment. In this sense it can be viewed as complementary to
the MIT bag model [6], which is confining by construction,
but violates chiral symmetry at the surface.

Some time ago, it was realized, however, that for suffi-
ciently attractive interactions, the NJL model at zero tem-
perature has solutions of self-bound chirally restored quark
matter, which can be interpreted as bag-model-like quark
droplets [5,7–9]. In fact, the link between both models is
the existence of a ‘‘bag pressure,’’ which in the bag model
is introduced by hand in order to stabilize the solutions,
whereas in the NJL model it is a dynamical consequence of
spontaneous chiral symmetry breaking in vacuum.

The self-bound quark matter solutions mentioned above
have been obtained in the thermodynamic limit and corre-
spond to infinite homogeneous matter. Their interpretation
as quark-matter droplets is based on the behavior of the
energy per particle, E=N, which shows a minimum at some
nonvanishing saturation density. This means that a finite
piece of quark matter with this density would be stable
against collapse or expansion, just like a liquid drop.

An equivalent statement is that the matter has vanishing
pressure, which means it is in mechanical equilibrium with
the vacuum. Thus, in order to have a solution of this type,
there must be a phase coexistence of the vacuum with a
dense-matter phase. In other words, at some critical chemi-
cal potential, there must be a first-order phase transition
from the vacuum to dense matter. This is realized in the

NJL model, if the interaction is sufficiently attractive.
On the other hand, if the attraction is relatively weak
(a condition which can be achieved, e.g., by adding a
repulsive vector interaction), it is also possible to have a
second-order phase transition or a crossover. In this case
there is no stable matter solution and E=N takes its mini-
mal value at zero density. Without applying external
forces, a finite piece of quark matter would then keep
expanding, i.e., behave like a gas.
It is tempting at this point to extrapolate the self-bound

solutions down to droplets consisting of only three quarks,
and to interpret them as baryons. However, although some
of the resulting ‘‘baryon’’ properties are quite reasonable
[7], it is obvious that this extrapolation is not reliable. In
fact, using solutions for infinite homogeneous quark matter
to describe finite droplets, one has to assume that surface
effects can be neglected. This assumption might be justi-
fied for large droplets but most likely not for small ones.
Besides, if the surface tension is positive, as derived, e.g.,
in Refs. [10–12], smaller droplets are disfavored. The
preferred state in the model would therefore be a configu-
ration where all quarks are joined in one big spherical
nugget, rather than hadronized into individual baryons.
It turns out, however, that this is not quite the case. More

recent studies of the NJL phase diagram have revealed that
the first-order chiral phase transition between homogene-
ous phases gets replaced by an inhomogeneous region if
one allows the chiral condensate to be nonuniform in space
[13–15]. In this region, a special class of solutions, which
vary in one spatial dimension, has been found to be favored
over all other shapes considered so far. These solutions
correspond to a lattice of domain-wall solitons1 described
in terms of Jacobi elliptic functions and they smoothly
interpolate between the homogeneous chirally broken
and restored phases [15]. In particular at the low-density

1For brevity, we will just call them ‘‘solitons’’ in the following.
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side, they take the form of a single soliton, which is
thermodynamically degenerate with the homogeneous
chirally broken phase. As a consequence, the phase tran-
sition to the latter is of second order.

This changes our picture of self-bound quark matter in
the NJL model considerably. Since there is no longer a
first-order phase transition connecting the vacuum with a
finite-density phase, but a second-order phase transition to
the inhomogeneous phase, the minimal E=N should now
be reached at zero average density. However, unlike the
homogeneous case where the low-density regime corre-
sponds to a dilute gas of constituent quarks, we now expect
a ‘‘liquid crystal’’ of well separated solitons. These objects
have a nonvanishing quark density and a finite size in one
spatial dimension, while being infinite in the remaining
two dimensions. This could be seen as a step towards
‘‘real’’ quark droplets, which are finite in three dimensions.

In the present article we perform an explicit model study
to investigate the scenario outlined above quantitatively.
After briefly introducing the formal background, we
calculate E=N as a function of the average density and
compare the results for inhomogeneous solutions with
those for homogeneous matter. Based on these results,
we then discuss the properties of single solitons and
their interactions. Finally, we estimate the effect of vector
interactions, before we draw our conclusions.

II. NONUNIFORM QUARK MATTER
IN THE NJL MODEL

In this section we briefly summarize the main properties
of the one-dimensional solitonic NJL-model solutions
derived in Refs. [15,16]. Afterwards we study the single-
soliton limit of these expressions.

A. Mass functions and thermodynamic potential

Our starting point is the Nambu-Jona-Lasinio
Lagrangian [1] in the chiral limit,

LNJL¼ �c i��@�c þGðð �c c Þ2þð �c i�5�ac Þ2Þ; (1)

where c denotes a quark field with Nf ¼ 2 flavor and

Nc ¼ 3 color degrees of freedom, �a are the Pauli matrices
in flavor space, and G is a dimensionful coupling constant.
The model is studied in the mean-field approximation.
To this end, we assume the presence of a nonvanishing
scalar condensate, h �c c i ¼ SðzÞ, which we allow to vary in
one spatial dimension (z direction) while being constant
in the two perpendicular directions (x and y) and in time.2

Accordingly, the quarks acquire a z-dependent dynamical
mass function MðzÞ ¼ �2GSðzÞ.

With this ansatz, one can employ the known results
for the 1þ 1-dimensional Gross-Neveu model [19], to
construct solutions of the 3þ 1-dimensional problem
[15]. The mass function can be expressed in terms of
Jacobi elliptic functions,

MðzÞ ¼ ��
snð�zj�Þcnð�zj�Þ

dnð�zj�Þ ; (2)

characterized by two parameters: an amplitude � and the
so-called elliptic modulus � 2 ½0; 1�. The latter determines
the shape of the modulation, continuously changing from
sinusoidal for � ¼ 0 to a hyperbolic tangent (‘‘kink’’) for
� ¼ 1. For � < 1, MðzÞ is periodic with period [19]

L ¼ 2

�
Kð�Þ; (3)

where K is the complete elliptic integral of the first kind.
For the thermodynamic potential per volume at tempera-

ture T and chemical potential � one obtains

�ðT;�;�;�Þ
¼�NfNc

Z 1

0
dE�inhðE;�;�Þ½fvacðEÞþfmedðE;T;�Þ�

þ 1

4GSL

Z L

0
dzjMðzÞj2; (4)

with the density of states

�inhðE; �; �Þ

¼ E�

�2

8<
:�ð ffiffiffi

~�
p

�� EÞ
�
Eð~�j~�Þ þ

�
Eð�Þ
Kð�Þ � 1

�
Fð~�j~�Þ

�

þ �ðE� ffiffiffi
~�

p
�Þ�ð�� EÞ

�
Eð~�Þ þ

�
Eð�Þ
Kð�Þ � 1

�
Kð~�Þ

�

þ �ðE��Þ
2
4Eð�j~�Þ þ

�
Eð�Þ
Kð�Þ � 1

�
Fð�j~�Þ

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðE2 � �2ÞðE2 � ~��2Þp

E�

3
5
9=
;: (5)

Here K is again the complete elliptic integral of the first
kind, F is the incomplete elliptic integral of the first kind,
and E are the (complete or incomplete) elliptic integrals of
the second kind. Furthermore we introduced the notations

~� ¼ 1� �, ~� ¼ arcsin ðE=ð ffiffiffi
~�

p
�ÞÞ, and � ¼ arcsin ð�=EÞ.

The functions fvac and fmedðEÞ in Eq. (4) are given by

fvacðEÞ ¼ E (6)

and

fmedðE;T;�Þ¼T log

�
1þexp

�
�E��

T

��

þT log

�
1þexp

�
�Eþ�

T

��
: (7)

2Other cases, like chiral density waves, which also include
pseudoscalar condensates [13,14], or two-dimensional crystals
[17] have been considered as well, but have been found to be less
favored at low densities [15,17,18].
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Since the vacuum part of the energy integral is divergent,
we have to regularize it. We use Pauli-Villars regulariza-
tion of the form [3]

fvacðEÞ !
X3
j¼0

cj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 þ j�2

q
; (8)

with c0 ¼ 1, c1 ¼ �3, c2 ¼ 3, c3 ¼ �1 and a cutoff
parameter �.

With these expressions at hand, the ground state of
the system can be determined by minimizing the thermo-
dynamic potential in the two parameters � and �.

B. Density profile

The density profiles of the above solutions are given
by [16]

nðzÞ¼NfNc

Z 1

0
dE�D;inhðE;z;�;�ÞðnþðEÞ�n�ðEÞÞ; (9)

where

n�ðEÞ ¼ 1

eðE��Þ=T þ 1
(10)

are the Fermi occupation functions for particles and anti-
particles, respectively, and the density matrix element
�D;inh can be related to �inh, Eq. (5), upon the replacement

�D;inhðE; z; �; �Þ ¼ �inhðE; �; �ÞjEð�Þ
Kð�Þ!�1

2ððMðzÞ
� Þ2þ��2Þ: (11)

As an example, we show in Fig. 1 the mass function
for � ¼ 330 MeV and � ¼ 1–10�14 (left), and the corre-
sponding density profile at T ¼ 0 and � ¼ 323:3 MeV
(right). Comparing these figures, one can see that the
density is peaked at the points where the mass functions
vanish, i.e., the regions of high density correspond to the
regions where chiral symmetry is almost restored. This is
reminiscent of the bag model, where the quarks are only
allowed in the trivial vacuum.

Because of the alternating sign of the mass function,
the density peaks could be identified with solitons and

antisolitons when projected onto one spatial dimension
parallel to the z axis. In 3þ 1 dimensions, this distinction
is not well defined because the domain walls can be ori-
ented in any direction so that ‘‘solitons’’ and ‘‘antisolitons’’
are connected by a continuous transformation. In any case,
as obvious from Eq. (11), the density does not depend on
the sign of the mass function. Therefore the distance a
between two neighboring peaks is equal to one half of the
period L, where L is given in Eq. (3),

a ¼ L

2
¼ Kð�Þ

�
: (12)

C. Single-soliton limit

In the limit � ! 1, the period L goes to infinity, and the
mass function, Eq. (2), features a single kink at z ¼ 0,

MðzÞj�¼1 ¼ � tanh ð�zÞ; (13)

corresponding to a single soliton. The density of states,
Eq. (5), becomes

�inhðE; �; � ¼ 1Þ ¼ �ðE� �Þ 1

�2
E

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 ��2

p
� �homðE; �Þ; (14)

which is equal to the density of states of an ideal gas
of quarks with constant mass �. As a consequence, the
free energy of the inhomogeneous phase in the single-
soliton limit becomes degenerate with the free energy of
homogeneous matter with a constituent quark mass �.
For the density matrix element Eq. (11) one gets

�D;inhðE; z; �; � ¼ 1Þ ¼ �homðE; �Þ þ �D;solðE; z; �Þ;
(15)

with a localized part
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FIG. 1. Left: Mass function MðzÞ for � ¼ 330 MeV and � ¼ 1–10�14. Right: Corresponding density profile at T ¼ 0 and
� ¼ 323:3 MeV.
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�D;solðE; z; �Þ ¼ E�

4�

�
�ð�� EÞ þ �ðE��Þ 2

�
arcsin

�

E

�

� 1

cosh 2ð�zÞ (16)

and a homogeneous background given by Eq. (14). The
latter is again equal to the analogous term in homogeneous
matter.

Accordingly, the density one obtains from Eq. (9) can be
separated into a constant background, which is equal to the
density in a homogeneous ideal gas of quarks with mass �
at given temperature and chemical potential, and a local-
ized peak, which corresponds to the extra quarks in the
solitons. In particular, since the localized part drops off
exponentially at large values of jzj, the average density

�n ¼ lim
L!1

1

2L

Z L

�L
dznðzÞ (17)

is entirely determined by the background and, thus,
equal to the density in homogeneous matter. As a conse-
quence, a phase transition from the inhomogeneous phase
to the homogeneous chirally broken phase taking place at
� ¼ 1 is second order.

The additional density contribution due to the quarks in
the solitons,

nsolðzÞ ¼ NfNc

Z 1

0
dE�D;solðE; z; �ÞðnþðEÞ � n�ðEÞÞ;

(18)

is perhaps the most interesting part. In particular, nsolðzÞ
and, thus, nðzÞ is nonzero even at T ¼ 0 and �< �,
when the background density vanishes. In this case, which
corresponds to a single soliton embedded in the vacuum,
one finds

nsolðzÞjf�>�;T¼0g ¼
NfNc

8�

��2

cosh 2ð�zÞ : (19)

Note, however, that here we have simply assumed that
solutions with � ¼ 1 and �>� exist at zero temperature.
Of course, we have to check whether this comes out of the
minimization of the thermodynamic potential. Since � ¼ 1
is realized exactly at the second-order phase transition
from the homogeneous to the inhomogeneous chirally
broken phase, this means that at the critical chemical
potential �c;inh, the amplitude � must be bigger than

�c;inh. On the other hand, at � ¼ �c;inh, the amplitude �
is equal to the constituent mass M in the homogeneous
phase. Moreover, in the homogeneous chirally broken
phase, M remains equal to the vacuum mass Mvac as long
as �<Mvac. Hence, if at T ¼ 0 there is a second-order
phase transition to the inhomogeneous phase at �c;inh <
Mvac, then a single-soliton solution exists at � ¼ �c;inh,

with the density profile given by Eq. (19) and � ¼ Mvac.
In the next section this will be investigated further from

the energy-per-particle perspective.

III. ENERGY PER PARTICLE

Starting from the thermodynamic potential, other
thermodynamic quantities can be derived in the usual
way, as long as we are only interested in spatial averages.
Restricting ourselves to zero temperature, this means that
the pressure p, the averaged quark number density �n and
the averaged energy density �� are given by

p ¼ �ð�ð�Þ ��vacÞ; �n ¼ @p

@�
;

�� ¼ �pþ� �n:
(20)

Here �vac is the value of the thermodynamic potential at
its minimum in vacuum, which we subtract to define the
vacuum pressure as zero. As a consequence, the energy
density of the vacuum vanishes as well. The average
energy per quark is then given by

E

N
¼ ��

�n
¼ �p

�n
þ�: (21)

In the context of the interpretation of quark droplets as
baryons, the thermodynamics is often discussed in terms of
the baryon number density �B ¼ n=Nc and the energy per
baryon E=A ¼ NcE=N; see, e.g., Refs. [7,9,20]. However,
for most quantities we are going to discuss in this article, it
is more natural to work with quark number densities and
E=N. We therefore keep the notation introduced above,
noting that the conversion to baryon quantities is simply a
factor of Nc ¼ 3. Moreover, in our numerical examples we
will scale the densities by n0 ¼ Nc�0, so that n=n0 ¼
�B=�0. Here �0 ¼ 0:17 fm�3 is the nuclear matter satura-
tion density; i.e., the corresponding quark number density
is n0 ¼ 0:51 fm�3.
From Eq. (21), it follows that the density derivative of

E=N is given by

@

@ �n

�
E

N

�
¼ 1

�n

�
�� E

N

�
¼ p

�n2
; (22)

where we have used that � ¼ @ ��=@ �n at T ¼ 0 and fixed
volume. For �n � 0, this means that E=N has an extremum
at the points where the pressure vanishes, and it takes the
value E=N ¼ � at these points.
For �n ! 0, on the other hand, the exact behavior of

E=N depends on the density dependence of the pressure.
In the case of homogeneous quark matter, the NJL model at
low densities behaves like an ideal nonrelativistic gas of

constituent quarks, p / n5=3. Consequently, E=N goes to
�, which in turn converges to the vacuum constituent
quark mass Mvac, while the density derivative of E=N
diverges at n ¼ 0. As we will see below, the behavior of
inhomogeneous matter is rather different.
To this end, we now turn to the numerical results. Our

model contains two parameters: the coupling constant G
and the Pauli-Villars regulator�. We fix them by fitting the
pion decay constant in vacuum to its value in the chiral
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limit, f� ¼ 88 MeV, and by choosing a reasonable value
for the constituent quark mass in vacuum. If not stated
otherwise, we choose Mvac ¼ 330 MeV, corresponding to
� ¼ 728:368 MeV and G�2 ¼ 6:599.

In the left panel of Fig. 2, we show the pressure as a
function of �. The homogeneous chirally broken solutions
are indicated by the solid line, where the upper branch
corresponds to the minima of the thermodynamic potential,
i.e., to the stable or metastable solutions, while the lower
branch corresponds to the maxima, i.e., to the unstable
solutions. The chirally restored solutions are indicated
by the dotted line. Restricting the analysis to these homo-
geneous solutions, we find a first-order chiral phase tran-
sition at � ¼ �c;hom ¼ 329:9 MeV, i.e., slightly below

� ¼ Mvac. Accordingly, the energy per particle in the
restored phase, indicated by the dotted line in the right
panel of Fig. 2, has a minimum with E=N ¼ �c;hom at

�n ¼ ð2=�2Þ�3
c;hom, whereas in the homogeneous chirally

broken solution (solid line), E=N is always larger, con-
verging toMvac at �n ¼ 0with an infinite slope. Thus, in the
‘‘old picture,’’ we would interpret the minimum in the
restored phase as a bag-model-like quark droplet with a
binding energy per quark of Mvac ��c;hom.

This picture is changed if we allow for the one-
dimensional solitonic solutions, as indicated by the dashed
lines in Fig. 2. We then find a second-order phase transi-
tion3 from the homogeneous chirally broken phase to
the inhomogeneous phase at � ¼ �c;inh ¼ 323:2 MeV
(left panel). As discussed in Sec. II C, the inhomogeneous
phase at this point corresponds to a single soliton (� ¼ 1)
with vanishing background density. Hence, there is no

longer a stable solution with zero pressure and nonzero
average density, and therefore the only minimum of the
energy per particle exists at �n ¼ 0 (right panel). On the
other hand, the localized quarks inside the soliton experi-
ence additional binding, so that E=N does not go toMvac at
�n ¼ 0, as for homogeneous matter, but to �c;inh, which is

smaller than Mvac in this example. The binding effect is
also visible at nonvanishing �n. In particular, the chirally
restored solution with the minimal E=N is unstable against
forming a soliton lattice with the same average density. We
find that here the solitons still have a sizable overlap, with
density peaks separated by about a ¼ 1:5 fm. This system
can then lower its energy further by expansion.
In this context, a striking difference to the homogeneous

case is the fact that the density derivative of E=N does not
diverge at �n ¼ 0 but, on the contrary, the function is
extremely flat. According to Eq. (22), this means that the
pressure goes to zero with a high power of n. Further
insight can be obtained from the observation in Ref. [16]
that the density rise above the onset of the solitonic phase is
consistent with the parametrization

�nð�Þ ¼ � c�3
c;inh

ln ð�=�c;inh � 1Þ ; (23)

where c is a constant parameter. This formula was moti-
vated by a similar behavior in the Gross-Neveu model.
Strictly speaking, it describes the density change 	 �n rela-
tive to the density at � ¼ �c;inh. However, since �c;inh <
Mvac in the present case, we have �nð�c;inhÞ ¼ 0 and, hence,
	 �n ¼ �n. We then find

@p

@ �n
¼ @p

@�

�
@ �n

@�

��1 ¼ c�4
c;inh

�n
e�c�3

c;inh
= �n; (24)

where we have used Eqs. (20) and (23) to evaluate the

derivatives. It follows that @p
@ �n is exponentially suppressed

for �n ! 0. The same is true for all higher derivatives and
all derivatives of E=N, thus explaining its flatness. In fact,
integrating Eq. (24) to obtain pð �nÞ and inverting Eq. (23)
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FIG. 2 (color online). Pressure as a function of the chemical potential (left) and energy per quark as a function of the spatially
averaged quark number density (right). The homogeneous chirally broken and restored solutions are indicated by the solid and dotted
lines, respectively, while the dashed lines indicate the inhomogeneous solitonic solutions.

3This means that the elliptic modulus � decreases continuously
from � ¼ 1 at �c;inh to smaller values inside the inhomogeneous
phase. Obviously, this is impossible to prove by numerical
calculations. Strictly speaking, we find that � does not drop
discontinuously from 1 to a value smaller than 1–10�14. At this
point, the distance between the solitons is about a ¼ 11 fm,
which is well above the size of the solitons (see Fig. 1).
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for �ð �nÞ, we get from Eq. (21) that the energy per particle
at low densities should be given by

E

N
¼ �c;inh

�
1þ e�c�3

c;inh
= �n � c�3

c;inh

�n

Z 1

c�3
c;inh

= �n
dx

e�x

x

�
:

(25)

In Fig. 3, this expression is compared with the numerical
results for E=N. Fitting the parameters c and �c;inh to the

data below �n ¼ n0 (left), we find a reasonable description
up to �n ¼ 2n0 (right), where the increase of E=N is more
than a factor of 50 larger. We remark that the fitted value
for c is very close to�c;inh=Mvac, but we have not been able

to show this analytically.
For completeness, we also comment on the behavior at

high densities. In our example with Mvac ¼ 330 MeV, the
system stays inhomogeneous up to arbitrarily high chemi-
cal potentials. For somewhat lower values ofMvac, there is
first a second-order phase transition from the solitonic
phase to the restored phase, but the system gets inhomoge-
neous again at higher chemical potentials. As discussed in
detail in Ref. [21], this so-called ‘‘inhomogeneous conti-
nent’’ is not a trivial regularization effect, but it cannot be
excluded that it is a model artifact. In this article, however,

we are mainly interested in the low-density behavior of the
model, where this issue is irrelevant.
The results shown in Fig. 2 have been obtained

for specific parameters, and one might wonder how robust
they are when these are changed. As discussed in
Refs. [5,7,9], the binding energy of homogeneous quark
matter depends on the amount of scalar attraction, which
can be parametrized by Mvac. In Fig. 4, we therefore
show the binding energies per quark in homogeneous
matter and in the solitons, Eb;hom ¼ Mvac ��c;hom and

Eb;sol ¼ Mvac ��c;inh, respectively, as functions of Mvac.

We see that both curves start at the same point around
Mvac ¼ 250 MeV with a negative binding energy. For
homogeneous matter, this point corresponds to the limiting
case where the phase transition turns from first to second
order when Mvac is lowered further. In other words, this
point corresponds to the case where the tricritical point of
the phase boundary in the T-� plane is just located at the
T ¼ 0 axis. Since in this model the tricritical point is equal
to the Lifshitz point [22], i.e., the point where the two
homogeneous phases and the inhomogeneous phase meet,
the binding energies of homogeneous and inhomogeneous
matter are equal at this point, and both solutions cease to
exist at lower values of Mvac.
When Mvac is increased, the binding energies rise.

The would-be first-order phase transition from the homo-
geneous chirally broken to the restored phase is now
inside the inhomogeneous regime, i.e., �c;inh <�c;hom

and, hence, Eb;sol > Eb;hom. This means that the chirally

restored solution with the lowest E=N is always unstable
against forming a soliton lattice.
On the other hand, for Mvac < 315 MeV, �c;inh is still

smaller than Mvac. Then the density in the homogeneous
chirally broken phase is already nonzero when the phase
transition to the inhomogeneous phase takes place. Thus,
as discussed in Sec. II C, the soliton is embedded in a
homogeneous background of constituent quarks at this
point. As the pressure is nonzero, the system wants to
expand. However, since all solutions with a lower average
density are homogeneous, this means that the inhomoge-
neous phase, including the single-soliton solution, is not
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FIG. 3 (color online). Energy per particle as a function of the average density at T ¼ 0: numerical results (red solid line) and
according to Eq. (25) with c ¼ 0:97985 and �c;inh ¼ 323:223 MeV (blue dashed line).
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stable without applying external forces.4 As a conse-
quence, the lowest E=N is obtained for a dilute gas of
constituent quarks in the limit of zero density.

For Mvac > 315 MeV, Eb;sol is positive; i.e., the lowest

E=N corresponds to a single soliton state, as discussed
above. For Mvac > 330 MeV, Eb;hom is positive as well.

So there would be stable droplets of homogeneous matter if
we could ignore the possibility of inhomogeneity. As ex-
plained above, this is, however, not the case. At Mvac ¼
400 MeV, for example, the binding energy for homoge-
neous matter is about 30 MeV per quark, while it is about
40 MeV per quark for the solitons.

For simplicity, all calculations in this article are done in
the chiral limit. The mass functions and phase diagrams for
nonvanishing bare quark masses have been investigated in
Refs. [15,16], and turned out not to be very different. In
particular, the inhomogeneous phase is delimited by
second-order phase boundaries, and the mass function at
the boundary towards lower � takes the form of a single
soliton. Therefore, we do not expect our results to change
qualitatively if finite bare quark masses are considered.

IV. PROPERTIES OF SINGLE SOLITONS

After having explored the conditions for the existence
of single self-bound solitons, we would now like to inves-
tigate their properties in more detail.

As discussed in Sec. II C, the density profile is given by
Eq. (19) with � ¼ �c;inh and � ¼ Mvac,

nsolðzÞ ¼
NfNc

8�

Mvac�
2
c;inh

cosh 2ðMvaczÞ
; (26)

where �c;inh <Mvac. We have already noted that

nsolðzÞ decreases exponentially at large jzj and therefore
the average density �n vanishes. On the other hand, the
central density at z ¼ 0 is larger than the density of
restored quark matter at the same chemical potential,

nsolð0Þ ¼
NfNc

8�
Mvac�

2
c;inh ¼

3�

8

Mvac

�c;inh

nrest; (27)

where nrest ¼ NfNc

3�2 �3
c;inh. This can be interpreted as a

bag-pressure effect, which pushes the quarks out of the
chirally broken vacuum and squeezes them into the
restored regions [16].

The number of quarks in the soliton per transverse area
A? is obtained by integrating Eq. (26) over z. One finds

N

A?
¼ NfNc

4�
�2

c;inh: (28)

Another interesting quantity is the longitudinal rms
‘‘radius,’’

Rrms
sol;k �

ffiffiffiffiffiffiffiffi
hz2i

q
¼

�R
dzz2nsolðzÞR
dznsolðzÞ

�
1=2 ¼ �ffiffiffiffiffiffi

12
p 1

Mvac

; (29)

which is a measure for the half-size of the soliton in the z
direction.
Similarly, we can define the ‘‘soliton averaged density,’’

i.e., the density-weighted integral over the density divided
by the number of quarks,

hnisol ¼
R
dzn2solðzÞR
dznsolðzÞ ¼

NfNc

12�
Mvac�

2
c;inh: (30)

Hence

hnisol ¼ 2

3
nsolð0Þ ¼ �

4

Mvac

�c;inh

nrest; (31)

i.e., while the maximal density in a self-bound soliton
is always larger than the density in the restored phase at
the same chemical potential, hnisol can be smaller. For
instance, for Mvac ¼ 400 MeV, we have Mvac=�c;inh ¼
1:12< 4=�.
It is interesting to compare these expressions with

the results based on the droplet picture for homogeneous
matter. As discussed earlier, the most stable homogeneous
solution corresponds to quark matter in the restored phase
at the critical chemical potential�c;hom, provided�c;hom <
Mvac. The density is, thus, given by

nhom ¼ NfNc

3�2
�3

c;hom: (32)

Assuming that the homogeneous solutions could be taken
over to describe small quark matter droplets, the volume of
a ‘‘baryon’’ withNc quarks would be Vhom ¼ Nc=nhom. For
spherical bags, this would correspond to a radius of

Rhom;s ¼
�
9�

4Nf

�
1=3 1

�c;hom

; (33)

which turns out to be quite reasonable if the numerical
values for �c;hom are inserted [7]; see Table I. However,

since the underlying formalism, which assumes infinite
matter, does not provide any mechanism why the matter
should clusterize and, if so, why into droplets ofNc quarks,
this description of ‘‘baryons’’ as quark droplets remains
very schematic.
In this sense, the domain-wall solitons, which are finite

in one spatial direction, could be seen as a step in the right
direction. Moreover, the longitudinal size, given by
Eq. (29), turns out to be of the correct order. To illustrate

4We have seen that inhomogeneous solutions with � ¼ 1 and
� ¼ M are thermodynamically degenerate with homogeneous
matter with massM. Hence, one may argue that the single solitons
survive also below � ¼ �c;inh, down to � ¼ Mvac, where they
would have vanishing binding energy. On the other hand, they are
no longer solutions of the gap equation @�

@� ¼ 0, and it is therefore
unclear whether they are self-consistent and thermodynamically
consistent solutions. Here we choose not to further investigate this
question, since in this work we are mainly interested in solutions
with a positive binding energy, �c;inh <Mvac.
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this, we perform a quantitative comparison with the homo-
geneous baryon droplets by again restricting the volume in
such a way that it contains Nc quarks. Since the longitudi-
nal shape of the soliton is predicted by the model, we want
to keep it untouched and only restrict the transverse area by
hand. Taking a circular shape, Eq. (28) yields

Rsol;? ¼ 2ffiffiffiffiffiffi
Nf

p 1

�c;inh

: (34)

Of course, the nonspherical geometry of this baryon should
not be taken seriously, but is simply a consequence of the
described procedure. For the sake of a meaningful com-
parison with the homogeneous droplets, we take the latter
to be nonspherical as well, but assume a cylindrical shape.
For simplicity, we assume that the transverse and longitu-
dinal radii of the cylinder are equal; i.e., the cylinder has a
transverse radius Rhom;c and a height 2Rhom;c. Since the

volume must remain unchanged, Rhom;c is then related to

the radius of the sphere by Rhom;c ¼ ð2=3Þ1=3Rhom;s, i.e.,

Rhom;c ¼
�
3�

2Nf

�
1=3 1

�c;hom

: (35)

Moreover, for better comparability with Rrms
sol;k, we translate

all sharp radii into rms radii. For a D-dimensional sphere
with radius Ri, the relation is given by

Rrms
i ¼

�R
dDrr2�ðRi � rÞR
dDr�ðRi � rÞ

�
1=2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
D

Dþ 2

s
Ri; (36)

i.e., we have Rrms
sol;?=Rsol;? ¼ Rrms

hom;?=Rhom;c ¼ 1=
ffiffiffi
2

p
and

Rrms
hom;k=Rhom;c ¼ 1=

ffiffiffi
3

p
.

Finally, we define a ‘‘baryon mass’’ for the homogene-
ous and solitonic solutions as Nc times E=N, i.e.,

MB;hom ¼ Nc�c;hom; MB;sol ¼ Nc�c;inh: (37)

The results for Nf ¼ 2 and Nc ¼ 3 and two different

values ofMvac are summarized in Table I for homogeneous
droplets and in Table II for the solitons. We find that the
qualitative and even the quantitative behavior is similar for

both cases. The baryon masses rise with the vacuum quark
mass, but are below 3Mvac because of binding effects.
Since the binding increases with increasing quark masses,
the densities increase as well, while the radii decrease. As
discussed in the previous section, the solitons are bound
more strongly than homogeneous matter. As a conse-
quence, the solitons have a larger central density, despite
the fact that the chemical potential is lower. The soliton
averaged density hnisol, on the other hand, is smaller than
the density in homogeneous droplets. Therefore, the
solitons have larger rms radii.
Nevertheless, the general agreement of the various rms

radii for a given quark mass turns out to be quite good. In
particular, it is remarkable that Rrms

sol;k, which is an intrinsic

property of the soliton, is similar to the other radii, which
have been introduced by hand in order to have three quarks
in a ‘‘baryon.’’ On the other hand, the sharp radii Rhom;s and

Rsol;? are considerably larger, showing that the numbers

are rather sensitive to the used definition of the radius.

V. SOLITON-SOLITON INTERACTIONS

Having discussed the properties of single solitons,
we now move away from this limit and investigate what
happens when the solitons approach each other.
As explained in Sec. II, the inhomogeneous solutions are

characterized by the parameters � and �, which are ob-
tained by minimizing the thermodynamic potential at given
T and�. In particular the distance a between the neighbor-
ing solitons depends on � and �, as detailed in Eq. (12).
This allows us to plot the thermodynamic quantities of the
system as functions of a, which is sometimes more in-
structive than plotting them against � or �n.
As before, we limit ourselves to T ¼ 0. At the boundary

to the homogeneous chirally broken phase, we have � ¼ 1,
corresponding to a ! 1, while with increasing chemical
potential the distance quickly becomes smaller. For large
distances, the density distribution of the soliton lattice does
not differ much from a linear superposition of single
solitons. The average density is therefore given by

TABLE II. Properties of solitonic ‘‘baryons’’ for two values of the vacuum constituent quark
mass Mvac.

Mvac [MeV] �c;inh [MeV] MB;sol [MeV] nsolð0Þ=n0 hnisol=n0 Rsol;? [fm] Rrms
sol;? [fm] Rrms

sol;k [fm]

330 323.2 969.7 2.10 1.40 0.86 0.61 0.54

400 357.4 1072.2 3.11 2.08 0.78 0.55 0.45

TABLE I. Properties of homogeneous ‘‘baryon droplets’’ for two values of the vacuum
constituent quark mass Mvac.

Mvac [MeV] �c;hom [MeV] MB;hom [MeV] nhom=n0 Rhom;s [fm] Rrms
hom;? [fm] Rrms

hom;k [fm]

330 329.9 989.7 1.86 0.91 0.56 0.46

400 371.0 1113.0 2.64 0.81 0.50 0.41
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�n1ðaÞ ¼
NfNc

4�

�2
c;inh

a
; (38)

i.e., the column density of a single soliton, Eq. (28),
divided by the distance. At smaller distances, on the other
hand, the interaction between the solitons leads to nonline-
arities, giving rise to deviations from the trivial 1=a
behavior. This is shown in the upper left panel of Fig. 5,
where �n= �n1 is displayed as a function of a. We see that the
ratio is very close to unity for a > 2 fm and rises steeply
when the distance is decreased below 1 fm. Here a
is smaller than 2Rrms

sol;k, i.e., the solitons strongly overlap.

A similar picture arises from the energy per particle
(upper right) and the pressure (lower left) when plotted
as functions of the soliton distance: For a > 2 fm, E=N is
almost independent of a and p remains close to zero, while
both quantities rise steeply at a < 1 fm.

For thin, well separated solitons, the pressure can
be interpreted as the force per transverse area by which
they repel each other, FðA?Þ ¼ pA?. Dividing this force
by the corresponding number of quarks in the soliton,
NðA?Þ ¼ �naA?, we obtain the effective force per quark�

F

N

�
¼ p

�na
; (39)

which is probably the most intuitive way to quantify the
soliton-soliton interactions. The resulting behavior as a

function of a is shown in the lower right panel of Fig. 5.
Again, the ‘‘force’’ vanishes at large distances and
becomes nonnegligible only below around 2 fm, when
the solitons begin to overlap. Of course, when the overlap
gets sizable, the assumption of well separated solitons
breaks down and the interpretation as a force must be taken
with care.

VI. INCLUDING VECTOR INTERACTIONS

It is also interesting to study the influence of vector
interactions, which are very important at finite density, as
known, e.g., from the Walecka model [23]. In the NJL
model with homogeneous condensates, vector interactions
have been shown to weaken the first-order chiral phase
transition, and already at rather small values of the vector
coupling, the phase transition turns into second order or a
crossover [9,24–26]. In terms of E=N, this is easily under-
stood from the fact that the vector interaction, described by
a term

LV ¼ �GVð �c��c Þ2 (40)

in the Lagrangian, adds a term GVn
2 to the energy density;

i.e., E=N is enhanced by GVn [7]. Hence, the minimum in
the restored phase at finite density gets increasingly dis-
favored with increasing GV , whereas the energy at n ¼ 0
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stays unaffected (see Ref. [20] for a recent general discus-
sion of this point).

The effect of vector interactions on inhomogeneous
phases has been investigated in Ref. [17]. In that analysis
the approximation was made to replace the density nðzÞ in
the mean-field Lagrangian by the spatial average �n. This is
a good approximation close to the restored phase and in
particular at the Lifshitz point. The shape of the mass
function at a given density is then independent of GV ,
and the known analytical solutions for GV ¼ 0 could basi-
cally be taken over. If we could apply the same approxi-
mation to our present analysis, we would obtain

E

N

��������GV

� E

N

��������GV¼0
þGV �n �

�
E

N

�
<
; (41)

similar to the homogeneous case. This would further
stabilize the minimum at �n ¼ 0.

It is obvious, however, that the replacement of n by �n is
not a good approximation at low average densities where
the quarks are strongly localized in the solitons and there-
fore feel a much stronger repulsion than suggested byGV �n.
For instance, the energy of a single soliton is still enhanced
by the vector repulsion, even when the homogeneous
background density and, thus, the average density of the
system go to zero. Thus, the correction to E=N should
rather be obtained by integrating the local correction to
the energy density, 	�ðzÞ ¼ GVn

2ðzÞ; over the volume and
dividing it by the integrated quark number density. Since
the integrals over the transverse area cancel, one obtains

E

N

��������GV

� E

N

��������GV¼0
þGV

R
dzn2ðzÞR
dznðzÞ �

�
E

N

�
>
: (42)

This is still an approximation, at least as long the density
profiles nðzÞ for GV ¼ 0 which were given in Sec. II B are
used. We expect that, in a fully self-consistent treatment,
the vector repulsion between the quarks leads to a broad-
ening of the density distribution, which lowers the energy.
Equation (42) with the unmodified density profiles should
therefore be taken as an upper limit of E=N, while Eq. (41)
provides a lower limit.

Making use of the periodicity of the soliton lattice,
Eq. (42) can be simplified to�

E

N

�
>
¼ E

N

��������GV¼0
þGV

a �n

Z a

0
dzn2ðzÞ; (43)

where a ¼ L=2 is the distance between the solitons,
introduced in Eq. (12). For the single-soliton limit with
�c;inh <Mvac, we have E=NjGV¼0 ¼ �c;inh, while the

integrals in Eq. (42) have readily been worked out in
Sec. IV. This yields�

E

N

�
>
ð �n ¼ 0Þ ¼ �c;inh þGVhnisol; (44)

with hnisol given in Eq. (30).

In Fig. 6 our results for GV ¼ G=2 are displayed as
functions of the average density. The range between the
upper and lower limits of E=N is indicated by the shaded
area. For comparison we also show the results for homo-
geneous matter and for inhomogeneous matter at GV ¼ 0.
One can see that at high densities ðE=NÞ>, ðE=NÞ<, and
E=N for homogeneous matter become practically degen-
erate. This is not surprising, since in this regime the
amplitude � of the mass function becomes small and the
density profile gets more and more washed out [16]. At
intermediate densities we find the energy of homogeneous
matter to be higher than the upper limit of inhomogeneous
matter; i.e., the inhomogeneous solution should be favored
in this region.
The situation is less clear at lower densities. In the

zero-density limit, ðE=NÞ< and ðE=NÞhom converge against
the corresponding limits without vector interactions, i.e.,
�c;inh andMvac, respectively, while ðE=NÞ> approaches the

value given in Eq. (44). If the vector coupling is sufficiently
small,

GV <
Mvac ��c;inh

hnisol ¼ 12�

NfNc

1

�c;inh

�
1

�c;inh

� 1

Mvac

�
;

(45)

the energy of homogeneous matter remains above the upper
limit for inhomogeneous matter, even at �n ¼ 0; i.e., we can
be rather sure that the inhomogeneous solutions stay fa-
vored. In the present example, however, GV is not so small,
and we find the ordering ðE=NÞ< < ðE=NÞhom < ðE=NÞ> at
low densities. If the correct inhomogeneous solution is
close to the upper limit, this could mean that the ground
state at low densities is homogeneous. On the other hand, it
is also possible that the inhomogeneous solution remains
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FIG. 6 (color online). Energy per particle as a function of the
average density for a vector coupling GV ¼ G=2. The shaded
area marks the range between the upper limit Eq. (43) and the
lower limit Eq. (41). The �n ¼ 0 value of the upper limit,
Eq. (44), is denoted by the dotted-dashed line. Also shown are
E=N for homogeneous matter (solid line) and for inhomoge-
neous matter at GV ¼ 0 (dashed line).
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favored if the solitons change their size in reaction to the
repulsive vector interaction.

VII. CONCLUSIONS

In this article, we have studied the existence and the
properties of self-bound quark matter in the NJL model at
zero temperature, focusing on inhomogeneous structures
with one-dimensional spatial modulations. The analysis
was done in the mean-field approximation.

For homogeneous matter, it was found a long time ago
that the model seems to allow for stable droplets of quark
matter in the chirally restored phase if the interaction is
sufficiently attractive. These droplets have vanishing pres-
sure and a chemical potential lower than the vacuum
constituent quark mass, so that they are in mechanical
and chemical equilibrium with the vacuum. Related to
this, they correspond to a minimum of the energy per
particle as a function of density, so that they are stable
against homogeneous expansion or collapse. Neglecting
finite size effects, this suggests that we interpret these
solutions as quark bags, and the natural expectation would
be that they have a spherical shape if surface effects are
taken into account.

Allowing for one-dimensional inhomogeneities, how-
ever, it turns out that the homogeneous droplets are un-
stable against forming a soliton lattice. The solitons repel
each other, so that the state with the lowest energy per
particle is reached at infinite lattice spacing, corresponding
to a vanishing spatially averaged density. Inside the sol-
itons, on the other hand, the density is finite, roughly of the
same order as in the homogeneous droplets. Their longitu-
dinal size is about 1 fm, determined by the inverse of the
vacuum constituent quark mass. Being one-dimensional
objects embedded in the three-dimensional space, the sol-
itons are infinite in the two transverse directions. Thus,
taking these results as they are, quark matter at low average
density should have a lasagnelike structure, with parallel
plates of high densities and voids in between.

At this point, we should ask ourselves how these results
can be interpreted. In QCD, we expect that compressed
quark matter, when it is released, will expand and finally
hadronize. At zero temperature, this means that the matter
should split up into baryons, each consisting of Nc valence
quarks. These baryons may further interact with each other,
forming nuclei or nuclear matter, but keep their individu-
ality as separate color-singlet objects.

In the NJL model, it has been suggested that the droplet
solutions found in the analysis of homogeneous quark
matter be interpreted as schematic baryons, since they
are stabilized by the bag pressure and have a reasonable
density. Of course, strictly speaking, these solutions are
infinite objects, and a separation into finite baryons would
require a negative surface tension [8], while recent analy-
ses suggest that it is positive [10–12]. From this perspec-
tive, the one-dimensional solitons look like a step in the

right direction, as they are at least finite in one dimension,
where they have a reasonable size. In particular, one might
hope that the consideration of higher-dimensional inhomo-
geneous phases could reveal further instabilities, eventu-
ally leading to finite localized baryons as the true ground
state of matter at low densities.
Unfortunately, this does not seem to be the case. Phases

with two-dimensional modulations have been studied in
Ref. [17] and were found to be disfavored against one-
dimensional modulations at low densities. Although the
analysis was restricted to sinusoidal shapes and certain
parameters, it is unlikely that this will change if other
shapes or parameters, or even three-dimensional modula-
tions, are considered. Nevertheless, more systematic
studies in this direction are highly desirable, in particular
since at nonzero temperature one-dimensional periodic
structures are known to be unstable against fluctuations
[27,28]. One should also revisit the old works on the chiral
quark soliton model [29–31] and work out their relation to
the present model.
Of course, there is a priori no reason to expect finite

baryons to be the most favored objects in a nonconfining
model. On the other hand, the model predictions may still
have some relevance in the deconfined phase. The emer-
gence of one-dimensional modulations can be understood
as a relic of the Peierls instability in 1þ 1 dimensions [32],
which is a rather general mechanism. Also the fact that the
longitudinal size and the internal density of the one-
dimensional solitons are of the order to be expected for
baryons might indicate that confinement effects are not
very drastic. It is thus conceivable that lasagnelike patterns
are preformed in expanding quark matter before hadroni-
zation takes place, and it would be interesting to work out
possible observable signatures.
The present calculations could also be improved in

several aspects: In Sec. VI, we gave only a lower and an
upper limit for the effect of vector interactions on the
energy per particle. For the upper limit, which is probably
closer to the true solution, we assumed that the density
profiles remain unchanged when the vector interactions are
switched on. However, we expect that the repulsive inter-
action leads to a broadening of the density peaks, which
would lower the energy of the system. In this way the
solitons may continuously go over into homogeneous mat-
ter, when the vector coupling is increased. We have also
neglected the effect of spacelike vector condensates, which
should be present in anisotropic systems.
Moreover, we should allow for BCS pairing of the

quarks in the solitons. Inside the solitons we find densities
of two to three times nuclear-matter density, for which gaps
of the order of 50 to 100 MeV have been found in homo-
geneous quark matter. It would be interesting to see how
this is changed for an inhomogeneous environment.
If we want to extend our studies to quark matter

in compact stars, we must enforce beta equilibrium and
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electric neutrality. This would put stress on the present
solutions, since the chemical potentials and, hence, the
favored periodicities of the soliton lattice would no longer
be identical for up and down quarks. If this effect is
large, the system may find ways to accommodate different
periods, e.g., by forming a two-dimensional lattice, where
the up- and down-quark condensates vary independently in
different directions. It would also be interesting to include
strange quarks and revisit the problem of strange quark
matter and strangelets in the NJL model [33].

Unfortunately, these improvements of the model can
no longer be done by making use of the analytically
known solutions of the 1þ 1 dimensional Gross-Neveu
model, so that brute-force numerical diagonalizations of
the Hamiltonian seem to be unavoidable.

Finally, we should also include fluctuations. An interest-
ing scenario would be that they leave the inhomogeneous

phase (potentially with a higher-dimensional structure)
intact but turn the second-order phase transition from the
vacuum phase into first order. The minimum of E=N would
then be shifted to nonvanishing average density. The re-
sulting crystal could be a first step towards nuclear matter.
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