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Using the group theory of mixing to examine all finite subgroups of SUð3Þ with an order less than 512,

we found recently that only the group �ð150Þ can give rise to a correct reactor angle �13 of neutrino

mixing without any free parameters. It predicts sin 22�13 ¼ 0:11 and a submaximal atmospheric angle

with sin 22�23 ¼ 0:94, in good agreement with experiment. The solar angle �12, the charge conjugation-

parity phase �, and the neutrino masses mi are left as free parameters. In this article we provide more

details of this case and discuss possible gains and losses by introducing right-handed symmetries and/or

valons to construct dynamical models. A simple model is discussed where the solar angle agrees with

experiment and all its mixing parameters can be obtained from the group �ð600Þ by symmetry alone. The

promotion of �ð150Þ to �ð600Þ is, on one hand, analogous to the promotion of S3 to S4 in the presence of

tribimaximal mixing, and on the other hand, it is similar to the extension from A4 to S4 in that case.

DOI: 10.1103/PhysRevD.87.053012 PACS numbers: 14.60.Pq

I. INTRODUCTION

Before the reactor angle �13 was successfully measured
in the recent past, the neutrino mixing data were consistent
with a zero �13 and a maximal atmospheric angle �23.
These two are explainable by the leptonic symmetry S3.
This symmetry group is generated by two unitary matrices,
F ¼ diagð1; !;!2Þ, where ! ¼ exp ð2�i=3Þ, and G with
G2 ¼ 1, det ðGÞ ¼ 1, which possesses the eigenvector
ð0; 1;�1ÞT with eigenvalue þ1. This symmetry predicts a
zero reactor angle and a maximal atmospheric angle, but it
leaves the solar angle �12 undetermined.

The solar angle can also be explained by symmetry if we
enlarge the group S3 by incorporating another unitary gen-
erator G0 which commutes with G, satisfying G02 ¼ 1,
det ðG0Þ ¼ 1, and possessing an eigenvector ð1; 1; 1ÞT with
eigenvalue þ1. The order of the group G generated by F,
G, G0 must then be an even multiple of 6, the order of S3.

The simplest non-Abelian group with order 12 is A4, but
it contains only even permutations so it does not contain S3
as a subgroup. The simplest nontrivial group that contains
S3 is S4, with order 24. Moreover, it also contains the G0
above, so it predicts the correct solar angle. The resulting
neutrino matrix has the well-known tribimaximal form.

Now that the reactor angle is no longer zero and there are
indications that the atmospheric angle may not be maximal,
the question is whether we can still find a symmetry to
explain the mixing data. In a recent work, we searched all
the finite subgroups of SUð3Þwith an order less than 512 and
discovered that the only group that can explain the reactor
and atmospheric angles by symmetry alone is �ð150Þ [1]. It
is generated by the same F as S3, but a different G. It also
leaves the solar angle free. To explain the solar angle by
symmetry as well, we need to enlarge the group by

incorporating another order-2 generatorG0 which commutes
withG. As before, the extended groupG must have an order
which is an even multiple of 150, the order of�ð150Þ. Again
no nontrivial order-300 group contains a �ð150Þ subgroup,
but the order-600 group �ð600Þ does, and in fact that is the
only order-600 group that does. The symmetry of �ð600Þ
also contains the same G0 as before, which gives rise to a
solar angle that agrees with experiment. In this way the pair
ð�ð150Þ;�ð600ÞÞ is analogous to the previous pair ðS3; S4Þ
before the reactor angle was measured.
It is interesting that �ð600Þ is the smallest of the three

groups that yield a full Z2 � Z2 residual symmetry in the
neutrino sector, among all the finite SUð3Þ subgroups of
orders<1536 [2]. It also shows up in the method using von
Dyck groups [3,4].
In this article we discuss the groups �ð150Þ and �ð600Þ

and their predictions [5]. The mathematical properties of
these groups are summarized in Sec. II. Given a symmetry
group, there are three ways to apply its symmetries to
neutrino physics, each with an additional assumption
over the previous, but potentially (though not necessarily)
also an additional gain. We will discuss these three in turn.
The simplest is to apply symmetry only to the left-handed
fermions, to obtain information on the effective left-
handed mass matrices. This is the method used in the
recent survey [1] and shall be referred to as the ‘‘left-
handed symmetry’’ method. The next simplest is to apply
symmetry to both the left-handed and the right-handed
fermions, to obtain information also on the Dirac and
Majorana mass matrices. We shall refer to this method as
‘‘both-handed symmetry’’. Without imposing the addi-
tional right-handed symmetry there is no way to get the
Dirac or the Majorana mass matrices. The most involved
but the most well-known method is to construct dynamical
models. This requires the introduction of additional scalar
fields called valons to account for the spontaneous*Lam@physics.mcgill.ca
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breaking of symmetry. These three methods will be applied
to �ð150Þ and their relative merits will be discussed in
Secs. III, IV, and V, respectively.

No matter which of these three methods is used, we can
account for the correct reactor and atmospheric angles as
long as �ð150Þ is the symmetry. The other neutrino mixing
parameters, as well as the fermion masses, are hidden in the
adjustable parameters in the mass matrices. For left-handed
symmetry, there are just enough parameters to fit all the
experimental quantities. For both-handed symmetry, the
additional freedom in assigning right-handed symmetry
increases the number of parameters, but except for special
cases such as the c ¼ 0 example in the text, the additional
parameters do not yield additional information on the
mixing parameters or the masses. Nevertheless, when dy-
namical models are built, most of these parameters in both-
handed symmetry will acquire a physical meaning in terms
of Yukawa coupling constants. The groups �ð6n2Þ can also
be incorporated into grand-unified-theory models [6].

In principle, a fit to the experimental data can determine
the parameters in left-handed symmetry, but in practice this
is impossible because the CP phase and one of the neutrino
masses are unknown. The best one can do then is to
produce simple models, hopefully with simple choices of
parameters, that can account for all the known experimen-
tal quantities. Such a model will be given in the text, first in
Sec. III, and then subsequently discussed and refined in
Secs. IV and V.

In Sec. VI, the left-handed symmetry will be applied to
�ð600Þ, and in Sec. VII, a summary of the results will be
given. There is also an Appendix to explain real represen-
tations for the group �ð150Þ.

II. �ð6n2Þ
This series of finite subgroups of SUð3Þ have been studied

in various places [7]. In this article we will follow the
information given in the mathematical software GAP [8].

�ð6n2Þ can be described by the semidirect products of a
direct product of cyclic groups,

�ð6n2Þ ¼ ðZn � ZnÞ 2Z3 2Z2: (1)

The generators of the two cyclic groups Zn are f4 and f3,
respectively; the generator of Z3 is f2, and the generator of
Z2 is f1. The orders of f4, f3, f2, and f1 are, respectively,
n, n, 3, and 2.

The direct product of the two Zn’s tells us that f4 and f3
commute. The semidirect product with Z3 implies that
f2f3f

�1
2 and f2f4f

�1
2 are monomials of f3 and f4. The

semidirect product with Z2 implies that f1f3f
�1
1 and

f1f4f
�1
1 are monomials of f2, f3, and f4, while f1f2f

�1
1

is a monomial of f2.
With these commutation relations, one can rearrange

any monomial of the four fi’s, namely, any group element
of �ð6n2Þ, into the canonical form fe44 f

e3
3 f

e2
2 f

e1
1 , with e4

and e3 ranging between 0 and n� 1, e2 between 0 and 2,

and e1 as either 0 or 1. The total number of independent
elements of the group can easily be counted from the
canonical form to be 6n2.
In this article we are interested in the case n ¼ 5 and

n ¼ 10. We will discuss the details of these two groups
separately below.

A. �ð150Þ ¼ ðZ5 � Z5Þ 2Z3 2Z2

The nontrivial commutation relations of the generators
are

f2f4f
�1
2 ¼ f4f3; f2f3f

�1
2 ¼ f24f

3
3; f1f4f

�1
1 ¼ f44f

4
3;

f1f3f
�1
1 ¼ f3; f1f2f

�1
1 ¼ f22: (2)

This group has 13 conjugacy classes, C1 to C13, and 13
irreducible representations, IR1 to IR13. Its character table
is given in Table I, with various notations explained in
Table II and below. The GAP notation =A in Table I means
the complex conjugate of A, and likewise for =B, =F, and

=G. The notation �C is obtained from C by changing
ffiffiffi
5

p
to

� ffiffiffi
5

p
, and likewise for �D and �E.

The designations of the IRs in Table I are those in the
IrreducibleRepresentations command of GAP. They differ
from those used in the command CharacterTable, which
are denoted as X:n in GAP, with n varying from 1 to 13.
The generators f1, f2, f3, f4 belong to classes C2, C3, C4,

C5, respectively. The only class with order 2 is C2. No two
elements within this class mutually commute.
As usual, the dimension of an IR is its character for the

identity class C1. The characters � of the three-dimensional
representations IR4 to IR11 are complex, with the pairs
(4,10), (5,11), (6,8), (7,9) being complex conjugates of one
another. The other representations, IR1 to IR3, IR12, and
IR13, have real characters, so they are either real or qua-
ternionic representations. Their Frobenius-Schur indicesP

g2�ð150Þ�ðg2Þ=150 are all þ1, so all of them are real

representations. The representations given by GAP for IR1
and IR2 are explicitly real, but not those for IR3, IR12, or
IR13. In the Appendix we show how to convert the GAP
representations into representations that are explicitly real.
Using Table I, we can explicitly work out the Clebsch-

Gordan series. The result is given in Table III. Since
IRi� IRj is the same as IRj� IRi, only half of the table
is explicitly shown. For example, the products of IR12 and
IR12 are given by (with the prefix IR omitted)

12� 12¼ 1þ 2þ 3þ 3þ 6þ 7þ 8þ 9þ 12þ 12þ 13:

(3)

From Table II, it can be checked that there are 36 states
both on the left-hand side and the right-hand side of (3).

B. �ð600Þ ¼ ðZ10 � Z10Þ 2Z3 2Z2

Since Z10 ¼ Z5 � Z0
2 (a prime is used to distinguish this

Z2 from the one in the semidirect product), its generator f4
is related to the Z5 generator c4 and the Z

0
2 generator d4 by
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c4 ¼ f24; d4 ¼ f54; f4 ¼ c34d4: (4)

Similarly, for the other Z10 in the direct product,

c3 ¼ f23; d3 ¼ f53; f3 ¼ c33d3: (5)

The nontrivial commutation relations between f1, f2, c3,
c4 are the same as in (2), namely,

f2c4f
�1
2 ¼ c4c3; f2c3f

�1
2 ¼ c24c

3
3; f1c4f

�1
1 ¼ c44c

4
3;

f1c3f
�1
1 ¼ c3; f1f2f

�1
1 ¼ f22: (6)

Together they generate the subgroup �ð150Þ of �ð600Þ.

The other nontrivial commutation relations of �ð600Þ
are

f2d4f
�1
2 ¼ d3; f2d3f

�1
2 ¼ d4d3;

f1d4f
�1
1 ¼ d4d3; f1d3f

�1
1 ¼ d3:

(7)

The group formed by ff1; f2; d3g (or ff1; f2; d4g) is S4;
thus, �ð600Þ contains S4 as a subgroup. The subgroup
formed by ff2; d3g (or ff2; d4g) is A4, and the subgroup
formed by ff1; d3g (or ff1; d4g) is the Klein four-group
Z2 � Z2 [9].

TABLE II. Abbreviations used in Table I, where � ¼ e2�i=5.

A B C D E F G

2�3 þ �4 �2 þ 2�4 1� ffiffiffi
5

p ð1� ffiffiffi
5

p Þ=2 ð�3þ ffiffiffi
5

p Þ=2 ��4 ��2

TABLE I. Character table of �ð150Þ.
C 1 2 3 4 5 6 7 8 9 10 11 12 13

Order 1 2 3 5 5 10 10 5 5 10 10 5 5

jCj 1 15 50 3 6 15 15 3 6 15 15 3 3

IR1 1 1 1 1 1 1 1 1 1 1 1 1 1

IR2 1 �1 1 1 1 �1 �1 1 1 �1 �1 1 1

IR3 2 0 �1 2 2 0 0 2 2 0 0 2 2

IR4 3 1 0 =B �D �=G �=F =A D �F �G A B
IR5 3 �1 0 =B �D =G =F =A D F G A B
IR6 3 1 0 =A D �=F �G B �D �=G �F =B A
IR7 3 �1 0 =A D =F G B �D =G F =B A
IR8 3 1 0 A D �F �=G =B �D �G �=F B =A
IR9 3 �1 0 A D F =G =B �D G =F B =A
IR10 3 1 0 B �D �G �F A D �=F �=G =A =B
IR11 3 �1 0 B �D G F A D =F =G =A =B
IR12 6 0 0 C E 0 0 �C �E 0 0 �C C
IR13 6 0 0 �C �E 0 0 C E 0 0 C �C

TABLE III. Clebsch-Gordan series of �ð150Þ.
1 2 3 4 5 6 7 8 9 10 11 12 13

1 1 2 3 4 5 6 7 8 9 10 11 12 13

2 1 3 5 4 7 6 9 8 11 10 12 13

3 1,2,3 4,5 4,5 6,7 6,7 8,9 8,9 10,11 10,11 122 132

4 6,10,11 7,10,11 8,12 9,12 10,13 11,13 1,3,12 2,3,12 4,5,8,9,13 6,7,12,13

5 6,10,11 9,12 8,12 11,13 10,13 2,3,12 1,3,12 4,5,8,9,13 6,7,12,13

6 8,9,10 8,9,11 1,3,13 2,3,13 4,13 5,13 10,11,12,13 4,5,6,7,12

7 8,9,10 2,3,13 1,3,13 5,13 4,13 10,11,12,13 4,5,6,7,12

8 4,6,7 5,6,7 6,12 7,12 4,5,12,13 8,9,10,11,12

9 4,6,7 7,12 6,12 4,5,12,13 8,9,10,11,12

10 4,5,8 4,5,9 6,7,10,11,13 8,9,12,13

11 4,5,8 6,7,10,11,13 8,9,12,13

12
1,2,32,6,7, 4,5,6,7,8,9,

8,9,122,13 10,11,12,13

13
1,2,32,4,5

10,11,12,132

HORIZONTAL SYMMETRIES �ð150Þ AND �ð600Þ PHYSICAL REVIEW D 87, 053012 (2013)

053012-3



Substituting (4) and (5) into (8), we get the nontrivial
commutation relations with the Z10 � Z10 generators to be

f2f4f
�1
2 ¼ f64f3; f2f3f

�1
2 ¼ f74f

3
3;

f1f4f
�1
1 ¼ f94f

9
3; f1f3f

�1
1 ¼ f3:

(8)

The group �ð600Þ has 33 classes and 33 IRs, as listed in
Tables IVand V. We have no need for the character table or
the Clebsch-Gordan series in this article, so they will not be
given here.

The classes containing order-2 elements are C8 and C24.
Unlike �ð150Þ, it is possible to find two mutually commut-
ing order-2 elements in this group. The significance of this
remark will be explained in Sec. VI.

III. LEFT-HANDED SYMMETRY FOR �ð150Þ
In this section we first review the general theory of

mixing based on a symmetry of effective left-handed
mass matrices (to be abbreviated as left-handed symmetry)
[10]. We will also provide much more detailed information
on the specific case of �ð150Þ.

Every neutrino mixing matrix U has a natural Z2 � Z2

symmetry generated by

Gi ¼ �uiu
y
i � uju

y
j � uku

y
k ; ði ¼ 1; 2; 3Þ (9)

where u1, u2, u3 are the three columns of U, referred to
as mixing vectors below, and ði; j; kÞ is a permutation of
(1, 2, 3). It is easy to see that Gi is unitary, G

2
i ¼ 1, and

GiGj ¼ �Gk. Gi is a symmetry of the Majorana neutrino

mass matrix �M� ¼ �MT
� in the basis where the left-handed

effective charged-lepton matrix �Me :¼ My
eMe is diagonal.

This is so because

GT
i
�M�Gi ¼ �M� (10)

follows from �M� ¼ P
imiuiu

T
i , with mi being the masses

of the active neutrinos with Majorana phases.
This symmetry in the neutrino sector is accompanied by

a Zn symmetry in the charged-lepton sector. Since the �Me

is diagonal, every unitary diagonal 3� 3 matrix F satisfy-
ing Fy �MeF ¼ �Me is a symmetry. If Fn ¼ 1, then F gen-
erates the said Zn symmetry. F cannot be identical to any
Gi, otherwise the mixing column ui would have two zeros,
contrary to experiments.

�M� and �Me are the (effective) left-handed mass matrices
mentioned earlier.
So far everything is general. The group theory of mixing

is based on the assumption that F and at least one Gi

(hereafter referred to simply as G) originate from an un-
broken non-Abelian symmetry G and remain a symmetry
after the spontaneous symmetry breaking, although the
other members of G may not. From now on we shall
assume G to be a finite group.
The minimal symmetry group G consistent with this

assumption is generated by F and G. Conversely, given
any G, we can construct mixing vectors v (one of the ui
above) in the following way.
Collect from G all possible pairs of elements ðF;GÞ

belonging to all possible three-dimensional irreducible
representations in which F and G are unitary. In order
to ensure that �Me is diagonal when F is, we require the
three eigenvalues of F to be distinct; hence, its order n
must be at least 3. G should be of order 2 because G2 ¼ 1.
Let v ¼ ðv1; v2; v3ÞT be the normalized eigenvector of G
with eigenvalue �TrðGÞð¼ �1Þ in the F-diagonal basis;
then v is a possible mixing vector and is uniquely deter-
mined from G. In particular, if it is the mixing vector
for the third column of the neutrino mixing matrix U,
then jv1j ¼ j sin �13j, jv2j ¼ j cos�13 sin �23j, and jv3j ¼
j cos �13 cos �23j. Since the CP and Majorana phases are
unknown, many distinct v’s can give rise to the same jvij,

TABLE V. Irreducible representations of �ð600Þ.
IR 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

c.c. 1 2 3 4 5 21 22 23 24 25 16 17 18 19 20 11 12

dim 1 1 2 3 3 3 3 3 3 6 3 3 3 3 6 3 3

IR 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33

c.c. 13 14 15 6 7 8 9 10 26 27 29 28 30 33 32 31

dim 3 3 6 3 3 3 3 6 6 6 6 6 6 6 6 6

TABLE IV. Conjugacy classes of �ð600Þ.
C 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Order 1 5 5 5 5 5 5 2 10 10 10 10 10 10 10 10 10

jCj 1 6 6 3 3 3 3 3 6 6 3 6 6 3 6 6 3

C 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33

Order 10 10 10 10 10 3 2 10 10 10 10 4 20 20 20 20

jCj 6 6 3 6 6 200 30 30 30 30 30 30 30 30 30 30
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which is all that can be measured. Moreover, by rearrang-
ing the entries of the diagonal F, the components of vi are
similarly rearranged. We shall refer to these distinct v’s
that give rise to the same jvij with some rearrangement as
equivalent mixing vectors. For experimental comparisons
they need not be distinguished.

In addition to the G whose mixing vector v fits the third
column of U, if we can find another G0 commuting with G
whose mixing vector v0 fits the first or the second column,
then the unitarity of U ensures that the remaining column
agrees with experiment. In this way we could get a purely
symmetric explanation of all themixing parameters,without
invoking any free parameter. In other words, we have then a
fullZ2 � Z2 rather than a singleZ2 symmetry in the neutrino
sector. A necessary condition for this full symmetry to
happen is to have twomutually commuting order-2 elements
G, G0 in the group. As remarked in the last section, this can
never happen in �ð150Þ, but it does happen in �ð600Þ.

There are clearly many ðF;GÞ pairs for each group. The
choice in G is somewhat limited because it must belong to
a conjugacy class of order 2, but F can come from essen-
tially everything else except the identity. Fortunately, it is
sufficient to take only one F per conjugacy class of order
� 3, provided we choose G to be all possible elements of
order 2. This is so because the pair ðF;GÞ and the pair
ðgFg�1; gGg�1Þ, for any g 2 G, give equivalent mixing
vectors v, so other F’s in the same conjugacy cannot yield
an inequivalent mixing vector.

Let us now specialize to G ¼ �ð150Þ. As shown in
Table I, it has 13 classes Ci and 13 irreducible representa-
tions. G must be taken from C2, with jC2j ¼ 15, but F can
be taken from C3 to C13; hence, there are 11 possible F’s.
There are eight three-dimensional irreducible representa-
tions (IR4 to IR11), so altogether there are 15� 11� 8 ¼
1320 distinct ðF;GÞ pairs. Most of these pairs do not yield
an acceptable mixing vector for the third column, but many
pairs do, all giving equivalent mixing vectors jvj ¼
ð:170; :607; :777ÞT , corresponding to sin 22�13 ¼ 0:11 and
sin 22�23 ¼ 0:94. These pairs occur in IRn, with F in Ci,
and G being the kth element of C2. Table VI consists of all
these possible triplets ðn; i; kÞ.

We see from Table VI that the successful F comes from
C3, whose GAP-basis expression turns out to be

F ¼
0 0 1

1 0 0

0 1 0

0
BB@

1
CCA (11)

for all the IRs in Table VI. It can be diagonalized by V,
yielding VyFV ¼ diagð!2; !; 1Þ, with ! :¼ exp ð2�i=3Þ,
where

V ¼ 1ffiffiffi
3

p
! !2 1

!2 ! 1

1 1 1

0
BB@

1
CCA: (12)

If we permute the columns of V, then the entries of the
diagonal form of F are similarly permuted.
The mixing vector ~v in the GAP basis is the eigenvector

of G in that basis, with eigenvalue �TrðGÞ. The mixing
vector v in the F-diagonal basis which yields a possible
column of U is related to it by v ¼ Vy~v.
It turns out that there are only six differentG and ~v pairs,

to be labeled by a, b, c, d, e, f below. a comes from the
first two rows of Table VI, b the next rows, and so on, and f
comes from the last two rows. They are

Ga ¼ �
0 �3 0

�2 0 0

0 0 1

0
BB@

1
CCA; Gb ¼ �

0 �2 0

�3 0 0

0 0 1

0
BB@

1
CCA;

Gc ¼ �
0 0 �2

0 1 0

�3 0 0

0
BB@

1
CCA; Gd ¼ �

1 0 0

0 0 �3

0 �2 0

0
BB@

1
CCA;

Ge ¼ �
0 0 �3

0 1 0

�2 0 0

0
BB@

1
CCA; Gf ¼ �

1 0 0

0 0 �2

0 �3 0

0
BB@

1
CCA;
(13)

where � :¼ exp ð2�i=5Þ. There are four big columns in
Table VI. The G’s coming from columns 1 and 3 have
det ðGÞ ¼ �1, and those coming from columns 2 and 4
have det ðGÞ ¼ þ1.
The corresponding unnormalized ~v are

~va¼
��3

1

0

0
BB@

1
CCA; ~vb¼

��2

1

0

0
BB@

1
CCA; ~vc¼

��2

0

1

0
BB@

1
CCA;

~vd¼
0

��3

1

0
BB@

1
CCA; ~ve¼

��3

0

1

0
BB@

1
CCA; ~vf¼

0

��2

1

0
BB@

1
CCA:

(14)

The corresponding normalized mixing vectors v ¼ Vy~v
are

TABLE VI. Origin of equivalent mixing vectors.

n i k n i k n i k n i k

4 3 5 5 3 5 6 3 3 7 3 3

8 3 9 9 3 9 10 3 6 11 3 6

4 3 6 5 3 6 6 3 9 7 3 9

8 3 3 9 3 3 10 3 5 11 3 5

4 3 10 5 3 10 6 3 14 7 3 14

8 3 8 9 3 8 10 3 12 11 3 12

4 3 11 5 3 11 6 3 7 7 3 7

8 3 15 9 3 15 10 3 13 11 3 13

4 3 12 5 3 12 6 3 8 7 3 8

8 3 14 9 3 14 10 3 10 11 3 10

4 3 13 5 3 13 6 3 15 7 3 15

8 3 7 9 3 7 10 3 11 11 3 11
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va¼ 1ffiffiffi
6

p
!ð1�!�3Þ
!2ð1�!2�3Þ

1��3

0
BB@

1
CCA; vb¼ 1ffiffiffi

6
p

!ð1�!�2Þ
!2ð1�!2�2Þ

1��2

0
BB@

1
CCA;

vc¼ 1ffiffiffi
6

p
1�!2�2

1�!�2

1��2

0
BB@

1
CCA; vd¼ 1ffiffiffi

6
p

1�!�3

1�!2�3

1��3

0
BB@

1
CCA;

ve¼ 1ffiffiffi
6

p
1�!2�3

1�!�3

1��3

0
BB@

1
CCA; vf¼ 1ffiffiffi

6
p

1�!�2

1�!2�2

1��2

0
BB@

1
CCA:

(15)

Since complex conjugation interchanges! with!2 and �2

with �3, and since jvj ¼ jv�j, we conclude that jvaj ¼
jvcj ¼ jvdj and jvbj ¼ jvej ¼ jvfj. Moreover, jvbj is ob-
tained from jvaj by interchanging the last two rows. Hence,
all six cases give rise to the same equivalent mixing vector
whose normalized magnitude is jvj ¼ ð:170; :607; :777ÞT .

The mass matrix �Me ¼ �My
e can be obtained from the

symmetry condition Fy �MeF to be

�Me ¼
� � ��

�� � �

� �� �

0
BB@

1
CCA; (16)

where � is a real parameter and � a complex parameter.
The masses m2

e, m
2
	, and m2


 can be obtained from �,

�R :¼ Reð�Þ and �I :¼ Imð�Þ to be �� �R þ ffiffiffi
3

p
�I,

�� �R � ffiffiffi
3

p
�I, �þ 2�R.

Similarly, the neutrino mass �M� ¼ �MT
� can be obtained

from the symmetry condition GT �M�G ¼ �M�.
Corresponding to the six Ga, we get, respectively,

�M�a ¼
a b c

b a� c�3

c c�3 f

0
BB@

1
CCA; �M�b ¼

a b c

b a�4 c�2

c c�2 f

0
BB@

1
CCA;

�M�c ¼
a b c

b f b�2

c b�2 a�4

0
BB@

1
CCA; �M�d ¼

a b b�3

b f�4 c

b�3 c f

0
BB@

1
CCA;

�M�e ¼
a b c

b f b�3

c b�3 a�

0
BB@

1
CCA; �M�f ¼

a b b�2

b f� c

b�2 c f

0
BB@

1
CCA;
(17)

where a, b, c, f are complex parameters which can be used
to fit the solar angle, the CP phase, the three neutrino
masses and the three Majorana phases (one of them is an
overall phase).

A. A simple model

From now on we will study case a in more detail and
will write �M�a simply as �M�. As has already been re-
marked, the four complex parameters a, b, c, f are just

enough to fit the neutrino masses and Majorana phases, the
solar angle, and the CP phase. In this subsection, we
consider a simple model with c ¼ 0, which turns out to
give the right solar angle as well. The remaining parame-
ters a, b, f can be used to determine the neutrino massesmi

and the Majorana phases.
With c ¼ 0, the mass matrix becomes

ð �M�Þ0 ¼
a b 0

b a� 0

0 0 f

0
BB@

1
CCA: (18)

It can be diagonalized by the matrix

W0 ¼ 1ffiffiffi
2

p
�3 0 ��3

1 0 1

0
ffiffiffi
2

p
0

0
BB@

1
CCA; (19)

resulting in

WT
0 ð �M�Þ0W0 ¼

a�� b�3 0 0

0 f 0

0 0 a�þ b�3

0
BB@

1
CCA: (20)

The neutrino mixing matrix in this case is

U0 ¼ VyW0 ¼ 1ffiffiffi
6

p
!þ!2�3

ffiffiffi
2

p
!�!2�3

!2 þ!�3
ffiffiffi
2

p
!2 �!�3

1þ �3
ffiffiffi
2

p
1� �3

0
BB@

1
CCA;

(21)

where V is the matrix in (12) used to diagonalize F.
The third column ofU0 is just va of (15), which gives the

desired reactor and atmospheric angles. The second col-
umn gives trimaximal mixing, yielding a solar angle �12
and satisfying

sin 22�12 ¼ 0:90; (22)

consistent with the PDG value [11] sin 22�12 ¼
0:95� 0:10� 0:01. The first column is determined from
the other two by the unitarity of U0.
The CP phase can also be read off from the (21), (22),

and (31), or (32) element of jðU0Þijj. The result is �CP ¼ 0.

The neutrino masses are the absolute values of the
diagonal elements in (20):

m1¼ja��b�3j; m2¼jfj; m3¼ja�þb�3j: (23)

There are enough parameters to accommodate the mea-
sured mass gaps, either with a normal hierarchy or an
inverted hierarchy. In fact, it can fit any Majorana phase
as well. For example, if it should turn out that the Majorana
phases are all zero, then we would take a�� b�3 and f to
be positive. In a normal hierarchy withm1 ¼ 0,m2

2 ¼ f2 is
the solar gap and m2

3 ¼ 4jbj2 is the atmospheric gap. We

can do so similarly for an inverted hierarchy.
The charged-lepton mass squares are given below (16) to

be m2
e ¼ �� �R þ ffiffiffi

3
p

�I, m2
	 ¼ �� �R � ffiffiffi

3
p

�I, and
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m2

 ¼ �þ 2�R. Thus, m

2
	 �m2

e ¼ �2
ffiffiffi
3

p
�I tells us that

�I is negative, � ¼ ðm2
e þm2

	 þm2

Þ=3 is positive, and

2�R ¼ m2

 � � is also positive.

IV. BOTH-HANDED SYMMETRY FOR �ð150Þ
The left-handed mass matrices �Me ¼ My

eMe and �M� ¼
MT

�M
�1
N M� given in (16) and (17) are the most general that

yield the correct reactor and atmospheric angles from
�ð150Þ. They have just enough free parameters to fit the
unknown quantities: charged-lepton and neutrino masses,
the solar angle, and the CP and the Majorana phases. Left-
handed symmetry alone cannot determine these parame-
ters, nor can it tell us what the Dirac mass matricesMe,M�

and the Majorana mass matrix MN are. For the latter we
need to impose additional assumptions regarding how the
right-handed leptons transform.

Suppose the right-handed charged leptons transform
according to a (reducible or irreducible) representation
C0, and the right-handed Majorana neutrinos N according
to a representation C. Let FC0 , GC be the unitary matrices
for the residual symmetries in these representations. With
these symmetries, the Dirac and Majorana mass matrices
should obey the constraint

Me ¼ Fy
C0MeF; M� ¼GT

CM�G; MN ¼GT
CMNGC;

(24)

where F is given in (11) and G is one of the six equivalent
forms in (17). In what follows we shall confine ourselves to
case a, namely,

F ¼
0 0 1

1 0 0

0 1 0

0
BB@

1
CCA; G ¼ �

0 �3 0

�2 0 0

0 0 1

0
BB@

1
CCA;

~v ¼
��3

1

0

0
BB@

1
CCA (25)

and

�Me ¼
� � ��

�� � �

� �� �

0
BB@

1
CCA; �M� ¼

a b c

b a� c�3

c c�3 f

0
BB@

1
CCA:
(26)

These matrices are taken from IR5, with F coming from
class C3 and G from C2. More specifically, in terms of the
generators fi discussed in Sec. II,

F ¼ f2; G ¼ f1f
2
3f

4
4: (27)

In order for the left-handed matrices �Me ¼ My
eMe and

�M� ¼ MT
�M

�1
N M� to be given by (26), GC must be real as

well as unitary, a requirement which can also be seen from

the Majorana nature of N. If N is described by a Majorana
field c , then c c ¼ C �c ¼ c , where C is the charge con-
jugation operator. To preserve the Majorana nature under
an internal symmetry transformation c ! Rc , it is neces-
sary to have R ¼ R� because c c ! R�c c. As a result,
G ¼ GT because G is unitary and of order 2, and M�1

N

transforms like MN:

M�1
N ¼ GTM�1

N G: (28)

With the introduction of right-handed symmetry, we
expected more parameters to appear in Me, M�, and MN

than in �Me and �M�. Nevertheless, when we use the former
three to calculate the latter two, we must still get back to
(26) and the parametrizations there. On the one hand, since
there are more parameters in the former than in the latter,
we expect the resulting parameters in the latter to remain
independent. On the other hand, the composite nature of
the latter may produce occasional surprises arising from
special composite features. A case in point which we will
discuss later occurs in the model in Sec. III A, where
c ¼ 0. There are four different right-handed assignments
giving the same �M�, and in three of the four cases, m3 is
forced to be zero as well.
If future experiment should reveal thatm3 � 0, then this

is a strong support for the symmetry assignment of N to be
the fourth. This conclusion is what we gain by imposing
the right-handed symmetry.
We will assume fermions of different generations to be

distinguished by different family quantum numbers; hence,
if C0 and C are reducible, the irreducible representations
they contain must not repeat themselves. Also, included in
the latitude of the choice of C is the number � of N’s,
which is unknown.We reject � ¼ 1 to retain the possibility
of leptogenesis, and we will confine ourselves here to
� ¼ 2 and 3.

A. Charged-lepton sector

There are three right-handed charged leptons, so the
dimension of C0 must be 3. If it is irreducible, from
Table I we see that it must belong to one of IR4 to IR11.
If it is reducible, it could either be IR3þ IR1 or IR3þ IR2.
It turns out that FC0 ¼ F if C0 is one of IR4 to IR11.

Even so, the solution of (24) for Me is not the same as
solution �Me in (26) because �Me has to be Hermitian, but
Me may not be. The general solution of (24) for Me turns
out to be

Me ¼
�  



 � 

 
 �

0
BB@

1
CCA: (29)

If it is Hermitian, then 
 ¼ � and we get back to the form
of �Me in (26). In any case, we can compute �Me ¼ My

eMe

from (29) and obtain (26) with � ¼ j�j2 þ jj2 þ j
j2 and
� ¼ ��þ �
þ 
�� .
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Both �Me and Me give the same physics, so why then is
the former described by three real parameters, �, �R, �I,
but the latter is expressed in terms of three complex pa-
rameters � , , 
? This puzzle can be solved by computing
VyMeV to diagonalize Me. One finds its three eigenvalues
to be complex. Their magnitudes are the masses and their
phases are unphysical and can be absorbed into the right-
handed charged-lepton fields.

Next, supposeC0 is IR3þ IR1 or IR3þ IR2. Then using
the real representations given in (A8), we obtain

FC0 ¼ 1

2

�1 � ffiffiffi
3

p
0ffiffiffi

3
p �1 0

0 0 2

0
BB@

1
CCA (30)

for both cases. The symmetry constraint (24) then yields

Me ¼
�  �� � 

�ð2þ �Þ= ffiffiffi
3

p ðþ 2�Þ= ffiffiffi
3

p ð� �Þ ffiffiffi
3

p


 
 


0
BB@

1
CCA:
(31)

If we compute �Me ¼ My
eMe from (31), we get back to (26)

with � ¼ 2ðj�j2 þ jj2 þ j� þ jÞ2=3þ j
j2 and � ¼
2ð�j� þ j2 � ��Þ=3þ j
j2.

B. Neutrino sector

As mentioned before, the representation of a Majorana
neutrino must be real. Since IR5 is complex, it is not

possible to realize �M� in a type-II seesaw mechanism.
There is no problem to realize it with a type-I seesaw, as
implicitly assumed before, as long as the representation C
of N is real. The only real representations of �ð150Þ (see
Table I and the Appendix) are IR1, IR2, IR3, IR12, and
IR13. The dimensions of IR12 and IR13 are six, so we can
ignore them if� < 6. This leaves only two possibilities each
for � ¼ 2 and 3. For � ¼ 2, C ¼ IR3 or IR1þ IR2.
For � ¼ 3, C is either IR3þ IR1 or IR3þ IR2. In fact, if
� < 6, the only other possibility is � ¼ 4 with C ¼ IR3þ
IR2þ IR1, but that contains many parameters and sheds no
light on the existing physics so we will consider it further.
We consider these four cases separately below.

1. � ¼ 2, C ¼ IR3

From (27), Table I and (A8), we get

GC ¼ �f1ð3Þ �f3ð3Þ2 �f4ð3Þ4 ¼
0 1

1 0

 !
: (32)

The solution of (24) is

M�1
N ¼ P Q

Q P

 !
; M� :¼ x y z

�y�2 �x�3 �z

 !
:

(33)

Computing from these �M� ¼ MT
�M

�1
N M�, we obtain (26)

with

a ¼ ðx2 þ y2�4ÞP� 2xy�2Q; b ¼ 2xyP� ðx2 þ y2�Þ�2Q;

c ¼ zðxþ y�2ÞðP�QÞ; f ¼ 2z2ðP�QÞ; )
aþ b�2 ¼ ðxþ y�2Þ2ðP�QÞ:

(34)

2. � ¼ 2, C ¼ IR1þ IR2

From Table I, we get

GC ¼ 1 0

0 �1

 !
: (35)

The solution of (24) is

M�1
N ¼ P 0

0 Q

 !
; M� :¼ x �x�3 0

y y�3 z

 !
: (36)

Computing from these �M� ¼ MT
�M

�1
N M�, we obtain

(26) with

a ¼ x2Pþ y2Q; b ¼ �3ð�x2Pþ y2QÞ;
c ¼ yzQ; f ¼ z2Q; )

aþ b�2 ¼ 2y2Q:

(37)

3. � ¼ 3, C ¼ IR3þ IR1

In this case,

GC ¼
0 1 0

1 0 0

0 0 1

0
BB@

1
CCA; M�1

N ¼
P Q R

Q P R

R R S

0
BB@

1
CCA;

M� :¼
x y z

�y�2 �x�3 �z

w �w�3 0

0
BB@

1
CCA:

(38)

Note that the 3� 3 Dirac mass matrix M� here is a
composite, with its first two rows taken from the M� in
(33), and the last row taken from the first row (with a
change of symbol) of the M� in (36).
Computing from these �M� ¼ MT

�M
�1
N M�, we obtain

(26) with
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a¼ðx2þy2�4ÞP�2xy�2Qþ2ðx�y�2ÞwRþw2S;

b¼2xyP�ðx2�þy2Þ�2Qþ2ð�x�3þyÞwR�w2�3S;

c¼ zðxþy�2ÞðP�QÞ; f¼2z2ðP�QÞ; )
aþb�2¼ðxþy�2Þ2ðP�QÞ:

(39)

If we set w ¼ R ¼ S ¼ 0, we return to (34) as it should.

4. � ¼ 2, C ¼ IR3þ IR2

In this case,

GC ¼
0 1 0

1 0 0

0 0 �1

0
BB@

1
CCA; M�1

N ¼
P Q R

Q P �R

R �R S

0
BB@

1
CCA;

M� :¼
x y z

�y�2 �x�3 �z

w w�3 u

0
BB@

1
CCA: (40)

The 3� 3 Dirac mass matrix M� here is also a composite,
with its first two rows taken from the M� in (33), and the
last row taken from the second row (with a change of
symbol) of the M� in (36).

Computing from these �M� ¼ MT
�M

�1
N M�, we obtain

(26) with

a¼ ðx2 þ y2�4ÞP� 2xy�2Qþ 2ðxþ y�2ÞwR
þw2S;

b¼ 2xyP� ðx2�þ y2Þ�2Qþ 2ðx�3 þ yÞwR
þw2�3S;

c¼ zðxþ y�2ÞðP�QÞ þ ð2zwþ uðxþ y�2ÞÞR
þ uwS;

f¼ 2z2ðP�QÞ þ 4zuRþ u2S;

aþ b�2 ¼ ðxþ y�2Þ½ðxþ y�2ÞðP�QÞ� þ 4wRþ 2w2S:

(41)

If we set u ¼ w ¼ R ¼ S ¼ 0, we return to (34) as we
should.

C. General remarks

In all the cases considered above, both in the charged-
lepton and in the neutrino sectors, there are more parame-
ters than necessary to fix �Me and �M� in (26), from which
all the low-energy leptonic physical quantities can be
determined. This is especially so in case 4 above. As a
result, the situation is very complicated and there are many
degenerate parameters that cannot be resolved by the mea-
sured quantities. In the rest of this section, we will con-
centrate on studying the model c ¼ 0 in more detail, where
things become a bit simpler and more transparent.

D. The model c ¼ 0

Consider �MN in (26) with c ¼ 0, a case already consid-
ered in Sec. III A. Recall that all the experimental mixing
angles can be obtained with this choice, together with
�CP ¼ 0. We would like to know what happens if we
also impose a right-handed symmetry in the model. For
that purpose, let us concentrate on Eqs. (34), (37), (39),
(41), and (20).
It can be seen from these equations that f ¼ 0 often

follows from c ¼ 0. This is undesirable because phenom-
enologically m2 ¼ jfj can never be zero, although either
m1 or m3 may be. In the first three cases, the only way to
render c ¼ 0 and f � 0 is to set

xþ y�2 ¼ 0 in ð35Þ; y ¼ 0 in ð39Þ;
xþ y�2 ¼ 0 in ð42Þ:

(42)

In all three cases, this automatically implies m3 ¼
jaþ b�2j ¼ 0. This unexpected prediction of m3 ¼ 0,
and hence an inverted hierarchy, stems from the right-
handed symmetries imposed on these three cases; so at
least in these cases, the imposition of right-handed sym-
metry does produce additional predictions.
Beyond that, there are enough free parameters left in each

case to fit any m1 and m2. Specifically, for case 1 in (34),

m1 ¼ ja� b�2j ¼ j4x2ðPþQÞj;
m2 ¼ jfj ¼ j2z2ðP�QÞj:

(43)

For case 2 in (37),

m1 ¼ ja� b�2j ¼ jx2Pj; m2 ¼ jfj ¼ jz2Qj: (44)

For case 3 in (39),

m1 ¼ ja� b�2j ¼ j4x2ðPþQÞ þ 8xwRþ 2w2Sj;
m2 ¼ jfj ¼ j2z2ðP�QÞj:

(45)

The last case is more complicated because it involves by
far the most numbers of parameters. There seem to be
many ways to impose c ¼ 0 and f � 0, and it seems quite
possible to have m3 � 0 with c ¼ 0. For now let us just
concentrate on a simple choice of parameters to render
c ¼ 0, by letting xþ y�2 ¼ 0 and w ¼ 0. With this
choice, m3 ¼ 0 as well, and as before there are enough
parameters left to fix
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m1 ¼ ja� b�2j ¼ 2jaj ¼ 4jx2ðPþQÞj;
m2 ¼ jfj ¼ j2z2ðP�QÞ þ 4zuRþ u2Sj

(46)

in many ways.

V. DYNAMICAL MODELS FOR �ð150Þ
It was assumed in the last two sections that the family

symmetry G ¼ �ð150Þ broke down to the residual sym-
metries generated by F and G, leaving unspecified how to
achieve that dynamically. In this section we make a further
assumption that this is caused by the vacuum expectation
values of scalar fields coupled to fermions in G-invariant
Yukawa interactions. We will assume these scalar fields �,
called valons, to carry only G-quantum numbers but no
Standard Model quantum numbers. The Standard Model
quantum numbers are carried by the usual Higgs fieldH, so
the compound field H� appearing together in the Yukawa
terms carries both Standard Model and family quantum
numbers. Since we are only interested in the family struc-
ture here, we will omit all spacetime and Standard Model
details, and replace the Higgs field by its expectation value
hvi. In the presence of the compound scalar field, the
Yukawa terms have dimension 5, so the coupling constant
is inversely proportional to some heavy scale �. The
Yukawa terms can then be written in the formX

B;a;b;c

hB �c C
c �

A
a�

B
b hCcjBb; Aai þ H:c:; (47)

in which the factor hvi=� has been absorbed into the
Yukawa coupling constant hB. The fermion fields c and
� are assumed to transform according to representations C
and A, and the valon field � according to representation B.
The indices a, b, c are the components of A, B, C, and
hCcjBb; Aai are the Clebsch-Gordan coefficients needed to
render (47) G invariant.

Let gA, gB, gC be elements of G in representations A, B,
C, respectively. A basis is chosen so that these matrices are
unitary, and real if the representation is real (see the
Appendix). That is also the basis in which the Clebsch-
Gordan coefficients hCcjBb; Aai are computed. From the
covariance relation of Clebsch-Gordan coefficients [12]X
a0;b0;c0

ðgyCÞcc0 ðgBÞb0bðgAÞa0ahCc0jBb0; Aa0i ¼ hCcjBb; Aai;

(48)

we see that the Yukawa term (47) is invariant under any G
transformation

c ! gCc ; � ! gA�; � ! gB�: (49)

To break the symmetry from G down to the residual
symmetry, we impose vacuum expectation values h�Bi,
determined by a G-invariant valon potential V ð�Þ via

the equation of motion @V =@�D� ¼ 0, where D� is
the complex conjugated representation of D. In order to

preserve the residual symmetry, the invariance (49) must
remain true for g ¼ F in the charged-lepton sector, and
g ¼ G in the neutrino sector. This requires

FBh�Bie ¼ h�Bie; GBh�Bi� ¼ h�Bi� (50)

for every B, where the subscripts e and � indicate in which
sector the vacuum expectation values apply. Incidentally,
since the normalization of h�Bi cannot be determined from
(50), it is conventional to take out the energy unit with an
arbitrary numerical constant and absorb it into the Yukawa
constant hB. What remains is usually called the vacuum
alignment.
In other words, the alignment in the charged-lepton

sector must be an invariant eigenvector of F, and the
alignment in the neutrino sector must be an invariant
eigenvector of G. By invariant eigenvector, we mean an
eigenvector with eigenvalue þ1.
The mass matrix after symmetry breaking can be read

off from (47) to be

ðMeÞca ¼
X
B;b

hBh�B
b iehC0cjBb; Aai;

ðM�Þca ¼
X
B;b

hBh�B
b i�hCcjBb; Aai;

ðMNÞca ¼
X
B;b

hBh�B
b i�hCcjBb;Cai;

(51)

where the range of B, b and the value of hB may be
different for the three cases. The G representation of the
left-handed isodoublets is A, that of the right-handed
charged leptons is C0, and that of the right-handed neutri-
nos N is C, with C being a real representation. It follows
from (48) and (50) that the constraint on the mass matrices
so obtained,

Me ¼Fy
C0MeFA; M� ¼GT

CM�GA; MN ¼GT
CMNGC;

(52)

is the same as (24), except that in (24) FA was abbreviated
as F and GA was abbreviated as G. In other words, dy-
namical models are consistent with both-handed symme-
tries and may be considered as a refinement of the latter.
Now that we have decided on the desired alignment to

preserve residual symmetries, the question is whether a
potential V , invariant under G, can be devised to provide
such alignments. It turns out that every invariant potential
does provide alignment solutions which are invariant
eigenvectors of F, G, or any other element g of G. The
reason for this will be explained below.

Let us assume V ¼ V ð34Þ þV ð2Þ to be a polynomial

consisting of two parts:V ð34Þ of degrees 3 and 4, andV ð2Þ
of degree 2. The quadratic part can be written as

V ð2Þ ¼ �X
B

	2
B�

B�
�B; (53)

where �B� ¼ ð�BÞ� is � in the representation B�.
Accordingly, the equation of motion can be written as
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	2
D�

D ¼ @V ð34Þ=@�D�
:¼ QDð�BÞ: (54)

The unspecified index B in the argument of QD simply
means that this may be a function of �B for several B’s. To
obtain h�Di in the lowest order, wemay simply consider the
fields�D in (54) to be classical and identify themwith h�Di.

Let gB be an element of G in representation B. We will

now show that if �̂B is a normalized invariant eigenvector

of gB, with gBh�̂Bi ¼ h�̂Bi, then �D ¼ ��̂D is a solution

of (54) for every D, provided �̂D is the unique invariant
eigenvector of gD. The normalization factor � is a constant
to be determined from (54) in a way to be explained.

To show this assertion, first note that

gDQDð�BÞ ¼ QDðgB�BÞ ¼ QDð�BÞ; (55)

so QD is an invariant eigenvector of gD, whatever QD and
the normalization of �B are. Suppose QD consists of a
number of monomials qiD of degree 2 and a number of

monomials cjD of degree 3, so that QD ¼ P
iq

i
D þP

jc
j
D.

Since every qiDð�̂BÞ and every cjDð�̂BÞ is an invariant eigen-
vector of gB, and since this eigenvector is unique, we must

have qiDð�̂BÞ ¼ �i�̂
D and cjð�̂BÞ ¼ �j�̂

D for some con-

stants �i and �j that are determined by the structure of qi

and cj. Since qi is quadratic and cj cubic, it follows that

qiDð��̂BÞ ¼ �i�
2�̂D and cjð�̂BÞ ¼ �j�

3�̂D; hence,

QDð��̂BÞ ¼ ðPi�i�
2 þP

j�i�
3Þ�̂D. Consequently, if

� � 0 is chosen to be the solution of the quadratic equation

	2
D ¼ X

i

�i�þX
j

�i�
2; (56)

then �D ¼ ��̂D is a solution of (54).
Let us now denote the � that couples to fermions in the

charged-lepton sector of (47) by �e, and the one that
couples in the neutrino sector by ��. What we want then
is a solution with h�B

e i ¼ h�Bie and h�B
� i ¼ h�Bi�. This

can be accomplished if we choose the valon potential to be
V ¼ V eð�eÞ þV �ð��Þ, with V e and V � being any
two G-invariant potentials. However, if V includes an
interacting potential V e�ð�e;��Þ, then like spin-spin in-
teraction, the resulting alignments of h�B

e i and h�B
� i would

be shifted. To be consistent with everything up to now, we
must assume either additional ‘‘shaping symmetry’’ can be
found [13] to effectively forbid V e�, or that nature pro-
vides us with a smallV e� so that everything said up to now
would be approximately true.

The dynamical model reviewed above is the most popu-
lar method to implement family symmetry, but it requires
the presence of valon fields which may or may not exist in
nature. Since the Yukawa terms are of dimension 5, the
theory is at best a lower-energy effective theory used to
explain leptonic masses and mixing. The heaviest leptonic
mass is m
 < 2 GeV, so one might expect the valon

degrees of freedom to show up around there, but certainly
there is no sign of any of them up to the present. Moreover,
if there are really new degrees of freedom present, one
might expect the Higgs coupling to fermion pairs to deviate
from the Standard Model [14], but hitherto there is no sign
of that either in the 125-GeV Higgs candidate.
In contrast, either the left-handed or both-handed sym-

metry approach to the mass matrix does not require the
presence of valons, though they do leave open the question
of how the family symmetry is broken to the desired
residual symmetry. In this sense they are similar to the
texture-zero approach to mass matrices, which, for ex-
ample, yields the celebrated relation of the Cabibbo angle
in terms of a ratio of quark masses [15], but the origin
and the location of the zeros generally remain somewhat
obscured.
With the assumption of the existence of valons, the

dynamical model does allow a better control of symmetry,
because it provides a physical explanation for the parame-
ters appearing in Me, M�, and MN as Yukawa couplings,
which in principle can be directly measured if valons do
exist. Moreover, one might imagine the possibility of turn-
ing off certain Yukawa couplings on the grounds that the
corresponding valons do not exist, thereby obtaining rela-
tions between the parameters of mass matrices, which may
provide relations between physical quantities.
We do not expect this last possibility to materialize in

the charged-lepton sector. As discussed in the last two
sections, there are three positive parameters present to
determine the three charged-lepton masses. If a relation
among these three parameters exists, it would imply a
relation among the charged-lepton masses. The only
known relation among these masses is the Koide relation
[16], but that involves the square root of masses that cannot
be obtained by these kinds of Yukawa terms. For that
reason we will concentrate on the neutrino sector in what
follows. The four cases considered below correspond to the
four cases studied in the last section. In these cases, the
left-handed neutrinos � always transform in representation
A ¼ IR5, but the right-handed neutrinos N transform ac-
cording to a different representation C in different cases.
With � being the number of N’s, the first two cases have
� ¼ 2 and the last two have � ¼ 3.
Before going into the details of these four cases, it might

be useful to provide a brief summary. First of all, there are
always enough Yukawa coupling constants hB in every case
to provide the necessary parameters x, y, z, u, w, P,Q, R, S
in the last section. Since some of these parameters are
redundant in determining the parameters a, b, c, f of �M�

needed to fix the measured quantities, some of the Yukawa
coupling constants can indeed be set to zero without giving
rise to any new physical predictions. Next, one might ask
whether the model studied in the last two sections with
c ¼ 0 can be obtained by the absence of some valons, or
equivalently, by setting some Yukawa couplings to zero.
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The answer is no, though c ¼ 0 can be obtained by specific
relations between two nonzero Yukawa parameters.

The Clebsch-Gordan coefficients needed to calculate the
mass matrix in (51) can be obtained with the help of GAP
using (48), which states that hCcjBc; Aai is the invariant

eigenvector of gyC � gTB � gTA. With that the computation of

the Clebsch-Gordan coefficients is reduced to an algebraic
problem of finding the invariant eigenvectors from the
representations of group elements given by GAP.

If hAaj, hBbj are the a, b components of two vectors in
the representation spaces A and B, respectively, then

hCcj ¼X
a;b

hCcjBb; AaihBbjhAaj (57)

is the c component of a vector in the representation space
C. In what follows we will list a few Clebsch-Gordan
coefficients using (57) and the following notation. a is a
singlet in IR1, b is a singlet in IR2, ðc; dÞ is a doublet in
IR3, and ðe; f; gÞ, ðe0; f0; g0Þ, ðe00; f00; g00Þ are triplets in IR5,
IR10, IR11, respectively. Subscripts may be used to dis-
tinguish two multiplets transforming the same way. The
product of a multiplet with a always reproduces the mul-
tiplet, so we will skip those relations. Some other useful
ones are

c

d

 !
¼ 1

2
ffiffiffi
3

p ð1� ffiffiffi
3

p Þee0 þ ð1þ ffiffiffi
3

p Þff0 �2gg0

�ð1þ ffiffiffi
3

p Þee0 þ ð�1þ ffiffiffi
3

p Þff0 þ2gg0

 !
;

c

d

 !
¼ 1

2
ffiffiffi
3

p ð�1� ffiffiffi
3

p Þee00 þ ð�1þ ffiffiffi
3

p Þff00 þ2gg00

ð�1þ ffiffiffi
3

p Þee00 þ ð�1� ffiffiffi
3

p Þff00 þ2gg00

 !
;

c

d

 !
¼ 1

2

c1c2�c1d2�d1c2�d1d2

�c1c2�c1d2�d1c2þd1d2

 !
;

a¼ 1ffiffiffi
3

p ðee00 þff00 þgg00Þ; b¼ 1ffiffiffi
3

p ðee0 þff0 þgg0Þ;

a¼ 1ffiffiffi
2

p ðc1c2þd1d2Þ; b¼ 1ffiffiffi
2

p ðc1d2�c2d1Þ: (58)

We will now proceed to study the four cases separately.
Since there is really nothing new we can get that way, all
that we can do is to relate the parameters x, y, z, u,w, P,Q,
R, S of the last section to the Yukawa coupling constants
hB, and to determine the relations between the hB’s that can
render c ¼ 0.

A. � ¼ 2, C ¼ IR3

1. Dirac mass matrix M�

From Table I, we know that IR5� IR10 and IR5� IR11
both contain IR3, so B in (51) consists of IR10 and IR11.
The corresponding representation GB for the residual sym-
metry is

G10 ¼ �G11 ¼
0 �2 0

�3 0 0

0 0 1

0
BB@

1
CCA: (59)

The alignments obtained from (50) are h�11i ¼
ð��2; 1; 0ÞT in one case, and an arbitrary linear combina-
tion of h�10ai ¼ ð�2; 1; 0ÞT and h�10bi ¼ ð0; 0; 1ÞT in the
other case. The reason why IR11 has one invariant eigen-
vector and IR10 has 2 is because det ðG11Þ ¼ þ1 but
det ðG10Þ ¼ �1. There are two Yukawa coupling constants
h10 and h11, but since the combination of the two invariant
eigenvectors of IR10 is arbitrary, there are effectively three
unknown coefficients, which we will refer to as h10a, h10b,
and h11. Using (51) and (58), we find thatM� is of the form
given in (33), with

x¼ 1

2
ffiffiffi
3

p ðh10ax10aþh11x
11Þ; y¼ 1

2
ffiffiffi
3

p ðh10ay10aþh11y
11Þ;

z¼� 1ffiffiffi
3

p h10b; (60)

where

x10a ¼ �2ð1� ffiffiffi
3

p Þ; y10a ¼ 1þ ffiffiffi
3

p
;

x11 ¼ �2ð1þ ffiffiffi
3

p Þ; y11 ¼ �1þ ffiffiffi
3

p
:

(61)

Using them to compute (xþ y�2), which is proportional to
c, we get

ðxþ y�2Þ10a ¼ 2�2; ðxþ y�2Þ10b ¼ 0;

ðxþ y�2Þ11 ¼ 2�2
ffiffiffi
3

p
; (62)

hence, ffiffiffi
3

p ðxþ y�2Þ10a � ðxþ y�2Þ11 ¼ 0: (63)

Thus, if h11 ¼ � ffiffiffi
3

p
h10a, then xþ y� is zero, giving c ¼ 0

and the model considered in the last two sections. As
discussed in the last section,m3 ¼ 0 follows automatically
in this case.

2. Majorana mass matrix MN

There is no difficulty in computing the Majorana mass
matrixMN , as we shall see, butM

�1
N is needed for �M�, so a

matrix inversion has to be performed. Since MN and M�1
N

satisfy the same symmetry constraints, (24) and (28), their
solutions must have the same form. Henceforth we will use
the form of M�1

N and the same letters with a prime to
parametrize MN . In the case of (33), the relations between
these two sets of parameters are

P¼P0=D1; Q¼�Q0=D1; D1 :¼P02�Q02: (64)

From Table I, we see that IR3� IRB ¼ IR3 if B ¼ 1, 2,
or 3. The residual symmetry GB for B ¼ 3 is given in (32),
and the other two, G1 ¼ �G2 ¼ þ1, are given in
Table I. The alignments are h�3i ¼ ð1; 1ÞT , h�1i ¼ 1,
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and h�2i ¼ 0, so only B ¼ IR1 and IR3 contribute. The
Majorana mass matrixM�1

N of the form given in (33), with
P0 ¼ h1 and Q

0 ¼ �h3. The parameters P, Q forM�1
N can

be obtained from (64).

B. � ¼ 2, C ¼ IR1þ IR2

1. Dirac mass matrix M�

From Table I, we know that IR5� IR11 contains IR1,
and IR5� IR10 contains IR2, so once again B in (51)
consists of IR10 and IR11. The corresponding representa-
tion GB and the alignments are the same as those given in
Sec. VA. The Dirac mass matrix M� is the sum of Ma

� and
Mb

�, obtained using, respectively, alignments h�10ai and
h�10bi for IR2, and alignment h�11i for IR1. M� can be
calculated from (51) and (58). It is of the form in (36), with

x¼�h11�
2=

ffiffiffi
3

p
; y¼h10a�

2=
ffiffiffi
3

p
; z¼h10b=

ffiffiffi
3

p
: (65)

From (37), we see that in order to reproduce the model with
c ¼ 0 andf � 0, weneed to havey ¼ 0 andhenceh10a ¼ 0.

2. Majorana mass matrix MN

Since IR1� IR1 ¼ IR1 and IR2� IR1 ¼ IR2, if we let
the two Yukawa coupling constants be h1 and h01, respec-
tively, then the Majorana matrixM�1

N is given by (36), with
P ¼ h�1

1 and Q ¼ h0�1
1 .

C. � ¼ 3, C ¼ IR3þ IR1

1. Dirac mass matrix M�

As remarked in Sec. IVB3, theM� here is a composite,
with the first two rows given by theM� in VA, and the last
row given by the first row of the M� in Sec. VB. The
parameters x, y, z, w in (38) can now be copied from (60)
and (65) to be

x¼ 1

2
ffiffiffi
3

p ðh10ax10aþh11x
11Þ; y¼ 1

2
ffiffiffi
3

p ðh10ay10aþh11y
11Þ;

z¼� 1ffiffiffi
3

p h10b; w¼� 1ffiffiffi
3

p h011�2; (66)

where x10a, y10a, x11, y11 are given in (61), hB is the
Yukawa coupling to IR3, and h0B is the Yukawa coupling
to IR1.

Again, as in Sec. VA, because of (63), to render c ¼ 0

we need to have h11 ¼ � ffiffiffi
3

p
h10a.

2. Majorana mass matrix MN

Both MN and M�1
N are of the form (38), with their

parameters related by

P ¼ ðP0S0 � R02Þ=D3a; Q ¼ �ðQ0S0 � R02Þ=D3a;

D3a :¼ ðP0 �Q0ÞD3b; R ¼ �R0=D3b;

S ¼ ðP0 þQ0Þ=D3b; D3b :¼ ðP0 þQ0ÞS0 � 2R02:

(67)

The parameters for MN can be partially copied from
Secs. VA and VB:

P0 ¼h1; Q0 ¼�h3; R0 ¼h03=
ffiffiffi
2

p
; S0 ¼h01; (68)

where the couplings are, respectively, for IR3� IR1 !
IR3, IR3� IR3 ! IR3, IR3� IR3 ! IR1, and IR1�
IR1 ! IR1.

D. � ¼ 3, C ¼ IR3þ IR2

1. Dirac mass matrix M�

As remarked in Sec. IVB 4, theM� here is a composite,
with the first two rows given by theM� in Sec. VA, and the
last row given by the second row of theM� in Sec. VB. The
parameters x, y, z, w in (38) can now be copied from (60)
and (65) to be

x¼ 1

2
ffiffiffi
3

p ðh10ax10aþh11x
11Þ; y¼ 1

2
ffiffiffi
3

p ðh10ay10aþh11y
11Þ;

z¼� 1ffiffiffi
3

p h10b; w¼� 1ffiffiffi
3

p h011�2; (69)

where x10a, y10a, x11, y11 are given in (61), hB is the
Yukawa coupling to IR3, and h0B is the Yukawa coupling
to IR1.
Again, as in Sec. VA, because of (63), to render c ¼ 0

we need to have h11 ¼ � ffiffiffi
3

p
h10a.

2. Majorana mass matrix MN

Both MN and M�1
N are of the form (40), with their

parameters related by

P ¼ ðP0S0 � R02Þ=D4a; Q ¼ �ðQ0S0 þ R02Þ=D4a;

D4a :¼ ðP0 þQ0ÞD4b; R ¼ �R0=D4b;

S ¼ ðP0 �Q0Þ=D4b; D4b :¼ ðP0 �Q0ÞS0 � 2R02:

(70)

The parameters for MN can be partially copied from
Secs. VA and VB:

P0 ¼h1; Q0 ¼�h3; R0 ¼h03=
ffiffiffi
2

p
; S0 ¼h01; (71)

where the couplings are, respectively, for IR3� IR1 !
IR3, IR3� IR3 ! IR3, IR3� IR3 ! IR2, and IR2�
IR1 ! IR2.
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VI. NEUTRINO MIXING OF �ð600Þ
A parallel was mentioned in the Introduction between

symmetry considerations of the old and the new mixing
data. The zero reactor angle and the maximal atmospheric
angle of the old data can be explained by a S3 symmetry,
a group generated by the matrices ~F ¼ diagð1; !;!2Þ,
and an order-2 unitary matrix ~G with an invariant eigen-
vector ð0; 1;�1ÞT . To explain the solar angle by symmetry

as well, we need another order-2 unitary matrix ~G0

which commutes with ~G. Such a matrix with an invariant
eigenvector ð1; 1; 1ÞT does exist and is contained in the
group S4 	 S3. These two invariant eigenvectors together
give rise to tribimaximal mixing and the correct solar
angle.

With the new data of a nonzero reactor angle and pos-
sibly nonmaximal atmospheric mixing, we saw in the last
three sections that they can now be explained by the
symmetry group �ð150Þ, a group generated by F and G
of (25) and (27). Again, to explain the solar angle by
symmetry, we need to find another order-2 unitary operator
G0 which commutes withG. The smallest group containing
such an operator, as well as the subgroup �ð150Þ, is
�ð600Þ.

This motivation for the full-symmetry group �ð600Þ
is based completely on symmetry considerations. There
is another motivation based on dynamics which also has
a parallel with the old data. The most popular dynamical
model for the old data is based on the symmetry group

A4 [17], generated by ~F and ~G0 above. If its neutrino
coupling to the 10 and 100 valons are dynamically sup-
pressed, then the solar angle comes out correct, the matrix
~G also becomes a symmetry, and the group A4 is promoted
to S4.

The analogy of A4 with the new data is �ð150Þ. By
setting the parameter c dynamically to zero, we saw in
the last three sections that the solar angle can also be
explained. In the GAP basis where the generators of
�ð150Þ are the F, G of (25) and (27), the mixing vector
for the model with c ¼ 0 is ð0; 0; 1ÞT . It turns out this is just
the invariant eigenvector of the operator G0 in the group
�ð600Þ.

To see that, let us first find out what G0 is. It must be an
order-2 element of �ð600Þ that commutes with G of (27).
In terms of the generators of �ð600Þ given in Sec. II B,
G ¼ f1c

2
3c

4
4. According to (7), f1, c3, c4 all commute with

the order-2 element d3, so a natural candidate for G0 is a
three-dimensional representation of d3. From Table V,
there are 18 three-dimensional representations. We must
choose one for f and g which reproduces F and G in (25).
This turns out to be IR14. The representation of d3 in IR14
is G0 ¼ diagð�1;�1; 1Þ, which does possess the desired
invariant eigenvector ð0; 0; 1ÞT .

We know from Sec. II B that F and G0 generate an A4

subgroup of �ð600Þ, and we already know that F and G
generate the subgroup �ð150Þ. In this way, �ð600Þ for

the new data is like S4 for the old data, which contain

and are generated by the matrices ~F, ~G, and ~G0. In fact, if
we use V of (12) to convert the F diagonal to the GAP

representation, ~F is the same as F, and ~G0 is the same asG0,
though ~G and G are different. ~F, ~G generate an S3 sub-
group of S4, and F, G generate a �ð150Þ subgroup of
�ð600Þ.

A. Left-handed mass matrices for �ð600Þ
Applying the symmetry constraints

Fy �MeF¼ �Me; GT �M�G¼ �M�; G0T �M�G
0 ¼ �M� (72)

to the Hermitian �Me and the symmetric �M�, we get the
same solution �Me, as shown in (26). For �M�, the extra
symmetry constraint provided by G0 reduces the form in
(26) to the form in (18) for the special model. Hence, the
c ¼ 0 model of �ð150Þ can be realized by the increased
symmetry of �ð600Þ, just like the zero 10, 100 model of A4

can be realized by the increased symmetry of S4.

VII. SUMMARY

The symmetry group �ð150Þ is applied to neutrino
mixing to obtain the correct reactor and atmospheric an-
gles. Three methods are used to implement this symmetry:
by imposing it on the left-handed fermions alone, by
imposing it on both the left-handed and right-handed fer-
mions, and by constructing dynamical models based on the
symmetry. The relative merits of these three methods are
discussed. Generally speaking, as far as mixing parameters
are concerned, it is sufficient to use the left-handed sym-
metry. A simple model with the parameter c ¼ 0 has been
discussed in some detail. This model gives the correct solar
angle and can be reproduced from the enlarged group
�ð600Þ by symmetry alone.

APPENDIX: REAL REPRESENTATIONS
OF �ð150Þ

We see from Table I in Sec. II that the characters of IR1,
2, 3, 12, 13 are real. As noted in Sec. II A, these are actually
real rather than quaternionic representations because their
Frobenius-Schur indices are þ1. Let fiðnÞ denote the
representation of the generator fi in IRn. For IR1 and
IR2, the irreducible representation is the same as the
character, which is explicitly real. For IR3, the representa-
tion given in GAP

f1ð3Þ ¼ 0 1
1 0

� �
; f2ð3Þ ¼ ! 0

0 !2

� �
;

f3ð3Þ ¼ 1 0
0 1

� �
; f4ð3Þ ¼ 1 0

0 1

� �
;

(A1)
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is not all real, and neither is the case for IR12 and IR13:

f1ð12Þ ¼

0 0 0 0 0 1

0 0 0 0 1 0

0 0 0 1 0 0

0 0 1 0 0 0

0 1 0 0 0 0

1 0 0 0 0 0

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA
; f2ð12Þ ¼

0 0 1 0 0 0

1 0 0 0 0 0

0 1 0 0 0 0

0 0 0 0 0 1

0 0 0 1 0 0

0 0 0 0 1 0

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA
;

f3ð12Þ ¼

1 0 0 0 0 0

0 �3 0 0 0 0

0 0 �2 0 0 0

0 0 0 �2 0 0

0 0 0 0 �3 0

0 0 0 0 0 1

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA
; f4ð12Þ ¼

� 0 0 0 0 0

0 �3 0 0 0 0

0 0 � 0 0 0

0 0 0 �2 0 0

0 0 0 0 �4 0

0 0 0 0 0 �4

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA
;

(A2)

f1ð13Þ ¼

0 0 0 0 0 1

0 0 0 0 1 0

0 0 0 1 0 0

0 0 1 0 0 0

0 1 0 0 0 0

1 0 0 0 0 0

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA
; f2ð13Þ ¼

0 0 1 0 0 0

1 0 0 0 0 0

0 1 0 0 0 0

0 0 0 0 0 1

0 0 0 1 0 0

0 0 0 0 1 0

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA
;

f3ð13Þ ¼

� 0 0 0 0 0

0 �4 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 �4 0

0 0 0 0 0 �

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA
; f4ð13Þ ¼

� 0 0 0 0 0

0 �2 0 0 0 0

0 0 �2 0 0 0

0 0 0 �3 0 0

0 0 0 0 �4 0

0 0 0 0 0 �3

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA
:

(A3)

Although these matrices may not be real, they are all
unitary. In that case [12], there is a unitary and symmetric
matrixBðnÞwhich rendersBðnÞfiðnÞBðnÞ�1 ¼ �fiðnÞ explic-
itly real. Moreover, SðnÞfiðnÞSðnÞ�1 ¼ fiðnÞ� when SðnÞ ¼
BðnÞ2. Our task is to find SðnÞ and BðnÞ, and here is how.

To simplify the writing, let us drop the dependence on n
and i. If v is an eigenvector of �f with eigenvalue �, then v�
is an eigenvector of �f with eigenvalue ��. From BfB�1 ¼
�f ¼ �f�, we conclude that u :¼ B�1v is an eigenvector of f
with eigenvalue �, and w :¼ B�1v� is an eigenvector of f
with eigenvalue ��. If � is complex and nondegenerate,
then v ¼ Bu ¼ ðBwÞ�; hence,

Su ¼ w�; (A4)

because B is unitary and symmetric. Even if � is degener-
ate or real, ðSuÞ� is still an eigenvector of f with eigenvalue
�. Together with (A4), these relations can be used to obtain
SðnÞ from uiðnÞ and wiðnÞ.

Once S is known, B ¼ ffiffiffi
S

p
can be computed as follows.

Suppose ea is the normalized eigenvector of S with eigen-
value a; then

S ¼ X
a

aeae
y
a ; ) B ¼ X

a

ffiffiffiffiffiffi
a

p
eae

y
a : (A5)

Since each
ffiffiffiffiffiffi
a

p
has two values, there can be many B’s, but

any one of them would do.

1. n ¼ 3

Only f2ð3Þ in (A1) is complex. u ¼ ð1; 0ÞT is its eigen-
vector with eigenvalue � ¼ !, and w ¼ ð0; 1ÞT is its ei-
genvector with eigenvalue �� ¼ !2. Thus, Su ¼ w�
implies

Sð3Þ ¼ 0 1

1 0

 !
¼ e1e

y
1 � e2e

y
2 ; (A6)
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with e1 ¼ ð1; 1ÞT= ffiffiffi
2

p
and e2 ¼ ð1;�1ÞT= ffiffiffi

2
p

. Hence,

Bð3Þ ¼ e1e
y
1 þ ie2e

y
2 ¼ x x�

x� x

 !
; (A7)

where x ¼ ð1þ iÞ=2 ¼ exp ð�i=4Þ= ffiffiffi
2

p
. The real represen-

tations Bð3Þfið3ÞBð3Þ�1 ¼ �fið3Þ are given by

�f1ð3Þ ¼
0 1

1 0

 !
; �f2ð3Þ ¼ � 1

2

1 2c7=12

�2c7=12 1

 !
;

�f3ð3Þ ¼ �f4ð3Þ ¼
1 0

0 1

 !
; (A8)

where

cr :¼ cos ð2�irÞ; sr :¼ sin ð2�irÞ: (A9)

We computed Sð3Þ using (A4) to illustrate the general
technique. In the present case, it can be obtained without
this heavy machinery. Since f2ð3Þ� is obtained from f2ð3Þ
by interchanging the (11) and the (22) entries, it is obvious
that Sð3Þ must be given by (A6).

2. n ¼ 12

Since the complex matrices f3ð12Þ and f4ð12Þ are di-
agonal, it is again easy to obtain Sð12Þ directly as follows.
f3ð12Þ� is obtained from f3ð12Þ by interchanging the (11)
entry either with the (22) or the (51) entry, but comparing
f4ð12Þ� with f4ð12Þ tells us that it must be the (51) and not
the (22) entry. From f3 we then know that (22) must swap
with (62) to get f�3; then from f4 we know that (33) must

swap with, thereby obtaining

Sð12Þ ¼

0 0 0 0 0 1

0 0 0 1 0 0

0 0 0 0 1 0

0 1 0 0 0 0

0 0 1 0 0 0

1 0 0 0 0 0

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA
: (A10)

Taking the square root of Sð12Þ, we get

Bð12Þ ¼

x 0 0 0 0 x�

0 x 0 x� 0 0

0 0 x 0 x� 0

0 x� 0 x 0 0

0 0 x� 0 x 0

x� 0 0 0 0 x

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA
: (A11)

The real representations Bð12Þfið12ÞBð12Þ�1 ¼ �fið12Þ are then given by

�f1ð12Þ ¼

0 0 0 0 0 1

0 0 0 0 1 0

0 0 0 1 0 0

0 0 1 0 0 0

0 1 0 0 0 0

1 0 0 0 0 0

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA
; �f2ð12Þ ¼

0 0 1 0 0 0

1 0 0 0 0 0

0 1 0 0 0 0

0 0 0 0 0 1

0 0 0 1 0 0

0 0 0 0 1 0

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA
;

�f3ð12Þ ¼

1 0 0 0 0 0

0 c2=5 0 c3=20 0 0

0 0 c2=5 0 c7=20 0

0 c7=20 0 c2=5 0 0

0 0 c3=20 0 c2=5 0

0 0 0 0 0 1

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA
; �f4ð12Þ ¼

c1=5 0 0 0 0 c9=20

0 c2=5 0 c3=20 0 0

0 0 c1=5 0 c9=20 0

0 c7=20 0 c2=5 0 0

0 0 c1=20 0 c1=5 0

c1=20 0 0 0 0 c1=5

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA
:

(A12)
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a. n ¼ 13

The computation is similar to the n ¼ 12 case. The results are

Sð13Þ ¼

0 0 0 0 1 0

0 0 0 0 0 1

0 0 0 1 0 0

0 0 1 0 0 0

1 0 0 0 0 0

0 1 0 0 0 0

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA
; Bð13Þ ¼

x 0 0 0 x� 0

0 x 0 0 0 x�

0 0 x x� 0 0

0 0 x� x 0 0

x� 0 0 0 x 0

0 x� 0 0 0 x

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA
;

�f1ð13Þ ¼

0 0 0 0 0 1

0 0 0 0 1 0

0 0 0 1 0 0

0 0 1 0 0 0

0 1 0 0 0 0

1 0 0 0 0 0

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA
; �f2ð13Þ ¼

0 0 1 0 0 0

1 0 0 0 0 0

0 1 0 0 0 0

0 0 0 0 0 1

0 0 0 1 0 0

0 0 0 0 1 0

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA
;

�f3ð13Þ ¼

c1=5 0 0 0 c9=20 0

0 c1=5 0 0 0 �c9=20

0 0 1 0 0 0

0 0 0 1 0 0

�c9=20 0 0 0 c1=5 0

0 c9=20 0 0 0 c1=5

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA
;

�f4ð13Þ ¼

c1=5 0 0 0 c9=20 0

0 c2=5 0 0 0 c7=20

0 0 c2=5 c7=20 0 0

0 0 c3=20 c2=5 0 0

�c9=20 0 0 0 c1=5 0

0 c3=20 0 0 0 c2=5

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA
: (A13)
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