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We compute one- and two-loop quadratic divergent contributions to the bare Higgs mass in terms of the

bare couplings in the Standard Model. We approximate the bare couplings, defined at the ultraviolet cutoff

scale, by the MS ones at the same scale, which are evaluated by the two-loop renormalization group

equations for the Higgs mass around 126 GeV in the Standard Model. We obtain the cutoff scale

dependence of the bare Higgs mass, and examine where it becomes zero. We find that when we take the

current central value for the top quark pole mass, 173 GeV, the bare Higgs mass vanishes if the cutoff is

about 1023 GeV. With a 1:3 � smaller mass, 170 GeV, the scale can be of the order of the Planck scale.
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I. INTRODUCTION

The ATLAS [1] and CMS [2] experiments at the Large
Hadron Collider (LHC) observed a particle at the 5 �
confidence level (C.L.), which is consistent with the
Standard Model (SM) Higgs boson with mass

mH ¼
�
126:0� 0:4� 0:4 GeV; ATLAS ½1�
125:3� 0:4� 0:5 GeV; CMS ½2� (1)

Such a relatively light Higgs boson is compatible with the
electroweak precision data [3]. Furthermore, this value of
Higgs mass allows the SM to be valid up to the Planck
scale, within the unitarity, (meta)stability, and triviality
bounds [4–6]. Up to now, there are no symptoms of break-
down of the SM as an effective theory below the Planck
scale.

On the other hand, if one wants to solve the Higgs mass
fine-tuning problem within a framework of quantum field
theory, it would be natural to assume a new physics at
around the TeV scale. The supersymmetry is a possible
solution to cancel the quadratic divergences in the Higgs
mass; see, e.g., Ref. [7]. However, a Higgs mass around
126 GeV requires some amount of fine-tuning in the Higgs
sector in the minimal supersymmetric Standard Model;
see, e.g., Ref. [8]. Furthermore, no sign of supersymmetry
has been observed at LHC so far [9].

Given the current experimental situation, it is important
to examine a possibility in which the SM is valid towards a
very high ultraviolet (UV) cutoff scale �. In such a case, a
fine-tuning of the Higgs mass must be done, as is the case
for the cosmological constant. There are several ap-
proaches to the fine-tuning. One is simply not to regard it
as a problem but to accept the parameters which nature has
chosen. Instead, one may resort to the anthropic principle
in which one explains the parameters by the necessity of
the existence of ourselves; see, e.g., Refs. [10,11]. Or else,

the tuning may be accounted for by quantum gravitational
nonperturbative effects such as those from a multiverse or
baby universe; see, e.g., Ref. [12]. There are yet other
discussions that the tuning is achieved within the context
of field theory such as the classical conformal symmetry;
see, e.g., Ref. [13].
In this paper, we do not try to solve the naturalness

problem. Rather, we evaluate the value of the bare parame-
ters in order to investigate the Planck scale physics. They
must be useful to connect the low energy physics to the
underlying microscopic description, such as string theory.
In this paper, we compute the bare Higgs mass by taking

into account one- and two-loop corrections in the SM.
When we write in terms of the dimensionless bare cou-
plings, the bare Higgs mass turns out to be a sum of a
quadratically divergent part ( / �2), which is independent
of the physical Higgs mass, and a logarithmically divergent
one ( / log�). The importance of the coefficient of �2

was first pointed out by Veltman at the one-loop order [14].
Generalizations to higher loops within the renormalized
perturbation theory have been developed and applied in
Ref. [15] in which the authors have reported the behavior
��2ðlog�Þn; see also Ref. [16] for a review. In contrast,
we see that such behavior does not appear in the bare
perturbation theory. The reason why we employ the latter
framework is that we are interested in the scale near the
cutoff. These points will be discussed in detail with explicit
calculations in Sec. II.
We will see that the bare mass can be zero if� is around

the Planck scale, which gives some interesting suggestions
on the Planck scale physics. First, it may imply that the
supersymmetry of the underlying microscopic theory is
restored above the Planck scale. In fact, superstring theory
has many phenomenologically viable perturbative vacua in
which supersymmetry is broken at the Planck scale; see,
e.g., Ref. [17]. In the last section, we will discuss that
threshold corrections at the string scale may generate a
small nonvanishing bare mass. Second, the vanishing of the
bare Higgs mass together with that of the quartic Higgs
coupling indicates almost flat potential near the Planck
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scale, which opens a possibility that the slow-roll inflation
is achieved solely by the Higgs potential [18].

This paper is organized as follows. In the next section,
we explain our convention and calculate the quadratic
divergent contributions to the bare Higgs mass up to the
two-loop orders. In Sec. III, we present a renormalization
group equation (RGE) analysis in the SM and give our
results for the Higgs quartic coupling at high scales. In
Sec. IV, we examine how small the bare Higgs mass can be
at the Planck scale and show at what scale the bare Higgs

mass vanishes. We vary �s, mH, and m
pole
t to see how the

results are affected. The last section contains the summary
and discussions.

II. BARE HIGGS MASS

In this section, we compute the quadratic divergence in
the bare Higgs mass.

A. Bare mass in �4 theory

Let us explain our treatment of the bare mass by taking a
simple example of the�4 theory with the bare Lagrangian:

L ¼ 1

2
ð@��BÞ2 �m2

B

2
�2

B � �B

4!
�4

B: (2)

In the mass independent renormalization scheme,1 the bare
mass m2

B is separated into the quadratically divergent part
�sub and the remaining one m2

0:

m2
B ¼ �sub þm2

0: (3)

Here �sub is chosen in such a way that the physical mass
becomes zero when m2

0 ¼ 0. Then the mass parameter m2
0

is introduced to describe the deviation from it and is multi-
plicatively renormalized to absorb the logarithmic diver-
gence. We note that in the dimensional regularization, �sub

happens to be formally zero and only m2
0 remains.2 What

we discuss in this paper is not m2
0 but the whole m

2
B. Since

m2
0 is negligibly small compared to�sub, we concentrate on

the quadratically divergent part �sub in the following.
From the bare Lagrangian (2), we calculate the bare

mass m2
B order by order in the loop expansion so that the

physical mass is tuned to be zero3

m2
B ¼ m2

B;0�loop þm2
B;1�loop þm2

B;2�loop þ � � � : (4)

At each order, we fix the bare mass as

m2
B;0�loop ¼ 0; (5)

The one-loop integral in Eq. (6) is quadratically divergent
and is proportional to

I1 :¼
Z d4pE

ð2�Þ4
1

p2
E

; (8)

where pE is a Euclidean four momentum. In the two-loop
computation (7), the momentum integrals in the third and
fourth terms are, respectively,

J2 :¼
Z d4pE

ð2�Þ4
d4qE
ð2�Þ4

1

p4
Eq

2
E

; (9)

I2 :¼
Z d4pE

ð2�Þ4
d4qE
ð2�Þ4

1

p2
Eq

2
EðpE þ qEÞ2

: (10)

1See, e.g., the introduction and the subsequent section of
Ref. [19] for a recent review of the discussion explained in
this paragraph. In particular, our Eq. (2) corresponds to Eq. (2.6)
in Ref. [19]. Note that in Ref. [19] ‘‘bare mass’’ refers to m0
whereas our terminology is the same as ‘‘the common defini-
tion’’; that is, we call �sub þm2

0 the bare mass in general,
though we consider only the leading term �sub in actual
computation.

2If one insists on the dimensional regularization, one might
check the D ¼ 2 pole to see the quadratically divergent bare
mass, which is beyond the scope of this paper.

3Precisely speaking, m2
B;0�loop corresponds to the physical

mass times the wave function renormalization factor and is
negligibly small compared to the UV cutoff scale.
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The integral J2 is infrared (IR) divergent: J2 /
�2 ln ð�=�IRÞ but is canceled by the second term in
Eq. (7) due to the lower order condition (6). Therefore,
we are left with only I2, which does not suffer from the
infrared divergence. This situation does not change in
higher orders because a mass should not contain an IR
divergence.

B. Bare mass in SM

For the SM Higgs sector, we start from the bare
Lagrangian of the following form in a fixed cutoff scheme
with cutoff �:4

L ¼ ðD��BÞyðD��BÞ �m2
B�

y
B�B � �Bð�y

B�BÞ2;

�B ¼ �þ
B

�0
B

 !
: (11)

We set the physical mass to be zero: m2
B;0�loop ¼ 0, as

we are interested in physics at very high scales.5 The
Planck scale is

MPl ¼ 1ffiffiffiffiffiffiffi
GN

p ¼ 1:22� 1019 GeV: (12)

We take into account the SM couplings gY , g2, g3, �, yt and
neglect the others.

Now let us follow the prescription, shown in the pre-
vious subsection, in the SM. In the following, we work in
the symmetric phase h�i ¼ 0 as we are interested only in
the quadratic divergent terms. In the evaluation of the
Feynman diagrams, it is convenient to take the Landau
gauge for all the SUð3Þ � SUð2Þ �Uð1Þ gauge fields. In
this gauge, a diagram always vanishes if an external Higgs
line is attached with a gauge boson propagator by a three-
point vertex:

From the one-loop diagrams we get the quadratic divergent
integral I1 again [14]:

m2
B;1�loop ¼ �

�
6�B þ 3

4
g2YB þ 9

4
g22B � 6y2tB

�
I1: (14)

In Fig. 1, we present the two-loop Feynman diagrams
that do not vanish in the symmetric phase h�i ¼ 0 and in
the Landau gauge. In the second row of Fig. 1, the last
diagram cancels the divergences coming from the
one-loop self-energy of the internal Higgs propagators, as
in Eq. (7).6 All the momentum integrals can be recast into
either I2 or J2.

7 We have explicitly checked that the co-
efficients of the infrared divergent integral J2 cancel in
each gauge invariant set of diagrams.
The two-loop contribution to the bare Higgs mass at �

becomes8

m2
B;2�loop ¼ �

�
9y4tB þ y2tB

�
� 7

12
g2YB þ 9

4
g22B � 16g23B

�

þ 77

16
g4YB þ 243

16
g42B

þ �Bð�18y2tB þ 3g2YB þ 9g22BÞ � 10�2
B

�
I2:

(15)

This is one of our main results. Note that Eqs. (14) and (15)
are minus the radiative corrections to the physical Higgs
mass squared; see Eqs. (6) and (7).
In Sec. IV, we will examine whether the bare mass can

vanish at a particular UV cutoff scale. For that purpose, we
need to relate the integrals I1 and I2. This relation neces-
sarily depends on the cutoff scheme.9 In particular, if the
two-loop contribution to the bare mass m2

B;2�loop becomes

sizable compared to m2
B;1�loop, the result suffers from a

large theoretical uncertainty. We will verify that it is ac-
tually small. With this caution in mind, let us employ the
following regularization:Z

d4kE
1

k2E
¼
Z 1

"
d�

Z
d4kEe

��k2E ; (16)

which gives

4In general, the effective Lagrangian of an underlying micro-
scopic theory at the cutoff scale contains higher dimensional
operators. Their effects can be absorbed by the redefinition of the
renormalizable and super-renormalizable couplings in the low
energy region. Therefore it suffices to take the form of Eq. (11)
without higher dimensional operators in order to reproduce the
low energy physics. However, the differences among the bare
theories emerge when the energy scale gets close to the cutoff �.

5We are not intending to realize the Coleman-Weinberg
mechanism, but to neglect the physical mass that is unimportant
for our consideration.

6In practice, from each diagram containing a self-energy
correction, one subtracts a term that is obtained by setting the
external momentum of its self-energy to zero. We have also
applied this subtraction for diagrams containing a vacuum po-
larization. For the gauge boson, this subtraction introduces a bare
mass, which becomes zero in a gauge invariant regularization
scheme such as the Pauli-Villars or dimensional regularizations.

7Gauge invariance is formally satisfied in the sense that the
Ward-Takahashi identity holds if we shift momenta freely with-
out worrying about the ultraviolet divergences. In this paper, we
are interested in the quadratic divergences that are left after these
momentum redefinitions.

8As mentioned in Ref. [14], while at the one-loop level, only a
restricted set of particles participates; on the two-loop level, all
kinds of particles up to the Planck mass enter in the discussion.
We assume that there appear only SM degrees of freedom up to
the UV cutoff scale.

9One can rigorously compute both I1 and I2 in principle if one
fixes a cutoff scheme, such as an embedding in string theory. For
our purpose, the simplified procedure (16) suffices as we just
want to check the smallness of the two-loop contributions.
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I1 ¼ 1

"

1

16�2
; I2 ¼ 1

"

1

ð16�2Þ2 ln
26

33
’ 0:005I1: (17)

When we employ a naive momentum cutoff by �, we get

I1 ¼ �2

16�2
; (18)

and hence we can regard 1=" ¼ �2.

C. Graviton effects

Let us estimate the graviton loop effects on the above
obtained result. The graviton h�� in the metric

g�� ¼ ��� þ
ffiffiffiffiffiffiffiffiffi
32�

p
MPl

h�� (19)

couples to the Higgs through the energy-momentum
tensor:

T�� ¼ 2ffiffiffiffiffiffiffi�g
p 	

	g��

ffiffiffiffiffiffiffi�g
p

L

¼ ðD��ÞyðD��Þ þ ðD��ÞyðD��Þ
� g��½ðD��ÞyðD��Þ �m2

B�
y�� �ð�y�Þ2�:

(20)

The most divergent contributions come from two deriva-
tive couplings. A one-loop diagram containing such a
graviton coupling vanishes because it necessarily picks
up an external momentum, which is set to zero. Other
contributions are at most logarithmically divergent. At
the two-loop level, diagrams involving an internal graviton
line that does not touch a Higgs external line give a form
�4=M2

Pl. If the UV cutoff is much smaller than the Planck

scale, this becomes negligible, and the higher loops be-
come further insignificant. Indeed, in perturbative string
theory, higher loop corrections are proportional to powers
of the string coupling constant gs and become subleading.
If the cutoff scale exceeds the Planck scale, we cannot
neglect the graviton contributions.

III. SM RGE EVOLUTION TOWARD
PLANCK SCALE

In Sec. IV, we will approximate the dimensionless bare
coupling constants in the SM at the UV cutoff scale � by

the running ones in the modified minimal subtraction (MS)
scheme at the same scale �; see the Appendix for its

justification. We note that the MS couplings will be used
solely to approximate the dimensionless bare couplings at
the cutoff scale and that the bare Higgs mass does not run.

FIG. 1. Nonvanishing two-loop Feynman diagrams. Arrows are omitted. The dashed, solid, wavy, and dotted lines represent the
scalar, fermion, gauge, and ghost propagators, respectively.
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To get theMS running coupling constant, we apply the RGE at the two-loop order. For gY , g2, g3, and yt, we use the ones
in Ref. [20].10 For the quartic coupling, we employ the one given in Ref. [21].11 To be explicit,

dgY
dt

¼ 1

16�2

41

6
g3Y þ g3Y

ð16�2Þ2
�
199

18
g2Y þ 9

2
g22 þ

44

3
g23 �

17

6
y2t

�
;

dg2
dt

¼ � 1

16�2

19

6
g32 þ

g32
ð16�2Þ2

�
3

2
g2Y þ 35

6
g22 þ 12g23 �

3

2
y2t

�
;

dg3
dt

¼ � 7

16�2
g33 þ

g33
ð16�2Þ2

�
11

6
g2Y þ 9

2
g22 � 26g23 � 2y2t

�
;

dyt
dt

¼ yt
16�2

�
9

2
y2t � 17

12
g2Y � 9

4
g22 � 8g23

�
þ yt

ð16�2Þ2
�
�12y2t þ 6�2 � 12�y2t þ 131

16
g2Yy

2
t þ 225

16
g22y

2
t

þ 36g23y
2
t þ 1187

216
g4Y � 23

4
g42 � 108g43 �

3

4
g2Yg

2
2 þ 9g22g

2
3 þ

19

9
g23g

2
Y

�
;

d�

dt
¼ 1

16�2

�
24�2 � 3g2Y�� 9g22�þ 3

8
g4Y þ 3

4
g2Yg

2
2 þ

9

8
g42 þ 12�y2t � 6y4t

�
þ 1

ð16�2Þ2
�
�312�3 þ 36�2ðg2Y þ 3g22Þ

� �

�
629

24
g4Y � 39

4
g2Yg

2
2 þ

73

8
g42

�
þ 305

16
g62 �

289

48
g2Yg

4
2 �

559

48
g4Yg

2
2 �

379

48
g6Y � 32g23y

4
t � 8

3
g2Yy

4
t � 9

4
g42y

2
t

þ �y2t

�
85

6
g2Y þ 45

2
g22 þ 80g23

�
þ g2Yy

2
t

�
� 19

4
g2Y þ 21

2
g22

�
� 144�2y2t � 3�y4t þ 30y6t

�
; (21)

where t ¼ ln�. Though we do not include the bottom and
tau Yukawa couplings in this paper, we have checked that
these are negligible within the precision that we work in.

We put the boundary condition for the RGE (21) accord-

ing to Ref. [5]. The MS gauge coupling of SUð3Þ is given
by the three-loop RGE running from mZ to mpole

t and
matching with six flavor theory as [5]

gsðmpole
t Þ ¼ 1:1645þ 0:0031

�
�sðmZÞ � 0:1184

0:0007

�

� 0:00046

�
m

pole
t

GeV
� 173:15

�
; (22)

where mpole
t is the pole mass of the top quark. The MS

quartic coupling at the top pole massmpole
t is given by taking

into account the QCD and Yukawa two-loop corrections [5]

�ðmpole
t Þ¼0:12577þ0:00205

�
mH

GeV
�125

�

�0:00004

�
m

pole
t

GeV
�173:15

�
�0:00140th; (23)

where mH is the observed Higgs mass which we read off
from Eq. (1) as

mH ¼ 125:7� 0:6 GeV: (24)

The MS top Yukawa coupling at the scale m
pole
t is given

by taking into account the QCD three-loop, electroweak
one-loop, and Oð��sÞ two-loop corrections [5]:

ytðmpole
t Þ ¼ 0:93587þ 0:00557

�
m

pole
t

GeV
� 173:15

�

� 0:00003

�
mH

GeV
� 125

�

� 0:00041

�
�sðmZÞ � 0:1184

0:0007

�
� 0:00200th:

(25)

In a more recent work [6], it has been pointed out that the
error in the top quark pole mass, consistently derived from
the running one, is larger than that given in Ref. [5],
173:1� 0:7 GeV. The value obtained is [6]

m
pole
t ¼ 173:3� 2:8 GeV; (26)

which we will use in our analysis.

We plot the MS running coupling constant �ð�Þ in
Fig. 2. As we increase the scale �, the coupling � first
decreases due to the term �6y4t and remains small above
� ¼ 1010 GeV for a while. At further higher energies, yt
becomes smaller and � starts to increase due to the con-
tribution from 3

8g
4
Y which is not asymptotically free. At the

intermediate scale, � can become negative, but it is shown

10We replace g1 of the GUT normalization to gY ¼ ffiffiffiffiffiffiffiffi
3=5

p
g1 and

rewrite the quartic coupling as �½20� ¼ 2�, where �½20� is the one
employed in Ref. [20].
11We use the arXiv version 2 of Ref. [21] with the replacements
g0 ¼ gY , g ¼ g2, h ¼ yt, and �½21� ¼ 6�, where �½21� is the
quartic coupling employed in Ref. [21]. The RGE for � in

Ref. [20] becomes equal to that of Ref. [21], after correcting

� 3
2 g

4
2Y4ðSÞ to � 3

2 g
4
2Y2ðSÞ and changing the part 229

4 þ 50
9 ng to

229
24 þ 50

9 ng in Eq. (A.17) in Ref. [20].
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that a metastability condition can be met even in this case
[4–6].12 The value of � at the Planck scale MPl becomes
consistent with Eq. (64) in Ref. [5]:

�ðMPlÞ ¼ �0:014� 0:018

�
m

pole
t � 173:3 GeV

2:8 GeV

�

þ 0:002

�
�sðmZÞ � 0:1184

0:0007

�

þ 0:002

�
mH � 125:7 GeV

0:6 GeV

�
� 0:004th: (27)

As we can see from the left panel in Fig. 2, the value of the
quartic coupling stays around its minimum in 1015 GeV &
� & 1020 GeV. Therefore, the minimum value of � is also
given by Eq. (27) within our precision. In the right panel in
Fig. 2, we plot �min at which the �ð�Þ takes its minimum

value. The central value m
pole
t ¼ 173:3 GeV gives �min ¼

4� 1017 GeV.

IV. BARE HIGGS MASS AT PLANCK SCALE

Now we can estimate the bare Higgs mass at the cutoff

scale by substituting the MS couplings derived in the
previous section to the bare ones in the right-hand sides
of Eqs. (14) and (15).

In the left panel of Fig. 3, we plot the dependence of the
bare Higgs mass-squared in units of �2=16�2 on the UV
cutoff scale �:

m2
B

�2=16�2
¼ m2

B;1�loop

I1
þm2

B;2�loop

I2

I2
I1
; (28)

where we have taken I2=I1 ¼ 0:005 as in Eq. (17). In the
figure, we can see that the bare mass m2

B monotonically
decreases when one increases �.13

We obtain the UV cutoff scale at which the bare massm2
B

becomes zero:

log 10

�jm2
B¼0

GeV
¼ 23:5þ 3:3

�
m

pole
t � 173:3 GeV

2:8 GeV

�

� 0:2

�
mH � 125:7 GeV

0:6 GeV

�

� 0:4

�
�sðmZÞ � 0:1184

0:0007

�
� 0:4th: (29)

In the right panel of Fig. 3, we plot this quantity as a
function of the top quark pole mass for the central values
of �sðmZÞ and mH, without referring to the linear approxi-
mation (29).
We show an approximate formula for the bare Higgs

mass when the cutoff is at the Planck scale, � ¼ MPl:

m2
B ¼

�
0:22þ 0:18

�
m

pole
t � 173:3 GeV

2:8 GeV

�

� 0:02

�
�sðmZÞ � 0:1184

0:0007

�

� 0:01

�
mH � 125:7 GeV

0:6 GeV

�
� 0:02th

�
M2

Pl

16�2
: (30)

This is one of our main results. We verify that the two-loop
correction (15) can be safely neglected: m2

B;2�loop ’
�0:005M2

Pl=16�
2 within the cutoff scheme (17), as adver-

tised before. In Fig. 4, we plot the bare Higgs mass-squared

in units of M2
Pl=16�

2 as a function of mpole
t for the central

values of �sðmZÞ and mH, without referring to the linear

5 10 15 20 25 30
0.04

0.02

0.00

0.02

0.04

0.06

log10 GeV

168 170 172 174 176 178
16.6

16.8

17.0

17.2

17.4

17.6

mt
pole GeV

lo
g 1

0
m

in

G
eV

FIG. 2 (color online). Left: MS running of the quartic coupling �. The band corresponds to the 1 � deviation m
pole
t ¼ 173:3�

2:8 GeV. Right: The scale �min at which �ð�Þ takes its minimum value, as a function of m
pole
t . In both panels, low energy inputs are

given by the central values �sðmZÞ ¼ 0:1184 and mH ¼ 125:7 GeV.

12At first sight, �B < 0 seems to indicate a runaway potential.
In the SM, radiative corrections from the top quark loop gen-
erates a potential barrier. The metastability argument does not
assume an existence of a true stable vacuum at a very high scale
but computes the vacuum decay rate from the area of the
potential barrier from � ¼ 0 to the other zero point. In our
case, it is possible that the runaway potential can be cured for a
negative but small coupling (�B < 0, j�Bj � 1) by the higher
dimensional operators with positive couplings, such as j�j6=�2,
which become important near the cutoff scale �. See also
footnote 4.

13We note again that the bare Higgs mass is defined for each
UV cutoff � and is not a running quantity.
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approximation (30). For comparison, we also plot the
quartic coupling � at the Planck scale.

From Fig. 4 we see that the bare Higgs mass becomes

zero if m
pole
t ¼ 169:8 GeV, while the quartic coupling

�ðMPlÞ vanishes if mpole
t ¼ 171:2 GeV, when we take the

central values for �sðmZÞ and mH. See Refs. [13] for
arguments supporting the vanishing parameter at a cutoff
scale; see also Ref. [22]. There is no low energy parameter
set within two sigma that makes both the quartic coupling
and the bare mass vanish simultaneously at the Planck
scale. This might suggest an existence of a small threshold
effect from an underlying UV complete theory.

V. SUMMARYAND DISCUSSIONS

It is important to fix all the parameters, including the
bare Higgs mass, at the UV cutoff scale of the Standard
Model in order to explore the Planck scale physics. We

note again that in this paper we are not trying to solve the
fine-tuning problem but to determine all the bare parame-
ters at the cutoff scale. In addition, we investigate the scale
of the vanishing bare mass as a hint of that of the super-
symmetry restoration.
We have presented a procedure where the quadratic

divergence of the bare Higgs mass is computed in terms
of the bare couplings at a UV cutoff scale �. Using it, we
have obtained the bare Higgs mass up to the two-loop order
in the SM. This calculation has been made easier by work-
ing in the symmetric phase h�i ¼ 0 and in the Landau
gauge. We have checked that all the IR divergent terms,
which are proportional to �2 ln ð�=�IRÞ, cancel out as
expected. Approximating the bare couplings at � by the

correspondingMS ones at the same scale, we can examine
whether the quadratic divergence in the bare Higgs mass

vanishes or not. To get theMS couplings at high scales, we
employ the two-loop RGE in the SM.We have found that it

is indeed the case if the top quark mass is m
pole
t ¼

169:8 GeV, which is 1:3 � smaller than the current central
value.14 One might find it intriguing that this value is close

to mpole
t ¼ 171:2 GeV, which gives a vanishing quartic

coupling at MPl.
It is a curious fact that the scale of the vanishing bare

Higgs massm2
B and that for the quartic coupling � are quite

close to each other and to the Planck scale. The fact that the
Planck scale appears only from the SM might indicate that
the SM is indeed valid up to the Planck scale and is a direct
consequence of an underlying physics there. Also, it may
imply an almost flat potential near the Planck scale, which
opens a possibility that the slow-roll inflation is achieved
solely by the Higgs potential.
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FIG. 3 (color online). Left: The bare Higgs mass m2
B in units of �2=16�2 vs the UV cutoff scale �. The blue (narrower) and pink

(wider) bands represent the one and two sigma deviations of m
pole
t , respectively. Right: The UV cutoff scale at which the bare mass m2

B

becomes zero as a function of m
pole
t . The solid (dashed) line corresponds to the scale where m2

B (m2
B;1�loop) becomes zero. In both

panels, we have taken the central values �sðmZÞ ¼ 0:1184 and mH ¼ 125:7 GeV.
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FIG. 4 (color online). The blue solid (dashed) line corresponds
to the one-plus-two-loop (one-loop) bare mass m2

B (m2
B;1�loop) in

units of M2
Pl=16�

2 for � ¼ MPl. For comparison, we also plot

the quartic coupling � at the Planck scale with the red dotted
line. The central values �sðmZÞ ¼ 0:1184 and mH ¼ 125:7 GeV
are used.

14The vanishing of the quadratic divergence does not immedi-
ately indicate that the bare Higgs mass is exactly zero. Our result
does not exclude logarithmically divergent corrections such as
m2

H ln ð�=mHÞ or finite ones. If the quadratic divergence indeed
vanishes exactly for some reason, then such corrections become
important. It would be interesting to study them.
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If we take all the central values for mpole
t , �sðmZÞ, and

mH, then the cancellation occurs not at the Planck scale but
at a scale around �� 1023 GeV. This may hint at a new
physics around that scale. In this case, however, we need to
take the graviton effects into account, as discussed in
Sec. II C.

There can be a different interpretation for the small bare
Higgs massm2

B left at the Planck scale. It might appear as a
threshold correction in string theory. In string theory, the

tree-level masses of the particles are quantized by ms :¼
ð�0Þ�1=2, and therefore the Higgs mass is zero at the tree
level. The threshold effect from integrating out the massive
stringy excitations is obtained by computing insertions of
two Higgs emission vertices with zero external momenta
into the world sheet. The result would become

m2
B � C

g2s
16�2

m2
s ; (31)

where C is a model dependent constant. This calculation
can be performed for a concrete model such as the orbifold
and fermionic constructions in heterotic string. This work
will be presented in a separate publication.

We comment on the case where the UV completion of
the SM appears as a supersymmetry. When the supersym-
metry is softly broken, there cannot be any quadratic
divergence and our study does not apply. In the case of
the high-scale/split supersymmetry [11,23] it is possible to
perform a parallel analysis to the current one, which will be
shown elsewhere.

If we assume the seesaw mechanism, the right-handed
neutrinos are introduced above an intermediate scale MR.
Our analysis corresponds to the case where MR is small
enough that all the neutrino Dirac-Yukawa couplings are
negligible yD & 10�1. This condition implies MR &
1012 GeV for the neutrino mass m��y2Dv

2=MR�0:1 eV.
It would be interesting to extend our analysis to include
larger Dirac-Yukawa couplings for MR * 1012 GeV.
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APPENDIX

1. Cutoff vs MS

We have approximated the dimensionless bare coupling

constants in the SM by the running ones in theMS scheme
at �. The resulting error can be evaluated once the cutoff
scheme is explicitly specified.

More concretely, let us first express theMS couplings at
a scale � in terms of the bare couplings defined at the
cutoff scale �:

�i
MS

ð�Þ ¼ �i
B þX

jk

cijkð�=�Þ�j
B�

k
B þOð�3

BÞ; (A1)

cijkðxÞ :¼ fijk þ bijk ln xþOðx2Þ; (A2)

where bijk is the coefficient in the one-loop beta
function and fijk is the finite part from the one-loop
diagrams. f�i

MS
gi¼1;...;5 (f�i

Bgi¼1;...;5) stands for the

MS (bare) couplings of the SM: fg2Y; g22; g23; y2t ; �g
(fg2YB; g22B; g23B; y2tB; �Bg).
In our case, the two-loop corrections in the RGE at high

scales are small compared to the one-loop order, which
indicates that the two-loop terms Oð�3

BÞ in Eq. (A1) are
negligible, as we can take � that satisfies both

� � �;

�������� �i
MS

16�2
ln ð�=�Þ

��������� 1; (A3)

simultaneously. Thus we have

�i
MS

ð�Þ ¼ �i
B þX

jk

�
fijk þ bijk ln

�

�

�
�j
B�

k
B: (A4)

On the other hand, from the RGE, we get

�i
MS

ð�Þ ¼ �i
MS

ð�Þ þX
jk

bijk�j

MS
ð�Þ�k

MS
ð�Þ ln�

�
: (A5)

From Eqs. (A5) and (A6), we obtain

�i
MS

ð�Þ ¼ �i
B þX

jk

fijk�j
B�

k
B; (A6)

which gives the relation between the bare and the MS
couplings at the same scale.
With the above correction, the formula for the bare

Higgs mass is modified by

�m2
B ¼ �X

ijk

aifijk�j

MS
ð�Þ�k

MS
ð�Þ; (A7)

where ai are the coefficients in the one-loop bare Higgs
mass m2

B ¼ P
ia

i�i
B in Eq. (14), and are proportional to I1.

The scale at which the bare Higgs mass vanishes�jm2
B¼0 is

changed to �jm2
B¼0e

	t, where

	t ¼
P

ijk a
ifijk�j

MS
ð�Þ�k

MS
ð�ÞP

ijk a
ibijk�j

MS
ð�Þ�k

MS
ð�Þ : (A8)

Generically fijk are of the same order as bijk and hence the
correction due to the replacement of the bare couplings by

theMS ones, �m2
B, is as small as the two-loop corrections.

Since 	t is of order unity, the ambiguity for the scale
�jm2

B¼0 would be at most e	t & 10.
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