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The measurements of the Higgs boson and top-quark masses can be used to extrapolate the Standard

Model Higgs potential at energies up to the Planck scale. Adopting a next-to-next-to-leading-order

renormalization procedure, we (i) find that electroweak vacuum stability is at present allowed and discuss

the associated theoretical and experimental errors and the prospects for its future tests, (ii) determine the

boundary conditions allowing for the existence of a shallow false minimum slightly below the Planck

scale, which is a stable configuration that might have been relevant for primordial inflation, and (iii) derive

a conservative upper bound on type-I seesaw right-handed neutrino masses, following from the require-

ment of electroweak vacuum stability.
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I. INTRODUCTION

The recent discovery of a particle consistent with the
Standard Model (SM) Higgs boson, announced by the
ATLAS [1] and CMS [2] collaborations at CERN, is a
milestone in particle physics; adding in quadrature statis-
tical and systematic errors, the mass of the particle turns
out to be in the range 124.8–126.5 GeV at 2�.

Here we assume that the new particle is actually the SM
Higgs boson and study the implications that its mass value—
together with other relevant parameters, such as the top-quark
mass and the strong gauge coupling—has on the behavior
of the Higgs potential at very high energy scales and, in
particular, for the sake of electroweak vacuum stability.

The project of extrapolating the Higgs potential up to
the Planck scale is a long-standing one [3–5], and was
revamped in the fall of 2011 [6–9] after the first LHC hints
of a Higgs boson were reported [10]. Recently, the tools for
a next-to-next-to-leading-order (NNLO) renormalization
procedure were derived [11–14]. So there are now all the
ingredients necessary to carry out this long-standing
project. Clearly, the extrapolation is based on the assump-
tion that there is a desert up to the Planck scale or, better,
that possible new physics do not significantly affect the
running of the Higgs quartic coupling, which dominates
the Higgs potential at high energy.

It is interesting that the recently discovered experimental
Higgs mass range, combined with the experimental top
mass range, indicates a particularly intriguing high-energy
behavior of the Higgs potential close to the transition
between electroweak vacuum stability and metastability.
This is due to the fact that, for these Higgs and top mass
values, the Higgs quartic coupling can be very small or
even negative. Since the dependence on the top mass is
strong and quite subtle, it is not surprising that different
groups slightly disagree in the interpretation of the results,
some of them favoring [13] and others disfavoring [14]
electroweak vacuum stability.

Traditionally, the top pole mass was used in the analysis;
however, it has been pointed out [15] that the top pole mass
value used in previous analyses and taken to be the one
measured at the Tevatron, m

exp
t ¼ 173:2� 0:9 GeV [16],

is not unambiguously derived, and that a more careful
derivation should be based instead on the running top

mass in the MS scheme, �mtðmtÞ ¼ 163:3� 2:7 GeV. As
was shown in Ref. [15], the top pole mass range consis-
tently derived from the running one, mt ¼ 173:3�
2:8 GeV, is plagued by a larger error than the Tevatron
measurement considered in Ref. [14], rescuing electro-
weak vacuum stability.
In our analysis we keep as a free parameter the running

top mass, rather than the pole one. In this way we
completely avoid the theoretical uncertainties associated
with the top Yukawa matching procedure. As we are going
to discuss, the theoretical error associated with the Higgs
quartic coupling matching [13,14] turns out to be smaller
than the one induced by the experimental uncertainty
in the strong gauge coupling, �3ðmZÞ. Given the above-
mentioned range for the running top mass [15], we find that
electroweak stability is allowed in the whole Higgs mass
range [1,2]. Stability could soon be excluded if values of
the running top mass �mtðmtÞ< 163 GeV are excluded by
the LHC. Otherwise, testing electroweak vacuum stability
would become very challenging, since this would require
precision measurements of the Higgs and top masses, and
also of �3ðmZÞ.
A stable Higgs potential configuration which deserves

particular interest is a shallow false minimum close to the
Planck scale, which could have been relevant for primor-
dial inflation [7,17,18]. We show that such a configuration
is realized only if the Higgs quartic coupling and its
derivative satisfy very specific boundary conditions, pos-
sibly having a deep origin in quantum gravity.
As is well known, new physics in addition to the SM is

required to explain the neutrino masses and mixings, as
well as dark matter. The mechanism responsible for the
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neutrino masses could affect the Higgs quartic coupling; as
an example, we consider the impact that the inclusion of
neutrino masses via a type-I seesaw has on electroweak
stability, discussing in some detail the shallow false mini-
mum configuration.

The paper is organized as follows. In Sec. II we discuss
the input parameters and the NNLO renormalization pro-
cedure used to extrapolate the Higgs potential up to the
Planck scale. An analysis of electroweak vacuum stability
and the associated constraints on the top and Higgs masses,
with a detailed discussion of the theoretical errors and the
prospects for the future, are presented in Sec. III. In Sec. IV
we investigate the boundary conditions leading to the
particularly interesting configuration of a shallow false
minimum below the Planck scale. Section V is devoted to
the upper bound on the seesaw right-handed neutrino
masses following from the requirement of electroweak
vacuum stability. Conclusions are drawn in Sec. VI.
Appendix A contains the relevant formulas for the
NNLO running procedure in the SM, and those needed to
incorporate the type-I seesaw mechanism are found in
Appendix B.

II. INPUT PARAMETERS AND
RENORMALIZATION AT NNLO

The normalization of the Higgs quartic coupling
� is chosen in this paper so that the potential for the
physical Higgs �H contained in the Higgs doublet

H ¼ ð0; ð�H þ vÞ= ffiffiffi
2

p Þ is given, at tree level, by

Vð�HÞ ¼ �

6

�
jHj2 � v2

2

�
2 � �

24
�4

H; (1)

where v ¼ 1=ð ffiffiffi
2

p
G�Þ1=2 ¼ 246:221 GeV and G� ¼

1:1663787ð6Þ � 10�5=GeV2 is the Fermi constant from
muon decay [19]. The approximation in Eq. (1) holds when
considering large field values. According to our normal-
ization, the physical Higgs mass satisfies the tree-level
relation m2

H ¼ �v2=3. In addition, the mass of the fermion

f reads, at tree level, mf ¼ hfv=
ffiffiffi
2

p
, where hf denotes the

associated Yukawa coupling.
In order to extrapolate the behavior of the Higgs poten-

tial at very high energies, we adopt the MS scheme and
consider the renormalization group (RG) evolution for the
relevant couplings which, in addition to the Higgs quartic
coupling �, are the gauge g, g0, g3, and the top Yukawa ht
couplings. We work at NNLO, namely three-loops for the
� functions and two-loops for the matching conditions at
some suitable scale.

It is customary to introduce the dimensionless parameter
t ¼ log�=mZ, where � stands for the renormalization
scale and mZ is the Z-boson mass. The RG equations for
the relevant couplings are then given by

d

dt
�ðtÞ ¼ ��ð1Þ

� þ �2�ð2Þ
� þ �3�ð3Þ

� ;

d

dt
htðtÞ ¼ ��ð1Þ

ht
þ �2�ð2Þ

ht
þ �3�ð3Þ

ht
;

d

dt
gðtÞ ¼ ��ð1Þ

g þ �2�ð2Þ
g þ �3�ð3Þ

g ;

d

dt
g0ðtÞ ¼ ��ð1Þ

g0 þ �2�ð2Þ
g0 þ �3�ð3Þ

g0 ;

d

dt
g3ðtÞ ¼ ��ð1Þ

g3 þ �2�ð2Þ
g3 þ �3�ð3Þ

g3 ;

(2)

where � ¼ 1=ð16�2Þ and the apex on the � functions
represents the loop order. The one-loop and two-loop
expressions for the � functions can be found, e.g., in
Ref. [20] (see also Refs. [21–26]). Recently, the complete
three-loop� functions for all the SM gauge couplings have
been presented by Mihaila, Salomon, and Steinhauser in
Ref. [11], while the leading three-loop terms in the RG
evolution of �, ht, and the Higgs anomalous dimension
have been computed by Chetyrkin and Zoller in Ref. [12].
For the sake of completeness, the expressions for the �
functions up to three loops are collected in Appendix A.
The matching of the running gauge couplings is done

at the Z-boson pole mass,1 mZ. The numerical values used

for the related MS observables are taken from the latest
Particle Data Group SM fit results [19],

��1
em ðmZÞ ¼ 127:944� 0:014;

�3ðmZÞ ¼ 0:1196� 0:0017;

sin 2	WðmZÞ ¼ 0:23116� 0:00012;

mZ ¼ 91:1874� 0:0021 GeV:

(3)

To match theMS running quartic coupling �ð�Þwith the
Higgs pole mass mH is more complicated and requires one
to exploit the expansion

�ð�Þ ¼ X
n¼1;2;3;...

�ðnÞð�Þ

¼ 3
m2

H

v2
ð1þ 
ð1Þ

H ð�Þ þ 
ð2Þ
H ð�Þ þ � � �Þ; (4)

which is known at present at NLO: 
ð1Þ
H ð�Þ is the one-loop

Oð�Þ result of Sirlin and Zucchini [27] while 
ð2Þ
H ð�Þ is the

recently calculated two-loop result, composed of a QCD
contribution ofOð��3Þ [13,14] and a Yukawa contribution
[14]. More details can be found in Appendix A. As is
well known, there is some arbitrariness in the choice
of the matching scale � in Eq. (4), which introduces a
‘‘theoretical’’ error in the RG procedure. In this work,
we choose to perform the matching of the Higgs quartic

1We use the value of the strong coupling at mZ and immedi-
ately apply the six-flavor running. The correction that would
result by running with five flavors up to the top mass is very
small and can be neglected, as was discussed in Ref. [13].
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coupling � at the scale � ¼ mH. The theoretical uncer-
tainty is estimated by also performing the matching at
different scales and by evolving � via RG running until
� ¼ mH. The spread in the numerical values obtained for
�ðmHÞ can then be used to infer the magnitude of the
theoretical error.

This is illustrated in Fig. 1, assuming for definiteness a
top pole massmt ¼ 172 GeV. The dashed and solid curves
show the value of �ðmHÞ obtained by including the correc-
tions up to the one-loop and two-loop levels, respectively,
for various choices of the matching scale: from top to
bottom, � ¼ mZ, mH, mt, 2mH. One can see that, working
at the one-loop level, the theoretical uncertainty is about
5%. The inclusion of the two-loop corrections given in
Ref. [14] reduces the theoretical uncertainty to about 0.7%.
Notice also that the preferred region shrinks to small �
values and that� ¼ mZ and� ¼ mH nearly overlap. More
generally, one can use the following expression for the
two-loop result:

�ðmHÞ ¼ 0:8065þ 0:0109ðmH½GeV� � 126Þ
þ 0:0015ðmt½GeV� � 172Þþ0:0002

�0:0060; (5)

where the mean value refers to � ¼ mH. The reference
values of mH and mt used in Eq. (5) are not the central
values that will be used in the following analysis; they are
just ‘‘round numbers’’ that allow for an easy inspection of
the variation of �ðmHÞ as a function of mH and mt.

Notice that it is not possible to directly compare
Eq. (5) with Eq. (63) of Ref. [14], where �ðmtÞ is used
instead (as well as the adoption of a normalization differing
from ours by a factor of 6 and the use of the central values
of mH and mt as reference values): �ðmtÞ¼ 0:12577þ
0:00205ðmH½GeV��125Þ�0:0004ðmt½GeV��173:15Þ�
0:00140, where the error is obtained by varying the match-
ing scale between mZ, mt, and 2mt [14]. We checked that
our numerical code gives a result for �ðmtÞ consistent with

that of Eq. (63) of Ref. [14]. Indeed, choosing mH ¼
125 GeV and mt ¼ 173:15 GeV, our code gives
�ðmtÞ=6 ¼ 0:12605; 0:12575; 0:12412 ¼ 0:12575þ:0003

�:0016,

when the matching scale � ¼ mZ, mt, 2mt, respectively.
This shows that the two results perfectly agree for� ¼ mt:
the lower errors (associated with the difference between
� ¼ mt and � ¼ 2mt) are in substantial agreement, while
the upper errors (associated with the difference between
� ¼ mZ and � ¼ mt) are slightly different, with ours
being smaller.

It is common to extrapolate the MS top Yukawa
coupling htð�Þ from the matching condition between the
running top mass �mtð�Þ and the top pole mass mt,

htð�Þ vffiffiffi
2

p ¼ �mtð�Þ ¼ mtð1þ 
tð�ÞÞ;


tð�Þ ¼ 
W
t ð�Þ þ 
QED

t ð�Þ þ 
QCD
t ð�Þ;

(6)

where 
W
t þ 
QED

t represent the electroweak contribution,

which is known at the one-loop level [28], while 
QCD
t is the

QCDcontribution. TheQCDone-loop result has been known
formany years [28]; theQCD two-loop and three-loop results
as a function of the matching scale � are given in Ref. [29]
(see also Refs. [30–34]). The matching is usually done at the
top pole mass scale, and the theoretical error associated with
the arbitrariness of the matching scale can be estimated as
before, namely by comparing the values of htðmtÞ obtained
with different matching scales. This is represented in Fig. 2,
where the curves are obtained by working at the two-loop
level and using, from bottom to top, � ¼ mZ, mt, 2mt. The
plot shows that the associated theoretical uncertainty is about
2%. The analytical expression for htðmtÞ is

htðmtÞ ¼ 0:933þ 0:006ðmt½GeV� � 172Þþ0:017
�0:013: (7)

The variations of hðmtÞ due to the experimental range of �s

and mH have not been explicitly written in Eq. (7) because
they are negligible (of order 10% and 1%, respectively) with
respect to thevariation ofhðmtÞ due to the experimental range
of mt. The error quoted in Eq. (7) then refers only to the
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m
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FIG. 1 (color online). Value of �ðmHÞ obtained by performing
the matching at different scales �—indicated by the labels—as a
function of mH. The solid (dashed) lines are obtained by includ-
ing corrections up to the two-loop (one-loop) level. We fixed
mt ¼ 172 GeV [for different values see Eq. (5)].
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FIG. 2 (color online). Values of htðmtÞ and �mtðmtÞ as a function
of mt. The curves are obtained by matching at different scales,
which are indicated by the labels. We fixed mH ¼ 126 GeV for
definiteness but the results do not significantly dependent on mH,
provided it is chosen in its experimental range.
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theoretical error coming from varying the matching scale �
from mZ, mt (mean value), and 2mt. Notice that our result
perfectly agrees with the analogous expression derived in
Ref. [14], where (however) the error due to the variation of
the matching was not estimated.

The procedure adopted in previous analyses of the
stability of the electroweak vacuum, including the latest
ones [13,14], was to use the experimental value of mt—
identified with the one measured at the Tevatron by the
CDF and D0 collaborations, m

exp
t ¼ 173:2� 0:9 GeV

[16]—to extrapolate the running Yukawa htðmtÞ via
Eq. (7). However, as discussed in Ref. [15], it is not mean-
ingful to use the mass parameter provided by the Tevatron
as the top pole mass to be inserted in Eq. (7): the running

top mass in the MS scheme is instead a well-defined
parameter that can be directly extracted at NNLO from
Tevatron measurements of the inclusive top pair produc-
tion cross section, giving �mtðmtÞ ¼ 163:3� 2:7 GeV [15].
So, it is conceptually more robust and practically more
convenient to extract the top Yukawa coupling directly
from �mtðmtÞ, as will be done in the following.2 Our results
will thus be presented as a function of �mtðmtÞ.

Notice that, according to Eq. (7), the value of the
top pole mass can be easily recovered via the relation
mt ¼ �mtðmtÞ þ 9:6þ2:9

�2:3 GeV, which, however, is plagued

by a large uncertainty. In Ref. [15] it was found that, by
doing a scheme transformation to NNLO accuracy from
the running to the top pole mass, the range �mtðmtÞ ¼
163:3� 2:7 GeV is equivalent to mt ¼ 173:3� 2:8 GeV.
Hence, while displaying our results as a function of �mtðmtÞ
(as already stated), and motivated by the results of
Ref. [15], in some plots (such as Fig. 5) we will link the
value of the top pole mass to the running mass via the
simple relation mt ¼ �mtðmtÞ þ 10 GeV.

Before presenting the results of our analysis in the
following sections, we recall that, in order to carefully
study the shape of the Higgs potential at high energy, one
should consider the renormalization-improved effective
potential. This can be done by introducing an effective
coupling, �effð�Þ ¼ �ð�Þ þ ��ð�Þ, so that

Veffð�HÞ ¼ �effð�Þ
24

�4
H: (8)

The expression for ��ð�Þ is known up to the two-loop
level [4,20] (and is given, for instance, in Ref. [14]). Since
the scalar contribution is not well defined when � is
negative (a logarithm of a negative quantity appears), in
the following we consider the renormalization-improved
potential at the tree level, and identify�with�H. It is well
known that this simplification has a negligible impact on
the determination of the vacuum stability bound (for a

detailed discussion see, e.g., Ref. [13]), which will be
discussed in the next section.

III. ELECTROWEAK VACUUM STABILITY

The experimental region of the values of the Higgs and
top masses is very intriguing from the theoretical point of
view, since the Higgs quartic coupling could be rather
small, vanish, or even turn negative at a scale slightly
smaller than the Planck scale. Accordingly, the behavior
of the Higgs potential at high energy changes drastically:
if �ð�Þ is always positive, the electroweak vacuum is a
global minimum, possibly accompanied by another local
minimum just below the Planck scale, which could have
played a role in primordial inflation [7,17,18]; if �ð�Þ turns
negative below MPl, the electroweak vacuum correspond-
ingly becomes metastable [4,5].
These drastically different possibilities for the behav-

ior of the renormalization-improved Higgs potential at
high energy are illustrated in the left plot Fig. 3, where
mH ¼ 126 GeV and some specific values for �mtðmtÞ have
been selected, increasing from top to bottom. The right plot
shows the associated values of �ð�Þ. We start by consid-
ering the value �mtðmtÞ ¼ 161:989 GeV. Increasing the
latter by just 1 MeV, the potential develops an inflection
point; notice that the associated �ð�Þ becomes as small
as Oð10�5Þ. Increasing �mtðmtÞ again by about 200 keV,
the minimum of �ð�Þ is equal to zero: a second vacuum
degenerate with the electroweak one is obtained.
Increasing �mtðmtÞ further makes �ð�Þ turn negative: the
electroweak vacuum becomes metastable.
The dashed curve in the right plot in Fig. 3 shows the

evolution of ��ð�Þ ¼ d�ð�Þ=dt for the same parameter
values; there is only a single dashed curve because ��ð�Þ
mildly depends on �mtðmtÞ if the latter is in the range
161–163 GeV. We call �� the renormalization scale,

such that ��ð��Þ ¼ 0. Clearly, only in the case of two

degenerate vacua are the conditions ��ð��Þ ¼ 0 and

�ð��Þ ¼ 0 simultaneously met. For a shallow false mini-

mum we instead have ��ð��Þ¼0 and �ð��Þ ¼ Oð10�5Þ,
as already mentioned.
In Fig. 4 we show how �� depends on �mtðmtÞ, for

various values ofmH. It is interesting that�� is maximized

and nearly constant for the values of �mtðmtÞ for which �ð�Þ
is very small.
We now turn to the determination of the points in the

plane ½mH; �mtðmtÞ� allowing for the existence of a second
minimum degenerate with the electroweak one. These
points belong to a line separating the stability from the
metastability region; see Fig. 5. In the lower part of the plot
�ð�Þ is always positive, while in the upper part it becomes
negative before reaching the Planck scale. The configura-
tion of a shallow false minimum belongs to the stability
region, but the associated points are so close to the tran-
sition line that they could not be distinguished visually.

2In contrast, Ref. [15] proceeds in a more complicated way:
the value of �mtðmtÞ is translated into a value of mt, which is
inserted into the expression of the lower bound on mH, ensuring
electroweak vacuum stability as derived in Ref. [14].
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The transition line of Fig. 5 was obtained with the input
parameter values discussed in the previous section and by
matching the running Higgs quartic coupling at mH.
Clearly, it is also important to estimate the theoretical error
associated with the experimental ranges of the input
parameters and the one associated with the matching pro-
cedure. To illustrate this, we consider in particular the point
on the transition line associated with the value mH ¼
126 GeV; for such a point, � and �� both vanish at a
certain scale �� (see Fig. 4). The arrows show how, if

some inputs or the matching scale are changed, the position
of this point must change in order to maintain, at the same
scale ��, a vacuum degenerate with the electroweak one.

The diagonal arrow is obtained by varying the strong
coupling in its allowed range, �3ðmZÞ ¼ 0:1196� 0:0017
[19]; the short (long) dashed line shows how the solid line
would move if �3ðmZÞ were equal to its minimum (maxi-
mum) presently allowed value. Notice that the error on
�3ðmZÞ induces an uncertainty in both the Higgs and top
masses of about �0:7 GeV. In Ref. [14] the impact of the
variation of �3ðmZÞ on mH was estimated to be �0:5 GeV
(see their Table 1). The two results are in substantial
agreement, considering that in our analysis �3ðmZÞ ¼
0:1196� 0:0017 at 1� [19], while Ref. [14] considers a
smaller error, �3ðmZÞ ¼ 0:1184� 0:0007 at 1�. Since the
variation of the other input parameters in Eq. (4) induces
much smaller effects than the one due to �3ðmZÞ, they have
not been reported in Fig. 5. The horizontal arrow represents
instead the theoretical error obtained by varying ��, the
matching scale of the Higgs quartic coupling, from � ¼
mZ to � ¼ 2mH (notice that the associated error is very
asymmetric; see Fig. 1): essentially, it can only enhancemH

by at most 0.5 GeV. Clearly, similar considerations apply to
each point of the transition line. We note that in Ref. [14]
the impact of the variation of the matching scale of � onmH

was estimated to be �0:7 GeV (see their Table 1), and
hence close to our estimate but with a symmetric error.
Figure 5 shows that stability can be achieved in the

whole experimental range for mH (shaded vertical region),

mH 126 GeV

mt
mt

161 GeV

mt
mt

161.989 GeV

1 MeV

0.2 MeV

1 MeV

1017 1018
1015

1016

1017

GeV

V
1

4
G

eV

mt mt 161.989 GeV

1 MeV

0.2 MeV

1 MeV

1017 1018

0.00004

0.00002

0

0.00002

0.00004

0.00006

GeV

FIG. 3 (color online). The SM Higgs potential (left) and the quartic Higgs coupling (right) as functions of the renormalization scale
�, formH ¼ 126 GeV and different values of �mtðmtÞ, increasing from top to bottom by the amount indicated by the labels. The dashed
curve in the right plot shows the associated value of ��ð�Þ. The other input parameters are fixed at the central values discussed in the
previous section.
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m
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FIG. 4 (color online). The scale�� as a function of �mtðmtÞ and
for different values of mH, as indicated by the labels.
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FIG. 5 (color online). The solid (black) line marks the points in
the plane ½mH; �mtðmtÞ� where a second vacuum, degenerate with
the electroweak one, is obtained just below the Planck scale. The
(red) diagonal arrow shows the effect of varying �3ðmZÞ ¼
0:1196� 0:0017 [19]; the (blue) horizontal arrow shows the
effect of varying �� (the matching scale of �) from mZ up to
2mH . The shaded (yellow) vertical region is the 2� ATLAS [1]
and CMS [2] combined range, mH ¼ 125:65� 0:85 GeV; the
shaded (green) horizontal region is the range �mtðmtÞ ¼ 163:3�
2:7 GeV, equivalent to mt ¼ 173:3� 2:8 GeV [15].
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but this is not the case for �mtðmtÞ (shaded horizontal
region). So, it is convenient to write down the condition
of electroweak vacuum stability in the form of an upper
bound on the running top mass,

�mtðmtÞ½GeV� � 162:0þ 0:47ðmH½GeV� � 126Þ

þ 0:7

�
�3ðmZÞ � 0:1196

0:0017

�
� 0:2ð��Þ

th ; (9)

where the last term accounts for the (very asymmetric)
theoretical error induced by the matching of �. The latter
turns out to be smaller than the variation induced by
varying �3ðmZÞ in its presently allowed experimental
range. We recall that the relation between the running
and top pole mass is simply mt ¼ �mtðmtÞ þ 10 GeV.
Figure 6 summarizes our results for the determination of
the transition line between stability and metastability in
the ½mH;mt� plane. The three lines correspond to the
central and�1� values of �3ðmZÞ [19] and their thickness
represents the theoretical error due to the matching of �.
The shaded rectangle emphasizes the present allowed
region for mt [15] and mH [1,2]. According to our analysis
it is not possible, given the present experimental situation,
to understand whether we live in a stable or metastable
vacuum configuration.3

In order to discriminate between the two possibilities, it
would be crucial to better determine �mtðmtÞ. As discussed
in Ref. [15], after LHC the Higgs mass will presumably be
known with an accuracy of Oð100Þ MeV [35], but the
precision on the top mass would improve only by a factor
of 2. For instance, if the whole range of �mtðmtÞ< 163 GeV
(or, equivalently, mt < 173 GeV) were excluded, we
would conclude that our vacuum is metastable; otherwise
the investigations should continue.

A self-consistent and precise determination of the
top-quark mass can best be performed at a high-energy
electron-positron collider, with a planned accuracy of
Oð100Þ MeV. Moreover, at an electron-positron collider
�3ðmZÞ could be determined with an accuracy close to or
better than ��3ðmZÞ ¼ 0:0007 (this precision is some-
times currently adopted [13,14], but cannot be considered
to be conservative according to Ref. [15]). At this stage, if
the stability region will still have an overlap with the
allowed ranges of the top and Higgs masses, we will be
mostly limited by the theoretical uncertainty associated
with ��. Notice also that it is not realistic to hope to
distinguish the case of two degenerate minima with that
of a shallow false minimum, since the difference in the top
mass is just about 200 keV (see Fig. 3).

We now discuss how to compare Eq. (9) and Fig. 6
with previous literature results, in particular those of
Ref. [14], since the authors claimed that ‘‘absolute stability

of the Higgs potential is excluded at 98% C.L. for
mH < 126 GeV’’ (see also their Fig. 5). In the latter
work the stability condition is indeed expressed under the
form of a lower bound on the Higgs mass: mH�129:4þ
1:4ðmt�173:1Þ=0:7�0:5ð�3ðmZÞ�0:1184Þ=0:0007�1th,
where all masses are in GeV and the last term represents
the overall theoretical error. Combining in quadrature their
theoretical uncertainty and their experimental errors on mt

and �3ðmZÞ, the authors derive mH > 129:4� 1:8 GeV,
which motivates the quoted claim of Ref. [14]. In order to
carry out the comparison, one must rewrite the inequality
of Ref. [14] under a form directly comparable with Eq. (9),
namely

m½14�
t ½GeV� � 171:8þ 0:5ðmH½GeV� � 126Þ

þ 0:61

�
�3ðmZÞ � 0:1196

0:0017

�
� 0:5th: (10)

So, our results (9) and those obtained in Ref. [14] are
perfectly compatible, as the central value of Eq. (10)
essentially overlaps with the lower value of Eq. (9). The
theoretical error in Eq. (9) is however smaller than the
theoretical error of Ref. [14]; this is mainly due to the fact
that in the present analysis we used the running top mass
directly, thus avoiding the need to introduce the theoretical
error due to the matching scale of the top Yukawa coupling
(see Table 1 of Ref. [14]). The left plot of Fig. 7 shows the
comparison between Eqs. (9) and (10) in the determination
of the transition line between stability and metastability in
the ½mH;mt� plane; we choose �3ðmZÞ ¼ 0:1196 for defi-
niteness, so that the thickness of the lines represent just the
theoretical error. According to Eq. (9) the thickness of the
line is 0.2 GeV, while according to Eq. (10) it is 1 GeV (as
can also be checked by inspecting Table 1 of Ref. [14]).
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STABILITY

3 mZ 0.1213

3 mZ 0.1196

3 mZ 0.1179

124.5 125.0 125.5 126.0 126.5 127.0
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m
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G
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FIG. 6 (color online). The transition line between stability and
metastability in the plane ½mH;mt� and for fixed values of
�3ðmZÞ ¼ 0:1196� 0:0017 [19]. The thickness of the lines
represent the theoretical error due to the variation of �� (the
matching scale of �) from mZ up to 2mH. The shaded region is
obtained by intersecting the 2� ATLAS [1] and CMS [2]
combined range (mH ¼ 125:65� 0:85 GeV) with the running
top mass range given by Ref. [15], �mtðmtÞ ¼ 163:3� 2:7 GeV,
equivalent to mt ¼ 173:3� 2:8 GeV.

3Of course, this assumes that the running of � happens as in
the SM up to energies close to the Planck scale without signifi-
cant modifications.
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Clearly, all these considerations do not justify the differ-
ent conclusions of the two papers and rather show that the
different conclusions must come from the different ranges
used for the three most relevant parameters: mt, mH,
and �3ðmZÞ. In Ref. [14] it was assumed that mt ¼
ð173:1� 0:7Þ GeV and mH ¼ ð125� 1Þ GeV; these
errors are further combined in quadrature and the 1� and
2� (brown) disks in the right plot of Fig. 7 are obtained.
These disks have to be confronted with our (green) rect-
angular region, obtained by using mt¼ð173:3�2:8ÞGeV,
as suggested in Ref. [15], andmH¼ð125:65�0:85ÞGeV, as
suggested by combining the ATLAS [1] and CMS [2]
ranges at 2�. We have a rectangular region since we think
that in this kind of analysis it is not really justified to
combine in quadrature the errors on mt and mH, thus
enhancing the exclusion of the interesting low-mt and
high-mH values. A small value of �3ðmZÞ also goes in
such a direction, since it lowers the transition line towards
smaller values of mt. In Ref. [14] it is assumed that
�3ðmZÞ ¼ 0:1184� 0:0007: the corresponding transition
line is displayed in the right plot of Fig. 7, using Eq. (10)
for consistency. The line perfectly reproduces the results of
Fig. 5 of Ref. [14]; its thickness accounts for both the
theoretical error and the experimental error due to the
variation of �3ðmZÞ, as derived in Ref. [14]. [We cannot
display three separate lines, as done in Fig. 6, since in
Eq. (10) the theoretical error and the error associated to the
variation of �3ðmZÞ are comparable]. As the transition line
marginally overlaps with the 2� disk, the authors of
Ref. [14] concluded that stability is disfavored. A very
different conclusion would be derived by considering
instead the broad overlap with the rectangle. This is the
main reason for the different conclusions. A small role is
also played by the different values used for �3ðmZÞ.
The range of �3ðmZÞ used in Ref. [14] has a very small
error and has already been questioned in Ref. [15] (see
bottom of p. 8). In the present analysis we instead use

�3ðmZÞ ¼ 0:1196� 0:0017 [19], whose central value and
experimental error are bigger than those used in Ref. [14].
As an effect, the ensemble of the three (red) lines in Fig. 6
forms a band slightly wider and higher than the (blue) band
in Fig. 7 that depicts the results of Ref. [14].
In summary, upon comparison of our results in Fig. 6

with the results of Ref. [14] reproduced in the right plot of
Fig. 7, one can conclude that the difference in the physical
interpretation of the results is mainly due to the fact that
Ref. [14] adopted a too small experimental error for mt, as
was already pointed out in Ref. [15].

IV. SHALLOW FALSE MINIMUM

It is interesting to study in some detail the boundary
conditions which must be satisfied in order to have a very
shallow false minimum just below the Planck scale, since it
could be relevant for inflation [7,17,18].
To study this particular configuration, we denote with

�i the renormalization scale where the Higgs potential has
an inflection point; we also recall that �� has been defined

to be the scale where �ð��Þ ¼ 0 and ��ð��Þ ¼ 0 are

simultaneously fulfilled. Both �i and �� increase4 with

mH, as shown in Fig. 8, where the shaded region accounts
for the experimental range of �3ðmZÞ.
It is interesting that, for the whole experimental range of

mH, a shallow false minimum is obtained only if the
following boundary condition holds:

�ð��Þ ’ ð8:75� 0:15Þ � 10�6: (11)

One could speculate that such a value could originate from
some quantum gravity effect [6,36]. In the left plot of
Fig. 9 we show that �ð��Þ has a mild dependence on
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FIG. 7 (color online). Left: Theoretical uncertainty in the determination of the transition line between stability and metastability
according to our Eq. (9) (thinner) and Eq. 10 of Ref. [14] (thicker). For definiteness we choose �3ðmZÞ ¼ 0:1196. Right: Transition
line between stability and metastability according to Eq. 10 of Ref. [14]; the thickness of the band accounts for both the 1 GeV
theoretical error and the experimental error due to the variation of �3ðmZÞ in the range 0:1184� 0:0007, as was done in Ref. [14]. The
(brown) shaded disks represent the 1� and 2� combined ranges for mt and mH used in Ref. [14] (see their Fig. 5). The (green)
rectangle allows for the comparison with the ranges of mt and mH used here (see Fig. 6).

4Notice that �i is slightly smaller than ��. This can be easily
understood, since the condition for having an inflection point at
�i reads ��ð�iÞ ¼ �4�ð�iÞ< 0, which implies �i < ��.
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mH; in the right plot we show instead the value of the Higgs
potential at the inflection point, which turns out to be of
Oð1016Þ GeV. As before, the shaded regions account for
the experimental range of �3ðmZÞ.

As pointed out in Ref. [17], a way of testing the
hypothesis that inflation occurred when the Higgs field
was trapped into a shallow false vacuum below the
Planck scale is to look at the tensor-to-scalar ratio r of
cosmological perturbations. The amplitude of the density
fluctuations in the observed Universe as seen by the CMB
and large-scale structure data is parametrized by the power
spectrum in k space, PsðkÞ ¼ �2

Rðk=k0ÞnS�1, where �2
R is

the amplitude at some pivot point k0, whose best-fit value
is �2

R ¼ ð2:43� 0:11Þ � 10�9 at k0 ¼ 0:002 Mpc�1 [37].
In models where inflation happened while the Higgs was
trapped in the shallow minimum [7,18], the Higgs potential
at the inflection point and the amount of gravity waves that
can be produced—parametrized via the tensor-to-scalar
ratio r—are linked via a simple relation,

�2
R ¼ 2

3�2

1

r

Vð�iÞ
M4

; (12)

where M is the reduced Planck scale. Such a prediction
for r is reported in the right plot of Fig. 9. Notice that, for
these models, only when mH is in its upper allowed range

and �3ðmZÞ is quite low is there a chance for the Planck
satellite mission [38] to measure r. However, the forth-
coming experiment EPIC [39] should be able to test r down
to 10�2, while COrE [40] should be able to test down to
about 10�3.

V. CONSTRAINTS ON THE SEESAW MECHANISM

We now consider the effect of including neutrino masses
via a type-I seesaw. This issue has already been considered
in a series of papers [8,41–44].
Although the precise amount of the effect is quite model

dependent, here we obtain a conservative estimate of the
effect by considering only one right-handed neutrino with
mass M�, associated to a light Majorana neutrino with
mass m� ¼ 0:06 eV, which is the scale of the atmospheric
oscillations. This is supported by the following argument.
It is well known that the � function of the Higgs quartic

coupling is affected only if h�ð�Þ, the Yukawa coupling
of the Dirac mass term (defined only for � � M�), is
large enough. Similar to the top Yukawa coupling, the
neutrino Yukawa coupling induces a suppression of the
Higgs quartic coupling at high energy. By increasing M�

and m�, the neutrino Yukawa coupling at the threshold
scale M� also increases,
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FIG. 8 (color online). Values of�i (left) and�� (right) as a function ofmH. For the solid lines, the input parameters are fixed at their
central values and the matching of � is done at� ¼ mH. The shaded regions show the uncertainty induced by the experimental error of
�3ðmZÞ ¼ 0:1196� 0:0017: the short and long dashed curves refer to the lower and upper value at 1�, respectively.
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FIG. 9 (color online). Left: The value of �ð��Þ as a function ofmH. Right: The Higgs potential at�i and the associated prediction for
r as a function of mH. The short and long dashed curves refer to the 1� lower and upper values of �3ðmZÞ, respectively. The shaded
(yellow) vertical region marks the preferred range ofmH at 2� [1,2]. The upper region in the right plot is excluded because r & 0:2 [37].
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h�ðM�Þ ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m�ðM�ÞM�

v2

s
: (13)

This justifies the fact that we equate m� to the the
atmospheric mass scale of about 0.06 eV, which is the
lowest possible value for the heaviest among the three light
neutrinos. In addition, two other Majorana neutrinos with
masses lighter than m� can be accommodated via the see-
saw, but if their right-handed neutrinos are lighter thanM�

the associated Dirac Yukawa couplings are naturally exp-
ected to be smaller, and their effect on �ð�Þ would be
negligible.

In Appendix B we provide the additional terms
(with respect to the pure SM) for the relevant � functions,
above and below the scale M�.

Since the effect of h� is a suppression of �, an SM
configuration with a stable electroweak vacuum could be
rendered metastable because of the addition of the seesaw
interactions. For a fixed value of mH, and in the range of
the top-mass values allowing the electroweak vacuum to
be the global one, one can find the upper bound onM� from
the requirement that the electroweak vacuum remains the
global one even after the inclusion of the seesaw inter-
actions. Clearly, such an upper limit cannot be derived in
the range of the top-mass values for which the electroweak
vacuum is already metastable. As shown in Fig. 10 for
mH ¼ 126 GeV (but similar upper bounds are obtained in
the whole experimental range ofmH), such an upper bound
strongly depends on the top mass5 and is affected by an
uncertainty that is mainly due to �3ðmZÞ (shaded region).
As the top mass decreases, the configuration of the Higgs
potential becomes more stable and the M� upper bound
that ensures that the electroweak vacuum remains the
global one and does not become metastable becomes less
stringent: M� & 3� 1014 GeV. However, by increasing
the top mass the electroweak vacuum becomes less stable
and the upper bound onM� becomes accordingly more and
more stringent. Increasing the top mass further causes the
electroweak vacuum to become metastable even without
seesaw interactions, so that no meaningful bound can be
derived.

The upper bound onM� following from the requirement
of electroweak vacuum stability has to be taken cum grano
salis, in the sense that it is not a physically robust bound,
but rather just a bound that should be respected in the case
that one has a model in which the Higgs potential has to
remain stable for some reason.

We consider in particular the upper bound on M�

needed to avoid the destabilization of an inflection-point
configuration, such as the one depicted via the dashed line
in Fig. 11. Notice that an inflection point becomes a not-so-
shallow local second minimum ifM� 	 1011 GeV and that

electroweak vacuum destabilization is avoided only if the
condition M� & 2� 1011 GeV is satisfied. The latter
bound might be relevant for models of inflation based on
the SM shallow false minimum [7,17,18]; note however
that it is well compatible with the thermal leptogenesis
mechanism used to explain the matter-antimatter asymme-
try, for which the lower bound on the lightest Majorana
neutrino is about 5� 108 GeV [45].
Clearly, the neutrino Yukawa coupling y� is not the only

additional term beyond the SM capable of modifying the
running of � at high energy. As always in the context of a
type-I seesaw, in the case that the vacuum expectation value
of a singlet scalar field S (violating the lepton number by
two units) is actually at the origin of the right-handed
Majorana neutrino mass, the S couplings induce an en-
hancement of �, thus helping the stability of the electro-
weak vacuum [46]. Such an effect is indeed generically
expected when adding a singlet field S to the SM [46,47].
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FIG. 10 (color online). Upper bound onM� as a function of the
running top mass, following from the requirement that the
electroweak vacuum is not destabilized because of the inclusion
of the seesaw, for mH¼126GeV. The shaded region is obtained
by varying �3ðmZÞ in its 1� range.
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FIG. 11 (color online). The dashed curve represents the Higgs
potential as a function of the renormalization scale, for
mH ¼ 126 GeV, �3ðmZÞ ¼ 0:1196, and mt ¼ 171:56 GeV (the
value of the top mass leading to an inflection-point configuration
in the SM case with the former two parameters fixed). The solid
lower curves display the effect of adding the seesaw, with three
increasing values of M� from top to bottom.

5This dependence was not considered in the previous
literature.
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VI. CONCLUSIONS

The recent discovery of a particle consistent with the
SM Higgs boson [1,2] provides a strong motivation to
pursue [6–9,13–15,17] the old project [3–5] of investigat-
ing the behavior of the SM Higgs potential at very high
energies. In particular, one should understand whether the
SM electroweak vacuum is a global minimum up to the
Planck scale, namely, whether we live in a stable vacuum
assuming a desert (or assuming that new interactions do
not modify the running of � with respect to the SM case).
In particular, a stable configuration that deserves special
attention is a shallow false minimum below the Planck
scale; the Higgs field could have been primordially trapped
there, leading to a stage of inflation [7,17,18]. Stability
below the Planck scale is also required in Higgs inflation
models with nonminimal gravitational couplings [13,48].

In our analysis, we adopted the recently derived tools for
an NNLO renormalization procedure [11–14]. As opposed
to previous analyses, we considered as a free parameter the
running top mass rather than the (Tevatron) top pole mass,
as suggested in Ref. [15].

Given the present range of the running top mass and
of the Higgs mass, we found that electroweak vacuum
stability is at present allowed, as shown in Figs. 5 and 6.
To further test stability, a more precise measurement of the
top mass is crucial. As is apparent from the stability

condition of Eq. (9), in the case that the LHC will not
exclude values of the running top mass below 163 GeV (or,
equivalently, values of the top pole mass below 173 GeV),
an electron-positron collider would probably be needed to
discriminate between stability and metastability.
We also determined the high-scale boundary conditions

that allow for a shallow false minimum slightly below the
Planck scale, �ð��Þ 	 10�5 (�� is the renormalization

scale where the � function of the Higgs quartic coupling
vanishes), anddiscussed the prospects for cosmological tests
of such a configuration. Finally, a conservative upper bound
on type-I seesaw right-handed neutrino masses, following
from the requirement of electroweak vacuum stability, was
derived, and its dependence on the top mass was analyzed.
The present analysis does not consider the effect of the

gravitational couplings because it is far from clear how the
quantum effects of the latter would impact studies at very
high energies. Other sources of uncertainty could also
come from the treatment of the effective potential itself,
such as the fine-tuning required for both the cosmological
constant and the Higgs mass.
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APPENDIX A: FORMULAS FOR THE RG RUNNING AT NNLO

1. The � functions

Here we provide the expressions for the � functions up to three loops; see Eq. (2).
At the one-loop level they are given by

�ð1Þ
� ¼ 27

4
gðtÞ4 þ 9

2
g0ðtÞ2gðtÞ2 � 9�ðtÞgðtÞ2 þ 9

4
g0ðtÞ4 � 36htðtÞ4 þ 4�ðtÞ2 � 3g0ðtÞ2�ðtÞ þ 12htðtÞ2�ðtÞ;

�ð1Þ
ht

¼ 9

2
htðtÞ3 � 9

4
gðtÞ2htðtÞ � 8g3ðtÞ2htðtÞ � 17

12
g0ðtÞ2htðtÞ; �ð1Þ

g ¼ � 19

6
gðtÞ3; �ð1Þ

g0 ¼ 41

6
g0ðtÞ3;

�ð1Þ
g3 ¼ �7g3ðtÞ3:

At the two-loop level they are

�ð2Þ
� ¼ 80g3ðtÞ2htðtÞ2�ðtÞ � 192g3ðtÞ2htðtÞ4 þ 915

8
gðtÞ6 � 289

8
g0ðtÞ2gðtÞ4 � 27

2
htðtÞ2gðtÞ4 � 73

8
�ðtÞgðtÞ4

� 559

8
g0ðtÞ4gðtÞ2 þ 63g0ðtÞ2htðtÞ2gðtÞ2 þ 39

4
g0ðtÞ2�ðtÞgðtÞ2 � 3htðtÞ4�ðtÞ þ 45

2
htðtÞ2�ðtÞgðtÞ2 � 379

8
g0ðtÞ6

þ 180htðtÞ6 � 16g0ðtÞ2htðtÞ4 � 26

3
�ðtÞ3 � 57

2
g0ðtÞ4htðtÞ2 � 24htðtÞ2�ðtÞ2 þ 6ð3gðtÞ2 þ g0ðtÞ2Þ�ðtÞ2

þ 629

24
g0ðtÞ4�ðtÞ þ 85

6
g0ðtÞ2htðtÞ2�ðtÞ;

�ð2Þ
ht

¼ htðtÞ
�
�108g3ðtÞ4 þ 9gðtÞ2g3ðtÞ2 þ 19

9
g0ðtÞ2g3ðtÞ2 þ 36htðtÞ2g3ðtÞ2 � 3

4
g0ðtÞ2gðtÞ2 � 23

4
gðtÞ4 þ 1187

216
g0ðtÞ4

� 12htðtÞ4 þ �ðtÞ2
6

þ htðtÞ2
�
225

16
gðtÞ2 þ 131

16
g0ðtÞ2 � 2�ðtÞ

��
;
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�ð2Þ
g ¼ 12g3ðtÞ2gðtÞ3 þ

�
35

6
gðtÞ2 þ 3

2
g0ðtÞ2 � 3

2
htðtÞ2

�
gðtÞ3;

�ð2Þ
g0 ¼ 44

3
g3ðtÞ2g0ðtÞ3 þ

�
9

2
gðtÞ2 þ 199

18
g0ðtÞ2 � 17

6
htðtÞ2

�
g0ðtÞ3;

�ð2Þ
g3 ¼ g3ðtÞ3

�
9

2
gðtÞ2 � 26g3ðtÞ2 þ 11

6
g0ðtÞ2 � 2htðtÞ2

�
:

The leading terms in the three-loop � functions of � and ht are [12]

�ð3Þ
� ¼ 12

��
� 266

3
þ 32�3

�
g3ðtÞ4htðtÞ4 þ ð�38þ 240�3Þg3ðtÞ2htðtÞ6 �

�
1599

8
þ 36�3

�
htðtÞ8

þ 1

6

�
1244

3
� 48�3

�
g3ðtÞ4htðtÞ2�ðtÞ þ 1

6
ð895� 1296�3Þg3ðtÞ2htðtÞ4�ðtÞ þ 1

6

�
117

8
� 198�3

�
htðtÞ6�ðtÞ

þ 1

36
ð�1224þ 1152�3Þg3ðtÞ2htðtÞ2�ðtÞ2 þ 1

36

�
1719

2
þ 756�3

�
htðtÞ4�ðtÞ2

þ 97

24
htðtÞ2�ðtÞ3 þ 1

1296
ð3588þ 2016�3Þ�ðtÞ4

�
;

�ð3Þ
ht

¼ 2

��
� 2083

3
þ 320�3

�
g3ðtÞ6 þ

�
3827

12
� 114�3

�
g3ðtÞ4htðtÞ2 � 157

2
g3ðtÞ2htðtÞ4 þ

�
339

16
þ 27

4
�3

�
hðtÞ6

þ 4

3
g3ðtÞ2htðtÞ2�ðtÞ þ 33

2
htðtÞ4�ðtÞ þ 5

96
htðtÞ2�ðtÞ2 � 1

12
�ðtÞ3

�
;

where �3 ¼ 1:20206 . . . is the Riemann zeta function.
The complete three-loop � functions for the gauge couplings are [11]

�ð3Þ
g ¼ 324953

1728
gðtÞ7 þ 39gðtÞ5g3ðtÞ2 þ 81gðtÞ3g3ðtÞ4 þ 291

32
gðtÞ5g0ðtÞ2 � 1

3
gðtÞ3g3ðtÞ2g0ðtÞ2 � 5597

576
gðtÞ3g0ðtÞ4

� 729

32
gðtÞ5htðtÞ2 � 7gðtÞ3g3ðtÞ2htðtÞ2 � 593

96
gðtÞ3g0ðtÞ2htðtÞ2 þ 147

16
gðtÞ3htðtÞ4;

�ð3Þ
g0 ¼ 1315

64
gðtÞ4g0ðtÞ3 � gðtÞ2g3ðtÞ2g0ðtÞ3 þ 99g3ðtÞ4g0ðtÞ3 þ 205

96
gðtÞ2g0ðtÞ5 � 137

27
g3ðtÞ2g0ðtÞ5 � 388613

5184
g0ðtÞ7

� 785

32
gðtÞ2g0ðtÞ3htðtÞ2 � 29

3
g3ðtÞ2g0ðtÞ3htðtÞ2 � 2827

288
g0ðtÞ5htðtÞ2 þ 315

16
g0ðtÞ3htðtÞ4;

�ð3Þ
g3 ¼ 109

8
gðtÞ4g3ðtÞ3 þ 21gðtÞ2g3ðtÞ5 þ 65

2
g3ðtÞ7 � 1

8
gðtÞ2g3ðtÞ3g0ðtÞ2 þ 77

9
g3ðtÞ5g0ðtÞ2 � 2615

216
g3ðtÞ3g0ðtÞ4

� 93

8
gðtÞ2g3ðtÞ3htðtÞ2 � 40g3ðtÞ5htðtÞ2 þ 101

24
g3ðtÞ3g0ðtÞ2htðtÞ2 þ 15g3ðtÞ3htðtÞ4:

2. Higgs quartic coupling matching

According to Sirlin and Zucchini [27], the one-loop matching is given by


ð1Þ
H ð�Þ ¼ G�m

2
Z

8
ffiffiffi
2

p
�2

�
f1ð�Þ þ f0ð�Þ þ f�1ð�Þ



�
;

where  ¼ m2
H

m2
Z

and, introducing c ¼ mW

mZ
,
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f1ð�Þ ¼ 3

2
log ðÞ � log ðc2Þ þ 6 log

�
�2

m2
H

�
� 1

2
Z

�
1



�
� Z

�
c2



�
þ 9

2

�
25

9
� �ffiffiffi

3
p

�
;

f0ð�Þ ¼ 3c2

s2
log ðc2Þ þ 12 log c2ðc2Þ þ 3c2

� c2
log

�


c2

�
þ 4c2Z

�
c2



�
� 15

2
ð2c2 þ 1Þ � 6

�
2c2 � 2m2

t

m2
Z

þ 1

�
log

�
�2

m2
Z

�

� 3m2
t

m2
Z

�
4 log

�
m2

t

m2
Z

�
þ 2Z

�
m2

t

m2
Z

�
� 5

�
þ 2Z

�
1



�
;

f�1ð�Þ ¼ 8ð2c4 þ 1Þ � 12c4 log ðc2Þ � 12c4Z

�
c2



�
þ 6

�
2c4 � 4m4

t

m4
Z

þ 1

�
log

�
�2

m2
Z

�

� 6Z

�
1



�
þ 24m4

t

m4
Z

�
log

�
m2

t

m2
Z

�
þ Z

�
m2

t

m2
Z

�
� 2

�
;

Z½z� ¼
8><
>:
2AðzÞ arctan

�
1

AðzÞ
�

if z > 1
4

AðzÞ log
�
AðzÞþ1
1�AðzÞ

�
if z < 1

4

; AðzÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j1� 4zj

p
:

We compute the QCD and Yukawa contributions to

�ð2Þð�Þ following the expressions of Ref. [14] (multiplying
them by a factor of 6 to compensate for the different
definition of the quartic coupling).

APPENDIX B: SEESAW CONTRIBUTION
TO THE � FUNCTIONS

Below the right-handed neutrino mass scale, the
running of the effective light Majorana neutrino mass is
given by [49]

dm�ðtÞ
dt

¼ �

�
�3g2ðtÞ2 þ 6htðtÞ2 þ �ðtÞ

6

�
m�ðtÞ:

For �>M�, we have [50]

dh�ðtÞ
dt

¼ �h�ðtÞ
�
5

4
h�ðtÞ2 þ 3

2
htðtÞ2 � 3

4
g0ðtÞ2 � 9

4
gðtÞ2

�
;

together with


�ð1Þ
� ¼ �3h�ðtÞ4 þ 2�ðtÞh�ðtÞ2; 
�ð1Þ

ht
¼ 1

2
h�ðtÞ2:
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