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The expectation values of energy density and pressure of a quantum field inside a wedge-shaped region

appear to violate the expected relationship between torque and total energy as a function of angle. In

particular, this is true of the well-known Deutsch-Candelas stress tensor for the electromagnetic field,

whose definition requires no regularization except possibly at the vertex. Unlike a similar anomaly in the

pressure exerted by a reflecting boundary against a perpendicular wall, this problem cannot be dismissed

as an artifact of an ad hoc regularization.
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I. INTRODUCTION

The law of conservation of energy requires that the
change in energy of a system, such as a fluid in a box, in
response to an infinitesimal motion of an element of its
boundary be equal to the negative of the force on that
boundary times its perpendicular displacement. Thus, for
perpendicular motion of a flat boundary at x ¼ const,
one has

� @E

@x
¼ F ¼

ZZ
pdydz; (1)

where E is the energy, p is the pressure, and the integral is
over the moving element of boundary. Similarly, for a
wedge of opening angle �, one expects the change in
energy with respect to angle to be related to the torque
on the moving side:

� @E

@�
¼ � ¼

ZZ
rpdrdz; (2)

in cylindrical coordinates. Such relations (sometimes
called instances of the ‘‘principle of virtual work’’) do
not follow automatically from the local energy-momentum
conservation law, @T��

@x� ¼ 0; the equation of state of the

matter (dependence of pressure on energy density) must
be consistent with the dependence of the energy density on
the parameter concerned.

Recent work on quantum vacuum energy has displayed
violations of Eq. (1) that have been traced to cutoffs
introduced, without adequate physical basis, to remove
divergences in the total energy near an idealized boundary.
(See Ref. [1] and references therein.) An ad hoc remedy

was achieved (reviewed below). In our more recent work
on wedges, it was expected that a similar problem and
remedy would arise in connection with Eq. (2). As reported
below, the problem arose, but the remedy did not work.
More importantly, we point out here that Eq. (2) is violated
already for conformally invariant fields [2], where there is
no boundary divergence in a wedge (except at the axis),
and hence the result cannot be blamed on a bad regulari-
zation method.

II. CLASSICAL FLUID

We begin by reviewing how Eq. (2) manifests itself for a
classical fluid or a more general radially layered system.
Assume an equation of state p ¼ ��, where, at first, � and
p are homogeneous (but depend on �). Consider a wedge
region (0< �< �) with large outer radius R, and assume
that there is no shear stress Tr� on that outer boundary.
All quantities are considered per unit length in the
z direction (e.g., the ‘‘volume’’ V has units of area).
Then, E ¼ �V ¼ 1

2R
2��, so

@E

@�
¼ 1

2
R2

�
�þ �

@�

@�

�
: (3)

Also,

� ¼
Z R

0
prdr ¼ 1

2
R2��: (4)

So, we expect that

�þ �
@�

@�
¼ ���; (5)

to satisfy Eq. (2). Equation (5) implies that � / ��ð�þ1Þ,
and hence E has the form

E ¼ c1�
�� ¼ c2V

��: (6)
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The final formula is shape-independent and equivalent to
the equation of state.

Since the torque balance holds locally for each r,
this discussion generalizes to �, p, and � dependent
on r (for example, to surface tension in a cylindrical
membrane).

III. RECTILINEAR PRESSURE ANOMALY
AND ITS RESOLUTION

Next, we review Ref. [1]. Consider a scalar field with
the simplest curvature coupling, � ¼ 1

4 . (Other choices do

not affect the situation significantly.) At distance x from a
perfectly reflecting plane boundary, the expectation value
of the energy density is � ¼ ð32	2x4Þ�1, and that of the
pressure parallel to the plane is the negative of that;
therefore, on a test surface perpendicular to the plane,
the density and pressure satisfy Eq. (1) pointwise, but the
total energy and force (integrated over x) are divergent.
Of course, a real boundary cannot be perfectly reflecting
at arbitrarily high frequencies, and an arbitrary, but
physically plausible, response is to insert an exponential
ultraviolet cutoff. The resulting energy and force violate
Eq. (1) by a factor of �2. [Please note that the rightmost
member of Eq. (20) in Ref. [1] has the wrong sign.]
The ultraviolet cutoff is related to point splitting in the
time direction, so it is natural to consider splittings
(by distance 
) in the various space directions; choosing
the remaining orthogonal space direction yields functions
satisfying Eq. (1) (and, incidentally, agreeing with the
ultraviolet regularization for the pressure, not for the
energy):

� ¼ 1

2	2ð
2 þ 4x2Þ2 ¼ �p: (7)

IV. SCALAR QUANTUM FIELD THEORY
IN AWEDGE

In Refs. [3,4], the cutoff technologies of Ref. [1] and
predecessor papers were applied in cones and wedges. The
obvious analog of the cutoff successful in the rectilinear
case is point splitting in the axial (z) direction. There were
two surprises: (1) The cutoff did not completely remove the
divergence at the axis of the wedge, and (2) the expected
equality (2) was not satisfied, even with the axial cutoff.
We intend to improve and extend our MATHEMATICA cal-
culations to this effect before publishing any details. Our
attempts to resolve the conundrum about the torque were
interrupted by the observation reported in the next section.

V. THE DEUTSCH-CANDELAS STRESS TENSORS
FOR CONFORMALLY INVARIANT FIELDS

In a classic paper [2], whose results have been confirmed
by independent calculations (e.g., Refs. [5–7]), Deutsch
and Candelas calculated the energy density and pressure in
a wedge for the conformally coupled (� ¼ 1

6 ) scalar field

and the electromagnetic field. For these fields, there is no
divergence against a flat boundary (though the divergence
at the axis remains, and weaker divergences emerge for
curved, smooth boundaries). Therefore, for strictly positive
values of r, one can meaningfully study the unregularized
quantities, and the issue of a trustworthy cutoff does
not arise.
According to Ref. [2], the vacuum stress tensor inside

a wedge, in coordinates ðt; r; �; zÞ and metric signature
g00 < 0, is

T�
� ¼ fð�Þ

720	2r4
diagð1; 1;�3; 1Þ; (8)

with

fð�Þ ¼
8><
>:

	2

2�2

�
	2

�2 � �2

	2

�
for the conformally coupled scalar field;�

	2

�2 þ 11
��

	2

�2 � 1
�

for the electromagnetic field:
(9)

Confining attention to a finite interval rmin < r < rmax ,
consider the torque on the side of the wedge at � ¼ �
(the other side remaining at � ¼ 0). One may consider
rmax =rmin to be large, so that the region approximates a
complete wedge, or to be small, to fix attention on a
cylindrical layer of vacuum energy at one particular r;
the result is completely uniform in this parameter. From
the pressure T�

� , the torque is (per unit z)

� ¼
Z rmax

rmin

rdrT�
�ðrÞ ¼ �

Z rmax

rmin

rdr
1

720	2r4
3fð�Þ: (10)

But we should also be able to calculate it from the �
derivative of the energy (per unit z)

E ¼ �
Z rmax

rmin

rdr
Z �

0
d�T00

¼ �
Z rmax

rmin

rdr
1

720	2r4
�fð�Þ: (11)

Thus,

� ¼ � @E

@�
¼

Z rmax

rmin

rdr
1

720	2r4
d

d�
½�fð�Þ�: (12)

Consistency will, therefore, be achieved if

gð�Þ � d

d�
½�fð�Þ� þ 3fð�Þ ¼ 0: (13)

We have
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�fð�Þ ¼
(
1
2	

4��3 � 1
2� scalar;

	4��3 þ 10	2��1 � 11� electromagnetic;

(14)

and thus

gð�Þ ¼
��2 scalar;

20	2��2 � 44 electromagnetic:
(15)

Therefore, there is a discrepancy that has nothing to do
with a bad cutoff but is inherent in either the quantum field
theory or the basic physics of torque. Note that the anomaly
has a constant sign as a function of r, so it cannot disappear
when the radial integral is evaluated.

In the framework of Eqs. (3)–(6), the relevant compo-
nent of pressure satisfies p ¼ �� with � ¼ 3, just as for
parallel plates [to which Eq. (8) formally reduces in the
limit of small � and large r]. But the associated energy
density does not satisfy Eq. (6) (except in that small-�
limit); it is inconsistent with the equation of state.

VI. CONCLUSION

Unless some elementary blunder is being made, the
violation of the torque balance equation (2) by the
Deutsch-Candelas stress tensor indicates some fundamen-
tal problem in our understanding of vacuum energy. It is
not an artifact of regularization, because no cutoff has been
introduced in the analysis. It apparently has nothing to do
with divergences or boundary terms in the energy, but
rather with the true Casimir energy of the bulk region.

If the wedge is made of thin plates, one might argue that
the force from outside the wedge, and the corresponding
variation in energy, must be taken into account. These
quantities are obtained by replacing � by 2	� � and
reversing the sign. In the scalar case, the anomaly g is
independent of �, so the total anomaly does vanish in that
case. In the electromagnetic case, however, it does not
cancel (unless � ¼ 	). Our MATHEMATICA calculations
indicate the same conclusion for the scalar field with

� ¼ 1
4 and the axial cutoff: The anomaly for � ¼ 3	

4 is

not the same as that for � ¼ 	
4 .

It has been suggested that the persistent divergence at
r ! 0 spoils the argument: The conclusion is not convinc-
ing unless all quantities are finite, or at least all infinities
are cleanly cancelled by considering the exterior of the
region along with the interior. Therefore, we are presently
investigating the Deutsch-Candelas stress tensors in an
‘‘annular sector’’ and its exteriors. That is, we consider
conducting boundaries at r ¼ rmin > 0, r ¼ rmax <1,
� ¼ 0 with rmin < r < rmax , and � ¼ � with rmin < r <
rmax , and allow the last boundary to move. This model has
been studied in various ways in Refs. [8,9], but those works
do not answer all the questions we need to ask. The
divergence at r ¼ 0 is now removed (and would be inde-
pendent of � anyway). However, new divergences are
now introduced by the curved boundaries. The usual
leading-order surface divergences will cancel (in the force)
between the inside and outside of the wedge surfaces (and
between electric and magnetic terms in the electromag-
netic case); we expect them to be nonanomalous anyway,
on the basis of Ref. [1]. There are also higher-order diver-
gences associated with the curvature of the boundary. The
leading such term will cancel, the exterior of the annulus
against the interior. Also, corner energies are independent
of �. The crux of the problem is how the residual bulk
Casimir term depends on �. One remaining complication
is that in the presence of wedge boundaries, stress tensors,
in general, are not diagonal; the possibility of a nonzero
shear force on the curved sides must be considered.
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