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The conformal gravity fit to observed galactic rotation curves requires � > 0. On the other hand, the

conventional method for light deflection by galaxies gives a negative contribution to the Schwarzschild

value for � > 0, which is contrary to observation. Thus, it is very important that the contribution to

bending should in principle be positive, no matter how small its magnitude is. Here we show that the

Rindler-Ishak method gives a positive contribution to Schwarzschild deflection for � > 0, as desired. We

also obtain the exact local coupling term derived earlier by Sereno. These results indicate that conformal

gravity can potentially test well against all astrophysical observations to date.
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The metric exterior to a static spherically symmetric
distribution in Weyl conformal gravity has been obtained
by Mannheim and Kazanas [1]. Recently, the solution has
been used to predict rotation curves of many galaxy
samples [2] and that the model can provide a good idea
of the possible size of individual galaxies [3]. The metric
reads (G ¼ c ¼ 1):

d�2 ¼ �BðrÞdt2 þ 1

BðrÞdr
2 þ r2ðd�2 þ sin 2�d’2Þ;

BðrÞ ¼ �� 2M

r
þ �r� kr2;

(1)

where � ¼ ð1� 6M�Þ1=2, M is the luminous mass, and k
and � are arbitrary constants that could be appropriately
fixed by using the fit to rotation curves. For distances
neither too small nor too large, one may take � ¼ 1 but
in what follows we shall not make any such approximation.
Now, conventional calculations for light deflection show
that the constant k does not appear in the relevant equa-
tions, leading finally to the two way deflection as [4]

2� ¼ 4M

r0
� �r0; (2)

where r0 is the distance of closest approach. The difficulty
is that the fit to observed rotation curve requires � > 0, and
for consistency, all other astrophysical observations should
respect this sign. Evidently, for � > 0 in Eq. (2), the light
deflection by a galaxy falls short of the Schwarzschild
value 4M

r0
, while observations tell us that 2� > 4M

r0
.

The purpose of this brief paper is to show that conformal

gravity does give a positive contribution to Schwarzschild
deflection, removing the above impasse.
The resolution is based on the realization that conven-

tional methods do not apply to asymptotically nonflat
spacetimes as the limit r ! 1 makes no sense in it [5].
The Rindler-Ishak method of invariant angle is most
appropriate in such situations, and we show that it gives
a positive contribution to light bending proportional to
þ�, as required. The bending angle in general is defined
by � ¼ c � ’. Rindler and Ishak considered the case
’ ¼ 0 so that the deflection angle is � ¼ c given by [5]

tan c ¼ B1=2r

jAj ; (3)

where Aðr; ’Þ ¼ dr
d’ . With u ¼ 1

r , the photon trajectory

from (1) is given by

d2u

d’2
¼ ��uþ 3Mu2 � �

2
: (4)

As evident, k has disappeared from the above equa-
tion. This is a nonlinear differential equation that has
to be solved perturbatively in powers of M. Following
Bodenner and Will [6], we linearize the equation by ex-
panding u in orders ofM. To first order, we have, for small
perturbation u1

1

r
¼ u ¼ u0 þ u1: (5)

Then the zeroth and first order linearized equations respec-
tively become

d2u0
d’2

þ �u0 ¼ ��

2
; (6)

d2u1
d’2

þ �u1 ¼ 3Mu20: (7)
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In Eq. (6), redefine �u0 ¼ ~u0, �u0 ¼ ~u0 þ �
2 ,

ffiffiffiffi

�
p

’ ¼ �’;

then it transforms into

d2 �u0
d �’2

þ �u0 ¼ 0; (8)

which yields

�u 0 ¼ 1

R
cos ð �’Þ: (9)

Reverting to original variables, we get

u0 ¼ 1

�

�

��

2
þ 1

R
cos f ffiffiffiffi

�
p

’g
�

: (10)

Note that a
ffiffiffiffi

�
p

factor has sneaked into the argument of the
trigonometric function and also appears at other places.
Their contributions must also be included in the deflection
angle. The integration of the linear Eq. (7) can be straight-
forwardly performed by using the standard method.1 The
solution is

u1 ¼ M

4R2�3
½6þ 3R2�2 � 6R� cos f ffiffiffiffi

�
p

’g
� 2 cos f2 ffiffiffiffi

�
p

’g � 6R
ffiffiffiffi

�
p

�’ sin f ffiffiffiffi

�
p

’g�: (11)

Then the perturbative orbit equation, after changing ’ !
�=2� ’ on the right-hand sides of Eqs. (10) and (11), is
given by

u¼u0þu1

¼ 1

�

�

��

2
þ 1

R
cos

�

ffiffiffiffi

�
p
2

ð��2’Þ
��

þ M

4R2�3

�

6þ3R2�2�6R�cos

�

ffiffiffiffi

�
p
2

ð��2’Þ
�

�2cosf ffiffiffiffi

�
p ð��2’Þg�3�R

ffiffiffiffi

�
p

�sin

�

ffiffiffiffi

�
p
2

ð��2’Þ
�

þ6R
ffiffiffiffi

�
p

�’sin

�

ffiffiffiffi

�
p
2

ð��2’Þ
��

: (12)

Note that the usual Schwarzschild orbit equation u ¼ 1
R sin’þ M

2R2 ð3þ cos 2’Þ is recovered at � ¼ 0 and � ¼ 1. From
Eq. (12), we can find r at ’ ¼ 0 as

r ¼ 4�3R2

X
; (13)

where

X � 6M� 2�2R2�þ 3MR2�2 � Rð6M�� 4�2Þ cos
�

�
ffiffiffiffi

�
p
2

�

� 2M cos f� ffiffiffiffi

�
p g � 3MR�

ffiffiffiffi

�
p

� sin

�

�
ffiffiffiffi

�
p
2

�

: (14)

Also, at ’ ¼ 0, we find that

jAj ¼ 4R2�7=2½3MR�
ffiffiffiffi

�
p

� cos f�
ffiffiffi

�
p
2 g þ 4R�2 sin f�

ffiffiffi

�
p
2 g � 4M sin f� ffiffiffiffi

�
p g�

X2
: (15)

It can be seen again that, at � ¼ 0, we recover the Schwarzschild values r ¼ R2

2M and jAj ¼ R3

4M2 . Using the value of r from
Eq. (13) and jAj from Eq. (15), we get from Eq. (3) the required deflection angle

tan c ¼ X
ffiffiffiffiffiffiffiffiffi

BðrÞp

3M�R�� cos f�
ffiffiffi

�
p
2 g þ 4

ffiffiffiffi

�
p ½R�2 sin f�

ffiffiffi

�
p
2 g �M sin f� ffiffiffiffi

�
p g�

: (16)

This is the result we get considering the exact metric
without any a priori approximation on u or �. Restoring
the value of�, expanding in the first power of � and then in

first power in R, we obtain for small c , after converting to
r0 via

1
r0
¼ 1

R þ M
R2 ) R ’ r0, the leading order terms

2c ¼ 4M

r0
� kr30

2M
þ 15M2�

r0
: (17)

The second term is the same as the one obtained by
Rindler and Ishak [4] for the deflection in the
Schwarzschild—de Sitter spacetime. Using k ¼ �=3 for
comparison with literature and expressing r0 in terms of
the impact parameter b as 1

r0
’ 1

b þ �b
6 , we have the relevant

terms

1Define the operator D � d
d’ and write the particular

integral of Eq. (7) as u1 ¼ 1
ðD2þ�Þ ½C2 þ Aþ

B cos f ffiffiffiffi

�
p

’g þ C
2 cos f2 ffiffiffiffi

�
p

’g� where the constants are

A¼3M�2

4�2 , B¼�3M�
R�2 , C¼ 3M

R2�2 . Note that ðD2þ�Þð C2�Þ¼
C
2) C=2

ðD2þ�Þ¼ C
2�¼ð M

4R2�3Þ�6 etc. Also use ðD2þ�Þ’sinð ffiffiffiffi

�
p

’Þ¼
2

ffiffiffiffi

�
p

cosð ffiffiffiffi

�
p

’Þ)cosð ffiffiffi

�
p

’Þ
ðD2þ�Þ ¼’sinð ffiffiffi

�
p

’Þ
2
ffiffiffi

�
p . Similarly, 1

ðD2þ�Þ �
cos f2 ffiffiffiffi

�
p

’g ¼ � 1
3� cos f2 ffiffiffiffi

�
p

’g. Adding the characteristic

function from ðD2 þ �Þu1 ¼ 0, we arrive at Eq. (11).

BRIEF REPORTS PHYSICAL REVIEW D 87, 047503 (2013)

047503-2



2c ¼ 4M

r0
þ 15M2�

r0
’ 4M

b
þ 2Mb�

3
þ 15M2�

b
>

4M

r0
:

(18)

Note that we have also obtained the local coupling
term 2Mb�

3 derived earlier by Sereno [5] by a completely
different method, namely, by integrating the first order
differential equation of light orbit. Our main result is that
we have obtained a positive contributionþ 15M2�

b instead of
a negative contribution. This positivity is important as a
principle since it lends physical consistency to conformal
gravity predictions.

Here we wish to point out that Sultana and Kazanas [7]
have first tackled the present problem of light deflection.
To make contact with their calculation, we should redefine
our M as

M ¼ �

2
ð2� 3��Þ ) � ¼ ð1� 6M�Þ1=2 ¼ 1� 3��:

(19)

They used the path equation to first order in � as

uSK ¼
�

sin’

b
� �

2

�

þ
�

3�ð2� 3��Þ
4b2

þ �ð2� 3��Þ
4b2

cos 2’

�

� 3��

2b
’ cos’ (20)

that yielded a negative contribution � 4�2�
b to two way

deflection. However, note that in searching for the first
power effect of �, it is only logical that one must retain
all the first power terms in � in relevant expansions, which
in turn implies that one must retain � � 1 in the trigono-
metric arguments and elsewhere. Then the expression for u
from Eq. (12), to first order in �, reads

u ¼
�

sin’

b
� �

2

�

þ 3��

2b
sin’þ

�

3�ð2þ 15��Þ
4b2

þ �ð2þ 15��Þ
4b2

cos 2’þ 3�2�

4b2
ð2’� �Þ sin 2’

�

;

(21)

which is widely different from uSK. Thus the negative
contribution seems ruled out. To see the actual contribu-

tion, it is enough to convert 2c ¼ 4M
r0

þ 15M2�
r0

in terms of

the notation � used in Ref. [7], which would then yield, to

first order in �, the result 2c ¼ 4�
r0
þ 9�2�

r0
. Yet again, the

positive � contribution is quite evident.
We can incorporate the light bending Eq. (18) in the

lensing equation, ignoring the local coupling term, which
is numerically much smaller than the � term by several

orders of magnitude for typical galaxies. The lens equation
is given by

�Dos ¼ �Dos þ ð2c ÞDls: (22)

When the observer, lens and source are aligned in one
direction, we have � ¼ 0, which yields, in the small angle
approximation b ¼ �Dol, the ‘‘Weyl angle’’ as

�Weyl ¼
�

4Mþ 15M2�

D

�

1=2
; (23)

where D � DolDos

Dls
. The Einstein angle is of course

�Einstein ¼ ð4MD Þ1=2, which means that the Schwarzschild

mass is only to be redefined as �M ¼ Mþ 15
4 M

2� to obtain

the Weyl angle. Of course, for galactic lenses, these masses
do not differ enormously. This is expected as the luminous
matter obeys MLðrÞ / r3, while flat rotation curves de-
mand MDMðrÞ / r in the halo region that increases with
radius more slowly with distance than MLðrÞ and thus is
comparatively rarer.2 Customarily, the observed light de-
flection is explained by a total mass distribution that in-
cludes also the hypothetical ‘‘dark matter’’ in excess of the
luminous component [4]. On the other hand, in conformal
gravity, this hypothesis is not required [1–3]. Our result
here supports this central aspect of conformal gravity in
that the mass gets automatically enhanced to �M>M due
necessarily to the positive contribution þ 15

4 M
2�, as we

promised to show.
It has been pointed out to us that the �r term can be

absorbed into a conformal factor [8] and that the sign of the
� contribution to bending can alter under different choices
of conformal factors [9].3 While we agree with these facts,
we still worked only in the conformal frame as exactly
fixed by Eq. (1), i.e., in the metric used by Sultana and
Kazanas [7], for the single reason that it has remarkably
explained observations for appropriate choices of � and a
quadratic potential [2]. It is true that the bending effect is
exceedingly small and, as it stands, incompatible with the
observations but our aim was to argue that the sign must be
positive in the first place for qualitative validity of confor-
mal gravity theory.4 Thus, it remains for us to explore if the
theory can show also quantitative validity with respect to
bending observations. Work is under way.
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4Under the practical assumption that R � M, 1R ’ 1

r0
’ 1

b þ �b
6 ,

the � bending is always positive though exceedingly small.
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