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We identify a special information-theoretic property of quantum field theories with holographic duals:

the mutual informations among arbitrary disjoint spatial regions A, B, C obey the inequality IðA:B [ CÞ �
IðA:BÞ þ IðA:CÞ, provided entanglement entropies are given by the Ryu-Takayanagi formula. Inequalities

of this type are known as monogamy relations and are characteristic of measures of quantum entangle-

ment. This suggests that correlations in holographic theories arise primarily from entanglement rather than

classical correlations. We also show that the Ryu-Takayanagi formula is consistent with all known general

inequalities obeyed by the entanglement entropy, including an infinite set recently discovered by Cadney

et al.; this constitutes strong evidence in favor of its validity.
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I. INTRODUCTION

The holographic principle states that the degrees of
freedom of quantum gravity are organized in a way that
is consistent with black hole entropy. Thus holography and
information theory are intimately related. The most precise
realization of the holographic principle is the AdS/CFT
correspondence, which describes certain theories of quan-
tum gravity in terms of specific quantum field theories
living at the boundary of spacetime. It is therefore natural
to ask whether there are purely information-theoretic
special properties of quantum field theories with bulk
holographic duals. We will argue that the answer to this
question is yes, at least in a suitable large-N limit where the
bulk theory becomes classical Einstein gravity.

Our starting point is the conjectured formula of Ryu and
Takayanagi [1,2] for entanglement entropies in field theo-
ries with holographic duals. In any quantum field theory,
we may choose a region A of space and consider the
density matrix �A obtained by tracing over the degrees of
freedom outside of this region; its von Neumann entropy
SðAÞ ¼ �trð�A log�AÞ is called the entanglement entropy
of A. The density matrix �A, and hence SðAÞ, depend on
both the choice of region and the state of the field theory.
The Ryu-Takayanagi (RT) conjecture states that in a field
theory with a holographic dual described by classical
Einstein gravity, in any state represented by a static space-
time, the entanglement entropy is given by the area of a
certain minimal surface:

SðAÞ ¼ 1

4GN

min
MA

ðareaðMAÞÞ: (1.1)

Here GN is the bulk Newton constant, and the minimum
is over surfaces MA in the bulk that are homologous to A
(i.e., A [MA ¼ @a for some bulk region a). The RT for-
mula satisfies many checks but should be regarded as a
conjecture. (See Refs. [3,4] for reviews and discussions).
Classical and quantum corrections to the bulk theory are
known to give rise to corresponding corrections to (1.1);
however, the precise form of these corrections is not known
in general.
In quantum field theory, the entanglement entropy SðAÞ

contains a short-distance divergence which is proportional
to the area of A in the boundary. In order to remove this
divergencewemust introduce a regulator, which renders the
result scheme dependent. In the RT formula this is reflected
by the fact thatMA has infinite area, and must be regulated
by a choice of cutoff surface in the bulk. In order to obtain a
scheme-independent quantity we can construct a linear
combination of entanglement entropies for which these
short-distance divergences cancel. For example, given two
disjoint, separated regions A and B the quantity

IðA:BÞ :¼ SðAÞ þ SðBÞ � SðABÞ; (1.2)

(where AB denotes A [ B) is finite and regulator indepen-
dent. This quantity is known as the mutual information. It
measures the total amount of correlation (both classical and
quantum) between A and B. (See Ref. [5], for example, for
an operational justification of that statement). Consistent
with this interpretation, the mutual information is always
non-negative (subadditivity of entropy),

IðA:BÞ � 0; (1.3)
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and increasesmonotonically upon adjoining an extra region
C to B (strong subadditivity of entropy),

IðA:BCÞ � IðA:BÞ: (1.4)

Headrick and Takayanagi [6] showed that the RT formula
obeys the strong subadditivity inequality.

In this paper we consider the more complicated tripar-
tite information [7] (or I-measure [8])

I3ðA:B:CÞ :¼ SðAÞ þ SðBÞ þ SðCÞ � SðABÞ � SðBCÞ
� SðACÞ þ SðABCÞ
¼ IðA:BÞ þ IðA:CÞ � IðA:BCÞ: (1.5)

The first line makes it clear that I3 is symmetric under
permutations of its arguments.1 It is easy to see that unlike
the mutual information, the area-law divergences in the
entanglement entropies cancel in I3 even when the regions
share boundaries. The second line of (1.5) shows that I3
can be interpreted as a measure of the ‘‘extensivity’’ of
mutual information. When I3 ¼ 0 the mutual information
of A with BC is the sum of its mutual informations with B
and C individually; the mutual information increases in an
extensive manner as we combine B and C. In a general
quantum system I3 can be either positive, negative, or zero,
and a typical quantum field theory will exhibit all three
behaviors depending on the choice of A, B, C [7]. I3 is also
the combination of entanglement entropies appearing, with
a particular configuration of regions, in Kitaev and
Preskill’s calculation of the topological entanglement
entropy of massive theories in three dimensions [9].

The main result of this paper is that according to the RT
formula, the mutual information is always extensive or
superextensive in holographic theories. In other words,
for any choice of regions,

I3ðA:B:CÞ � 0: (1.6)

The proof is essentially a more elaborate version of the
holographic proof of strong subadditivity [6]. It applies
irrespective of the topologies of the bulk (including the
possible presence of horizons), the boundary, and the
regions A, B, C. We further conjecture that (1.6) is obeyed
by any large-N field theory, whether or not the theory is
described by Einstein gravity.

The property (1.6) has several interesting implications
for holography. First, it provides a novel and strong con-
sistency check on the RT formula. The entanglement
entropies of a quantum system obey various inequalities.
Strong subadditivity is one such property; an infinite set of
more complicated (and logically independent) inequalities
were described in Refs. [10,11]. We will show that all of
these inequalities follow from (1.6). In fact, it can be shown
that all other known identities obeyed by the entanglement

entropies are consequences of these combined with some
more elementary inequalities. We conclude that the RT
formula obeys all applicable known general properties of
the entanglement entropy.
Second, assuming that the RT formula is correct, prop-

erty (1.6) is a necessary condition for a field theory to have
a classical holographic dual.
Third, the property (1.6) may shed some light on the

physical nature of correlations in the AdS/CFT correspon-
dence. In general, the mutual information IðA:BÞ quantifies
both classical correlations and quantum entanglement.
AdS/CFT is a strong-weak coupling duality, so one expects
that when the bulk theory is classical the boundary theory
is highly quantum and the correlations are therefore
quantum mechanical in nature. The property (1.6) can be
regarded as a precise version of this statement. To see what
this means—and to understand the title of this paper—it is
useful to know that inequalities that are structurally of the
same form as (1.6), i.e.,

fðA; BÞ þ fðA;CÞ � fðA; BCÞ; (1.7)

where f is some measure of entanglement, appear
frequently in quantum information theory and quantum
cryptography. Such ‘‘monogamy’’ relations reflect the
fact that unlike classical correlation, entanglement is not
a shareable resource: entanglement in the A-B system
cannot be shared with the A-C system. To put it another
way, entangled correlations between A and B cannot be
shared with a third system C without spoiling the original
entanglement. This property is responsible for the security
of quantum cryptography. In a general quantum system or
quantum field theory, the mutual information does not obey
the monogamy condition because it encodes both entan-
glement and classical correlations. We can thus refer to the
property (1.6) as the statement that in holographic theories
mutual information is monogamous. This monogamy
suggests that in such theories quantum entanglement domi-
nates over classical correlations.2

In the next section we introduce the tripartite informa-
tion and describe its behavior in various field theories. A
review of the literature shows that in most cases where
explicit calculations are possible, it can take any sign
depending on the regions chosen. Section III contains our
proof that the RT mutual information is monogamous. We
also explain why we believe that this result will continue to
hold whenever the bulk theory is classical, irrespective of
whether it is described by Einstein gravity; in other words,

1When the full system is in a pure state, then I3 is in fact
symmetric under permutations of A, B, C, D, where D is the
complement of ABC.

2Given that the large-N limit is a classical limit, the reader
might object to the statement that quantum entanglement could
dominate over classical correlations in a large-N theory. It is true
that there cannot be entanglement between classical subsystems
of a classical system. However, spatial regions of a large-N field
theory are not classical subsystems (i.e., the division into sub-
systems does not commute with the classical limit), as evidenced
by the fact that they have nonzero entanglement entropies even
when the full system is in a pure state.
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monogamy depends on large N but not strong coupling.
In Sec. IV we describe the relationship between monog-
amy and general inequalities obeyed by the entanglement
entropy, showing that monogamy provides evidence for the
identification of the RT formula with the entanglement
entropy. In Sec. V we give a more physical interpretation
of the monogamy property and argue that it is character-
istic of quantum as opposed to classical correlations. We
conclude in Sec. VI with a discussion of open questions.

II. TRIPARTITE INFORMATION IN
QUANTUM FIELD THEORY

Before discussing quantum field theories, let us warm up
with a 3-qubit system in order to gain intuition for the
meaning of the tripartite information (1.5). Writing the
state vector as jABCi, we consider the following two mixed
states (both of which contain purely classical correlations):

� ¼ 1

2
ðj000ih000j þ j111ih111jÞ; (2.1)

�¼1

4
ðj000ih000jþj011ih011jþj101ih101jþj110ih110jÞ:

(2.2)

The state � has I3ðA:B:CÞ ¼ 1 because the correlations
between A and B are redundant with those between A and
C. On the other hand, � has I3ðA:B:CÞ ¼ �1; A and B are
uncorrelated after tracing over C, and similarly for A and
C, while A is perfectly correlated with the joint system BC.

It can be shown generally that weak coupling among the
subsystems A, B, C leads to non-negative I3ðA:B:CÞ when
the full system ABC is in its ground state. Specifically, for a
system with Hamiltonian

H ¼ HA � IBC þ IA �HB � IC þ IAB �HC þ �HABC;

(2.3)

a perturbation theory calculation gives

I3ðA:B:CÞ ¼ ��2 log�2gðHA;HB;HC;HABCÞ þOð�2Þ;
(2.4)

where g � 0 [12].
The sign of I3 was investigated in a variety of quantum

field theories byCasini andHuerta [7].Wewill summarize a
few of their findings here. As described in the Introduction,
we always take A, B, C to be disjoint spatial regions. For
simplicity, in this section we will restrict ourselves to field
theories on Minkowski space in the vacuum.

For a free massless fermion in two dimensions, the
entanglement entropy of an arbitrary collection of intervals
was computed in Refs. [13,14], and the result implies
I3ðA:B:CÞ ¼ 0 for any A, B, C. This is the only case known
where the mutual information is always exactly extensive.

For a free massive fermion, Casini and Huerta found that
I3 is positive when the sizes and separations of the intervals
are small compared to the Compton wavelength, and nega-
tive when they are large. Similarly, for a free massive
scalar, I3 is positive for small intervals and separations.

However, whereas for the fermion it goes to zero in the
massless limit (for any fixed set of regions), for the scalar it
goes to þ1:

I3 � 1

2
logð� logmÞ: (2.5)

The reason is that the long-wavelength modes of the field
become zero modes in this limit; the entanglement entropy
of any region then includes a term proportional to the
logarithm of the volume of the field space. To put it another
way, after tracing over the complement of ABC, the con-
stant mode of the field is perfectly classically correlated
between the regions, so�ABC is essentially of the form (2.1).
A similar example is provided by a compactified scalar.

For large compactification radius R, the mutual informa-
tion between separated intervals is of the form

IðA:BÞ ¼ logRþ fðA; BÞ; (2.6)

where fðA; BÞ depends on the configuration of A, B but is
independent of R [15]. The logR term is again due to the
integration over the zero-momentum mode of the scalar.
Hence, if B and C are adjacent, the tripartite information is

I3ðA:B:CÞ ¼ logRþ fðA; BÞ þ fðA;CÞ � fðA; BCÞ; (2.7)

which is positive for sufficiently large R.
It is also interesting to consider a general two-

dimensional conformal field theory (CFT) in a different
limit. The mutual information between two intervals
A ¼ ½uA; vA�, B¼½uB;vB� is invariant under conformal
transformations of the line, so depends only on the cross ratio

x :¼ ðvA � uAÞðvB � uBÞ
ðuB � uAÞðvB � vAÞ : (2.8)

Calabrese et al. [16] computed the leading behavior of the
mutual information for small x (i.e., large separation relative
to the sizes of the intervals) in a general CFT3:

3It is interesting to note that parametrically in the separation r
between the intervals, the behavior (2.12) saturates the quantum
Pinsker bound as specialized to connected correlators of nor-
malized operators [17,18]:

�hOAOBi � hOAihOBi
k OA kk OB k

�
2 � 2IðA:BÞ: (2.9)

We can see this by taking OA, OB to be the lowest nonunit
operator Ô smeared over the intervals A, B, respectively, and
turned into bounded operators, for example, by inserting them
into the function eix [7]:

O A;B ¼ exp

�
i
Z

dufA;BðuÞÔðuÞ
�
; (2.10)

where fA;B are functions supported on A, B, respectively. This
will give the largest possible connected correlator for large
separations, namely

hOAOBi � hOAihOBi � 1

r2d̂
� xd̂: (2.11)
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IðA:BÞ ¼ m̂sðd̂Þx2d̂ þ ðhigher order in xÞ; (2.12)

where d̂ is the smallest nonzero scaling dimension in the
theory, m̂ is its multiplicity, and

sðd̂Þ ¼ �1=2�ð2d̂þ 1Þ
42d̂þ1�ð2d̂þ 3

2Þ
: (2.13)

If we now consider a configuration of three intervals A, B, C,
such that B, C are adjacent and separated from A by a large
distance r, then we have

I3ðA:B:CÞ ¼ m̂sðd̂Þ l
2d̂
A

r4d̂
ðl2d̂B þ l2d̂C � ðlB þ lCÞ2d̂Þ

þ ðhigher order in 1=rÞ: (2.14)

For this configuration the theory is superextensive, extensive,

or subextensive depending on whether d̂ is more than, equal
to, or less than 1=2. This result agrees with the fact that the

free fermion, which has d̂ ¼ 1=2, is always extensive. It also
agrees with the fact that the free boson on a large circle,

which has d̂ ¼ 1=ð2R2Þ � 1, is subextensive. [Note how-
ever that the estimate I3 � logR was obtained in the limit of
large R with fixed intervals, whereas (2.14) was obtained in
the limit of distant intervals in a fixed theory.]4

A final interesting example, similar to the two-
dimensional massive fermion where I3 is negative for large
regions, is provided by three-dimensional massive theories
with topological order [9,19]. The ground state of such a
theory is described at long distances by a two-dimensional
topological field theory. The local fluctuations of the fields
are subject to a constraint that is only apparent at long
distances, leading to a finite negative correction to the area
law for large regions:

SðAÞ ¼ � areað@AÞ � � compð@AÞ; (2.15)

where � is a UV-divergent quantity, � is finite and non-
negative, and ‘‘comp’’ means the number of components.
By arranging A, B, C as wedges of a disc—so that they and
all combinations of them are topologically discs—the area-
law divergences cancel and we are left with

I3ðA:B:CÞ ¼ ��: (2.16)

This quantity is called the topological entanglement en-
tropy, and it can be calculated explicitly in terms of basic
properties of the theory. The study of examples suggests
that (2.15) implies I3ðA:B:CÞ � 0 for regions with arbitrary
topologies. (We do not know a proof of this statement.)
Hence such theories apparently obey the monogamy prop-
erty, at least for regions large enough that (2.15) applies. If
this is correct, it would be very interesting to understand
whether there is any connection to the monogamy property
of holographic theories that we study in this paper.

Using the Ryu-Takayanagi formula, Pakman and
Parnachev computed the topological entanglement entropy
in a general confining holographic theory, showing that it
always vanishes [20]. The reason is that the dual gravita-
tional theory being classical and local is incapable of
describing topological order. However, it should be kept
in mind that the RT formula captures only the order
G�1N � N2 part of the entanglement entropy, so Pakman
and Parnachev’s result does not preclude the possibility of
an order-1 topological entanglement entropy.

III. HOLOGRAPHIC MUTUAL INFORMATION
IS MONOGAMOUS

A. Proof

We now describe the main result of this paper, which is
that the Ryu-Takayanagi entropies obey the inequality

I3ðA:B:CÞ � 0; (3.1)

for any regions A, B, C in the boundary field theory. The
proof is similar to the proof of strong subadditivity by
Headrick and Takayanagi [6]. The RT formula applies to
field theories that possess holographic duals described by
classical Einstein gravity. In the next subsection we will
consider the effect of higher-curvature corrections to the
bulk gravitational action, as well as more general large-N
field theories. In Sec. VIB we will discuss finite-N cor-
rections, i.e., quantum effects in the bulk.
We begin by setting up some notation and recalling the

precise form of the RT formula. The RT formula applies to
states that are represented in the dual by static classical
geometries, and gives the entanglement entropy of a spatial
region of the field theory in terms of the area of a minimal
surface lying on a constant-time slice of the bulk geometry.
The time direction plays no role so we will suppress it. We
will denote the constant-time slice of the boundary by X;
this is the space on which the field theory lives. The
constant-time slice of the bulk is Y (so X � @Y; however,
Y may also have ‘‘internal’’ boundaries, such as horizons
or walls). The boundary of any bulk region r can be
decomposed into a part lying in X and a part lying in Y.
(For this purpose we consider the part of @r lying along an
internal boundary of Y to be ‘‘lying in Y.’’) We can there-
fore define the two boundary operators @X, @Y by

@r¼@Xr[@Yr; @Xr :¼@r\X; @Yr :¼@r\Y: (3.2)

The RT formula is

SðAÞ ¼ 1

4GN

min
~a�Y: @X ~a¼A

ðareað@Y ~aÞÞ: (3.3)

The area is computed with respect to the spatial part of the
Einstein-frame metric. We will refer to the minimizing
region for A as a, the one for AB as ab, etc. Note that
whereas AB :¼ A [ B, in general ab � a [ b.

4We note that Eq. (2.14) applies only to CFTs, so it is not in
conflict with the results of Ref. [7] for massive fermions.
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Our strategy for proving (3.1) will be as follows. We will
divide the three surfaces @Yab, @Ybc, and @Yac into four
pieces each. Wewill then reassemble these 12 surfaces into
four surfaces which are the boundaries of certain regions ~a,
~b, ~c, and gabc, respectively, with @X~a ¼ A, etc. Hence

SðABÞ þ SðBCÞ þ SðACÞ
¼ 1

4GN

ðareað@YabÞ þ areað@YbcÞ þ areað@YacÞÞ

¼ 1

4GN

ðareað@Y ~aÞ þ areað@Y ~bÞ þ areað@Y~cÞ

þ areað@YgabcÞÞ
� SðAÞ þ SðBÞ þ SðCÞ þ SðABCÞ; (3.4)

where in the last line we used the fact that actual entropy
minimizes the area for each region. Figure 1 gives graph-
ical depiction of the strategy.

We will decompose the surface @Yab into four parts: the
part in both ac and bc; in ac but not bc; in bc but not ac;
and in neither ac nor bc:

@Yab ¼ ð@Yab \ bc \ acÞ [ ð@Yab \ bc n acÞ
[ ð@Yab \ ac n bcÞ [ ð@Yab n bc n acÞ: (3.5)

Similarly for bc and ac:

@Ybc ¼ ð@Ybc \ ab \ acÞ [ ð@Ybc \ ab n acÞ
[ ð@Ybc \ ac n abÞ [ ð@Ybc n ab n acÞ; (3.6)

@Yac ¼ ð@Yac \ bc \ abÞ [ ð@Yac \ bc n abÞ
[ ð@Yac \ ab n bcÞ [ ð@Yac n bc n abÞ: (3.7)

We now define the following regions:

~a ¼ ab \ ac n bc; ~b ¼ ab \ bc n ac;
~c ¼ ac \ bc n ab; gabc ¼ ab [ bc [ ac:

(3.8)

As required, these regions are anchored on A, B, C, and
ABC, respectively,

@X~a¼A; @X ~b¼B; @X~c¼C; @Xgabc¼ABC: (3.9)

In the bulk, we have

@Y ~a ¼ ð@Yab \ ac n bcÞ [ ð@Yac \ ab n bcÞ
[ ð@Ybc \ ab \ acÞ;

@Y ~b ¼ ð@Yab \ bc n acÞ [ ð@Ybc \ ab n acÞ
[ ð@Yac \ ab \ bcÞ;

@Y~c ¼ ð@Yac \ bc n abÞ [ ð@Ybc \ ac n abÞ
[ ð@Yab \ ac \ bcÞ;

@Ygabc ¼ ð@Yab n bc n acÞ [ ð@Yac n ab n bcÞ
[ ð@Ybc n ab n acÞ: (3.10)

By inspection, each term on the right-hand side of (3.10)
equals precisely one term on the right-hand sides of (3.5),
(3.6), and (3.7). This establishes the second equality of
(3.4) and completes the proof.

B. Higher-curvature corrections and general
large-N theories

We now consider the effect of higher-curvature terms in
the bulk gravitational action, such as �0 corrections in
string theory. (In this subsection we stay in the classi-
cal—i.e. large-N—limit in the bulk; quantum effects are
discussed in Sec. VI B). It has been conjectured [4,21] that
in the presence of such corrections, the entanglement
entropy is still given by a minimization over surfaces, but
with the area functional itself corrected by higher-
derivative terms:

SðAÞ ¼ 1

4GN

min
~a�Y: @X ~a¼A

ðFð@Y ~aÞÞ; (3.11)

F ¼ areaþ higher derivative terms: (3.12)

Such terms could include, for example, an Einstein-Hilbert
term for the induced metric. A general formula for the
functional F has not been proposed, but formulas applying

A B C A B C

(i) S(AB)+S(BC)+S(AC) (ii) S(A)+S(B)+S(C)+S(ABC)

FIG. 1 (color online). Illustration of the proof in AdS3=CFT2. (i) The three minimal surfaces corresponding to SðABÞ, SðBCÞ, and
SðACÞ, with the latter consisting of two connected components in the bulk. (ii) The four minimal surfaces corresponding to SðAÞ, SðBÞ,
SðCÞ, and SðABCÞ. In this example, the surfaces for SðABÞ and SðBCÞ each gets decomposed into a purple (left shaded) part and a red
(right shaded) part. The purple forms a surface terminating on the boundary of A and the red a surface terminating on the boundary of
C. Since these new surfaces need not be minimal, their areas form upper bounds on SðAÞ and SðCÞ, respectively, by the Ryu-
Takayanagi formula. The reader is cautioned, however, that these simple cartoons can be misleading. As we will see in Sec. VIA,
higher-order versions of the monogamy inequality fail even though naive graphical arguments suggest they should hold.
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for certain types of corrections to the gravitational action
have been proposed and tested in Refs. [22,23]. In fact, we
can go further and conjecture that even when there is no
Einstein-Hilbert term—such as in topological or conformal
theories of gravity—the entanglement entropy is given by
(3.11), but where F is not necessarily of the form (3.12).
Thus, the bulk need not even be geometrical in the sense of
being equipped with a Riemannian metric; it just needs to
be a topological space on which one can define regions and
their boundaries.

One general condition on the functional F appearing
in (3.11) can be deduced from the strong subadditivity
property. The proof that the RT formula satisfies strong
subadditivity goes through for the formula (3.11), if and
only if F is extensive [i.e., for disjoint surfaces s1, s2,
Fðs1 [ s2Þ ¼ Fðs1Þ þ Fðs2Þ] [6]. The same holds for the
proof of monogamy given in the previous subsection. We
can therefore conclude that in the language of the boundary
field theory, the monogamy property requires large N but
not strong coupling.

We can go a step further and conjecture more specula-
tively that the monogamy property holds in any large-N
field theory. More precisely, we expect that the leading
(order N2) part of the entanglement entropy is monoga-
mous in any field theory that becomes classical in its
large-N limit (in the sense of Ref. [24]). The main evidence
for this statement, aside from an extrapolation of the
previous line of argument, comes from the results of
Ref. [4]. There it was argued that a general large-N two-
dimensional CFT (such as the symmetric-product orbifold
theory CN=SN in the large-N limit where C is an arbitrary
compact unitary CFT) has the same entanglement entro-
pies as holographic ones, for arbitrary spatial regions (and
even the same entanglement Rényi entropies). All of these
theories therefore satisfy the monogamy property.

All of this suggests that entanglement entropies in
large-N theories may have a simple, universal structure,
and therefore their study may be very fruitful.5

IV. RYU-TAKAYANAGI ENTROPYAS
ENTANGLEMENT ENTROPY

We now describe the relationship between the monog-
amy inequality I3 � 0 and other inequalities obeyed by
entanglement entropies.

For a general quantum system, the entanglement entro-
pies will always obey certain inequalities. For example,

(a) Subadditivity: SðAÞ þ SðBÞ � SðABÞ,
(b) Araki-Lieb: SðABÞ � jSðAÞ � SðBÞj,
(c) Strong subadditivity 1: SðABÞþSðBCÞ�SðABCÞþ

SðBÞ,
(d) Strong subadditivity 2: SðABÞþSðBCÞ�SðAÞþ

SðCÞ.

Headrick and Takayanagi proved that all four of these
inequalities are satisfied by the RT formula [6].6 This con-
stitutes a consistency check of the RT formula, rather than a
characterization of any special property of holographic
theories. On the other hand, the monogamy property

ð?ÞMonogamy: SðABÞ þ SðACÞ þ SðBCÞ
� SðABCÞ þ SðAÞ þ SðBÞ þ SðCÞ

is not obeyed by a general quantum system. This property is
logically independent of the inequalities (a)–(d) and repre-
sents a novel constraint on any theory that is conjectured to
possess a holographic dual.
In addition to the well-known inequalities (a)–(d),

Linden and Winter [10], and subsequently Cadney et al.
[11], have shown that entanglement entropies obey addi-
tional constrained inequalities. These inequalities are in-
dependent of (a)–(d) in the sense that there exist functions
which satisfy (a)–(d) but which violate the constrained
inequalities. We will demonstrate, however, that (a)–(d)
supplemented with monogamy (?) imply the full suite of
constrained inequalities providing an additional check on
the consistency of the RT formula.
The constrained inequalities are most easily expressed in

terms of the conditional mutual information

IðA:CjBÞ :¼ SðABÞ þ SðBCÞ � SðABCÞ � SðBÞ
¼ IðA:BCÞ � IðA:BÞ: (4.1)

In terms of this new quantity, strong subadditivity (c) is
simply IðA:CjBÞ � 0 while monogamy (?) can be written
as IðA:CjBÞ � IðA:CÞ.
(e) Linden-Winter [10]: If

IðA:CjBÞ ¼ IðA:BjCÞ ¼ IðB:CjDÞ ¼ 0; (4.2)

then IðC:DÞ � IðC:ABÞ.
It is easy to show that the RT formula obeys the Linden-

Winter condition. Consider a set of four regions obeying
the constraint (4.2). Monogamy (?) implies that
IðB:CjDÞ � IðB:CÞ but (4.2) requires that IðB:CjDÞ ¼ 0,
while property (a) specifies that IðB:CÞ � 0. With bounds
above and below, we are left with IðB:CÞ ¼ 0. Meanwhile,
a trivial identity which follows immediately from the
definitions states that IðC:ABÞ can be written as

IðC:ABÞ ¼ IðB:CÞ þ IðA:CjBÞ; (4.3)

and using the constraint IðA:CjBÞ ¼ 0, we see that
IðC:ABÞ ¼ 0. Thus the inequality IðC:DÞ � IðA:BCÞ is
satisfied, albeit in a rather trivial way.

5Entanglement entropies in the OðNÞ model at large N were
studied in the paper [25].

6In the context of formal quantum information theory, inequal-
ities (a) and (b) are equivalent, as are (c) and (d), but when
proved using the RT formula, they are logically independent.
The reason is that (a) and (b) [or (c) and (d)] can be transformed
into each other by considering a purification of the mixed state in
question. That trick is not available in the holographic context
for a thermal state at finite temperature because the purified state
need not have a simple geometric interpretation.
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(f) Cadney-Linden-Winter [11]: If IðA:CjBÞ¼
IðB:CjAÞ¼0, then

SðX1 . . .XnÞ þ ðn� 1ÞIðAB:CÞ

�Xn
i¼1

SðXiÞ þ
Xn
i¼1

IðA:BjXiÞ; (4.4)

for any quantum state and disjoint subsystems
fA; B; C; X1; . . . ; Xng.

The argument that the RT formula implies this inequal-
ity is similar. By the same reasoning as before, the con-
straint implies that IðA:CÞ ¼ 0. But IðAB:CÞ¼IðA:CÞþ
IðB:CjAÞ, which is zero by another application of the
constraint. Since IðA:BjXiÞ � 0 by strong subadditivity
(c) and SðX1 . . .XnÞ � SðXiÞ by repeated applications of
subadditivity (a), the inequality follows.

The article [11] contains three variations on this family
of inequalities, which are proved by purifying the quantum
state, applying (f), and relabeling in different ways. The
RT formula implies these additional inequalities by very
similar arguments to the ones we have already given. We
omit the details, the only significant modification being
that the Araki-Lieb inequality (b) occasionally substitutes
for subadditivity (a).

Inequalities (a)–(d) along with (e), (f) together imply all
known general inequalities obeyed by the entanglement
entropy [10,11] so we conclude that the RT entropy is
consistent with all known inequalities obeyed by the entan-
glement entropy.

V. HOLOGRAPHYAND THE STRUCTURE
OF CORRELATIONS

In this section we consider implications of the
monogamy inequality for the structure of correlations in
holographic theories, first by showing that quantum
Markov chains are forbidden and then by considering
other situations in which monogamy arises in quantum
information theory.

A. Absence of quantum Markov chains

The random variables X, Y, and Z form a Markov chain
X � Y � Z if pðx; y; zÞ has the form pðxjyÞpðzjyÞpðyÞ, that
is, X and Z are conditionally independent given Y. The
interpretation is that any correlations between X and Z are
mediated by Y. The condition can equivalently be written
pðx; y; zÞ ¼ pðx; yÞpðzjyÞ, saying that there is a stochastic
map taking Y to Z in such a way as to correctly reproduce
all correlations between X and Z. A simple way to test if
the triple forms a Markov chain is to evaluate some entro-
pies: IðX:ZjYÞ ¼ 0 if and only if X � Y � Z forms a
Markov chain.

For quantum states, the condition IðA:CjBÞ ¼ 0 identi-
fies an analogous set of states known as quantum Markov
chains. A quantum Markov chain of the systems A, B, and
C is a quantum state �ABC such that there is an open system

evolution map (completely positive, trace-preserving
linear map) � from the density operators on B to those of
BC such that �ABC ¼ ðIA � �Þ�AB [?]. For such a state, the
correlations between A and C are mediated by B via the
map �, which is essentially just a noncommutative general-
ization of pðzjyÞ from the random variable case.
The monogamy inequality IðA:CjBÞ � IðA:CÞ implies

that when IðA:CÞ � 0, one must have IðA:CjBÞ> 0, so the
state �ABC cannot be a quantum Markov chain. It follows
that quantum Markov chains are prohibited by holography
when A, B, and C represent spatial regions.
In the finite-dimensional case, all quantum Markov

chain states have the form [26]

�ABC ¼
X
j

pj�ABL
j
� �BR

j C
; (5.1)

where the Hilbert space B has an orthogonal direct sum
decomposition B ffi 
jðBL

j � BR
j Þ and p is a probability

vector. (The validity of a similar decomposition in the
infinite-dimensional setting is under investigation [27]).
The state �ABC in (2.1) is a particularly simple example.
An immediate consequence of (5.1) is that no quantum
Markov chain contains any entanglement between A andC.
Relativistic vacuum states, however, are known to be

highly entangled. In fact, under very general assumptions,
the state of any pair of disjoint spatial regions will even
violate a Bell inequality [28]. The vacuum therefore does
not admit spatial quantum Markov chains. Monogamy,
which prohibits spatial quantum Markov chains in
holographic field theories whenever IðA:CÞ> 0, implies
that the conclusion continues to hold at arbitrarily high
temperature.

B. Monogamy and quantum cryptography

The monogamous nature of truly quantum-mechanical
correlations is actually one of their most useful properties
from the point of view of information theory and cryptog-
raphy. Given a pure, entangled quantum state j’iAB of the
systems A and B, the only states of A, B, and C consistent
with ’ all have the form

�ABC ¼ j’ih’jAB � �C; (5.2)

with absolutely no correlation between AB and C. Having
good entanglement between A and B makes it impossible
for A and C to share entanglement or even weaker forms of
correlation, hence the term monogamy. In quantum cryp-
tography, this property is exploited to ensure the security of
correlations established between A and B, with C playing
the role of an eavesdropper. If an experimental procedure
can establish that the state shared by A and B is close to a
pure entangled state, then the eavesdropper C cannot learn
anything about the correlations between A and B, which
can then be used as a cryptographic secret key.
The monogamy property is manifested mathematically

through inequalities relating various measures of
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correlation. Unlike the simple situation of a pure state
partitioned into two halves, for which the entanglement
entropy is in a rigorous sense the unique asymptotic mea-
sure of entanglement, for mixed states there are many
measures that in general do not coincide [29]. That is not
a defect of the theory so much as a reflection of the fact that
mixedness introduces unavoidable irreversibility into the
theory, leading to gaps between quantities that agree in the
simple pure state setting.

The entanglement of formation [30] is defined as

EfðA:BÞ�¼ inf

�X
i

piSðAÞc i
:�¼X

i

pijc iihc ijAB
�
: (5.3)

The subscripts � and c i identify the state with respect to
which the given function should be evaluated, while the
infimum is over all ways of decomposing � into a convex
combination of pure states. Unlike for probability distri-
butions, this decomposition is far from unique. Ef is

related to the amount of entanglement required to produce
�: given a decomposition � ¼ P

ipijc iihc ijAB, one could
prepare the state jc iiAB with probability pi, leading to
an expected entanglement investment of

P
ipiSðAÞc i

.

Minimizing over decompositions leads to more efficient
preparation procedures. (For an investigation of the entan-
glement of formation in quantum field theories, see
Ref. [31]. There are subtleties in the definition and regu-
larization of the entanglement measures discussed here that
we are ignoring for the sake of clarity in this overview).

As suggested by the example at the beginning of this
section, strong entanglement between A and B should limit
all forms of correlations between A and C. The amount of
correlation that can be extracted at C can be quantified
by introducing a measurement procedure for C and evalu-
ating the mutual information between the measurement
outcomes and the system A. Any measurement is charac-
terized by a positive operator-valued measure: a set
of operators fMxg with Mx positive semidefinite andP

xMx¼I. (We restrict ourselves for simplicity to mea-
surements with a finite number of outcomes.) The
probability of outcome x is px ¼ tr�CMx and the state

on A conditioned on the outcome x occurring is �ðxÞA ¼
trC½ðIA�MxÞ�AC�=px. Defining the post-measurement
state �, we have

�AX ¼
X
x

px�
ðxÞ
A � jxihxjX (5.4)

and can calculate

IðA:XÞ� ¼ Sð�AÞ �
X
x

pxSð�ðxÞA Þ: (5.5)

Maximizing this mutual information over all measurement
procedures leads to a measure I ðA:CÞ� of the correlation

between A and C which is constrained by monogamy, the
larger EfðA:BÞ is, the smaller I ðA:CÞ must be,

EfðA:BÞ� þ I ðA:CÞ� � SðAÞ�; (5.6)

with equality if the state �ABC is pure [32].
At the other end of the spectrum of entanglement mea-

sures, there is the distillable entanglement, which summa-
rizes how useful the state �AB is, instead of how costly it is
to produce as was the case with Ef. Specifically, the dis-

tillable entanglement quantifies the rate at which standard
entangled states j00iAB þ j11iAB that can be extracted from
the state ��nAB in the limit of many copies [30,33]. In the
case of distillation procedures involving arbitrary local
manipulations of the A and B systems supplemented by
the communication of measurement outcomes from B to A,
the resulting optimal rate E D satisfies [32]

E D ðA:BÞ þ E D ðA:CÞ � E D ðA:BCÞ: (5.7)

Inequalities (5.6) and (5.7) are structurally very similar
to the mutual information monogamy inequality

IðA:BÞ� þ IðA:CÞ� � IðA:BCÞ�: (5.8)

Indeed, if �ABC is pure, then SðAÞ� ¼ IðA:BCÞ�=2, making

the similarity even more pronounced for Eq. (5.6). There is
a crucial difference, however. The monogamy relations for
Ef and E

 
D hold for any quantum mechanical state whereas

counterexamples to monogamy of mutual information
abound. The monogamy of mutual information in holo-
graphic field theories therefore implies that the correlations
in the theory are very special. It is tempting to speculate
that they are special in the sense of being highly quantum
mechanical or even that the mutual information is primar-
ily assessing entanglement.
One way to formulate that question rigorously involves a

third (and final) entanglement measure known as the
squashed entanglement [34]. Unlike the entanglements
of formation and distillation, squashed entanglement is
popular because of its convenient abstract properties, not
because of a compelling operational interpretation. The
definition is

EsqðA:BÞ� ¼ 1

2
inf
�0
ABE

IðA:BjEÞ�0 ; (5.9)

where the infimum is over all states �0 on ABE that agree
with � on AB. E, in turn, can be an arbitrary quantum
system. Any pure �AB only has extensions of the form
�0ABE ¼ �AB � �E, for which IðA:BjEÞ�0 ¼ IðA:BÞ�0 ¼
2SðAÞ�. The squashed entanglement therefore reduces to

the entanglement entropy for pure states. On the other hand,
unentangled mixed states, known as separable states, have
the form

�AB ¼
X
i

pi�
ðiÞ
A � �ðiÞB : (5.10)

Such states all have extensions of the form
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�0ABE ¼
X
i

pi�
ðiÞ
A � �ðiÞB � jiihijE; (5.11)

for which IðA:BjEÞ ¼ 0 because, conditioned on i
(the contents of E), the AB system is in a product state.
Thus, Esq is zero for unentangled states. Moreover, it was

recently shown using an ingenious argument that Esq is

always strictly positive for entangled states [35].
Monogamy of mutual information, however, is equiva-

lent to the inequality IðA:BjCÞ� � IðA:BÞ for all disjoint
spatial regions A, B, and C. Therefore, infCIðA:BjCÞ� ¼
IðA:BÞ�. If it were sufficient to restrict the infimum of

Eq. (5.9) to an infimum over extensions corresponding to
spatial regions, we would be able to conclude that
EsqðA:BÞ� ¼ IðA:BÞ�=2. That is, all the correlation in the

holographic quantum field theory could be attributed to
entanglement.

Unfortunately, monogamy of mutual information is not
sufficient to attribute the bipartite correlations to entangle-
ment alone. As we have seen, certain classical probability
distributions yield monogamous mutual informations
without the need for any entanglement. The state �ABC of
Eq. (2.2) provides a simple example. At zero temperature,
however, the state of the quantum field theory must be pure
whereas �ABC is mixed. It is therefore natural to ask
whether a pure quantum state with parts correlated in an
essentially classical way is consistent with the monogamy
of mutual information. Generalizing the simple example,
one could consider any states of the form

�ABC ¼
X
xyz

pðx; y; zÞjxihxjA � jyihyjB � jzihzjC: (5.12)

The simplest way to write down a pure state consistent with
such a �ABC is

j�iAA0BB0CC0 ¼
X
xyz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pðx;y;zÞ

q
jxiAjxiA0 jyiBjyiB0 jziCjziC0 :

(5.13)

Monogamy of the mutual information for �ABC, however,
need not extend to the pure state j�iAA0BB0CC0 . In particular,
a short calculation exploiting the purity of the overall state
gives

I3ðA:A0:BCÞ� ¼ SðAÞ� � 2½SðABCÞ� � SðBCÞ��:
For a choice of state such as that in Eq. (2.2), SðABCÞ� ¼
SðBCÞ� since the A bit x is completely determined by the
values of the bits y and z of B and C, leading to a violation
of monogamy.

Of course, this is not the only way to write down a
purification of �ABC. Other less symmetric choices can be
used to recover monogamy of the mutual information, at
least in the case of the state of Eq. (2.2). In that case, z ¼
xþ ymod 2 so the C0 system is not necessary to construct
the purifying state. The resulting purification

1

2

X
xy

jxiAjxiA0 jyiBjyiB0 jziC; (5.14)

does satisfy monogamy of the mutual information for all
triples of subsystems.
Thus, while the monogamy of mutual information is

consistent with the conclusion that the bipartite correla-
tions in a holographic field theory are dominated by entan-
glement, it does not imply the conclusion. We nonetheless
speculate that the squashed entanglement between any
spatial regions A, B, and C is bounded below by a constant
(independent of the regions) times the mutual information.

VI. OPEN QUESTIONS

We have established that the mutual information is
monogamous in holographic field theories, assuming the
Ryu-Takayanagi formula, and we have made two conjec-
tures regarding the range of validity and interpretation of
our result. First, we suspect that the monogamy property
should hold to leading order in N2 in any large-N field
theory, not just in theories with holographic duals. Second,
we believe that the monogamy property of the mutual
information in these theories indicates that the mutual
information is detecting quantum mechanical correlations
in the form of entanglement. One possible way to quantify
that statement can be found in Sec. VB, but there are many
other possibilities. We challenge the reader to establish
quantitatively that correlations in holographic field theo-
ries are dominated by entanglement.
We conclude with a few additional open questions.

A. Additional inequalities

It is natural to ask whether the RT formula obeys other
inequalities. The known properties apply to one, two, and
three regions, respectively:

I1ðAÞ :¼ SðAÞ � 0;

I2ðA:BÞ :¼ SðAÞ þ SðBÞ � SðABÞ � 0;

I3ðA:B:CÞ :¼ SðAÞ þ SðBÞ þ SðCÞ � SðABÞ
� SðBCÞ � SðACÞ þ SðABCÞ � 0: (6.1)

One could ask whether it is possible to define an n-fold
entanglement entropy In obeying a similar inequality.
The obvious generalization of (6.1) to n regions includes

a sum over all possible combinations of regions with
alternating signs

InðA:B:C: � � �Þ ¼
X
�

ð�1Þj�jSð�Þ: (6.2)

Here the sum is over all possible subsets � of fA; B; C; . . .g.
We note that this particular linear combination of entan-
glement entropies has the property that the short distance
divergences maximally cancel. For example, area law
divergences for separated regions cancel in In for n > 1
because each region appears the same number of times in

HOLOGRAPHIC MUTUAL INFORMATION IS MONOGAMOUS PHYSICAL REVIEW D 87, 046003 (2013)

046003-9



even and odd combinations. When two regions A, B are
adjacent, the area-law divergence for the shared part of
their boundaries also cancels in In for n > 2, since A occurs
without B (and B without A) the same number of times in
even and odd combinations. This was the motivation for
the use of I3 to compute the topological entanglement
entropy in Ref. [9]. With the definition (6.2) this property
generalizes in the natural way. When three regions A, B, C
meet along a codimension two three-fold corner, the diver-
gences due to the corner in A cancel in In for n > 3, since A
appears without either B or C the same number of times in
even and odd combinations; similarly for the corners of B,
C, AB, AC, and BC. More generally, the codimension-m
edges, which occur generically in D>m dimensions,
carry divergences that cancel in In for n > mþ 1.

Unfortunately, however, the quantity (6.2) does not obey
any obvious inequality. One can find explicit examples of
regions on the boundary of AdS3 where the In take either
sign for n ¼ 4, 5. We leave the question of other possible
inequalities as a challenge for the future.

B. Finite-N corrections

Monogamy is a property of holographic theories in the
large-N limit. We suspect that this property will not in
general persist at finite N once bulk quantum effects
become important. To see this, let us consider a set of
regions in a two-dimensional conformal field theory where
the large-N (classical) part of I3 vanishes. The first quantum
correction to I3 was computed in Sec. II and shown to be
positive if the theory has a nontrivial operator with scaling

dimension d̂ < 1=2. Many CFTs with low-dimension
operators exist and may even have bulk duals. For example,

the W N minimal models have operators with dimension
1=N and are conjectured to be dual to higher spinversions of
three-dimensional gravity coupled to matter [36]. More
generally, one can try to interpret the N-fold symmetric
product of any CFT (and in particular one with an operator
of dimension less than 1=2) as a bulk theory of gravity. The
bulk dual should be nonlocal, as can be seen by noting that
the low-energy density of states has Hagedorn behavior in
the large-N limit [37]. Neither of these examples involves
bulk theories described by classical Einstein gravity, where
the RT formula applies. A generalization of the RT formula
to these cases is outside the scope of this paper. But these
examples do suggest that it is possible for quantum effects
in the bulk to spoil monogamy. It would be interesting to
investigate this question further.
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