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The standard model of particle physics lies in an enormous number of string vacua. In a nonperturbative

formulation of string theory, various string vacua can, in principle, be compared dynamically, and the

probability distribution over the vacuum space could be calculated. In this paper, we consider situations

where the IIB matrix model is compactified on a six-dimensional torus with various gauge groups and

various magnetic fluxes, find matrix configurations that provide the standard model matter content, and

estimate semiclassically the probability of their appearance.
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I. INTRODUCTION

Matrix models (MM) are a promising candidate to for-
mulate the superstring theory nonperturbatively [1–3], and
they indeed include quantum gravity and gauge theory.
One of the important subjects in those studies is to connect
these models to phenomenology. Spacetime structures can
be analyzed dynamically and four-dimensionality seems to
be preferred in the IIB matrix model [4–6]. Assuming that
our spacetime is obtained, we next want to show the
standard model (SM) of particle physics on it.

Here, we give two comments regarding the importance
of these studies. First, a path connecting the MM and the
SM would give us a guide for bringing them close to each
other: from the SM side, when one tries to go beyond the
SM, there are too many phenomenological models, but
this path may give us a hint about which way to go; from
the MM side, there also remain important problems, for
instance, interpretations of spacetime and matter in matri-
ces, how to take a large-N limit, and so on. In order to
justify or modify the formulation of MM, whether or not
one can obtain the SM at low energies gives us a criterion.
Secondly, since the MM has a definite measure and action,
we can, in principle, calculate everything, such as space-
time dimensions, gauge groups, and matter contents.
We could dynamically compare various string vacua, and
obtain a probability distribution1 over the string landscape
[9]. This is an advantage that MM has over the perturbative
formulations of superstring theories.

An important ingredient of the SM is the chirality of
fermions. Chiral symmetry also ensures the existence of
massless fermions, since otherwise quantum corrections
would induce a mass of the order of the Planck scale or of
the Kaluza-Klein scale in general. (Gauge fields are pro-
tected to be massless by gauge symmetry.) We usually
obtain a chiral spectrum on our spacetime by introducing

nontrivial topologies—which then give chiral zero
modes—in the extra dimensions: Euler characteristics
of compactified manifolds, special boundary conditions
at orbifold singularities, the intersection numbers of
D-branes, etc., give nontrivial topologies. Also from the
MM, chiral fermions and the SM matter content were
obtained by considering toroidal compactifications with
magnetic fluxes [10] and intersecting D-branes [11].2

In this paper, we will study the case of toroidal compac-
tifications in more detail. We first study matrix configura-
tions that provide the SM matter content. Within the
configurations that provide the SM gauge group plus an
extra U(1) and the SM fermion species with three gener-
ations, the minimal number of extra U(1)’s turns out to be
three. Even within this case, there still can be a large number
of matrix configurations with various fluxes, but actually
they are determined almost uniquely. We then calculate their
classical actions, argue how to take the large-N limit, and
estimate semiclassically the probability of their appearance.
In Sec. II, we briefly review a formulation of topological

configurations on a torus. We then find matrix configura-
tions that provide the SM matter content in Sec. III. In
Sec. IV, we study semiclassical analyses of MM dynamics.
Section V is devoted to conclusions and a discussion. In
the Appendix, detailed calculations for determining qabl are

shown.

II. TOPOLOGICAL CONFIGURATIONS
ON ATORUS

Let us begin with a review of the IIB MM [2]. Its action
is written as

SIIBMM ¼ � 1

g2IIBMM

tr

�
1

4
½AM; AN�½AM; AN�

þ 1

2
���M½AM;��

�
; (2.1)
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1Studies based on number countings of the flux vacua [7] and

cosmological evolutions on the landscape [8] were given.
However, an underlying theory of the entire landscape with a
definite measure is desired.

2Studies based on fuzzy spheres were given in Refs. [12–14].
MM’s for orbifolds and orientifolds were studied in
Refs. [15,16]. Related works were given in Refs. [17,18].
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where AM and � are N � N Hermitian matrices. They are
also a ten-dimensional vector and a Majorana-Weyl spinor,
respectively. Performing a kind of functional integration

Z
dAd�e�SIIBMM ; (2.2)

as a statistical system, and taking a suitable large-N limit,
one can obtain a nonperturbative formulation of string
theory. Note that the measure as well as the action is
defined definitely, so we can calculate everything in prin-
ciple. Note also that the model can be formulated either as
an Euclidean or as a Lorentzian system. It was shown in
Ref. [6] that treating it as a Lorentzian system is important
for obtaining a four-dimensional extended spacetime with
a six-dimensional compactified space. Since we assume a
compactification and focus on the extra-dimensional space
in this paper, our results hold in either case.

We then consider compactifications toM4 � X6 with X6

carrying nontrivial topologies.3 For concreteness, we
consider toroidal compactifications of M4 � T6. Toroidal
compactifications were studied in Hermitian matrices
[20,21] and in unitary matrices [22]. The unitary matrix
formulations can be described by finite matrices. It is also
considered that noncommutative (NC) spaces arise natu-
rally from MM [21,23]. We thus use a unitary matrix
formulation for NC tori in this paper. It can be defined by
the twisted Eguchi-Kawai model [24,25] (see, for instance,
Ref. [26]). Note, however, that such details of formula-
tions—i.e., Hermitian or unitary, commutative or NC—are

not relevant for obtaining chiral fermions and the SM.
Any compactifications with nontrivial topologies can
work as well. We then consider background configurations
corresponding to

eiA� � eix� � 1; eiAi � 1 � Vi; (2.3)

with � ¼ 0; . . . ; 3 and i ¼ 4; . . . ; 9. x� represents our

spacetime M4, and Vi represents T
6. A more precise cor-

respondence between the IIBMM and the unitary MMwill
be given in Sec. IV.
We now focus on Vi in Eq. (2.3), i.e., NC T6 with

nontrivial topologies. It is well-known that nontrivial to-
pological sectors are defined by the so-called modules
in NC geometries (see, for instance, Ref. [27]). In the
MM formulations, such modules are defined by imposing
twisted boundary conditions on the matrices [26,28].
In fact, each theory with twisted boundary conditions
yields a single topological sector specified by the boundary
conditions [29,30], while in ordinary gauge theories on
commutative spaces, a theory, for instance, with periodic
boundary conditions, provides all the topological sectors.
However, since we now want to derive everything from the
IIB MM, those topological features of NC gauge theories
are not desirable. We thus introduce nontrivial topological
sectors by background matrix configurations, not by impos-
ing twisted boundary conditions by hand. Nontrivial top-
ologies can be given by block-diagonal matrices [10]. We
then consider the following configurations:

V3þj ¼
�1
1;j � 1n1

2
� 1n1

3
� 1p1

. .
.

�h
1;j � 1nh2

� 1nh3
� 1ph

0
BBBB@

1
CCCCA;

V5þj ¼
1n1

1
� �1

2;j � 1n1
3
� 1p1

. .
.

1nh
1
� �h

2;j � 1nh
3
� 1ph

0
BBBB@

1
CCCCA;

V7þj ¼
1n1

1
� 1n1

2
� �1

3;j � 1p1

. .
.

1nh1
� 1nh2

� �h
3;j � 1ph

0
BBBB@

1
CCCCA;

(2.4)

with j ¼ 1, 2. The number of blocks is denoted by h.
Each block is a tensor product of four factors. The first
three factors each represent T2 of T6 ¼ T2 � T2 � T2,
and the last factor provides a gauge group structure. The
configuration (2.4) gives the gauge group Uðp1Þ �
Uðp2Þ � � � � �UðphÞ.

The matrices �a
l;j with a ¼ 1; . . . ; h and l ¼ 1, 2, 3 in

Eq. (2.4) are actually defined by using the Morita equiva-
lence, which is well-known in NC geometries. For details,
see, for instance, Refs. [10,26–28]. We follow the conven-
tions used in Ref. [10]. �a

l;j are Uðnal Þ matrices that satisfy

the ’t Hooft-Weyl algebra

�a
l;1�

a
l;2 ¼ e

�2�i
ma
l

na
l �a

l;2�
a
l;1; (2.5)3Related works were given in Ref. [19].
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where the integers ma
l and nal are specified by

ma
l ¼ �sl þ klq

a
l ; nal ¼ Nl � 2rlq

a
l ; (2.6)

for each a and l. The integers Nl, rl, sl, and kl for each l
specify the original torus (of the Morita equivalence) for
each T2. Equations (2.6) can be inverted as

1 ¼ 2rlm
a
l þ kln

a
l ; qal ¼ Nlm

a
l þ sln

a
l : (2.7)

For a summary, the configuration (2.4) is specified by the
integers pa and qal with a ¼ 1; . . . ; h and l ¼ 1, 2, 3, once
the original tori are specified. pa gives the gauge group,
and qal specifies magnetic fluxes penetrating each T2. The

total matrix size is

Xh
a¼1

na1n
a
2n

a
3p

a: (2.8)

The fermionic matrix � is similarly decomposed into
blocks as

� ¼
’11 � c 11 � � � ’1h � c 1h

..

. . .
. ..

.

’h1 � c h1 � � � ’hh � c hh

0
BBB@

1
CCCA; (2.9)

where ’ab and c ab represent spinor fields on M4 and T6,
respectively. Each block ’ab � c ab is in a bi-fundamental
representation ðpa; �pbÞ under the gauge group UðpaÞ �
UðpbÞ. It turns out [10] that c ab has the topological charge
on T6 as

papb
Y3
l¼1

ðqal � qbl Þ ¼ papb
Y3
l¼1

�
� 1

2r
ðnal � nbl Þ

�
: (2.10)

Indeed, by defining an overlap-Dirac operator, which sat-
isfies a Ginsparg-Wilson relation and an index theorem,4

the Dirac index, i.e., the difference between the numbers of
chiral zero modes, was shown to take the corresponding
values.5 In the present paper, we do not specify forms of
the Dirac operator, and just assume that in the large-N limit
the correct number of chiral zero modes arises.

III. CONFIGURATIONS FOR THE
STANDARD MODEL

We now study matrix configurations that provide the SM
matter content; more precisely speaking, the SM gauge
group plus extra U(1)’s and the SM fermion species with
generation number three.

A. Too-minimal case

We first consider the case with the number of blocks
being four, i.e., h ¼ 4. The integers pa are taken to be 3, 2,

1, 1 for a ¼ 1; . . . ; h, so that the gauge group is
Uð3Þ � Uð2Þ �Uð1Þ2 ’ SUð3Þ � SUð2Þ �Uð1Þ4.
The SM fermionic species are embedded in the fermi-

onic matrix c as

c ¼

o q u d

o �l o

o e

o

0
BBBBB@

1
CCCCCA; (3.1)

where q denotes the quark doublets, l the lepton doublets, u
and d the quark singlets, and e the lepton singlets. They are
in the correct representations under SUð3Þ � SUð2Þ. Note
that the singlet neutrino is not included here. The entries
denoted as o give no massless fermions since, as we will
see below, they are set to have a vanishing index. The lower
triangle part can be obtained from the upper part by the
charge conjugation transformation.
The hypercharge Y is given by a linear combination of

the four U(1) charges as

Y ¼ X4
i¼1

xiQi; (3.2)

where Qi ¼ �1 with i ¼ 1; . . . ; 4 is the U(1) charge from
the ith block. From the hypercharge of q, u, d, l, and e, the
following constraints are obtained:

x1 � x2 ¼ 1=6;

x1 � x3 ¼ 2=3;

x1 � x4 ¼ �1=3;

�ðx2 � x3Þ ¼ �1=2;

x3 � x4 ¼ �1:

(3.3)

Their general solutions are given by

x1 ¼ 1=6þ c; x2 ¼ c;

x3 ¼ �1=2þ c; x4 ¼ 1=2þ c;
(3.4)

with c being an arbitrary constant. Since Eqs. (3.3) depend
only on the differences of xi, the solution (3.4) is deter-
mined with an arbitrary constant shift c. The existence of a
solution is not automatically ensured, since the number of
independent variables is three while the number of equa-
tions is five.
As for the other U(1) charges, the baryon number B,

left-handed charge QL, and another charge Q0 can be
considered. Their charge for q, u, d, l, and e, and the
corresponding values for xi are given as follows:

4These techniques were developed in the lattice gauge theories
[31] and applied to MM and NC geometries [32].

5The same results were obtained in the fuzzy spheres [14,33].
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q u d l e x1 x2 x3 x4

Y 1=6 2=3 �1=3 �1=2 �1 1=6 0 �1=2 1=2

B 1=3 1=3 1=3 0 0 1=3 0 0 0

QL 1 0 0 1 0 0 �1 0 0

Q0 0 1 1 �1 0 0 0 �1 �1

: (3.5)

A linear combination of these four U(1) charges gives an
overall U(1) and does not couple to the matter. Only three
U(1) charges couple to the matter. Note that no lepton
number L nor B� L is included in this setting.

Let us now determine the integers qal specifying the

magnetic fluxes. From Eq. (2.10), only the differences
qal � qbl are relevant to the topology for the block c ab.

We thus define

qabl ¼ qal � qbl ; (3.6)

qab ¼ Y3
l¼1

qabl : (3.7)

In order for Eq. (3.1) to have the correct generation num-
ber, qab must have the values

qab ¼

0 �3 3 3

0 3 0

0 3

0

0
BBBBB@

1
CCCCCA: (3.8)

The lower triangle part is obtained from the upper part by
the relation qab ¼ �qba. The block component with a
vanishing index gives no chiral zero modes, and thus no
massless fermions on our spacetime. Unfortunately, how-
ever, there is no solution of qabl that satisfies Eq. (3.7) with

Eq. (3.8). (Proof: q12l and q23l must take �1 or �3. It
follows that q13l ¼ q12l þ q23l must take 0, �2, �4, or

�6. Hence, q13 could not take 3.)

We therefore conclude that the present too-minimal
case, which does not include the right-handed neutrino or
the B� L gauge field, has no solution.

B. Minimal case

We then consider the h ¼ 5 case. The integers pa are
taken to be 3, 2, 1, 1, 1 for a ¼ 1; . . . ; h, so that the gauge
group is Uð3Þ � Uð2Þ �Uð1Þ3 ’ SUð3Þ � SUð2Þ �Uð1Þ5.
The SM fermionic species are embedded in the fermi-

onic matrix c as

c ¼

o q u0 u d

o �l �l0 o

o �ð ��Þ e

o e0

o

0
BBBBBBBB@

1
CCCCCCCCA
; (3.9)

where q denotes the quark doublets, l the lepton doublets, u
and d the quark singlets, and � and e the lepton singlets.
Note that the singlet neutrino � is now included. In fact,
Eq. (3.9) is the most general embedding, where all the
block elements have the correct representations under the
SM gauge group SUcð3Þ � SULð2Þ � Uð1ÞY and the cor-
rect generation numbers. Since � is a gauge singlet, either
� or �� can be embedded.
The U(1) charges can be determined as in the previous

subsection. By taking linear combinations of the five U(1)
charges as

P
5
i¼1 x

iQi, we can consider the hypercharge Y,
baryon number B, lepton number L0, left-handed charge
QL, and right-handed charge Q

0
R. Their charge for q, u, u

0,
d, l, l0, �ð ��Þ, e, and e0, and the corresponding values for xi

are given as follows:

q u u0 d l l0 �ð ��Þ e e0

Y 1=6 2=3 2=3 �1=3 �1=2 �1=2 0 �1 �1

B 1=3 1=3 1=3 1=3 0 0 0 0 0

L0 0 0 �1 0 1 0 1 1 0

QL 1 0 0 0 1 1 0 0 0

Q0
R 0 1 0 1 0 �1 1 1 0

; (3.10)
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x1 x2 x3 x4 x5

Y 1=6 0 �1=2 �1=2 1=2

B 1=3 0 0 0 0

L0 0 0 1 0 0

QL 0 �1 0 0 0

Q0
R 0 0 0 �1 �1

: (3.11)

A linear combination of these five U(1) charges gives an
overall U(1) and does not couple to the matter. Only four
U(1) charges couple to the matter.

The integers qal specifying the magnetic fluxes can also

be determined as before. In order for Eq. (3.9) to have the
correct generation number, qab—which is defined in
Eq. (3.7)—must take the values

qab ¼

0 �3 x 3� x 3

0 3� y y 0

0 �3 3� z

0 z

0

0
BBBBBBBB@

1
CCCCCCCCA
; (3.12)

with some integers x, y, and z. The double sign is chosen
depending on whether � or �� is embedded in Eq. (3.9).

We now impose an extra condition: the extra U(1)’s
should also have appropriate interpretations. While B and
QL have the correct charge as the baryon number and the
left-handed number in Eq. (3.10), L0 and Q0

R do not unless
u0, l0, and e0 disappear, and �, not ��, is chosen in Eq. (3.10),
and thus in Eq. (3.9). Then, x ¼ y ¼ z ¼ 0 is taken, and
the upper sign in the double sign is chosen in Eq. (3.12). It
thus becomes

qab ¼

0 �3 0 3 3

0 3 0 0

0 3 3

0 0

0

0
BBBBBBBB@

1
CCCCCCCCA
: (3.13)

We then solve Eq. (3.7) with Eq. (3.13) to obtain qabl .

(See the Appendix for detailed calculations.) Here we note
two comments. First, Eq. (3.7) is invariant under the per-
mutations and the sign flips of qabl . Using these symmetries

we can fix the order of qab1 , qab2 , and qab3 , and the overall

signs for two of them. Secondly, if qabl ¼ 0 for all l, which
is equivalent to qal ¼ qbl for all l, the ath block and the bth
block of the bosonic matrix Vi in Eq. (2.4) become iden-
tical, and the gauge group is enhanced from UðpaÞ �
UðpbÞ to Uðpa þ pbÞ. We thus exclude this case. Within
these constraints, the solutions for Eq. (3.7) are determined
almost uniquely. We have two solutions:

qab1 ¼

0 1 0 �1 �1

0 �1 �1� 1 �1� 1

0 �1 �1

0 �2

0

0
BBBBBBBB@

1
CCCCCCCCA
;

qab2 ¼

0 �1 0 �1 �1

0 1 1� 1 1� 1

0 �1 �1

0 �2

0

0
BBBBBBBB@

1
CCCCCCCCA
;

qab3 ¼

0 3 0 3 3

0 �3 0 0

0 3 3

0 0

0

0
BBBBBBBB@

1
CCCCCCCCA
;

(3.14)

where all the double signs correspond.

IV. PROBABILITY OF THE STANDARD
MODEL APPEARANCE

We now study the dynamics of MM semiclassically, and
estimate the probabilities for the appearance of the topo-
logical configurations, and in particular, the SM configu-
rations obtained in the previous section.
We first specify the model. We here consider a ten-

dimensional torus with an anisotropy of sizes between
four and six dimensions, namely, a NC T2 � T2 � T2 �
T2 � T2 with an anisotropy between two T2’s and three
T2’s. The bosonic part is described by the twisted Eguchi-
Kawai model [24,25], which can be seen by expanding the
matrices in terms of bases (see, for instance, Ref. [26]).
The action is written as

Sb ¼ ��N
X
i�j

ZjitrðV iV jV
y
i V

y
j Þ

� �0N
X
���

Z��trðV�V �V y
�V y

�Þ

� �00N
X
i�

½Z�itrðV iV�V
y
i V

y
�Þ

þZi�trðV�V iV y
�V

y
i Þ�; (4.1)

with �, � ¼ 0; . . . ; 3 and i, j ¼ 4; . . . ; 9. V� and V i are

UðN Þ matrices, and are written as

V� ¼ V� � 1; V i ¼ 1 � Vi; (4.2)

where V� are UðN02Þ matrices and Vi are UðkN3Þ matrices.

The size of our spacetime is �N0 and that of the extra six
dimensions is �N, where � is a lattice spacing. There must
be a huge anisotropy between N0 and N. If the extra
dimensions have size of the order of the Planck scale and
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our spacetime is bigger than the current horizon, they must
satisfy

N0

N
> 1060: (4.3)

The total matrix size N is related to N0 and N as

N ¼ N02N3k: (4.4)

We now consider the following twists ZMN in the action
(4.1):

Z01 ¼ Z23 ¼ exp

�
2�i

s0

N0

�
;

Z45 ¼ Z67 ¼ Z89 ¼ exp

�
2�i

s

N

�
:

(4.5)

The other twists are taken to be zero. Note that the matrix
size (4.4) is k times larger than is usually expected from the
integers that specify the twists (4.5).

Next, we consider the matrix configurations (2.4). In
fact, they are classical solutions for the action (4.1) (see,
for instance, Ref. [34]). In order to match the matrix size,

Xh
a¼1

na1n
a
2n

a
3p

a ¼ N3k (4.6)

is required. Plugging Eq. (2.4) into Eq. (4.1), we obtain the
classical action as

Sb ¼ �2�N N02 X3
l¼1

Xh
a¼1

na1n
a
2n

a
3p

a cos

�
2�

�
s

N
þma

l

nal

��
;

(4.7)

where we have written only the contributions form the first
term in Eq. (4.1). If the integers nal , m

a
l are related to N, s

by Eqs. (2.6) or (2.7), with Nl, sl, rl, and kl set to be
independent of l, we can find the relation

s

N
þma

l

nal
¼ qal

Nnal
¼ � 1

2r

�
1

N
� 1

nal

�
: (4.8)

By plugging Eq. (4.8) into Eq. (4.7), we find that the
classical action (4.7) takes the minimum value if and
only if

qal ¼ 0 , nal ¼ N (4.9)

for 8a and 8l. Then, the constraint (4.6) becomesXh
a¼1

pa ¼ k: (4.10)

Therefore, if we choose the parameters of the model, i.e.,
the matrix sizes and the twists, as in Eqs. (4.4) and (4.5),
block diagonal configurations, where the total number
of the blocks is specified by Eq. (4.10), are dynamically
favored.

We then consider small fluctuations around the mini-
mum: configurations with jqal j 	 N. The condition (4.6),

with the use of Eq. (2.6), requires Eq. (4.10) and also

Xh
a¼1

paðqa1 þ qa2 þ qa3Þ ¼ 0;

Xh
a¼1

paðqa1qa2 þ qa2q
a
3 þ qa3q

a
1Þ ¼ 0;

Xh
a¼1

paqa1q
a
2q

a
3 ¼ 0:

(4.11)

For h 
 2, these conditions can be satisfied by a non-
vanishing qal . The classical action (4.7) is approximated as

�Sb ’ 4�2�N
N02N3

N4

X3
l¼1

Xh
a¼1

paðqal Þ2; (4.12)

where we have written the difference from the minimum
value. For comparison, let us consider cases with large
fluctuations: configurations where the total number of
blocks is different from Eq. (4.10), and in particular, the
configurations with nal ¼ kN=

P
h
b¼1 p

b for8a and 9l, and
with nal ¼ N for the other l. In this case, the action (4.7)

receives an enhancement factor of order N2, compared to
Eq. (4.12).

A. T2

Before going on to the case in the IIBMM, we first study
the dynamics in T2 as an exercise. In this case, Eq. (4.12)
reduces to

�Sb ¼ 4�2�k
Xh
a¼1

pa

�
qa

N

�
2
: (4.13)

This result contrasts to the case where the topologies are
defined by the total matrix [30], not by the blocks, as in the
present case. There, the action became

�St � �N; (4.14)

and thus only a single topological sector survived in the
continuum limit. In the present case, however, the result
(4.13) agrees rather well with the commutative case.
Now, let us consider two continuum limits. The first one

is to fix the dimensionful NC parameter

�� 1

N
ðN�Þ2; (4.15)

and the dimensionful gauge coupling constant

g2YM2
� 1

��2
: (4.16)

This leads to a double scaling limit: �, N ! 1 with �=N
fixed. Indeed, by Monte Carlo simulations, various corre-
lation functions were shown to scale in this limit [35]. In
this continuum limit, the action (4.13) vanishes for finite
qa. Then, all of the topological sectors with different qa

appear with equal probabilities.
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The second continuum limit is to fix the dimensionful
gauge coupling constant (4.16) and the torus size N�. This
gives another double scaling limit: �, N ! 1 with �=N2

fixed. In this limit, the action (4.13) takes finite values for
finite qa. Then, topologically nontrivial sectors appear with
finite probabilities, though they are suppressed compared
to the trivial sector.

If we consider yet another double scaling limit by fixing
�=N� with �> 2, the action (4.13) becomes infinite for
finite qa. In this limit, only a single topological sector
appears.

B. Td

Let us apply the analysis to a d-dimensional torus Td,
although in higher-dimensional gauge theories quantum
corrections become larger, and such a semiclassical analy-
sis is not ensured to be valid. In this case, the classical
action (4.12) becomes

�Sb ¼ 4�2�kNd�4
Xd=2
l¼1

Xh
a¼1

paðqal Þ2; (4.17)

where we have assumed that d is even.
If the continuum limit is taken by fixing the dimension-

ful gauge coupling constant

g2YMd
� �d�4

�
; (4.18)

and the torus size �N, it gives a double scaling limit with a
fixed �Nd�4. In this limit, the action (4.17) takes finite
values for finite qal . Then, topologically nontrivial sectors

appear with finite probabilities, but they are suppressed
compared to the trivial sector. Similarly, the limit of fixing
Eq. (4.18) and the dimensionful NC parameterN�2 leads to

a double scaling limit with a fixed �Nðd�4Þ=2. The action
(4.17) vanishes for finite qal in d < 4, and diverges in

d > 4. Moreover, a limit of fixing Eq. (4.18) and N�� gives

a double scaling limit with a fixed �Nðd�4Þ=�.

C. The IIB MM compactified on a torus

We now study the case of the IIB MM compactified on a
torus, assuming that the semiclassical analyses are some-
how justified.

We first compare the IIB MM action (2.1) and the
unitary version of it, Eq. (4.1). We consider a correspon-
dence between the Hermitian matrices and the unitary
matrices as

V� � exp

�
2�i

A�

�N0

�
; V i � exp

�
2�i

Ai

�N

�
; (4.19)

where the Hermitian matrices AM are assumed to be con-
strained to satisfy some conditions (as in Refs. [20,21]) so
that the size of the matrices,N , is considered to be the one
used after those constraints and quotients are applied. By
plugging Eq. (4.19) into Eq. (4.1), and comparing it with

Eq. (2.1), we find a relation among the coupling constants
in Eqs. (4.1) and (2.1) as

1

2
�N

�
2�

�N

�
4 ¼ 1

2
�0N

�
2�

�N0

�
4

¼ 1

2
�00N

�
2�

�

�
4 1

N2N02

¼ 1

g2IIBMM

: (4.20)

We then study how to take the large-N limit. From
Eq. (4.20), by defining a combination as

g2IIBMM

�4N
� 1

A
; (4.21)

the action (4.12) becomes

�Sb ¼ A

2�2k

X3
l¼1

Xh
a¼1

paðqal Þ2: (4.22)

It then follows that scaling limits of fixing g2IIBMMN
�=�4

with �>�1, � ¼ �1, and �<�1 give drastically dif-

ferent results. Together with fixing the torus size �N 1=5,
those scaling limits correspond to fixing g2IIBMMN

	 with
	 ¼ �þ 4=5.
Before going on, let us make a small digression. While

in Eq. (4.12) we took the topological contributions only
from T6, we can consider the situations where T4 also has
fluxes, specified by integers qal0 with l0 ¼ 1, 2. The contri-

bution from T4 becomes

�S0b ¼ 4�2�0N
N3N02

N04
X2
l0¼1

Xh
a¼1

paðqal0 Þ2; (4.23)

¼ A

2�2k

X2
l0¼1

Xh
a¼1

paðqal0 Þ2; (4.24)

where again, Eq. (4.21) is used in the second line.
Comparing this with Eq. (4.22), this shows that T4 and
T6 give the same order of contributions. It may imply that
topological phenomena on our spacetime, such as the
baryon asymmetry of the universe and the strong CP
problem, and topological phenomena in the extra dimen-
sions, which determine matter content on our spacetime,
are physics of the same order and can be discussed on the
same footing. However, Eq. (4.23) is a naive three-level
result, which might be interpreted to give phenomena at the
Planck scale in our spacetime T4. Due to large quantum
corrections, phenomena at the low energies would not be
so simply related to those in the extra dimensions.
We then come back to Eqs. (4.12) and (4.22), focusing

on the extra dimensions T6. If we take a large-N limit
by fixing g2IIBMMN

�=�4 with �>�1, or by fixing
g2IIBMMN

	 with 	 >�1=5, the classical action (4.12)
diverges for finite qal , and only a single topological

sector survives. While in the present model setting the
topologically trivial sector, qal ¼ 0, is chosen, in more
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elaborated models desirable sectors—such as the SM con-
figurations—may be chosen uniquely by the dynamics.
This is drastically different from the situations where
physicists usually consider the landscape.

In a limit with �<�1 or 	 <�1=5, the action (4.12)
vanishes for finite qal , and all the topological sectors appear
with equal probabilities. Then, the estimation for the
probability distribution over the string vacuum space
reduces to the number counting of the classical solutions.
Moreover, in a limit with �<�1� 2=5, a still larger
number of configurations—where the block number is
different from the value specified in Eq. (4.10)—can also
appear, as can be seen from the study for large fluctuations
given below Eq. (4.12).

In a limit with � ¼ �1 or 	 ¼ �1=5, the action (4.12)
takes the finite values (4.22) for finite qal , and the topologi-
cally nontrivial sectors appear with finite but suppressed
probabilities. We now estimate the probabilities for the
appearance of the SM configurations obtained in the pre-
vious section. By solving Eq. (3.6) for Eq. (3.14), the qal are
determined as

qa1 ¼ ðq1; q1 � 1; q1; q1 � 1; q1 � 1Þ;
qa2 ¼ ðq2; q2 þ 1; q2; q2 � 1; q2 � 1Þ;
qa3 ¼ ðq3; q3 � 3; q3; q3 � 3; q3 � 3Þ;

(4.25)

for a ¼ 1; . . . ; h. Since only the differences are specified in
Eq. (3.6), the qal are determined with arbitrary integer shifts

q1, q2, and q3.
6

We can lower the values of the classical action (4.22) by
shifting the twists in the action (4.1) from Eq. (4.5). If we
choose the twists as

Z45 ¼ exp

�
2�i

�
s1
N1

þ�q1 þ 1=4

N2
1

��
;

Z67 ¼ exp

�
2�i

�
s2
N2

þ�q2 � 1=4

N2
2

��
;

Z89 ¼ exp

�
2�i

�
s3
N3

þ�q3 þ 3=2

N2
3

��
;

(4.26)

the action (4.22) takes the minimum value

�Sb ¼ A

2�2k
25 (4.27)

for either sign in the double signs in Eq. (4.25). The
probability of the SM appearance is semiclassically given

as e��Sb , multiplied by a factor coming from quantum
corrections. There exist configurations with the action
(4.27), but with pa and qal different from Eq. (4.25), and

thus the probability of the SM appearance must also be
divided by this numerical factor. While we have considered
the minimal case of h ¼ 5 here, cases with h > 5 would
lead to larger values of �Sb and be more suppressed. Since
Eq. (4.27) is a result from the unitary MM (4.1), if we start
from Eq. (2.1) and follow the procedures mentioned at
the beginning of this subsection, Eq. (4.27) would receive
some corrections.

V. CONCLUSIONS AND DISCUSSION

In this paper, we considered the situations where the IIB
MM is compactified on a torus with fluxes, and found
matrix configurations that yield the SM matter content.
The configurations that provide the SM gauge group plus
the minimum number of the extra U(1)’s and the SM
fermion species are determined almost uniquely. We then
studied the dynamics of the unitary MM semiclassically.
We found that in an MM where the matrix sizes and the
twists of the action are suitably chosen, block diagonal
configurations are favored dynamically.
We also argued how to take large-N limits. In a large-N

limit of fixing g2IIBMMN
�=�4 with �>�1, or g2IIBMMN

	

with 	 >�1=5, only a single topological sector appears.
This suggests that in some more elaborated models the SM
may be chosen uniquely by the dynamics. This is drasti-
cally different from the situations where the landscape is
usually considered. In a limit with �<�1 or 	 <�1=5,
all the topological sectors appear with equal probabilities.
Then, the estimation for the probability distribution
reduces to the number countings of the classical solutions.
In a limit with � ¼ �1 or 	 ¼ �1=5, all the topological
sectors appear with finite but different probabilities. In this
case, we estimated the probabilities of the appearance of
the SM configurations.
There remain some important problems. One is about

compactifications. In this paper, we assumed toroidal com-
pactifications, and worked in a unitary matrix formulation.
If we start from Hermitian matrices, however, we need to
impose some conditions on the matrices to realize toroidal
compactifications [20,21]. Those special configurations
seem unlikely to appear dynamically. Note, however, that
fluctuations around the background may not need to be
restricted in the large-N limit [24], and that the back-
grounds of the special forms may be chosen dynamically
by the mechanism mentioned in this paper.
We should also study how the anisotropy between our

large spacetime and the small compactified space arises, as
in Refs. [4–6]. Moreover, our spacetime is commutative
and local fields live on it. If we start from MM, however,
those important properties are rather difficult to realize
(see, for instance, arguments in Refs. [6,18]). On the
other hand, the extra-dimensional spaces are free from

6Unfortunately, the condition (4.11) can not be satisfied by
Eq. (4.25) with any integers q1, q2, and q3. However, by con-
sidering the cases where the three original T2’s are taken to be
different, i.e., the integers Nl, rl, sl, kl depend on l, the condition
(4.11) is extended, and then satisfied by some integers. For
instance, q1 ¼ q2 ¼ 0, q3 ¼ 3, r1 ¼ 7, r2 ¼ 1, r3 ¼ 1, and
N1 ¼ N2 ¼ N3 satisfy it.
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those constraints, and need not have even a geometrical
interpretation, which can broaden the possibilities of
phenomenological model constructions. After all, the
problems of compactification in MM will be clarified
by understanding both our spacetime and the extra-
dimensional space together.

A second issue is about anomaly cancellations. The
model we considered in the present paper has extra U(1)
gauge groups and is anomalous within the gauge dynamics.
This anomaly may be canceled via the Green-Schwarz
mechanism by the exchanges of the Ramond–Ramond
fields. The exchange of Ramond–Ramond fields also
makes the extra U(1) gauge fields massive. In order to
realize this, the model should be modified (see, for
instance, Ref. [36]). By these studies of comparing various
phenomenological models in string theories and MM, we
can also make progress for both string theories and MM.

A third issue is about the Higgs particles. While the gauge
fields in the extra dimensions give scalar fields and candi-
dates for the Higgs fields, it is difficult to keep them mass-
less against quantum corrections, which is well-known as
the naturalness or the hierarchy problem. In the gauge-Higgs
unifications [37], higher-dimensional gauge symmetries
protect the scalar mass from the quadratic divergences of
the cutoff order, but it still can receive quantum corrections
of the order of the Kaluza-Klein scale (see also Ref. [38]).

We will come back to these issues in future publications.
Ultimately, we hope to analyze the full dynamics in the
MM, and survey the probability distribution over the whole
of the landscape.
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APPENDIX: SOLUTIONS OF qabl

In this appendix, we find all the solutions of qabl that

satisfy Eq. (3.7) for Eq. (3.13). We first note that Eq. (3.7) is
invariant under the permutations among qab1 , qab2 , and qab3 ,

and also under the sign flips: qab1 ! �qab1 , qab2 ! �qab2 ,
qab3 ! qab3 ; qab1 ! �qab1 , qab2 ! qab2 , qab3 ! �qab3 ; qab1 !
qab1 , qab2 ! �qab2 , qab3 ! �qab3 (two of which are indepen-

dent). By using these symmetries, we can fix the order of
qab1 , qab2 , and qab3 , and the overall sign for two of them.

1. h ¼ 4 case

For a preparation, we first consider the case with
h ¼ 4 and

qab ¼

0 �3 0 3

0 3 0

0 3

0

0
BBBBB@

1
CCCCCA: (A1)

Note that this is different from Eq. (3.8). In order to save
space, we will omit the diagonal elements and write it as

q̂ ab ¼
�3 0 3

3 0
3

0
@

1
A; (A2)

and solve the equation
Q

3
l¼1 q̂

ab
l ¼ q̂ab.

One of the q̂11l must be�3 and the other two of q̂11l must

be �1. The same is true for q̂22l and q̂33l . We then classify

all the possibilities into three cases: the case where all the
three 3’s are gathered in a single l; the case where the two
3’s are in an l and the other 3 is in another l; the case where
the three 3’s are completely split into different l’s.
In the first case, there exist six solutions:

q̂ab1 q̂ab2 q̂ab3

�1 �1� 1 �1

�1 0

1

0
BB@

1
CCA

�1 �1� 1 �1

�1 0

1

0
BB@

1
CCA

�3 0 3

3 6

3

0
BB@

1
CCA

1 0 �1

�1 �1� 1

�1

0
BB@

1
CCA

�1 0 �1

1 1� 1

�1

0
BB@

1
CCA

3 0 3

�3 0

3

0
BB@

1
CCA

1 1� 1 �1

�1 �1� 1

�1

0
BB@

1
CCA

�1 �1� 1 �1

�1 1� 1

1

0
BB@

1
CCA

3 6 3

3 0

�3

0
BB@

1
CCA

: (A3)

The double signs correspond in each row of the table. In the second case, there are four solutions:
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q̂ab1 q̂ab2 q̂ab3

�1 0 �1

�1 0

�1

0
BB@

1
CCA

�1 0 3

�1 3� 1

3

0
BB@

1
CCA

3 0 �1

�3 �3� 1

�1

0
BB@

1
CCA

�1 0 �1

�1 �2

�1

0
BB@

1
CCA

3 3� 1 3

�1 0

�1

0
BB@

1
CCA

�1 3� 1 �1

3 0

�3

0
BB@

1
CCA

: (A4)

The third case has no solution. There are ten solutions total,
taking the double signs into account.

2. h ¼ 5 case

We now come back to the casewith h ¼ 5 and Eq. (3.13).
Again, we omit diagonal elements and write it as

q̂ab ¼

�3 0 3 3

3 0 0

3 3

0

0
BBBBB@

1
CCCCCA: (A5)

The analysis for q̂abl with 1 � a, b � 3 is the same as in the

h ¼ 4 case of the previous subsection.
If q̂44l ¼ 0 for all l, which is equivalent to q4l ¼ q5l for all

l, the fourth and fifth blocks of the bosonic matrix Vi in
Eq. (2.4) become identical, and the corresponding gauge
group is enhanced from Uð1Þ � Uð1Þ to U(2). We then
exclude this case. Hence, we must find the solution where
some of q̂44l are zero and some of q̂44l are nonzero. This can

be achieved by using the second solution in Eq. (A3). We
then obtain

q̂ab1 q̂ab2 q̂ab3

1 0 �1 �1

�1 �1� 1 �1� 1

�1 �1

�2

0
BBBBB@

1
CCCCCA

�1 0 �1 �1

1 1� 1 1� 1

�1 �1

�2

0
BBBBB@

1
CCCCCA

3 0 3 3

�3 0 0

3 3

0

0
BBBBB@

1
CCCCCA
: (A6)

All the double signs correspond. As is clear from our calculations, these exhaust the solutions for Eq. (A5) under the
conditions mentioned above.
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