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We consider a real massless scalar field in 3þ 1 dimensions satisfying a Robin boundary condition at a

nonrelativistic moving mirror. Considering vacuum as the initial field state, we compute explicitly the

number of particles created per unit frequency and per unit solid angle, exhibiting in this way the angular

dependence of the spectral distribution. The well-known cases of Dirichlet and Neumann boundary

conditions may be reobtained as particular cases from our results. We show that the particle creation rate

can be considerably reduced (with respect to the Dirichlet and Neumann cases) for particular values of the

Robin parameter. Our results extend, for 3þ 1 dimensions, previous results found in the literature for

1þ 1 dimensions. Further, we also show that this inhibition of the dynamical Casimir effect occurs for

different angles of particle emission.
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I. INTRODUCTION

The dynamical Casimir effect (DCE) basically consists
of the emission of quanta from a moving body in vacuum
due to its interaction with a quantized field [1–5]. Another
manifestation of the DCE, which is a direct consequence of
the particle creation phenomenon if we invoke the energy
conservation law, is a radiation reaction force acting on the
moving body. This dissipative force gives rise to an irre-
versible exchange of energy between the moving body and
the quantized field. In other words, the energy dissipated
from the moving body is converted into real excitations of
the quantized field, i.e., real particles. One can also under-
stand the DCE in the opposite way, namely, from the
fluctuation-dissipation theorem [6,7] and from the fact
that the static Casimir force acting on a fixed body, though
zero, has nonvanishing fluctuations [8]. In this scenario,
one expects that a moving plate may be acted by a dis-
sipative force (under certain circumstances) which is
proportional to the fluctuations of the Casimir force on
the static plate [9–11] (for the case of a moving sphere,
see Ref. [12]).

However, the quantized field and the moving body
can also exchange energy reversibly, which means that
the force exerted on the moving body acquires, in this
case, a dispersive part, as it occurs when Robin boundary
conditions (BCs) are considered [13,14]. During the first
two decades after the pioneering paper by Moore [1], the
calculations on theDCEwere usually donewith scalar fields.
The consideration of electromagnetic fields was made for
the first time in 1994 [15] (see also Refs. [16,17]), and since
then great attention has been devoted to the DCE. Detailed
reviews on the DCE can be found in Refs. [18,19]. Several
experimental proposals to observe the DCE have been
made in the last years. We shall briefly comment on a couple

of them (for more details see, for instance, Dodonov’s
paper [20]).
The so-called motion induced radiation (MIR) experi-

ment [21] is based on the simulation of a mirror’s motion
by changing the reflectivity of a semiconductor by irradi-
ating it with appropriate laser pulses, an ingenious idea first
introduced by Yablonovitch in 1989 [22] in a paper where
the main concern was to propose ways of simulating highly
accelerated frames in order to enhance the Unruh radiation.
A few years later, this same idea of creating a dense
electron-hole plasma in a thin semiconductor by irradiating
it with laser pulses was also discussed by Losovik et al.
[23]. Though there are many promising aspects in the MIR
experiment, it is worth mentioning that the MIR experi-
mentalists may have to deal with some difficulties. A first
one is related to the limitations in the signal-to-noise ratio
present in their experiment caused by thermal effects,
when they run the experiment at 4.6 K, as pointed out by
Kim et al. [24]. A second one is the influence of damping in
a parametric amplification process. And in the MIR
experiment, the electric permittivity of the semiconductor
slab after excitation by the laser pulse acquires a non-
negligible imaginary part [25], so that dissipation effects
are inevitable. In this case, as shown by Dodonov, damping
plays an important role and the emergence of a super-
chaotic quantum state may occur, leading to a highly
super-Poissonian statistics for the distribution function of
quanta [26].
Another interesting proposal was made by Kim et al.

[27]. They suggest that an indirect measurement of the
dynamical Casimir photons generated by means of the
mechanical motion of a film bulk acoustic resonator is
detected with the aid of a superradiance mechanism.
More recently, Dezael and Lambrecht [28] proposed that
a (dynamical) Casimir-like radiation may arise from an
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effective motion of mirrors obtained by the interactions
of an optical parametric oscillator with a thin nonlinear
crystal slab inside. In 2011, Kawakubo and Yamamoto [29]
proposed that photons could be generated by means of
a nonstationary plasma mirror, with the photons being
detectable by an excitation process of Rydberg atoms
through the atom-field interaction. Still, in 2011, Faccio
and Carusotto [30] proposed a photon generation mecha-
nism in the near-infrared domain obtained by a train of
laser pulses applied perpendicularly to a cavity, made of
nonlinear optical fiber, which modulates in time the refrac-
tive index of the medium filling the cavity.

Finally, 40 years after its theoretical prediction made by
Moore [1], the first experimental observation of the DCE
was announced by Wilson and collaborators [31], in an
experiment where these authors use a superconducting
circuit consisting of a unidimensional coplanar transmis-
sion line with a tunable electrical length. The change of the
electrical length is performed by modulating the induc-
tance of a superconducting quantum interference device
fixed at one end of the transmission line. This modulation
is achieved with the aid of a time-dependent magnetic flux
through the superconducting quantum interference device.
The electromagnetic field along the transmission line is
described in terms of a field operator given by a scalar
field �ðt; xÞ obeying a massless Klein-Gordon equation in
1þ 1 dimensions and submitted to a Robin BC with a
time-dependent Robin parameter �ðtÞ in the following
manner [32]:

�ðt; 0Þ � �ðtÞð@x�Þðt; 0Þ: (1)

This kind of BC was also considered in Refs. [33,34]. In
the context of the DCE, the Robin BC appeared for the first
time in the papers by Mintz and collaborators [13,35], who
investigated a real massless scalar field �ðt; xÞ satisfying a
Robin BC at a moving plate when observed from an inertial
frame in which the plate was instantaneously at rest (we
shall refer to this frame as the tangential frame), according
to the formula

�0ðt0; x0Þ ¼ �ð@x0�0Þðt0; x0Þ; (2)

where the prime superscripts are to remind us that the
BC is taken in a tangential frame and � is now a time-
independent Robin parameter.

For an oscillating mirror that imposes a Dirichlet BC
on a scalar field in 1þ 1 dimensions, the total particle
creation rate is a monotonic function of the mechanical
frequency of the mirror [36]. However, it was shown in
Ref. [35] that this is not always the case when the field
obeys a Robin BC given by Eq. (2). For a given value of
�, there is an interval in which an increase in the oscillation
frequency of the mirror leads to a decrease in the
particle emission. This can be understood as a kind of
‘‘decoupling’’ between the mirror and some of the field
modes.

One important question that remains is whether or not
this interesting effect still occurs in 3þ 1 dimensions. This
is not a trivial issue, once the phase space available for the
field in d ¼ 3þ 1 is much larger than that in 1þ 1 dimen-
sions. Answering this question is the main purpose of our
paper, and we shall do that by considering a real massless
scalar field in 3þ 1 dimensions satisfying a Robin BC at a
nonrelativistic moving mirror (in the tangential frame). As
far as we know, all papers about DCEwith a Robin BC deal
with models in 1þ 1 dimensions, except one [37], which
did not discuss the problem in which we are interested
here.
An extra motivation to study this model is the connec-

tion between the DCE for a real massless scalar field in
3þ 1 dimensions and the DCE for the electromagnetic
field interacting with a perfectly conducting plate. The
latter problem can be separated into two problems: a vector
potential representing the transverse electric (TE) polar-
ization, which is associated with a Dirichlet BC, and a
vector potential representing the transverse magnetic (TM)
polarization, which is associated with a Neumann BC.
Since the parameter � allows a continuous interpolation
between Dirichlet and Neumann BCs, we expect that in
the limit � ! 0 the DCE for the massless scalar field
coincides with the TE polarization contribution to the
electromagnetic DCE, while for � ! 1 the TM polariza-
tion contribution to the electromagnetic DCE is recovered.
The structure of this paper is as follows. In Sec. II, we

calculate the relations between the creation and annihila-
tion field operators in the remote past (‘‘in’’ operators) and
in the far future (‘‘out’’ operators), in the Heisenberg
picture. In Sec. III, we show our results for the particle
emission rate for a specific but typical motion of the mirror.
Finally, in Sec. IV, we discuss our results and make a few
comments on their possible consequences.

II. BOGOLIUBOV TRANSFORMATION AND
PARTICLE SPECTRUM

Let us consider—in the Heisenberg picture—a massless
scalar field � in 3þ 1 dimensions written in terms of the
time-dependent operators ayðt;kÞ and aðt;kÞ, where k is
the wave vector. In the distant past, these operators are

relabeled as the creation and annihilation operators ayinðkÞ
and ainðkÞ, whereas in the far future they are relabeled as

ayoutðkÞ and aoutðkÞ. The time evolution of the operators
ay and a depends on the interaction between the field
and an external agent (modeled, in the present paper, by
a moving boundary). The out operators can be expressed
as a combination of the in operators via Bogoliubov trans-
formations [38]

aoutðkÞ ¼ �ðkÞainðkÞ þ �ðkÞayinðkÞ; (3)

where � and � are named Bogoliubov coefficients.
Assuming that in the remote past the system is in the
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vacuum state j0i, the spectral density of the created
particles after the movement of the mirror has ceased is
given by

dN

d3k
ðkÞ ¼ 1

ð2�Þ3 h0ja
y
outðkÞaoutðkÞj0i ¼ j�ðkÞj2: (4)

Notice that there will be particle production if, and only
if,�ðkÞ � 0, i.e., if the annihilation operator aoutðkÞ is

‘‘contaminated’’ by the creation operator ayinðkÞ. The rela-
tion between the in and out operators can be calculated
exactly for the case 1þ 1 dimensions [5] with Dirichlet or
Neumann BCs. However, only approximate approaches are
currently known for higher dimensional space-times. If the
movement of the mirror is nonrelativistic and has a small
amplitude, the perturbative method introduced by Ford and
Vilenkin [39] applies. In the following, we will use the
Ford-Vilenkin approach to find the Bogoliubov transfor-
mation for the massless scalar field satisfying the wave
equation

@2�

@t2
�r2� ¼ 0 (5)

and obeying a Robin BC imposed by a moving mirror. We
start by writing the field operator as the field under a static
BC plus a perturbation, that is,

�ðt; rÞ ¼ �0ðt; rÞ þ ��ðt; rÞ; (6)

where we assume that the undisturbed field �0 obeys the
static boundary condition

½�0ðt; rÞ � �@z�0ðt; rÞ�z¼0 ¼ 0; (7)

where � is a time-independent parameter.
The perturbation �� (which is assumed to be small)

gives the first-order contribution to the total field �ðt; rÞ
caused by the movement of the mirror and, therefore, will
be responsible for the emergence of the DCE.

Let z ¼ �qðtÞ be the position of the mirror at a given
instant. We assume that, in the laboratory reference frame,
the mirror starts at rest at z ¼ 0, undergoes a given pre-
scribed movement, and finally settles down at z ¼ 0 for
large times. The perturbation �� will be small as long as
the speed of the mirror is continuous with continuous
derivatives and is much smaller than the speed of light,
j� _qðtÞj � 1, in natural units. Once we consider a bounded
movement for the mirror, we also require that it possesses a
small amplitude. More specifically, this means that j�qj �
1=!0, where !0 is the dominant mechanical frequency,
and this assumption will allow us to neglect terms
O½ð�qÞ2�, O½ð��Þ2�, O½���q�, and O½ð� _qÞ2�.

We shall follow the same procedure as in Ref. [35]. At
the tangential frame at a given instant, the BC is given by

�0ðt0; r0Þ ¼ �0 @�
0

@z0
ðt0; r0Þ; (8)

where �0 is a t0-independent parameter. This BC can be
cast in the laboratory framewith the help of the appropriate

Lorentz transformations. For nonrelativistic velocities, one
may expand in first order in � _qðtÞ to find

½@z�ðt; rÞ þ � _qðtÞ@t�ðt; rÞ � ��1�ðt; rÞ�z¼�qðtÞ ¼ 0; (9)

where, in this approximation, we consider that the Robin
parameter is not affected by the Lorentz transformation, so
that �0 ¼ �.
We substitute (6) in (9) and expand the result thus

obtained in the small parameters, retaining only terms up
to linear order in �q and ��; we find

@z��ðt; rÞjz¼0 � ��1��ðt; rÞjz¼0

¼ �qðtÞ��1@z�0ðt; rÞjz¼0 � �qðtÞ@2z�0ðt; rÞjz¼0

� � _qðtÞ@t�0ðt; rÞjz¼0: (10)

Therefore, the perturbation ��ðt; rÞ obeys a time-
dependent BC at a fixed position (z ¼ 0), which is asso-
ciated with the motion of the mirror via �qðtÞ.
It is now convenient to express the field in the frequency

domain using a Fourier transform, as follows. Let us define
�ð!;kk; zÞ as the Fourier transform of the field �ðt; rÞ, so
that

�ð!;kk; zÞ :¼
Z 1

�1
dt

Z
d2rkei!te�ikk�rk�ðt; rÞ: (11)

Notice that �ð!;kk; zÞ obeys the Helmholtz equation

ð!2 � k2k þ @2zÞ�ð!;kk; zÞ ¼ 0: (12)

Once the massless free scalar field is a solution of the
d’Alembertian equation (5), we obtain

kz ¼ ½ð!þ i�Þ2 � k2k�1=2; with � ! 0þ: (13)

With this definition, kz is a complex function of !, with a
branch cut along the real axis in the range �kk <!< kk
[16], where kk ¼ jkkj.
The undisturbed field is the solution of the wave

equation (5) subject to the static BC (7):

�0ðt; rÞ ¼
Z 1

�1
d2kk

Z 1

0
dkz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

4�3j!kj
�

1

1þ �2k2z

�s

� ½aðkÞe�i!kteikk�rk þ ayðkÞei!kte�ikk�rk �
� ½sin ðkzzÞ þ �kz cos ðkzzÞ�; (14)

where the field normalization is chosen so that the creation
and annihilation operators obey the commutation relations

½aðkÞ; ayðkÞ0� ¼ ð2�Þ3�ðk� k0Þ: (15)

We can now use (11) to write down the Fourier trans-
form of the undisturbed field,

�0ð!;kk; zÞ ¼ Að!; kz;�Þ½sin ðkzzÞ þ �kz cos ðkzzÞ�
� ½aðkÞ�ð!Þ � ayð�kÞ�ð�!Þ��ðk2zÞ;

(16)
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with the normalization factor

Að!; kz;�Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16�3j!j

k2z

�
1

1þ �2k2z

�s
: (17)

The Fourier transformations of the perturbation ��ðt; rÞ
and the mirror’s law of motion �qðtÞ are written as

��ð!;kk; zÞ ¼
Z 1

�1
dt

Z
d2rkei!te�ikk:rk��ðt; rÞ (18)

and

�Qð!Þ ¼
Z 1

�1
dtei!t�qðtÞ: (19)

Notice that ��ð!;kk; zÞ obeys the Helmholtz equation

ð!2 � k2k þ @2zÞ��ð!;kk; zÞ ¼ 0: (20)

Recalling that we must take only the solution that prop-
agates outwards from the moving mirror, the solution of
the previous equation for z > 0 is given by

��ð!;kk; zÞ ¼ 1

ikz
@z��ð!;kk; 0Þeikzz: (21)

We now notice also that ��ð!;kk; zÞ obeys the BC

given by the Fourier transform of (10), namely,

@z��ð!;kk; 0Þ � ��1��ð!;kk; 0Þ

¼ ��1
Z 1

�1
d!0

2�
�Qð!�!0Þ½@z�0ð!0;kk; 0Þ

þ ð�!!0 � �k2
kÞ�0ð!0;kk; 0Þ�: (22)

Once the Fourier transform of the Ford-Vilenkin
ansatz (6) is

�ð!;kk; zÞ ¼ �0ð!;kk; zÞ þ ��ð!;kk; zÞ; (23)

we need to find an expression for�ð!;kk; zÞ that allows us
to relate the Fourier transforms of the field in the remote
past and distant future. This can be done straightforwardly
by using Green’s functions, as in Ref. [35].
Let us start with the one-dimensional version of Green’s

identity, @zfg½@zf� � f½@zg�g ¼ g½@2zf� � f½@2zg�. We now
identify the function f in this formula as the perturbation
�� and the function g as the Green’s function of the
Helmholtz operator, i.e., a function such that ð!2 � k2k þ
@2zÞgð!;kk; z; z0Þ ¼ �ðz� z0Þ. After integration by parts,

we can show that

��ð!;kk; z0Þ ¼ ½gð!;kk; 0; z0Þ@z��ð!;kk; 0Þ
� @zgð!;kk; 0; z0Þ��ð!;kk; 0Þ�: (24)

We may freely define the Green’s function g so that it
obeys the Robin BC at the surface of the static mirror, i.e.,
gð!;kk; 0; z0Þ ¼ �@zgð!;kk; 0; z0Þ. Then, the identity (24)
leads to

��ð!;kk; z0Þ ¼ gð!;kk; 0; z0Þ½@z��ð!;kk; 0Þ
� ��1��ð!;kk; 0Þ� (25)

and, using Eq. (22), we can write the perturbation as

��ð!;kk; z0Þ ¼ ��1gð!;kk; 0; z0Þ
Z 1

�1
d!0

2�
�Qð!�!0Þ½@z�0ð!0;kk; 0Þ þ ð�!!0 � �k2

kÞ�0ð!0;kk; 0Þ�: (26)

Replacing (26) in (23) one finds

�ð!;kk; z0Þ ¼ �0ð!;kk; z0Þ þ 1

�
gð!;kk; 0; z0Þ

�
Z 1

�1
d!0

2�
�Qð!�!0Þ½@z�0ð!0;kk; 0Þ

þ ð�!!0 � �k2
kÞ�0ð!0;kk; 0Þ�: (27)

The field �ð!;kk; z0Þ can be written in two different

forms. The first one involves �in, the Fourier transform of
the unperturbed field�0ðt; rk; z0Þ in the distant past, that is,
the ‘‘in’’ field, with which we associate retarded Green’s
functions. Then,

�ð!;kk; z0Þ ¼ �inð!;kk; z0Þ þ 1

�
gretð!;kk; 0; z0Þ

�
Z 1

�1
d!0

2�
�Qð!�!0Þ½@z�0ð!0;kk; 0Þ

þ ð�!!0 � �k2
kÞ�0ð!0;kk; 0Þ�; (28)

where �inð!;kk; z0Þ is the Fourier transform of �inðt; rÞ,
which is simply the unperturbed field at the remote past,

�0ðt; rÞ �
t!�1�inðt; rÞ: (29)

Analogously, one can use advanced Green’s functions to
express the field �0ð!;kk; z0Þ using the out field configu-

ration, as follows,

�ð!;kk; z0Þ ¼ �outð!;kk; z0Þ þ 1

�
gadvð!;kk; 0; z0Þ

�
Z 1

�1
d!0

2�
�Qð!�!0Þ½@z�0ð!0;kk; 0Þ

þ ð�!!0 � �k2
kÞ�0ð!0;kk; 0Þ�; (30)

where �outð!;kk; z0Þ is the Fourier transform of

�0ðt; rÞ �
t!1�outðt; rÞ: (31)

From Eqs. (30) and (28), we can relate the in and out
field operators through the advanced and retarded Green’s
functions,

REGO et al. PHYSICAL REVIEW D 87, 045024 (2013)

045024-4



�outð!;kk;z0Þ ¼�inð!;kk;z0Þþ 1

�
½gretð!;kk;0;z0Þ�gadvð!;kk;0;z0Þ�

Z 1

�1
d!0

2�
�Qð!�!0Þ½@z�0ð!0;kk;0Þ

þð�!!0 ��k2
kÞ�0ð!0;kk;0Þ�: (32)

Using the solution (16) of the Helmholtz equation for the field subject to a Robin BC, one can reexpress (32) as

�outð!;kk;z0Þ ¼�inð!;kk;z0Þþ
�

2i

1þ�2k2z

�
½sin ðkzz0Þþ�kz cosðkzz0Þ�

�
Z 1

�1
d!0

2�
Að!0;k0z;�Þ�Qð!�!0Þk0zð1��2k2

k þ�2!!0Þ½aðqÞ�ðk0zÞ�ayð�qÞ�ð�k0zÞ��ðk02z Þ; (33)

where we defined

q :¼ kk þ k0zẑ; (34)

with

k0z ¼ ½ð!0 þ i�Þ2 � k2
k�1=2: (35)

Once again, using (16) it is straightforward to show that

aoutðkÞ ¼ ainðkÞ þ 2ikzffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j!jð1þ �2k2zÞ

q Z 1

�1
d!00

2�

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

j!00j
ð1þ �2k002z Þ

s
�Qð!�!00Þ

� ð1� �2k2
k þ �2!!00Þ½ainðq00Þ�ðk00z Þ

� ayinð�q00Þ�ð�k00z Þ��ðk002z Þ; (36)

with q00 ¼ kk þ k00z ẑ. The last expression is a linear relation
between the annihilation field operator in the far future and
the creation and annihilation operators at the remote past.
That is, (36) is the Bogoliubov transformation we were
looking for.

As advertised, the vacuum state is annihilated by the in
operator ainðkÞ, but not by the out operator aoutðkÞ due to
the presence of ayinðkÞ on the right-hand side of (36). This

clearly indicates a nonzero particle creation in 3þ 1
dimensions due to the DCE for a massless field subject to
a Robin BC at a moving mirror.

After some straightforward manipulations, from Eq. (4)
and using the Bogoliubov transformation (36), we can
finally calculate the spectral density of created particles:

dNðkÞ
d3k

¼ A

ð2�Þ3
4k2z

j!jð1þ �0k
2
zÞ

Z 1

jkkj
d!0

2�
k0z

� j�Qð!þ!0Þj2
1þ �0k

02
z

ð1� �2k2
k � �2!!0Þ2; (37)

where A is the area of the moving plate. Taking into
account the axial symmetry of the problem, it is interesting
to rewrite (37) in terms of the variables

kz ¼ ! cos� and jkkj ¼ ! sin �; (38)

with ! ¼ jkj and � 2 ½0; �=2�. Analogously, we have

k0z ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!02 � k2

k
q

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!02 �!2sin 2�

p
; (39)

which leads us to our expression for the particle spectrum
per unit area, per unit solid angle,

1

A

dN

d!d�
¼ 1

ð2�Þ3
4!3cos 2�

1þ �2!2cos 2�

Z 1

! sin �

d!0

2�

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!02 �!2sin 2�

p j�Qð!þ!0Þj2
1þ �2ð!02 �!2sin 2�Þ

� ð1� �2!2sin 2�� �2!!0Þ2: (40)

The expression (40) is valid for an arbitrary motion of the
mirror, as long as it is sufficiently slow (j� _qj � 1) and has
a small amplitude. In the following section, we present our
results for a specific but very useful law of motion, that of a
mirror which oscillates, practically, at a single frequency.

III. RESULTS AND DISCUSSION

Let us consider that the movement of the mirror is
described by

�qðtÞ ¼ �0 cos ð!0tÞe�jtj=	; (41)

which is a typical motion considered in investigations of the
DCE [16], where �0 represents its amplitude, !0 the domi-
nating mechanical frequency, and 	 the effective time inter-
val of the oscillation. The Fourier transform of Eq. (41) is

�Qð!Þ ¼ �0	

�
1

1þ ð!þ!0Þ2	2
þ 1

1þ ð!�!0Þ2	2
�
:

(42)

In the limit with !0	 � 1, we obtain

j�Qð!Þj2 � �

2
�20	½�ð!�!0Þ þ �ð!þ!0Þ�; (43)

which is reasonable once (42) possesses two narrow peaks
around ! ¼ 	!0 in this limit. Substituting (43) into (40)

and defining ~N , the normalized particle spectrum per unit
area, per unit time, per unit solid angle, given by

~N ¼ 1

A

dN

d!d�

�
�20	

8�3

��1
; (44)
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we can write

~N ð!;!0; �; �Þ ¼ !4
0
~F ð�;�; �Þ; (45)

where

~F ð�;�; �Þ ¼ �3cos 2�

1þ �2�2cos 2�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�� 1Þ2 � �2sin 2�

q ½1� �2�2sin 2�� ��2ð1� �Þ�2
1þ �2½ð1� �Þ2 � �2sin 2�� �½1� �ð1þ sin�Þ�; (46)

with � ¼ !=!0 and � ¼ !0�. Notice that the Heaviside
function present in Eq. (45) indicates the following inter-
esting features of the particle spectrum: particles associ-
ated with a certain frequency! can be created in all angles
if 0 
 ! 
 !0=2; for particles associated with a frequency
!>!0=2, there is no particle emission for angles larger
than �0ð!Þ, with

�0ð!Þ ¼ arcsin

�
!0 �!

!

�
: (47)

Moreover, observe that expression (45) coincides with the
results found in Ref. [16] in two particular cases. In the
limit � ! 0, Eq. (45) reproduces the particle spectrum for
TE photons, while for � ! 1 it corresponds to the spec-
trum of TM photons.

The normalized particle spectrum per unit area, per unit
time, here labeled as N , can be obtained by integrating
(45) in the solid angle, with an angular range � 2 ½0; �=2�:

N ð!;!0; �Þ ¼ !4
0F ð�;�Þ (48)

with

F ð�;�Þ ¼ 2�
Z �=2

0
d� sin � ~F ð�;�; �Þ: (49)

The results for !0 ¼ 1 and different values of � in
N ð!;!0; �Þ are shown in Fig. 1. The spectrum is

symmetric around !0=2 for every value of �. This is in
agreement with the expectation that the particles are
created in pairs with frequencies !1 and !2 so that
!1 þ!2 ¼ !0, the driving frequency of the mirror [16].
One can also analyze the angular spectrum of emitted

particles. Our results for ~N , which follow from Eq. (45)
for a particular frequency ! ¼ !0=2 and !0 ¼ 1, are
shown in Fig. 2. A few comments are in order. First, for
small values of the Robin parameter, � & 1, the emission
is mainly forward, with large angle emission being sup-
pressed. In the second place, for � ’ 2, the emission is
strongly inhibited for every angle, but it also acquires a
maximum around � ’ 1 rad. If the � is further increased,
the emission rate rises again as a whole, but the particle
production is highest around � ’ 1 rad and not around the
normal direction � ¼ 0. Another interesting and subtle
point becomes evident when we compare the angular
spectrum in the case of Robin boundary conditions with
� � 1 and that of the Neumann BCs. We see from Fig. 2
that there is no emission for � ! �=2 no matter how large
the values of � are. This is basically due to the factor cos 2�
in (45). However, as shown in Ref. [16], there is a finite
emission rate at � ! �=2 for Neumann BCs. The apparent
paradox can be solved by noticing that the limits � ! �=2
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FIG. 1 (color online). The normalized spectrum N in arbi-
trary units, as a function of !, for different values of �, with
!0 ¼ 1. The particle emission at a given frequency ! is initially
reduced as � increases from zero until a given angle and then it
starts increasing, reaching a fixed plateau for � ! 1.
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FIG. 2 (color online). Angular spectrum ~N of emitted parti-
cles with frequency! ¼ !0=2, with!0 ¼ 1, as a function of the
emission angle (measured with respect to the normal to the
mirror) for various values of �. Solid (black) line: � ¼ 0; dashed
(red) line: � ¼ 1; long dashed (green) line: � ¼ 2; dotted (blue)
line: � ¼ 3; dashed-dotted (magenta) line: � ¼ 5.
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and � ! 1 in Eq. (40) do not commute. Fortunately, this
subtlety affects only grazing angles, and the limit � ! 1
can be identified with the Neumann BC whenever
� ¼ �=2 is not the only angle under consideration.

Finally, let us turn our attention to the total number of
particles emitted, N, which is given by

Nð!0; �Þ ¼ !5
0Fð�Þ; (50)

where

Fð�Þ ¼
Z 1

0
d�F ð�;�Þ: (51)

The ratio between the emission rate NR ¼ Nð!0; �Þ
and the emission rate ND ¼ Nð!0; 0Þ (Dirichlet BC) is
given by

NR=ND ¼ Fð�Þ=Fð0Þ; (52)

which is shown in Fig. 3. As first demonstrated in Ref. [16],
the total emission rate for Neumann BC is 11 times larger
than that for Dirichlet BCs in 3þ 1 dimensions. Our
results not only confirm the factor 11 but also show that
the Dirichlet and Neumann cases are connected by a non-
monotonic curve. Indeed, the Robin BC with �!0 ’ 2
provides a very strong inhibition of the particle production.
This property of the DCE with the Robin BC has already
been noticed in 1þ 1 dimensions [35], but it was not
obvious a priori that this property would be preserved at
higher dimensions.

IV. FINAL REMARKS

We have investigated the DCE for a real massless scalar
field in 3þ 1 dimensions satisfying a Robin BC at a non-
relativistic moving plate (in the tangential frame). We used

the perturbative method of Ford and Vilenkin [39],
valid for nonrelativistic motions of small amplitudes, to
evaluate the Bogoliubov transformations between creation
and annihilation operators in the remote past, ain, and
distant future, aout. This allowed us to determine the spec-
tral and angular distributions of the created particles
caused by the moving mirror. Equation (40) exhibits our
expression for the particle spectrum per unit area, valid for
a general (nonrelativistic) law of motion for the moving
plate. Assuming the oscillating law of motion given by
Eq. (41)—a typical motion considered in investigations of
the DCE—we obtained an explicit expression for the spec-
trum per unit area, given by Eq. (45). In the limit � ! 0
(Dirichlet case) we recovered the particle spectrum for
TE photons, whereas for � ! 1 (Neumann case) we
reobtained the spectrum of emitted TM photons.
Our results also show that, although in the limits � ! 0

and � ! 1 the total number of created particles is a
monotonic function of the mechanical frequency of the
plate, !0, the same is not true for intermediate values of
�. In fact, for any fixed positive �, the total number of
created particles is not a monotonic function of !0. More
than that, the strong inhibition of the DCE that occurs in
1þ 1 dimensions, when the Robin BC is present, also
occurs in 3þ 1 dimensions. Indeed, the total number of
created particles shown in Fig. 3 is dramatically reduced
for a quasiharmonic motion with a frequency !0 such
that �!0 ’ 2, where � is the parameter that characterizes
the Robin condition. Naively thinking, this surprising
effective decoupling between the plate and the quantized
field, predicted previously in 1þ 1 dimensions [13,35],
was not expected in 3þ 1, since in the latter case only
the field modes that propagate perpendicularly to the
plate are expected to behave as the field modes in 1þ 1
dimensions.
The suppression just discussed shows how the dynami-

cal Casimir effect may be strongly dependent on the
boundary conditions employed. This fact is very important,
since any extra information about the created particles,
either in their total number or in the angular dependence
of the corresponding spectral distribution, can be
extremely useful to better identify the dynamical Casimir
photons in a given experiment. Since the Robin parameter
� can be interpreted as the plasma wavelength of a given
material, the results presented here may be of some help for
future experiments, at least as a source of concern and
caution when dimensioning these experiments. For the
moment, realistic values for the product �!0 are still
very far from a strong suppression, but this may not
be the case in future experiments. It would be interesting if
the peculiar signature of the DCE with Robin conditions—
the strong inhibition in the particle emission—could
eventually be captured in experiments. Considering the
connections between the Robin BC and the theoretical
model underlying the first experimental observation of
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FIG. 3. Total emission rate for a Robin BC normalized by the
Dirichlet rate. Notice that the Neumann limit (� ! 1) is
correctly recovered. The strong decoupling between the mirror
and the quantum vacuum field at �!0 ’ 2 is typical of the Robin
BC [13,35].
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the DCE [31], we believe that a thorough study of the
implications of the Robin boundary conditions on the
DCE is crucial.

As a final comment, since the dissipative force acting on
a moving mirror is closely related to the particle creation,
we expect that this dissipative force will also suffer a
similar inhibition in 3þ 1 dimensions, as it occurs in the
1þ 1-dimensional case [13]. This calculation will be left
for a future work.
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