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In this paper the arising of Gribov copies both in Landau and Coulomb gauges in regions with nontrivial

topologies but flat metric, (such as closed tubes S1 �D2, or R� T2) will be analyzed. Using a novel

generalization of the hedgehog ansatz beyond spherical symmetry, analytic examples of Gribov copies of

the vacuum will be constructed. Using such ansatz, we will also construct the elliptic Gribov pendulum.

The requirement of absence of Gribov copies of the vacuum satisfying the strong boundary conditions

implies geometrical constraints on the shapes and sizes of the regions with nontrivial topologies.

DOI: 10.1103/PhysRevD.87.045023 PACS numbers: 11.10.�z, 03.70.+k, 04.62.+v, 11.15.Bt

I. INTRODUCTION

One of the most important sectors of the standard model
is Yang-Mills theory, which describes QCD and the elec-
troweak theory. The degrees of freedom of a gauge theory
are encoded in the connection ðA�Þa, which is a Lie algebra
valued one form. The action functional is invariant under
gauge transformations

A� ! U�1A�UþU�1@�U; (1)

whereas the physical observables are invariant under
proper gauge transformations. The latter has to be every-
where smooth and it has to decrease at infinity in a suitable
way (see, for instance, Ref. [1]).

Since it is still unknown how to use in practice gauge
invariant variable in Yang-Mills case,1 the most convenient
practical choices for the gauge fixing are the Coulomb
gauge and the Landau gauge.2 The standard approach to
fix the gauge and to use Feynman expansion around the
trivial vacuum A� ¼ 0 provides one with excellent results

when the coupling constant is small.
As it was for the first time discovered in Ref. [4], a

proper gauge fixing is not possible globally due to the
presence of Gribov copies.3 In the QCD case, this effect
is very important in the nonperturbative regime. Even if
one chooses a gauge free of Gribov copies, the effects of
Gribov ambiguities in other gauges generate a nonpertur-
bative breaking of the BRST symmetry [6].

It has been suggested to exclude from the domain of
the path-integral gauge potentials A�; which generate zero

modes of the FP operator (see, in particular, Refs. [4,7–11];
two nice reviews are Refs. [12,13]). In this framework,
which is called the (refined) Gribov-Zwanziger approach
to QCD, The region � around A� ¼ 0 in which the FP

operator is positive is called Gribov region:

�¼deffA�j@�A� ¼ 0 and det @�DðAÞ� > 0g; (2)

DðAÞ� ¼ @� þ ½A�;��; (3)

where DðAÞ� is the covariant derivative corresponding to

the field A�. In the case in which the space-time metric is

flat and the topology is trivial, this approach coincides with
usual perturbation theory when the gauge field A� is close

to the origin (with respect to a suitable functional norm
[11]). At the same time, this framework takes into account
the infrared effects related to the partial4 elimination of the
Gribov copies [8,14,15]. When one takes into account the
presence of suitable condensates [16–20] the agreement
with lattice data is excellent [21,22]. Within the (refined)
Gribov-Zwanziger approach to QCD, the copy-free neigh-
borhood of the trivial vacuum A� ¼ 0 has to be identified

with perturbative region of the theory. In this way, within
the perturbative region, the standard recipe to fix the gauge
and perform the perturbative expansion makes sense
thanks to the lack of any overcounting. The appearance
of copies of the vacuum satisfying the strong boundary
conditions is one of the worst pathologies of perturbation
theory.

*canfora@cecs.cl
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1In the cases of topological field theories in 2þ 1 dimensions

[2] this goal has been partially achieved.
2The axial and light-cone gauge fixing choices are affected by

quite nontrivial problems (see, for instance, Ref. [3]).
3Furthermore, it has been shown by Singer [5], that if Gribov

ambiguities occur in Coulomb gauge, they occur in all the gauge
fixing conditions involving derivatives of the gauge field. Other
gauge fixings (such as the axial gauge, the temporal gauge, and
so on) free from gauge fixing ambiguities are possible but these
choices have their own problems (see, for instance, Ref. [3]).

4The condition to have a positive Faddeev-Popov operator is
not enough to completely eliminate Gribov copies in the
Coulomb and Landau gauges. It can be shown [11] that there
exists a smaller region (called the modular region) contained in
the Gribov region which is free of gauge fixing ambiguities.
However, it is still not clear how to implement the restriction to
the modular region in practice.
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On the other hand, it is a well-established fact by now
that Yang-Mills theory may have knotted excitations
[23–25] (the simplest nontrivial example corresponding
to a closed tube: the ‘‘donut’’ or unknot with topology
S1 �D2). Moreover, as it is well known (see, for instance,
Ref. [26]), nontrivial topologies such as R� T2 and
R� T3 are very important to understand the infinite vol-
ume limit of Yang-Mills theory as well as chiral symmetry
breaking generated by the Casimir force (a related refer-
ence is Ref. [27]). In order to describe these situations one
has to be able to define consistently Yang-Mills theory
inside bounded regions with the nontrivial topologies.

The main goal of the present paper is to analyze whether
or not Gribov copies of the vacuum can actually exist
inside a space-time region of the topology such as
S1 �D2 (but more general topologies relevant, for in-
stance, for the infinite volume limit of Yang-Mills as well
as lattice QCD-such as T3 and R� T2, R� T3-as well as
the interior of an ellipse-will be considered). The absence
of Gribov copies of the vacuum (satisfying strong bound-
ary conditions) is a necessary condition for the existence
of a perturbative region in the functional space around
A� ¼ 0. It will be shown that such requirement implies

nontrivial restrictions on the possible sizes and shapes of
the corresponding regions. In a sense, these results are
more surprising than the ones obtained in Refs. [28–30]
in which it has been shown that the pattern of appearance
of Gribov copies strongly depends on the space-time met-
ric. All the examples of nontrivial copies of the vacuum
will be in flat metrics (but with nontrivial topologies). The
present analysis will also show that the Gribov phenome-
non strongly depends on the shapes and sizes of the
bounded regions where one wants to study gauge theories.

Unlike the equation for the zero-modes of the Faddeev-
Popov operator, the issue of the appearance of Gribov
copies of the vacuum is nonlinear in nature and therefore
can be quite complicated when nonstandard topologies are
considered. The technical tool necessary in order to ana-
lyze such an issue is a novel (to the best of authors knowl-
edge) generalization of the hedgehog ansatz beyond
spherical symmetry for the nonlinear sigma model. Such
a generalization is quite interesting in itself since it allows
one to reduce the nonlinear system of coupled partial
differential equations corresponding to the equations of
motion of the nonlinear sigma model to a single nonlinear
partial differential equation which can be analyzed with
the tools of solitons theory.

The paper is organized as follows. In Sec. II the notion
of strong boundary conditions with nontrivial topologies
will be analyzed. In Sec. III, the relations between the
Gribov copies equation and the non linear sigma model
will be discussed. In Sec. IV, the generalized hedgehog
ansatz will be constructed. In Secs. V and VI, various
nontrivial examples of copies of the vacuum will be
described.

Some conclusions will be drawn in the last section.
In the Appendix , a novel way to implement both spherical
and elliptical symmetries (which could be useful in the
context of calorons) will be presented.

II. STRONG BOUNDARY CONDITIONS WITH
NON-TRIVIAL TOPOLOGIES

Here, we will first review the definition of strong bound-
ary conditions in the case in which the metric is flat and the
topology trivial. In the present paper we will mainly ana-
lyze the SUð2Þ case but many of the present results also
extend to other Lie groups. A useful starting point is the
definition of non-Abelian chargesQa (see Refs. [1,4,31,32];
see, for a detailed review, Ref. [33]):

QðaÞ ¼
Z
M
d3x@iE

ia ¼ lim
R!1

Z
�R

d2�ðniEiaÞ; (4)

where M is the constant-time hypersurface in four-
dimensional Minkowski space, �R is the two-dimensional
sphere of radius R, ni is the outer pointing unit normal to
�R, the indices i, j, k refers to space-like directions while
a; b; c; . . . are internal SUð2Þ indices.
Thus, one can define a proper gauge transformationU as

a smooth gauge transformation which does not change the
value of the charge as a surface integral at infinity:

lim
R!1

Z
�R

d2�ðniEiaÞ ¼ lim
R!1

Z
�R

d2�ðniðU�1EUÞiaÞ: (5)

Therefore, U is proper if it is smooth and approaches to an
element of the center of the gauge group at spatial infinity.
A Gribov copy U on a flat and topologically trivial

space-time satisfies the strong boundary conditions if U
is proper. A copy of this type is particularly problematic
since it would represent a failure of the whole gauge fixing
procedure. Indeed, if the vacuum A� ¼ 0 possesses a copy

fulfilling the strong boundary conditions, not even usual
perturbation theory leading to the standard Feynman rules
in the Landau or Coulomb gauge would be well defined.

A. Strong boundary conditions on S1 � D2

The simplest topology corresponding to a closed knotted
tube is� ¼ S1 �D2: this case is relevant in the analysis of
nontrivial topological excitations of glueballs. In particu-
lar, there is a sound evidence supporting the existence of
excited glueball states with the topology of � ¼ S1 �D2

(see, in particular, Refs. [24,25]). In this case, the spatial
metric describing the region � reads:

ds2 ¼ ðd�Þ2 þ ðdr2 þ r2d�2Þ; 0 � � � 2�;

0 � � � 2�; 0 � r � R; (6)

where the coordinate � corresponds to the S1 circle of �,
while the coordinates r and � describe the disk D2 of �.
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The radius of the disk is R and the boundary of � is:

@� ¼ S1 � @D2:

Thus, in this case a smooth gauge transformation U is
proper if

UjS1�@D2 2 Z2;

where Z2 is the center
5 of SUð2Þ. In other words, a smooth

gauge transformation U ¼ Uð�; r; �Þ is proper if
Uð�þ 2m�; r; �þ 2n�Þ ¼ Uð�; r; �Þ; m; n 2 Z;

(7)

Uð�;R; �Þ 2 Z2; 8 �; �: (8)

B. Strong boundary conditions on T3

In the cases in which the spatial topology is T3

(which, for instance, is relevant in the case of lattice
QCD), the flat spatial metric describing T3 reads:

ds2 ¼ X3
i¼1

�2
i ðd�iÞ2; �i 2 R; 0 � �i � 2�;

(9)

where the coordinate �i corresponds to the ith factor S
1 in

T3 while �i represents the size of the ith factor S
1 in T3. In

this case, due to the fact that @T3 ¼ 0, a smooth gauge
transformation U ¼ Uð�1; �2; �3Þ is proper if

Uð�1 þ 2m1�;�2 þ 2m2�;�3 þ 2m3�Þ
¼ Uð�1; �2; �3Þ; mi 2 Z: (10)

C. Strong boundary conditions on R� T2

The cases in which the spatial topology is R� T2 may
correspond to situations in which the bounded region in
which we want to define perturbative Yang-Mills theory is
much longer in one direction (the x axis) with respect to the
other two.

It is worth emphasizing here that, in the Euclidean
theory, the topology R� T3 is also very important in order
to understand both the infinite volume limit in QCD
(see, for instance, Ref. [26]) and the effects of chiral
symmetry breaking in QCD (see, for instance, Ref. [27]).
In particular, it has been shown in Ref. [27] the relevance of
the Casimir6 force to understand chiral symmetry breaking.
Hence, the importance of finite-sized effects to explain
these phenomena and the necessity to have a well-defined
perturbation theory in such bounded regions with
nontrivial topology require a deeper understanding of the

Gribov problem in bounded region as well. As it will be
shown in the following, the present results on the Coulomb
gauge can be trivially extended to the case of the Landau
gauge defined on R� T3. Thus, the gauge-fixing patholo-
gies arising in this case have to be carefully taken into
account.
The flat spatial metric describing R� T2 reads:

ds2 ¼ dx2 þX2
i¼1

�2
i ðd�iÞ2; �i 2R; 0��i � 2�;

(11)

where the coordinate �i corresponds to the ith factor S
1 in

T2 while �i represents the size of the ith factor S
1 in T2. In

this case, @ðR� T2Þ is nontrivial and can be identified with
the two limit point x ! �1 of R. Thus, a smooth gauge
transformation U ¼ Uð�1; �2; xÞ is proper if
Uð�1þ2m1�;�2þ2m2�;xÞ¼Uð�1;�2;xÞ; mi 2Z;

(12)

lim
x!�1Uð�1; �2; xÞ 2 Z2; 8 �1; �2: (13)

III. GRIBOV COPIES AND NONLINEAR
SIGMA MODEL

In the present paper we will analyze the copies of the
vacuum in the Coulomb gauge but many of the present
results can be easily extended to the Landau gauge. Since
the Gribov copies of the vacuum in the Coulomb gauge can
be seen as the Euler-Lagrange equations corresponding
to a nonlinear sigma model, we will first review some basic
features of this model. The nonlinear sigma model
Lagrangian in D spacelike dimensions can be written in
terms of group valued scalar field U. In the following we
will consider the SUð2Þ group, so that the corresponding
Lagrangian is:

S ¼ �2

2

Z ffiffiffiffiffiffiffi�g
p

dDxTr½RiRi�; (14)

Ri ¼ U�1@iU; (15)

Ri ¼ Ra
i ta;

tatb ¼ ��ab1� "abctc;

½Ri; Rj�c ¼ Cc
abR

a
i R

b
j ;

Cc
ab ¼ �2"cab;

"abc"mnc ¼ ð�m
a �

n
b � �n

a�
m
b Þ;

whereD is the number of space dimensions, � is the sigma-
model coupling constants, g is the determinant of the
spacelike metric, 1 is the identity 2� 2 matrix, and ta

the generator of SUð2Þ (where the Latin letters a, b, c
and so on corresponds to group indices). The equation

5Obviously, the center of SUð2Þ is made of two elements: �1.
6Indeed, Casimir force is a genuine finite-size effect which,

obviously, is not visible if the theory is analyzed in unbounded
regions.
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characterizing the appearance of Gribov copies of the
vacuum in the Coulomb gauge [which corresponds to the
Euler-Lagrange equations of the action in Eq. (14)] read:

riRi ¼ riðU�1@iUÞ ¼ 0; (16)

where ri is the Levi-Civita covariant derivative corre-
sponding to the metric [which, in the present case will
have one of the forms in Eqs. (6), (9), and (11)]. The
case of the Landau gauge is analogous.

The following standard parametrization of the
SUð2Þ-valued functions UðxiÞ is useful:
UðxiÞ ¼ Y01þ Yata; U�1ðxiÞ ¼ Y01� Yata; (17)

Y0 ¼ Y0ðxiÞ; Ya ¼ YaðxiÞ; (18)

ðY0Þ2 þ YaYa ¼ 1; (19)

where, of course, the sum over repeated indices is under-
stood also in the case of the group indices (in which case
the indices are raised and lowered with the flat metric �ab).
Therefore, the Ri in Eq. (15) can be written as follows:

Rc
i ¼ "abcYa@iYb þ Y0@iY

c � Yc@iY
0: (20)

IV. GENERALIZED HEDGEHOG ANSATZ

Due to the intrinsic nonlinear nature of the Gribov
copies of the vacuum, it is necessary to introduce a suitable
technical tool which allows us to study such phenomenon
with nontrivial topologies.

Here we will first discuss the geometrical interpretation
of hedgehog ansatz as an effective tool to reduce the field
equations of the nonlinear sigma model (which, generi-
cally, are a system of coupled nonlinear partial differential
equations) to a single scalar nonlinear partial differential
equation. The geometrical analysis of such a very impor-
tant feature of the hedgehog ansatz allows us to construct
the natural generalization of the hedgehog ansatz for the
nonlinear sigma model. This section is interesting in itself
since, to the best of the authors’ knowledge, this is the first
systematic reduction of the equations of motion of the
nonlinear sigma model (which is a system of coupled
nonlinear partial differential equations) to a single non-
linear scalar equation beyond spherical symmetry. In terms
of the group elementU, the standard spherically symmetric
hedgehog ansatz reads

U ¼ 1 cos�ðrÞ þ n̂ata sin�ðrÞ;
U�1 ¼ 1 cos�ðrÞ � n̂ata sin�ðrÞ; (21)

n̂1 ¼ sin�cos�; n̂2 ¼ sin�sin�; n̂3 ¼ cos�; (22)

where r, �, and � are spherical coordinates of the flat
Euclidean metric, the n̂a are normalized with respect to

the internal metric �ab. In terms of the variables Y0 and Ya

the hedgehog ansatz corresponds to the following choice:

Y0 ¼ cos�ðrÞ; Ya ¼ n̂a sin�ðrÞ; �abn̂
an̂b ¼ 1:

(23)

Thus, the expression for Ra
i in Eq. (20) reads

Rc
i ¼�dcðsin2�Þ"abdn̂a@in̂bþ n̂c@i�þ sinð2�Þ

2
@in̂

c: (24)

The equations of motion for the nonlinear sigma model in
Eq. (16) corresponding to this ansatz read

ðri@i�Þ þ L sin 2� ¼ 0; (25)

where L is a suitable function of the radial coordinate r
(see below). Indeed, this is a very important and nontrivial
characteristic of the spherically symmetric hedgehog
ansatz which reduces a system of coupled nonlinear partial
differential equations to a single scalar equation. It is
easy to see that in the case of the flat three-dimensional
Euclidean metric on R3 in spherical coordinates the above
reduces to the standard Gribov pendulum of the vacuum
(see Refs. [4,12]).
The previous analysis suggests to analyze which are the

geometrical conditions which allow us to reduce a system
of non-linear coupled partial differential equations (PDE)
to a single scalar PDE. Let us consider the following
generalization of the hedgehog ansatz:

U ¼ 1 cos�þ n̂ata sin�;

U�1 ¼ 1 cos�� n̂ata sin�; (26)

�abn̂
an̂b ¼ 1; � ¼ �ðxiÞ; n̂a ¼ n̂aðxiÞ; (27)

such that

ð@i�Þðrin̂aÞ ¼ 0; (28)

ðri@iÞn̂c ¼ 2Ln̂c; (29)

where L (which has to be the same for all the nonvanishing7

n̂c) may depend on the space-time coordinates.
The important point is that, when the conditions (28)

and (29) are satisfied, the function � (which in the usual
spherically symmetric hedgehog ansatz can depend only
on the radial coordinate r) can now depend on any set of
coordinates and the functions n̂a (which, in the usual
case, have to coincide with the unit radial vector) can be
adapted to cases in which there is no spherical symmetry
(and, therefore, no natural radial coordinate). Indeed, the
expression for Ra

i in Eq. (20) reads

Rc
i ¼�dcðsin2�Þ"abdn̂a@in̂bþ n̂c@i�þ sin ð2�Þ

2
@in̂

c: (30)

7Note that, in order for the solution to be nontrivial, at least
two of the three n̂c have to be nonvanishing.
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Hence, provided Eqs. (28) and (29) are fulfilled and
taking into account that the expression

ðrin̂aÞð@in̂bÞ ¼ gijð@in̂aÞð@jn̂bÞ
is symmetric under the exchange of a and b (so that its
contraction with "abd vanishes) the coupled system of
nonlinear PDE corresponding to the equations of motion
of the nonlinear sigma model reduces to the single scalar
nonlinear partial differential equation of sine-Gordon
type:

ðri@i�Þ þ L sin 2� ¼ 0: (31)

Indeed, it is easy to see that in the usual spherically
symmetric flat ansatz in Eqs. (21) and (22) satisfies the
conditions in Eqs. (28) and (29) with L ¼ �1=r2 and that,
correspondingly, Eq. (31) reduces to the usual Gribov
pendulum (see Refs. [4,12]). However, it is worth noting
here that the present derivation is far simpler (just three
lines of computation) and, furthermore, it discloses in a
very clear way the geometry behind the hedgehog ansatz.

The usual Gribov pendulum equation on flat and topo-
logically trivial three-dimensional spaces (see Refs. [4,12])
does not coincide with the sine-Gordon equation due to
the radial dependence of the determinant of the three-
dimensional Euclidean metric in spherical coordinates.
For these reasons, there are no analytic examples of copies
of the vacuum in this case. On the other hand, using the
present generalized hedgehog ansatz, one can construct
many analytic examples of copies of the vacuum. These
examples are very useful since they allow us to express the
requirement of absence of copies of the vacuum in terms of
explicit constraints on the shapes and sizes of the corre-
sponding bounded regions where one wants to define a
perturbative region.

A. Regularity conditions

Another important requirement to satisfy the strong
boundary conditions is the regularity of the pure gauge
field U�1dU everywhere. In the standard spherically-
symmetric case, the only problematic point is the origin
of the coordinates in which the spherical coordinates sys-
tem is not well defined. One way to understand this con-
dition in general is to analyze the behavior of the one-form

Rc ¼ Rc
i ^ dxi (32)

[where Rc
i is given by (30) and � satisfies (31)] when one

changes coordinates from the Cartesian to a coordinates
system which is singular somewhere. Indeed, in the fol-
lowing we will need to use non-Cartesian coordinates
systems which are adapted to the symmetry of the problem
(such as the elliptic coordinates systems in the next
sections).

In the case of Cartesian coordinates, the regularity at
the origin can be read by looking at the components of
the one-form Rc

i since the coordinates system is regular

everywhere. On the other hand, if one is in a spherical or
elliptical coordinates system, the angular coordinates are
not well defined at the origin and some extra care is
required. For instance, to disclose the singularity of the
one forms d� and d� at the origin one can analyze the
Jacobian of the transformation from Cartesian coordinates
(x0i) to spherical coordinates (xj):

dx0i ¼ Jijdx
j: (33)

Due to the regularity of the Cartesian coordinates, the
Jacobian itself encodes the information of the singularity
at the origin. In the spherically symmetric case, for ex-
ample, if one takes into account the Jacobian, the regularity
condition at the origin coincides8 with the usual one
derived in Cartesian coordinates [12].
The requirement for regularity can be described as

follows. Let us call xs a point in which the coordinates
are singular and let us consider the following behavior for
� when x ! xs

�ðxÞ !
x!xs

n�þ 	fðxÞ (34)

with fðxÞ !x!xs
0 and 	 an arbitrary constant. Then, a copy of

the form (30) satisfies

Rc
i !
x!xs

	2�dcf2"abdn̂
a@in̂

b þ 	n̂c@ifþ 	f@in̂
c: (35)

Then using (33) we see that fðxÞ must be such that

Rc
i ðJ�1Þij (36)

(where ðJ�1Þij is the inverse Jacobian of the transformation

from Cartesian to the curvilinear coordinates system of
interest) are regular functions in x ¼ xs.

V. EXPLICIT EXAMPLES OF VACUUM COPIES
IN NONTRIVIAL TOPOLOGIES

Here we will discuss many example of vacuum copies.

A. S1 � D2 topology

Here we will consider the following ansatz correspond-
ing to the metric in Eq. (6):

� ¼ �ðrÞ;
n̂1 ¼ cos ð�Þ;
n̂2 ¼ sin ð�Þ;
n̂3 ¼ 0:

It is easy to see that the above ansatz satisfies the
conditions in Eqs. (28) and (29) with the following L:

8In the spherical case the factor sin �, which appears in the
denominator of many components of the Jacobian, is canceled
out by a similar factor in the numerator of the spherically
symmetric hedgehog ansatz in the normalized internal vector n̂i.
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ðri@iÞn̂1 ¼ � 1

r2
n̂1;

ðri@iÞn̂2 ¼ � 1

r2
n̂2 ) L ¼ � 1

2r2
:

Thus, in this case the Eq. (31) for the copy of the vacuum
reduces to

r@rðr@r�Þ � 
 sin 2� ¼ 0 , (37)

@2�

@�2
¼
sin2�; 
¼ 1

2
; ���0 ¼ logr; (38)

E ¼ 1

2

��
@�

@�

�
2 þ 
 cos 2�

�
; (39)

�� �0 ¼ �
Z �ð�Þ

�ð�0Þ
dyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2E� 
 cos 2y
p ; (40)

where �0 and E are integration constants.
In terms of the radial coordinate r one has to require that

the copy is regular at the origin and that it approaches an
element of the center when r ¼ R which is the boundary of
D2. Without loss of generality one can require [see Eq. (26)]:

�!
r!0

0; �ðRÞ ¼ n�; n 2 Z: (41)

In terms of the variable � the above conditions read

� !
ð���0Þ!�1

0; � !
ð���0Þ!��

n�; �� ¼ logR: (42)

Hence, we have to analyze under which conditions on
the parameter 
 and on the integration constants E and �0
Eq. (39) can have solutions satisfying the conditions in
Eq. (42). The simplest way to answer this question is to
interpret Eq. (39) as the energy conservation of the following
one-dimensional problem in which � plays the role of the
effective time:

�E ¼ 1

2

�
@A

@�

�
2 þ VðAÞ; (43)

VðAÞ ¼ 2
 cosA; A ¼ 2�; �E ¼ 4E: (44)

The boundary conditions in Eq. (42) in terms of A read (we
will consider the case n ¼ 1)

A !
ð���0Þ!�1

0; A !
ð���0Þ!��

2�: (45)

The above conditions mean that 0 and 2� have to be two
turning points and that the corresponding period has to
diverge:

1ffiffiffi
2

p
Z 2�

0

dyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�E� 2
 cos y

p ! 1: (46)

In order to satisfy this condition, it is enough to choose

�E ¼ 2
 ¼ 1; (47)

the explicit form for the copy being

� ¼ 2 arctan

�
r

�r0

�
(48)

with �r0 an integration constant (whose role will be described
in a moment).
In terms of the original radial variable r, the condition in

Eq. (41) can only be satisfied9 if R ! 1. In physical terms,
this means that the condition in Eq. (41) can be fulfilled
when R is very large compared to �r0:

R � �r0:

Obviously, in the present case the only two natural lengths
are the radius of the disk R and the perimeter of the S1

factor (which has been set to 2�) of the donut S1 �D2 and
consequently �r0 represents the size of S1. Thus, the pre-
vious analysis tells us that when the radius of the disk is
much larger than the perimeter of S1 the donut is on the
verge of supporting smooth copies of the vacuum satisfy-
ing the strong boundary conditions. Hence, in order to
avoid this pathology the donut cannot be too ‘‘fat’’.
It is easy to check that such copy is regular at the origin.

The components of U�1dU in Cartesian coordinates for
this case are given by

Rc
i ðJ�1Þij; i ¼ r; �; j ¼ 1; 2

with

J�1 ¼ cos ð�Þ sin ð�Þ
� sin ð�Þ

r
cos ð�Þ

r

 !
:

For r ! 0 copies must decay as

�!
r!0

	r; (49)

for some 	 2 R and the profile in Eq. (48) satisfies this
condition.

B. T3 topology

As it has been already emphasized, the T3 topology is
relevant, for instance, in the analysis of the thermodynam-
ical limit. Here we will consider the following ansatz
corresponding to the metric in Eq. (9):

� ¼ �ð�1Þ; n̂1 ¼ cos ðp�2 þ q�3Þ;
n̂2 ¼ sin ðp�2 þ q�3Þ; n̂3 ¼ 0; p; q 2 Z: (50)

It is easy to see that the above ansatz satisfies the con-
ditions in Eqs. (28) and (29) with the following L:

L ¼ � 1

2

��
p

�2

�
2 þ

�
q

�3

�
2
�
:

9The reason is that the copy profile in Eq. (48) is an increasing
function from 0 to 1 and its maximum is �. Note that, however,
the copy profile approaches the asymptotic value very rapidly.
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Thus, in this case the Eq. (31) for the copy of the vacuum
reduces to a flat elliptic sine-Gordon equation:

�
@2

@�2
1

�
� ¼ 
 sin 2�; (51)


 ¼ �2
1

2

��
p

�2

�
2 þ

�
q

�3

�
2
�
: (52)

In order for a solution of Eq. (51) to define a copy of
the vacuum satisfying the strong boundary condition [see
Eqs. (26) and (10)] it is necessary to require

�ð�1 þ 2m�Þ ¼ �ð�1Þ; m 2 Z; (53)

where we will consider m ¼ 1 in the following. As in the
previous subsection, Eq. (51) can be reduced to a first order
conservation law:

E ¼ 1

2

��
@�

@�1

�
2 þ 
 cos 2�

�
;

�1 ��0 ¼ �
Z �ð�1Þ

�ð�0Þ
dyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2E� 
 cos 2y
p ; (54)

where �0 and E are integration constants. Hence, we have
to analyze under which conditions on the parameter 
 and
on the integration constants E and �0 Eq. (54) can have
solutions satisfying the conditions in Eq. (53). As in the
previous subsection, it is possible to interpret Eq. (54) as
the energy conservation of a one-dimensional problem in
Eqs. (43) and (44) in which �1 plays the role of the
effective time � ¼ �1. However, in this case the boundary
conditions in Eq. (53) become:

Að�þ 2�Þ ¼ Að�Þ: (55)

Thus, given two consecutive turning points A0 and A1:

A0 ¼ arccos
�E

2

; A1 ¼ 2�� A0;

one has to require that the the time needed to go from A0 to
A1 is half of the period in Eq. (55), namely:

�� �0 ¼
Z A1

A0

dyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð �E� 2
 cos yÞp ¼ �:

The time for a particle to go from A0 to A1 runs from 0 to
infinity as �E runs from�2
 to 2
. This means that, given a

, there is always an �E such that �� �0 ¼ �. Then, for
�2
 < �E< 2
, it is always possible to construct copies of
the vacuum satisfying the strong boundary conditions.

Furthermore, it is easy to see that the norm of the copy is
finite:

kU�1dUk ¼
Z
T3
d3x

ffiffiffi
g

p
trðU�1dUÞ2

¼ ð2�Þ2�1�2�3

Z
T3
d�1

��
@�1

�

�1

�
2

þ sin 2�

��
p

�2

�
2 þ

�
q

�3

�
2
��

<1:

On the other hand, it worth emphasizing that while there is
a common agreement on the importance of the strong
boundary conditions, it is not clear yet whether or not it
is mandatory to require the finite norm condition. For
instance, it is possible to construct configurations of the
Yang-Mills gauge potential which have infinite norm but
finite energy and/or action (see, for a recent discussion,
Ref. [34]).
It is worth emphasizing that, at a first glance, one could

think that the presence of Gribov copies of the vacuum
prevents one from using the Gribov semiclassical approach
whose aim is, of course, to eliminate Gribov copies from a
suitable neighborhood of the vacuum itself. However, the
copies which can be eliminated using the Gribov semiclas-
sical approach are ‘‘small’’ copies, namely zero-modes of
the Faddeev-Popov operator (which is a linear condition).
On the other hand, the vacuum copies which have been
constructed here are solutions of the full nonlinear equa-
tion for the copies and they would disappear if one would
only consider the linearized equation (which reduces just
to the Laplace equation in all the cases discussed in the
present paper). Therefore, the Gribov semiclassical ap-
proach can be applied, for instance, to the R� T3 or T4

cases. For instance, in the T4 case in the Landau gauge, the
inverse Gribov propagator ð�GÞ�1 would have, schemati-
cally, the usual form

ð�GÞ�1 ¼ hþ 
h�1;

where 
 is the nonperturbative Gribov mass parameter
determined by the usual gap equation [4] and h is the
Laplacian on T4. Hence, the only technical difference with
respect the usual case would be that, in order to invert the
Laplacian one should use the Fourier series instead of the
Fourier transform. Indeed, in this way one can eliminate,
from a suitable neighborhood of the vacuum A� ¼ 0, zero

modes of the Faddeev-Popov operator but the copies of the
vacuum discussed above cannot be eliminated with this
procedure. The physical consequences of this fact are very
interesting also from the point of view of lattice QCD and
are actually under investigation.

C. R � T2 topology

As it has been already explained, this topology is very
important, for instance, in relation with the infinite volume
limit of Yang-Mills theory as well as chiral symmetry
breaking.
Actually, as far as the infinite volume limit and chiral

symmetry breaking are concerned (see, for instance,
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Refs. [26,27]), the setting corresponds to the Euclidean
theory defined on R� T3. Thus, in this case the Landau
gauge is to be preferred. However, the present construction
trivially extends to this situation as well. One has just to
interpret the coordinate x in the metric in Eq. (11) as the
Euclidean time in order to apply the present analysis to
this case.

Here we will consider the following ansatz correspond-
ing to the metric in Eq. (11):

� ¼ �ðxÞ; n̂1 ¼ cos ðp�1 þ q�2Þ;
n̂2 ¼ sin ðp�1 þ q�2Þ; n̂3 ¼ 0; p; q 2 Z: (56)

It is easy to see that the above ansatz satisfies the
conditions in Eqs. (28) and (29) with the following L:

L ¼ � 1

2

��
p

�2

�
2 þ

�
q

�3

�
2
�
:

Thus, in this case the Eq. (31) for the copy of the vacuum
reduces to a flat elliptic sine-Gordon equation:�

@2

@x2

�
� ¼ 
 sin 2�; (57)


 ¼ �2
1

2

��
p

�2

�
2 þ

�
q

�3

�
2
�
: (58)

In order for a solution of Eq. (57) to define a copy
of the vacuum satisfying the strong boundary condition
[see Eqs. (26), (12), and (13)] it is necessary to require

lim
x!þ1�ðxÞ¼m�; lim

x!�1�ðxÞ¼ n�; m;n2Z: (59)

Similarly to the previous subsections, Eq. (57) can be
reduced to:

E ¼ 1

2

��
@�

@x

�
2 þ 
 cos 2�

�
;

x� x0 ¼ �
Z �ðxÞ

�ðx0Þ
dyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2E� 
 cos 2y
p ; (60)

where x0 and E are integration constants. Hence, we have
to analyze under which conditions on the parameter 
 and
on the integration constants E and x0 Eq. (60) can have
solutions satisfying the conditions in Eq. (59) for some m
and n. As in the previous subsections, (60) has the form of
energy conservation of a one-dimensional problem (43)
with the identifications (44). In this case the strong bound-
ary conditions in Eq. (59) become:

lim
x!þ1AðxÞ¼ 2m�; lim

x!�1AðxÞ¼ 2n�; m;n2Z: (61)

For m ¼ 1 and n ¼ 0 this means that 0 and 2� have to
be two turning points with infinite period. As in (46), this
condition is ensured for �E ¼ 2
. Furthermore, in this case
as well it is easy to see that the norm of the copy is finite:

kU�1dUk ¼
Z
T2�R

ffiffiffi
g

p
d3xtrðU�1dUÞ2 <1:

where

�ðxÞ ¼ 2 arctan ½exp ðx� �x0Þ�;
( �x0 being an integration constant) is the solution of
Eq. (60).

VI. ELLIPTIC GRIBOV PENDULUM

In this section, wewill analyze the elliptic generalization
of the Gribov pendulum equation. It is easy to see that if
one would try a naive generalization of the spherical
Gribov pendulum [4] to elliptic coordinates (which reduces
to the usual case in the spherical limit) then the system of
equations for the Gribov copies of the vacuum do not
reduce to a single scalar equation as it happens in the
spherical case and, consequently, it would be extremely
difficult to analyze the corresponding system of equations
and the corresponding boundary conditions. On the other
hand, within the present framework, one is lead to the two
ansatzs in Eqs. (63) and (76) which do reduce the equations
for the Gribov copies of the vacuum to a single scalar
equation: this allows us to study the strong boundary
conditions in the usual way. To the best of the authors’
knowledge, this is the first nontrivial elliptic generalization
of the Gribov pendulum.
This analysis is particularly important since it sheds

light on how sensible the Gribov phenomenon is with
respect to deformation of the spherical symmetry. Even if
the usual Gribov pendulum equation10 is analyzed in the
unbounded region r 2 ½0;1½ [4,12], one implicitly as-
sumes that similar results hold in a spherical bounded
region. The reason is that, of course, experimentally gluons
can live only within baryons and glueballs which are
bounded regions. Therefore, it makes sense to study the
arising of gauge copies of the vacuum in bounded region as
well. Indeed, the results that no copy of the vacuum appear
in the case of the usual Gribov pendulum also holds in the
case of a bounded spherical region: as it will be now
discussed, the elliptic case is more complicated.

A. Prolate spheroid

The line element for of flat three-dimensional Euclidean
space in prolate spheroidal coordinates is given by

ds2 ¼ a2ðsinh 2�þ sin 2�Þðd�2 þ d�2Þ
þ a2sinh 2�sin 2�d�2: (62)

For a prolate spheroidal bounded region the coordinate
ranges are given by 0 � �< R, � 2 ½0; ��, � 2 ½0; 2�Þ.
The coordinate � represents the elliptic radius since

10Actually, the whole issue of gauge copies is usually analyzed
only in unbounded region.
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� ¼ const surfaces are ellipses. Such � ¼ const ellipses
have different eccentricities: large eccentricities (namely,
large deformations from spherical symmetries) correspond
to small � while small eccentricities (namely, small devi-
ations from spherical symmetry) correspond to large �.
Thus, in the above coordinates system, if one wants to
analyze the limit of ‘‘large deformations from spherical
symmetry’’ then one has to consider the small � region.
On the other hand, if one wants to consider the almost
spherical case, then the large � limit has to be considered.
As it will be shown in the following, the large deformation
limit is the most interesting case.

The Laplacian in this coordinates is given by

ri@i¼ 1

a2ðsinh2�þsin2�Þ½@
2
�þ@2�þcoth�@�þcot�@��

þ 1

a2sinh2�sin2�
@2�:

Then, the following ansatz satisfies the conditions in
Eqs. (28) and (29)

� ¼ �ð�; �Þ; n1 ¼ cos�;

n2 ¼ sin�; n3 ¼ 0; (63)

with the following L:

L ¼ � 1

2a2sinh 2�sin 2�
:

1. The strong boundary conditions

Due to the fact that � represents the elliptic radius, the
strong boundary conditions in an unbounded region
correspond to the following conditions on �:

�ð�; �Þ !
�!0

n�þ fð�; �Þ; (64)

�ð�; �Þ !
�!1m�; n;m 2 Z; (65)

where fð�;�Þ ensures regularity of the copies. On the
other hand, if one is analyzing the theory in a bounded
region of elliptic radius R then the condition in Eq. (65) has
to be replaced by

�ð�; �Þ !
�!R

m�; m 2 Z; (66)

since the boundary of the region is the surface � ¼ R and
one has to require that the gauge copy belongs to the center
of the gauge group on the boundary of the region itself.

2. Regularity conditions

In the prolate spheroidal case, the inverse of the Jacobian
in the transformation (33) reads

J�1 ¼
�
@ð�; �;�Þ
@ðx; y; zÞ

�

¼ 1

a

cosh� sin� cos�
sinh 2�þsinh 2�

cosh� sin� sin�
sinh 2�þsinh 2�

sinh� cos�
sinh 2�þsinh 2�

sinh� cos� cos�
sinh 2�þsinh 2�

sinh� cos� sin�
sinh 2�þsinh 2�

� cosh� sin�
sinh 2�þsinh 2�

� sin�
sinh� sinv

cos�
sinh� sin� 0

0
BBBB@

1
CCCCA:

(67)

Thus, singularities could appear for � ¼ 0 and � ¼ 0.
Following the prescription in Eq. (35), near points with
� ¼ 0 and/or � ¼ 0 copies behave as

Rc
� ! 	n̂c@�f Rc

� ! 	n̂c@�f

Rc
� ! 	2�dcf2"abdn̂

a@�n̂
b þ 	f@�n̂

c;

where f must be such that functions (36) are regular.
A sufficient condition which ensures regularity is:

fð�;�Þ !
�;�!0

�3�3:

Besides the singularity at � ¼ 0, there are singularities for
� ¼ 0 and � ¼ � as well (which are similar to the 1= sin �
singularity in the spherical case). However, in the elliptic
case, the sin� factor is not automatically canceled by the
internal vector n̂i of the hedgehog ansatz (which only
depends on � in the present case). Therefore the profile
function �ð�; �Þ has to take care of this divergence.

3. Prolate pendulum

Equation (31) in the prolate elliptic coordinates reduces
to the following elliptic prolate Gribov pendulum:

1

sinh 2�þ sin 2�
½@2� þ @2� þ coth�@� þ cot�@���

¼ 1

2sinh 2�sin 2�
sin 2�: (68)

Now we consider the limits � ! 0 and � ! 1 which
correspond to the cases of large and small deformation
from spherical symmetry respectively.
(i) For � ! 0, Eq. (68) takes the form:

½@2� þ @2� þ coth�@� þ cot�@���
¼ 1

2sinh 2�
sin 2�: (69)

Interestingly enough, in this limit the ansatz � ¼
�ð�Þ is consistent and the above equation reduces to

d2�

d�2
þ coth�

d�

d�
¼ 1

2sinh 2�
sin 2�: (70)

With the following change of coordinate

� ¼ ln

��������tanh
�
�

2

��������� (71)
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� ¼ 2 arcth e� (72)

sinh ðarcth xÞ ¼ xffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p (73)

the Eq. (70) can be written as

d2�ð�Þ
d�2

¼ 1

2
sin 2�ð�Þ:

Of course, in this case, the natural boundary con-
ditions correspond to the analysis within a bounded
region in Eqs. (64) and (66) in which, in suitable
units, the radius R is very small

R 	 1:

In terms of the coordinates � in Eq. (71), (64),
and (66)

�ð�Þ !
�!�12n�; �ð�Þ !

�!��
2m�; n;m 2 Z:

In the limit of large prolate deformations, the
equation can be integrated analytically:

E ¼ 1

2

��
d�

d�

�
2 þ 1

2
cos 2�

�
; (74)

�� �0 ¼ �
Z �ð�Þ

�ð�0Þ
dyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2E� 1
2 cos 2y

q : (75)

This result discloses in a very clear way how sensible
the Gribov phenomenon is not only to topology but
also to the shapes of the region where it is analyzed.
Indeed, even if the present analytic solution cannot
satisfy the regularity conditions in � ¼ 0 and � ¼ �
(which are the north and south poles of the ellipse)
since it is �-independent, a small deformation of the
ellipse at the poles could eliminate the necessity to
require regularity of the solution at � ¼ 0 and � ¼ �
and consequently could give rise to the sudden ap-
pearance of a copy of the vacuum. Hence, the present
analysis strongly suggests that large prolate deforma-
tions from spherical symmetry can be quite patho-
logical. These results can be relevant in the cases in
which one is analyzing Yang-Mills theory in bounded
regions.

(ii) For � ! 1, equation (68) reduces to:

½@2� þ @2� þ @� þ cot�@��� ¼ 1

2
csc 2� sin 2�:

Since the large � limit corresponds to small
deviations from spherical symmetry, in this case
one should recover the standard results on the
absence of vacuum copies.

B. Oblate spheroid

The line element for a flat three-dimensional Euclidean
space in oblate spheroidal coordinates is given by

ds2 ¼ a2ðsinh 2�þ sin 2�Þðd�2 þ d�2Þ
þ a2cosh 2�cos 2�d�2:

For a oblate spheroidal bounded region the coordinate
ranges are given by 0 � �<��, � 2 ½0; ��, � 2
½0; 2�Þ. Also in this case � is the elliptic radius since
� ¼ const surfaces are ellipses with eccentricities which
decrease with �. As in the prolate case, if one wants to
analyze the limit of ‘‘large deformations’’ then one has to
consider the small � region. On the other hand, if one
wants to consider the almost spherical case, then the large
� limit has to be considered.
The Laplacian in these coordinates reads

ri@i¼ 1

a2ðsinh2�þsin2�Þ½@
2
�þ@2�þ tanh�@�þ tan�@��

þ 1

a2cosh2�cos2�
@2�:

Thus, the following ansatz satisfies the conditions in
Eqs. (28) and (29)

�¼�ð�;�Þ; n1¼ cos�; n2¼ sin�; n3¼0 (76)

with the following L:

L ¼ � 1

2a2cosh 2� cos�
:

1. Strong boundary conditions

As in the prolate case, the strong boundary conditions
in an unbounded region correspond to the following
conditions on �:

�ð�; �Þ !
�!0

2n�; (77)

�ð�; �Þ !
�!12m�; n;m 2 Z: (78)

On the other hand, if one is analyzing the theory in a
bounded region of elliptic radius R then the condition in
Eq. (78) has to be replaced by

�ð�; �Þ !
�!R

2m�; n;m 2 Z: (79)

Regularity conditions As it has been explained in the
previous subsection, the information about the singularities
at the origin are encoded in the Jacobian. Also in this case,
besides the singularity for� ¼ 0, there are singularities for
� ¼ 0 and � ¼ � as well. Since the sin� factor is not
automatically canceled by the internal vector n̂i of the
hedgehog ansatz, the profile function �ð�; �Þ has to take
care of this divergence. A sufficient condition to ensure
regularity is

fð�; �Þ !
�;�!0

�3�3:
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2. Oblate pendulum

Hence, the equation for copies of the vacuum (31) in the
oblate case now takes the form of the following oblate
Gribov pendulum

1

sinh 2�þ sin 2�
½@2� þ @2� þ tanh�@� þ tan�@���

¼ 1

2cosh 2�cos 2�
sin ð2�Þ: (80)

Now we consider the limits � ! 0 and � ! 1 corre-
sponding to large and small deformation from spherical
symmetry, respectively.

(i) For � ! 0 (80) reduces to

½@2� þ @2� þ tan�@��� ¼ 1

2
tan 2� sin ð2�Þ:

Unlike the prolate case, in the present case it is not
possible to find analytic solutions in the limit of large
deformations.

(ii) For � ! 1 (80) reduces to

½@2�þ@2�þ@�þ tan�@���¼ tanh2�

2cos2�
sinð2�Þ: (81)

Also in this case, since the large � limit corresponds to
small deviations from spherical symmetry, one should
recover the standard results on the absence of vacuum
copies.

It isworth emphasizing that in the large deformation limit
the prolate and oblate Gribov pendulum equations (68) and
(80) differ significantly. In particular, unlike the spherical or
oblate cases, in the prolate case the Gribov pendulum
equation can be integrated exactly. This strongly suggests
that prolate deformations from spherical symmetry are
more pathological than oblate deformations. Indeed, the
present results strongly suggest that the strong deformation
limit of Eq. (68) may support copies of the vacuum. This
analysis appears to be quite relevant as far as the issue of
gauge copies in a bounded region is concerned.

VII. CONCLUSIONS AND FURTHER COMMENTS

In this paper the arising of Gribov copies in regions with
nontrivial topologies (such as closed tubes S1 �D2, or
R� T3) but flat metric has been analyzed. The technical
tool has been a generalization of the hedgehog ansatz
beyond spherical symmetry. Such a generalization of the
hedgehog ansatz is very interesting in itself since, in the
case of the nonlinear sigma model, it provides one with a
geometrical recipe to reduce the the field equations of the
nonlinear sigma model (which are a system of coupled
nonlinear partial differential equations) to a single scalar
nonlinear partial differential equation even when there is
no spherical symmetry. This ansatz allows us to construct
many analytic examples of Gribov copies of the vacuum.

Moreover, the elliptic Gribov pendulum has also been
derived (to the best of the authors’ knowledge, for the first
time) both in the prolate and oblate cases. Our results
suggest that large prolate deformations from spherical
symmetry are likely to be more pathological than the
oblate deformations. The requirement of absence of
Gribov copies of the vacuum satisfying the strong bound-
ary conditions implies geometrical constraints on the
topology, on the shapes, and on the sizes of the regions
with nontrivial topologies (such as upper bounds on the
deviations from spherical symmetry or constraint on the
shape of the donut S1 �D2). Moreover, we have shown
that in the case of a flat metric but with the topology of
T3 it is possible to construct copies of the vacuum satisfy-
ing the strong boundary conditions and with finite norm.
The present results are interesting in relation to the infinite
volume limit of Yang-Mills theory (which is related to the
R� T3 topology). Indeed, one of the main points of the
present analysis has been to show that when the T3 (as well
as T4) topology explodes to R3 (or to R4) the vacuum
copies disappear since neither R3 nor R4 support copies
of the vacuum. Hence, as far as the Gribov copies are
concerned, such limit is not smooth and should be studied
more carefully. This analysis is also relevant in all the cases
in which gluons are confined in regions of finite sizes with
nontrivial topologies such as in the cases of knotted flux
tubes, lattice QCD and so on. Due to the close relation
between Gribov ambiguity and confinement the issue of
the Gribov copies in bounded regions (both on flat and on
curved space-times) is very important and worthwhile to
be investigated.
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APPENDIX: LANDAU GAUGE

In this appendix we will present two applications of the
present generalized hedgehog ansatz which lead to a novel
realization of spherical and elliptical symmetries respec-
tively. The new way to implement spherical and elliptical
symmetry corresponds to a configuration in which the
internal vectors ni of the generalized hedgehog ansatz
depend only on the Euclidean time. This realization of
the spherical symmetry is only possible within the present
‘‘generalized hedgehog’’ framework and it could be useful
in the context of calorons which are instantons which are
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periodic in Euclidean time. In both cases we will construct
the Landau gauge pendulum.

1. A novel spherical case

Let us consider the following line element correspond-
ing to a four-dimensional Euclidean space

ds2 ¼ d�2 þ dr2 þ r2ðd�2 þ sin 2�d�2Þ;
0 � � � 2�;

where � plays the role of Euclidean time (which is a
periodic coordinate of period 2�) and the spatial section
is written in spherical coordinates. This situation is rele-
vant in the cases in which one wants to describe finite
temperature effects. An ansatz satisfying conditions (28)
and (29) suited to deal this situation is

�¼�ðrÞ; n1¼cosð!�Þ; n2¼sinð!�Þ; n3¼0

with

L ¼ �!2

2

Then, the equation for Gribov copies (31) takes the form

@2r�þ 2

r
@r� ¼ !2

2
sin ð2�Þ; (82)

which obviously is not equivalent to the usual spherically
symmetric Gribov pendulum [4,12]. Defining x ¼ ln r we
can write the above equation as

@2x�þ @x� ¼ !2

2
e2x sin ð2�Þ;

another useful form is, defining y ¼ �1=r, the following

@2y� ¼ !2

2y4
sin ð2�Þ:

The regularity condition at the origin can be analyzed as in
the previous sections.

2. Prolate spheroidal case

Let us consider the line element of four-dimensional
Euclidean space-time (in which the Euclidean time has
been compactified to describe finite-temperature effects)
in prolate elliptic coordinates

ds2 ¼ d�2 þ a2ðsinh 2�þ sin 2�Þðd�2 þ d�2Þ
þ a2sinh 2�sin 2�d�2:

An ansatz satisfying conditions (28) and (29) suited to deal
this situation is

�¼�ð�;�Þ; n1¼cosð!�Þ; n2¼sinð!�Þ; n3¼0

with

L ¼ �!2

2
:

Then, Eq. (31) reduces to

1

a2ðsinh 2�þ sin 2�Þ ½@
2
� þ @2� þ tanh�@� þ tan�@���

¼ !2

2
sin ð2�Þ:

Also in this case, the regularity conditions can be studied as
in the previous sections.
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