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By using superfield techniques, the effective potential of the N ¼ 1 Wess-Zumino model in 2þ 1

dimensions is computed off-shell up to two loops. It is shown that supersymmetry is not dynamically

broken and that dynamical generation of mass does not occur perturbatively. We also investigate the

renormalization of the effective potential and determine the renormalization group gamma and beta

functions, showing that this model is infrared-free. Comparison with some other results in the literature is

provided.
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I. INTRODUCTION

Although supersymmetry (SUSY) is a key concept in
the physics of elementary particles and fields, it is not
supported (up to now) by experimental evidence. So, any
realistic model involving SUSYmust include some mecha-
nism of breakdown. Many different mechanisms of break-
down have been considered in the literature. For instance,
the minimal supersymmetric standard model with explicit
soft SUSY-breaking operators has been suggested as a way
of solving the scale of grand unification and the hierarchy
problems [1]. The breakdown due to instanton solutions [2]
and its connection with R-symmetry breaking [3] and with
the Witten index [4,5] have also been intensely investigated
throughout the years. Yet, several variations or extensions
of the models of O’Raifeartaigh and of Fayet-Iliopoulos
[6], which present spontaneous SUSY breaking, have
been considered and more recently; theories which exhibit
metastable vacua with broken SUSY [7] have also been
proposed. Another interesting question is whether a purely
perturbative mechanism, i.e., a dynamical symmetry break-
ing induced by radiative corrections, can be achieved (in this
case, a mass scale would be dynamically generated).

In 3þ 1 spacetime dimensions, this possibility is ruled
out by nonrenormalization theorems [8]. On the other
hand, in 2þ 1 dimensions, such restriction (at least for
N ¼ 1 SUSY) does not exist [9,10]. The usual way of
investigating the vacuum structure in quantum field theory
involves the calculation of the effective potential [11].
Recently, the two-loop effective potential for the three-
dimensional N ¼ 2Wess-Zumino (WZ) model was eval-
uated in Ref. [12]. For the case of N ¼ 1, the effective
potential for the WZ model and massless electrodynamics
up to one loop were first calculated in Ref. [13] long ago. In
both models, that author showed that neither SUSY nor the
gauge invariance are broken by radiative corrections up to
one-loop order. Nevertheless, in 2þ 1 dimensions, terms

involving logarithms of the classical fields only appear in
two or more loops. Since these logarithmic contributions
have a crucial role in the dynamical symmetry breakdown,
the calculations must be carried up at least to two loops.
In the component field formalism, the two-loop effective

potential of the WZ model was evaluated off-shell and
on-shell in Refs. [14,15], respectively. In Ref. [14], it is
reported a problem with the renormalization of the effec-
tive potential: a divergent term which cannot be absorbed
by the rescaling of the classical Lagrangian appears. On the
other hand, in Ref. [15], difficulties with the renormaliza-
tion are not found, but it is claimed that SUSY is broken
and a dynamical mass generation takes place. In that paper,
however, the evaluation of the effective potential did not
take into account radiative corrections to the equation of
motion of the auxiliary field [16]. These facts lead us to
conclude that the renormalization and the vacuum structure
to the three-dimensional WZ model are issues not yet
satisfactorily answered.
The present work aims to calculate the two-loop effec-

tive potential of the WZ model by using the superfield
formulation. We claim that the renormalization of the
effective potential with dimensional reduction regulariza-
tion is achieved in the usual way. Moreover, we show that
SUSY is not broken, and dynamical generation of mass is
not perturbatively consistent. We have also determined the
beta function associated with the fourfold self-interaction
and verified that it agrees with the result in Ref. [17], which
is obtained by direct calculation of the one-particle
irreducible Green’s functions in components fields. The
anomalous dimension of the superfield is also determined.
The paper is organized as follows. In Sec. II, the model

is defined, and the tree-level potential is analyzed for
different setups of the coupling constants. In Sec. III, the
effective potential in one- and two-loop order is calculated,
and its renormalization is analyzed for the most general
WZ model of a single real scalar superfield. In Sec. IV, the
possibility of dynamical symmetry breakdown, for the
(sub)model that is classically scale invariant, is studied
with the conclusion that the symmetries are preserved.
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The beta function of the coupling constant is also
calculated, showing that the model has a Landau pole in
the UV limit. In Sec. V, we summarize our conclusions. In
Appendix A, the �-function method for the calculation of
the one-loop contribution is outlined, and in Appendix B,
some details of the two-loop calculations are presented.

II. THE MODEL

The most general renormalizable action for the N ¼ 1
WZ model, containing a single real scalar superfield in
2þ 1 dimensions, is given by

S½�� ¼
Z

d5z

�
� 1

4
D��D��þWð�Þ þLCT

�
; (1)

where W ¼ a�þ 1
2m�2 þ �

3! �
3 þ g

4! �
4 is the superpo-

tential, �ðx; �Þ ¼ �ðxÞ þ ��c �ðxÞ � FðxÞ�2 is a scalar
superfield, d5z � d3xd2� is the superspace element of
volume, and LCT is the counterterm Lagrangian. Our con-
ventions and notations for the superfield formalism are the
same as in Ref. [18]. The mass dimensions of the scalar
superfield and the coupling constants are ½�� ¼ 1=2,
½�� ¼ 1=2, ½g� ¼ 0, ½a� ¼ 3=2. When � ¼ a ¼ 0, the
classical action is invariant under the discrete symmetry
transformation � ! ��, and, if in addition m ¼ 0, the
model is also classically scale-invariant.

The component form of Eq. (1) is easily obtained by
doing the � integration:

S ¼
Z

d3x

�
1

2
ð�h�þ c �i@�

�c � þ F2Þ

þmðc 2 þ�FÞ þ �

�
�c 2 þ 1

2
�2F

�

þ g

6
�3Fþ g

2
�2c 2 þ aFþLCT

�
: (2)

The above action is invariant under the supersymmetry
transformations

�� ¼ ���c �;

�c � ¼ ���ðC��Fþ i@���Þ;
�F ¼ ���i@�

�c �; (3)

where �� is a constant fermionic parameter.
The tree-level effective potential, as can be read directly

from Eq. (2), is given by

Vð0Þð�;FÞ ¼ � 1

2
F2 � FSð�Þ; (4)

where Sð�Þ � W 0ð�Þ ¼ ða þ m� þ �
2 �

2 þ g
6 �

3Þ. By
eliminating the auxiliary field F through its algebraic

equation of motion 0 ¼ @Vð0Þ=@F ¼ �F� Sð�Þ, the clas-
sical potential becomes only a function of the physical field
�, such that

Vð0Þð�Þ ¼ 1

2
ðSð�ÞÞ2 � 0: (5)

As is well-known, for any unbroken supersymmetric
theory, the vacuum state must correspond to a global
minimum of the effective potential with Sð�min Þ ¼ 0 and
Vð�min Þ ¼ 0 [19]. For g � 0, the model (at tree level) has
a SUSY-preserving phase, since Sð�min Þ ¼ 0 always has at
least one real solution for �min . In this case, if a ¼ � ¼ 0,
we have a minimum at �min ¼ 0, and if, besides that, we
also have �6m=g > 0, there exist two other solutions,

�min ¼ � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�6m=g
p

, that spontaneously break the symme-
try � ! ��. Anyway, for g � 0, SUSY is classically
preserved.
Another possibility is g ¼ 0 and � � 0, in which case

the model is super-renormalizable. If 2a� � m2, the equa-

tion S ¼ 0 has two real solutions �min ¼ � m
� � ðm2

�2 �
2a
� Þ1=2, and SUSY is preserved. If instead 2a� >m2, the

minimum of Vð0Þð�Þ occurs for �min ¼ � m
� (solution of

dVð0Þ=d� ¼ SS0 ¼ 0, for which S ¼ m2

2� � a � 0) and im-

plies Vð�min Þ ¼ 1
8�2 ð2�a�m2Þ2 > 0, showing a sponta-

neous breakdown of SUSY at the classical level. When

only a and � are non-null, solutions, � ¼ �ð2ja=�jÞ1=2
exist for a� < 0 and do not exist for a� > 0, showing a
breakdown of SUSY, with Vð�min ¼ 0Þ ¼ a2=2.

III. THE EFFECTIVE POTENTIAL

There are several methods by which one can calculate
loop corrections to the effective potential in ordinary field
theory. We will employ the Jackiw’s functional method
[20] whose extension to superspace is straightforward. The
recipe is shift the quantum superfield � by a classical
superfield �cl and consider the action

Ŝ½�; �cl� � S½�þ�cl� � S½�cl�
�
Z

d5z�
�S
��

���������¼�cl

; (6)

where �clð�Þ ¼ 	1 � �2	2, with 	1 ¼ h�i and 	2 ¼ hFi
being the constant vacuum expectation values of the scalar
component fields (the Lorentz invariance of the vacuum

requires that hc �i ¼ 0). The action Ŝ takes the form

Ŝ½�; �cl� ¼
Z

d5z

�
1

2
�

�
D2 þmþ ��cl þ g

2
�2

cl

�
�

þ 1

3!
ð�þ g�clÞ�3 þ g

4!
�4

�
: (7)

The effective potential can be written in a manifestly
supercovariant form as

Veffð	1; 	2Þ ¼ Vð0Þð	1; 	2Þ � i

2�
lnDet½i��1

F ðz; z0Þ�

þ i

�
h0jT exp i

Z
d5zL̂intð�; �clÞj0i: (8)
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The first term in Eq. (8) is the tree-level potential as given
in Eq. (4). The second term is the one-loop correction,
where

i��1
F ðz; z0Þ ¼ �2S½��

��z��z0

���������¼�cl

¼
�
D2 þmþ ��cl þ g

2
�2

cl

�
�5ðz� z0Þ; (9)

and � � R
d3x is the spacetime volume. The third term

encodes the higher-loop corrections: the sum of one-parti-
cle-irreducible vacuum superdiagrams with two and more
loops computed from the shifted action (7). Let us note that
the effective potential is only a function of the constant
(x
-independent fields 	1 and 	2). Actually, the superfield
approach adopted here guarantees that after all the
D-algebra manipulations, only a single � integration re-
mains to be done. This allows us to read off the effective
potential as it was previously made in Eqs. (2) and (4).

A. One-loop contribution

The one-loop contribution Vð1Þ to the effective potential
is enclosed by the functional determinant in Eq. (8). It can
be evaluated by the �-function method as described in
Ref. [13]. Following the calculations outlined in
Appendix A, we get

Vð1Þ ¼ � i

2

Z d3k

ð2�Þ3 ln

"
k2 þM2

k2 þ
2
1

#

¼ 1

12�
½ð
2

1Þ3=2 � ðM2Þ3=2�; (10)

where dimensional reduction with minimal subtraction was
used to perform the integrals. The parameter 
1 ¼ S0 is the
fermionic mass, 
2

2 ¼ 	2S
00 (note that 
2

2 may assume
positive or negative values), and M2 ¼ 
2

1 �
2
2 ¼ S02 �

	2S
00 is the squared bosonic mass. It must also be noted

that the perturbative calculation is valid only forM2 positive
(forM2 < 0, the effective potential becomes complex). The
prime denotes derivation with respect to 	1. Therefore, up
to one-loop order, the effective potential is given by

Veffð	1; 	2Þ ¼ � 1

2
	2

2 � 	2Sþ 2

3
�½ðS02Þ3=2

� ðS02 � 	2S
00Þ3=2� þOð�2Þ; (11)

where we defined � ¼ "=8� ¼ 1=8� as the parameter that
characterizes the strength of the one-loop terms. TheOð�2Þ
stand for higher-loop orders of approximation.

Let us now investigate the possibility of SUSY breaking
and the stability of the effective potential. The stationary
points of Veff are determined from the conditions

0 ¼ @Veff

@	2

¼ �	2 � Sþ �S00ðS02 � 	2S
00Þ1=2 þOð�2Þ;

(12)

0 ¼ @Veff

@	1

¼ �	2S
0 þ �½2S0S00ðS02Þ1=2

� ð2S0S00 � g	2ÞðS02 � 	2S
00Þ1=2� þOð�2Þ: (13)

As we are calculating the effective potential in loops
approximations (powers of �), we must, for consistency,
solve Eq. (12) perturbatively, as a power series in� (see the
discussion below in this section and in Sec. Vof Ref. [21]).
By substituting the trial form 	2 ¼ �Sþ �Að	1Þ þ
Oð�2Þ in Eq. (12), we get:

	2ð	1Þ ¼ �Sþ �S00ðS02 þ S00SÞ1=2 þOð�2Þ: (14)

If SUSY is preserved, the minimum of the effective
potential must be Veff ¼ 0, occurring for some real 	1

and for 	2 ¼ 0 (which means that the bosonic and fermi-
onic masses, M and 
1, remain equal). As can be seen,
Eqs. (11) and (13) are identically satisfied for 	2 ¼ 0. So,
for SUSY to be preserved, Eq. (12) must have a solution of
	2 ¼ 0, which means that the equation

0 ¼ �Sþ �S00ðS02 þ S00SÞ1=2 þOð�2Þ; (15)

must have a real solution 	1 ¼ �	1. In this case, the field
configuration (	1 ¼ �	1, 	2 ¼ 0) is both a stationary point
and a zero of Veff . If instead this equation does not have
a real solution for 	1, then 	2 ¼ 0 is not a solution of
Eq. (12), and SUSY is broken.
Suppose that �	1 does exist. Inserting the solution (15)

back in the effective potential, we get the ‘‘physical’’
effective potential:

Ueffð	1Þ¼Veffð	1;	2ð	1ÞÞ
¼ 1

2
S2þ2

3
�ððS02Þ3=2�ðS02þSS00Þ3=2ÞþOð�2Þ:

(16)

It still remains to determine if Eq. (14) does have
a solution �	1 and if Ueffð	1Þ � 0 in the region around
	1 ¼ �	1, in which we can trust the loop calculation. As
already observed, if Eq. (15) does not have a real solution
for 	1, then SUSY is broken. So, let us start by analyzing
the solutions of Eq. (15). Moving S to the left side, taking
the square, and solving for S, we get S� �S0S00 ¼ Oð�2Þ,
for S0 ¼ �jS0j. Up to order �, this equation reads

ða� �m�Þ þ ½m� �ðgmþ �2Þ�	1

þ �

2
ð1� 3�gÞ	2

1 þ
g

6
ð1� 3�gÞ	3

1 ¼ 0: (17)

For g � 0, this equation has at least one real solution
for 	1. In the particular case a ¼ m ¼ � ¼ 0, this
(triple) solution is 	1 ¼ 0. If a ¼ � ¼ 0, we have a solu-
tion 	1 ¼ 0, and if, additionally, m=g < 0, two other
solutions, the roots of 	2

1 ¼ � 6m
g ð1� 2�gÞ, which break

the symmetry � ! �� but not SUSY.
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If g ¼ 0, real solutions exist if m2 þ �2�4 > 2a� and
do not exist otherwise (dropping the term with � in this
condition, we get back to the classical condition for SUSY
preservation).

Many other particular cases can be studied, but we
will fix in the more interesting case, in which only the
parameter g � 0, for which the model is classically scale-
invariant. By substituting S ¼ g

6	
3
1 in Eq. (16), we get

Ueff ¼ g2

72
	6

1

�
1� �

g

12

��
5

3

�
3=2 � 1

��
; (18)

which is positive (or null) for g � 1. So, for this
subcase, (	1 ¼ 0, 	2 ¼ 0) is the minimum of the effective
potential, and SUSY is preserved.

For g ¼ m ¼ 0 and a� < 0, Eq. (16) becomes

Ueff ¼ 1

2

�
aþ �

2
	2

1

�
2 þ 2�

3

	
"
ð�2	2

1Þ3=2 �
�
3

2
�2	2

1 � ja�j
�
3=2
#
: (19)

We must remember that the calculations can only be
trusted for m2

B ¼ 3
2�

2	2
1 � ja�j> 0; that is, for 	2

1 >
2
3 j a� j, in which case Ueff is positive (its zeros occur for

	1 ¼ �ð2j a� jÞ1=2 � ��). In this case, the discrete symme-

try is broken, and SUSY is preserved. For a� ¼ ja�j,
SUSY is broken, as in the classical case.

These results are in accordance with those of Ref. [22]
where, using Wilson renormalization group equations, it is
shown that SUSY is preserved for superpotentials with an
even highest power of � (g � 0), but can or cannot be
conserved (depending on the relation among the parame-
ters) for the odd highest power of � (g ¼ 0 and � � 0).

An observation is in order. In Ref. [23], the authors
observe that the physical effective potential is positive
for any value of 	1, if the auxiliary field 	2 is eliminated
by exactly solving its equation of motion [Eq. (12) in the
present paper]. As they say, this positivity must result from
effects of higher orders in �, involved in the exact solution
of Eq. (12). We did not try to confirm this claim; we instead
took the viewpoint that Eq. (12) is valid up to first order in
�, and so its solution [our Eq. (14)] must also be trusted up
to this same order in � (an interesting discussion about

these alternative views is given in Sec. V of Ref. [21]). In
the approximation that we are considering, the solution
of Eq. (12) can become complex (for values of 	1 so that
SS00 þ S02 < 0) and imply that the effective potential
becomes complex in the region in which the classical
potential (U ¼ S2=2) is not convex. This is a characteristic
of loop calculations and not a particularity of SUSY [24].

B. Two-loop contribution

As is well-known, for symmetry breaking to occur by
radiative corrections, we need the induction of terms of the
form hð	1; 	2Þ ln fð	1; 	2Þ. In 2þ 1 dimensions, this only
happens in two- (or more) loop approximations. To study
this possibility and to make a detailed analysis of the UV
counterterms needed to renormalize the effective potential,
we will consider the general case in which all the parame-
ters in Eq. (1) are non-null.
Let us start by establishing the supergraph Feynman

rules for the shifted theory (7). The Feynman propagator
satisfies the Green equation:

Ôz�Fðz� z0Þ ¼ i�5ðz� z0Þ; (20)

where Ôz ¼ D2
z þ
1 �
2

2�
2 with 
1 and 
2

2 defined as
before.

To invert the operator Ô, we make use of the projection
operators method, developed in Ref. [25]. A basis for the
space of scalar operators is formed by the set of six linearly
independent operators:

P0 ¼ 1; P1 ¼ D2; P2 ¼ �2;

P3 ¼ ��D�; P4 ¼ �2D2; P5 ¼ i@���
�D�;

satisfying the multiplication table shown in Table I.
After a straightforward algebra, the superpropagator in

momentum space is given by

�Fðk;�� �0Þ ¼ i

 X5
i¼0

ciPi

!
�2ð�� �0Þ; (21)

where

TABLE I. Multiplication table employed in the inversion of Ô. In addition, we have the trivial
relations P0Pi ¼ PiP0 ¼ Pi, with i ¼ 0; . . . ; 5.

P1 P2 P3 P4 P5

P1 h �P0 þ P3 þ P4 2P1 þ P5 �P1 þhP2 � P5 hð�2P0 þ P3Þ
P2 P4 0 0 0 0

P3 �P5 2P2 P3 � 2P4 2P4 2hP2 þ P5

P4 hP2 �P2 2P4 �P4 �2hP2

P5 �hP3 0 �2hP2 þ P5 0 hðP3 þ 2P4Þ
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c0 ¼ 
1

k2 þM2
;

c1 ¼ � 1

k2 þM2
;

c2 ¼ � ðk2 �
2
1Þ
2

2

ðk2 þ
2
1Þðk2 þM2Þ ;

c3 ¼ � 
1

2
2

ðk2 þ
2
1Þðk2 þM2Þ ;

c4 ¼ � 2
1

2
2

ðk2 þ
2
1Þðk2 þM2Þ ;

c5 ¼ � 
2
2

ðk2 þ
2
1Þðk2 þM2Þ :

The interaction vertices may be read from Eq. (7),
and the symmetry factors can be determined by Wick’s
theorem in the conventional way.
The two-loop superdiagrams contributing for the effec-

tive potential are drawn in Fig. 1. The associated analytical
expressions are shown in Appendix B, and the resulting
two-loop momentum integrals are evaluated by dimen-
sional reduction using the formulas presented in Ref. [26].

The contribution of the diagram (a), denoted by Vð2Þ
a ,

turns out to be finite, since it is constituted by the product
of nonoverlapping one-loop integrals. The diagram (b)
instead has divergences proportional to all the terms

present in the tree-level potential Vð0Þ, which is consistent
with the usual renormalizability of the model. In summary,
we have the following results:

Vð2Þ
a ¼ � g

32�2

M
1

2
2

ðMþ
1Þ ;

Vð2Þ
b ¼ ð�þ g	1Þ2

64�2

�

2

2

2
Idiv � 6
2

1 ln

�
2Mþ
1




�
þ ðM2 þ 5
2

1Þ ln
�
3M




��

þ ð�þ g	1Þ2
64�2

�
�M2 ln

�
M




�
þM2

3

�
1þ ln

�
Mþ 2
1

27


��
� 2

3
M
1

þ
2
1

3

�
1� 6 ln

�
3M




�
� 10 ln

�
Mþ 2
1




��
þ 2

3
ðM2 þ 8
2

1Þ ln
�
2Mþ
1




��

þ g	2

64�2

��
Idiv � 2 ln

�
3M




���
�
1 þ g
1	1 � g

6
	2

��
; (22)

where Idiv ¼ 1
� þ ln ½4�eð1��EÞ� and 
 is an arbitrary mass

parameter introduced via dimensional regularization.
The effective potential up to two loops is given by

Veff ¼ Vð0Þ þ Vð1Þ þ Vð2Þ
a þ Vð2Þ

b þ VCT; (23)

in which VCT is the counterterm contribution to the potential

VCT ¼ �
�
1

2
�Z	2

2 þ �m	1	2 þ ��

2
	2

1	2

þ g
�g

6
	3

1	2 þ �a	2

�
; (24)

as can be read from the classical Lagrangian in Eq. (4);�Z is
the wave function renormalization counterterm, and the
other counterterms are self-explaining.

The divergent parts of Vð2Þ can be collected in

Vð2Þ
div ¼

Idiv
128�2

�
� 1

3
g2	2

2 þ ð2g2mþ 5g�2Þ	1	2

þ 6g2�	2
1	2 þ 2g3	3

1	2 þ ð2gm�þ �3Þ	2

�
:

(25)

As seen from this equation, the renormalization of the
effective potential requires all the counterterms in Eq. (24):

�Z ¼ � 1

3
ĝ2Idiv þ �Zfin

�a ¼ 1

2
ð2mĝ �̂þ��̂2ÞIdiv þ �afin

�m ¼ 1

2
ð2mĝ2 þ 5g�̂2ÞIdiv þ �mfin

�� ¼ 6ĝ2�Idiv þ ��fin

�g ¼ 6ĝ2Idiv þ �gfin;

(26)

where we defined ĝ ¼ g=8� and �̂ ¼ �=8�.
Let us compare our results with some others in the

literature. In Ref. [12], the effective potential of the N ¼
2 WZ model in 2þ 1 dimensions was studied in the two-
loop approximation. The authors conclude that only a wave

(a) (b)

FIG. 1. Two-loop vacuum bubble supergraphs.
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function renormalization is needed. As they say, that result
is not unexpected; the N ¼ 2 superspace formulation of
supersymmetry in 2þ 1 dimensions can be gotten from
the N ¼ 1 superspace formulation in 3þ 1 dimensions
by dimensional reduction, and so the 3þ 1-dimensional
nonrenormalization theorems are expected to work with
N ¼ 2 in 2þ 1-dimensional supersymmetry. In our re-
sults on the other side, no nonrenormalization theorem
applies, and the renormalization of all the parameters is
necessary. Different from ours, in which three different
arguments appear in the generated logarithms, their
expression has only a single argument in the generated
logarithms. This difference is, maybe, due to their approxi-
mation, in which spinorial derivatives D�� and D2�,
besides the usual spatial @�=@x
, are dropped during the
calculations. Our results also contradict the result for a
similar N ¼ 1 model, reported in Ref. [14], in which a
counterterm of the form 	6

1, not present in the classical
Lagrangian, was found to be required.

For the model with g � 0 and � � 0, the renormaliza-
tion also requires that �a and �m be non-null. The
submodel with only g � 0 is renormalizable; that is, it
only requires the renormalization of g besides that of Z.
We will study this subcase in the next section.

If g ¼ 0 and � � 0 (in which case the model is
super-renormalizable), the cancellation of the UV
divergences, up to two loops, only requires that �a � 0

(�a ¼ 1
2��̂

2Idiv). As the divergent parts of ��, �m, and �Z

are zero, no running of these constants or an anomalous
scaling of the field occur; these results disagree with those
in Ref. [22]. This fact is not surprising, considering that the
involved approximations in the two methods of calculation
are very different. In the two-loop approximation, the only
parameter that runs with the scale is a. The renormalization
group equation for a is obtained from the relation between
the unrenormalized a0 and the renormalized a, which is
given by

a0 ¼ 
��=2 aþ �a

ð1þ �ZÞ1=2

¼ 
��=2

�
aþ ln ð4�e1��Þ þ 1

2
��̂2 1

�
þ 
 
 


�
: (27)

From the equation 0 ¼ 
ð@a0=@
Þ, we get 
ð@a=@
Þ ¼
��̂2=4, which, after integration, gives

að
Þ ¼ að
0Þ þ ��̂2

4
ln

�




0

�
: (28)

This result means that a change in the parameter 
 can be
compensated by a simultaneous change in a, leaving the
effective potential invariant.

IV. THE UNBROKEN SUSY VACUUM

Let us now investigate in more details the submodel with
g � 0 and m ¼ � ¼ a ¼ 0, which is of particular interest

for being classically scale-invariant. As discussed in the
previous section, the model only requires the �Z and �g
counterterms. The total renormalized effective potential
Veff takes the form

Veff ¼�1þ�Zfin

2
	2

2�g
1þ�gfin

6
	3

1	2

þ2�

3
ð
3

1�M3Þþ2�2g

�
1

3

1ð
1�MÞð
1�4MÞ

�2

3

1ð
2

1�M2Þ ln
�
2Mþ
1




�

�1

3

1ð10
2

1�M2Þ ln
�
Mþ2
1




�

þ
�

1ð2
2

1þM2Þþg

6
	2

2

�
ln

�
3M




��
; (29)

where 
1 ¼ g	2
1=2, 


2
2 ¼ g	1	2, and M¼ð
2

1�
2
2Þ1=2.

The parameters � and �2 indicate the contributions of
one and two loops. Observe that Veff is real only for M
real, that is, if ðg	4

1 � 4	1	2Þ> 0. The singularity in
	1 ¼ 0, for 	2 � 0, in the last term of Veff is a reminis-
cence of the IR divergences due to the null mass of the
model. So, 	1 ¼ 0 is not a convenient spot to impose
renormalization conditions. The point 	2

1 ¼ 
, where 

is the mass parameter introduced by the dimensional regu-
larization, is a more natural spot. To see this fact, let us
expand the expression of the effective potential in powers
of 	2. The result is

Veff ¼ � g

6
	2	

3
1

�
1þ

�
�gfin � 3ĝþ 9ĝ2

þ 12ĝ2 ln

�
3g

2

��
þ 12ĝ2 ln

�
	2

1




��

� 1

2
	2

2

�
1þ

�
�Zfin þ ĝ� 29

9
ĝ2 � 2

3
ĝ2 ln

�
3g

2

��

� 2

3
ĝ2 ln

�
	2

1




��
þ 	3

2F ð	1; 	2Þ; (30)

where, as before, ĝ ¼ g=8�. We choose �gfin and �Zfin by
imposing that the terms in the parentheses be null. These
choices imply that at the point 	2

1 ¼ 
, the coefficients of
the two monomials (	2	

3
1 and 	2

2) are the same as in the

classical potential Vcl ¼ �ðg=6Þ	2	
3
1 � ð1=2Þ	2

2. The

first condition fixes the renormalized coupling constant,
and the second implies that the coefficient of the kinetic
term of the effective renormalized Lagrangian at 	1 ¼ 

is one. In the expanded form, the renormalized potential
results in

Veff ¼ � g

6
	2	

3
1

�
1þ 12ĝ2 ln

�
	2

1




��

� 1

2
	2

2

�
1� 2

3
ĝ2 ln

�
	2

1




��
þ 	3

2F ð	1; 	2Þ: (31)
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In the previous section, we analyzed the effective poten-
tial up to one-loop order with minimal subtractions
(�Zfin ¼ �gfin ¼ 0). In the present section, we made finite
renormalizations, so that in the expansion up to the second
power of 	2, no one loop correction survived; the only
corrections to the classical potential come from the two-
loop order.

Let us now investigate the possibility of supersymmetry
breakdown. It is easy to check that Veffð	1; 	2 ¼ 0Þ ¼ 0,
from which it also follows that @Veff=@	1j	2¼0 � 0. The

condition @Veff=@	2j	2¼0 ¼ 0 leads to the following (gap)

equation for 	1:

	3
1

�
1þ 12ĝ2 ln

�
	2

1




��
¼ 0: (32)

This equation has a trivial solution 	min
1 ¼ 0 that ensures

that SUSYas well as the discrete symmetry are not broken
by the radiative corrections. Looking at the term in the
parentheses, a possible nonzero solution 	min

1 � 0 would
be given by

1þ 12ĝ2 ln

�
	2

1




�
¼ 0: (33)

However, by looking at Eq. (31), we see that the two-loop
corrections are proportional to ĝ2 ln ð	2

1=
Þ, which, for the
validity of the perturbative approach, must be small as
compared to the factor (one) coming from the zero-loop
potential. So, this minimum lies very far from the range of
validity of the two-loop approximation; we conclude that
no nontrivial vacuum is induced by radiative corrections,
and no SUSY breaking nor mass generation occurs. This
result contradicts the claim made in Ref. [15] that the two-
loop corrections are able to induce supersymmetry break-
ing and dynamical generation of mass. On the other hand,
a similar conclusion to ours was obtained in Ref. [27] for
the O(N) WZ model in the 1=N approximation. The same
conclusion was also gotten in Ref. [22] through a func-
tional renormalization group analysis. In fact, as discussed
in the seminal paper [11], by Coleman and Weinberg,
spontaneous symmetry breaking and mass generation,
through radiative corrections, can only occur in models
with more than one coupling constant and is made possible
through an interplay among these constants.

In two loops, the equation 0 ¼ @V=@	2 is a transcen-
dental equation. Yet, a solution as a power series in � can
be obtained and inserted back into V to get the physical
potential up to order �2. The solution for 	2 is of the form
	2 ¼ C1	

3
1 þ C2	

3
1 ln ð	2

1=
Þ þOð�3Þ, where C1 and C2

are functions of �, g, �Z, and �g. The potential results in
the form Ueff ¼ c1	

6
1 þ c2	

6
1 ln ð	2

1=
Þ þOð�3Þ with c1
and c2 to be fixed by renormalization conditions. The
detailed analysis does not give any new information in
relation to our previous and simpler discussion.

Finally, let us determine the renormalization group
function �g for the particular case with g � 0 and

m¼�¼a¼0. Introducing the bare �0 and renormalized

superfield � and the renormalized coupling constant g
through the definitions

�0 ¼ Z
1
2

�� ¼ ð1þ �ZÞ12�; (34)

g0 ¼ 
"gZg ¼ 
"g

�
1þ �g

Z2
�

�
; (35)

and writing explicitly the counterterms from Eq. (26) as

�Z ¼ � g2

192�2

1

"
þ finite; (36)

�g ¼ 3g2

32�2

1

"
þ finite; (37)

we obtain the beta function at leading order:

�g ¼ 

@g

@

¼ 5g3

24�2
� "g

¼ 5g3

24�2
ðfor " ! 0Þ: (38)

This result is in agreement with that obtained in Ref. [17]
by calculating the divergent parts of several vertex
functions in the component fields formalism. The solution
of Eq. (38) is given by

�g 2 ¼ g2

1� 5
12�2 g

2 ln ð �

Þ
: (39)

Starting with a g2 � 1 at a scale
, we see that the effective
coupling constant �g2 increases as the scale �
 is increased
showing a Landau pole at some scale �
. So, at short
distances, the above results are not reliable: higher-loop
corrections become more and more important compared to
the second order. If instead wemake �
 ! 0, we get �g2 ! 0,
showing an IR-free limit.
An anomalous scaling of the model is also induced as

can be seen by calculating the anomalous dimension of
the field:

�� ¼ 1

2


d lnZ�

d

: (40)

From Eq. (34), we can write Eq. (41) in the form

2ð1þ �ZÞ�� ¼ 

@�Z

@g

@g

@

: (41)

By replacing Eqs. (36) and (38) into Eq. (41), we get

2

�
1� g2

192�2

1

"

�
�� ¼ g2

96�2
� 5g4

24 
 96�4

1

"
; (42)

which yields �� ¼ g2

192�2 .

V. CONCLUSIONS

In the present paper, we calculate the effective potential
for theN ¼ 1WZmodel in 2þ 1 dimensions. We employ
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Jackiw’s functional method combined with the superfield
formalism. A detailed analysis of the renormalizability and
vacuum structure of the model is presented, up to two loops.
One of the main results is that the renormalization of the
theory requires, besides the wave function counterterm, also
mass and coupling constant counterterms but not any new
one. This result differs from that reported in Ref. [14], where
the renormalization of the model requires an extra 	6

1

counterterm. It also differs from that in Ref. [12] for the
N ¼ 2 WZ model in 2þ 1 dimensions, in which only a
wave function renormalization was found to be required. For
the massless �4 (sub)model, we also determined the �g

function which agrees with the results of Dilkes et al. [17],
showing a Landau pole in the UV limit. At the same time,
we found that the quantum vacuum state preserves super-
symmetry and the discrete symmetry � ! �� of the clas-
sical theory, contrary to the remark in Ref. [15], but in
agreement with the results in Refs. [22,27]. A group renor-
malization study of the pure g � 0 model, besides the
calculation of the effective potential for theN ¼ 2 model,
will be addressed in a forthcoming paper.
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APPENDIX A: THE � -FUNCTION METHOD

In this appendix, we compute the one-loop contribution

Vð1Þ by the �-function method following Ref. [13]. The

functional determinant DetÔ is understood as the product

of the eigenvalues of Ô. Starting with the eigenvalues
equation Z

d5z0Ôzðz; z0Þfnðz0Þ ¼ �nfnðzÞ; (A1)

and defining the � function associated to Ôðz; z0Þ �
Ôz�

5ðz� z0Þ as

�ðsÞ ¼ X
n

1

�s
n

; (A2)

the functional determinant of Ôz can be written in the form

DetÔz �
Y
n

�n ¼ exp ½�� 0ð0Þ�: (A3)

So, the calculation of the determinant requires us to get
an analytic representation for �ðsÞ. To this end, let us
introduce a two-point superspace function Gðz; z0; 
Þ,
which obeys the equation

ÔzGðz; z0; 
Þ þ @G

@

¼ 0; (A4)

with the initial condition Gðx; �; x0; �0; 
 ¼ 0Þ ¼
�3ðx� x0Þ�2ð�� �0Þ.
It is straightforward to check that

�ðsÞ ¼ 1

�ðsÞ
Z 1

0
d

s�1

Z
d3xd2�Gðx ¼ x0; � ¼ �0; 
Þ;

(A5)

for Gðz; z0; 
Þ � P
n exp ½��n
�fnðzÞf�nðz0Þ.

To proceed, we must now determine an explicit solution
of Gðz; z0; 
Þ satisfying Eq. (A4) subject to the initial
condition above. To this aim, we will assume that this
function is spacetime-translational-invariant so that it can
be written as

Gðx; �; x0; �0; 
Þ ¼
Z d3k

ð2�Þ3 gðk; �; �
0; 
Þ exp ½�ikðx� x0Þ�;

(A6)

with the following ansatz for gðk; �; �0; 
Þ:
gðk; �; �0; 
Þ ¼ Aðk; 
Þ þ ���0�k��Bðk; 
Þ þ ���0�Cðk; 
Þ

þ �2Dðk; 
Þ þ �02Eðk; 
Þ þ �2�02Hðk; 
Þ:
(A7)

To find the coefficients A, B, C, D, E, andH, we have to

use the explicit form of Ôz read off from Eq. (20) and insert
Eq. (A7) into Eq. (A4). This equation splits into six linear
ordinary differential equations with the initial conditions:

Aðk; 0Þ ¼ 0 Bðk; 0Þ ¼ 0 Cðk; 0Þ ¼ 1

Dðk; 0Þ ¼ �1 Eðk; 0Þ ¼ �1 Hðk; 0Þ ¼ 0; (A8)

so that the solution of this system is readily found. From
these results, we now construct the � function as prescribed
in Eq. (7).

After integration and using the relation Vð1Þ ¼
�ði=2�Þ ln DetÔ ¼ ði=2�Þ� 0ð0Þ, we are able to get the
result described in Eq. (10).

APPENDIX B: TWO-LOOP DIAGRAMS

The analytical expressions for the two-loop vacuum
bubbles that contribute to the effective potential displayed
in Fig. 1 are ðdDk � 
"d3�"kÞ

Vð2Þ
a ¼ �g

8

Z dDkdDq

ð2�Þ2D d2��Fðk; �� �1Þj�¼�1

	�Fðq; �� �2Þj�¼�2

¼ �g

2

Z dDkdDq

ð2�Þ2D
�


1

2
2

ðk2 þM2Þðq2 þ
2
1Þðq2 þM2Þ

�
;

(B1)

and
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Vð2Þ
b ¼ �3i

Z dDkdDq

ð2�Þ2D d2�1d
2�2Ið�21; �22Þ�Fðk;�1 � �2Þ�Fðq; �1 � �2Þ�Fð�k� q;�1 � �2Þ; (B2)

where

Ið�21; �22Þ ¼
1

36
½ð�þ g	1Þ2 � ð�g	2 þ g2	1	2Þð�21 þ �22Þ þ g2	2

2�
2
1�

2
2�: (B3)

After performing the D algebra and carrying out the remaining � integration, we obtain the following two-loop
momentum integrals:

Vð2Þ
b ¼

Z dDkdDq

ð2�Þ2D
�
2

2ð�þ g	1Þ2
12ðk2 þM2Þðq2 þM2Þðk2 þ
2

1Þðq2 þ
2
1Þ½ðkþ qÞ2 þM2�½ðkþ qÞ2 þ
2

1�
	 fk4ðq2 þ
2

1Þ þ 2k:q½ðk2 þ
2
1Þðq2 þ
2

1Þ � ðk2 þ q2 � ðkþ qÞ2 þ
2
1Þ
2

2�
þ
2

1½q4 � 15
4
1 � 4q2½ðkþ qÞ2 þ 2
2

1� þ 6
2
1


2
2 þ 2ðkþ qÞ2ð�5
2

1 þ
2
2Þ�

þ k2q4 � 4k2
2
1½ðkþ qÞ2 þ 2
2

1� þ k2q2½2ðkþ qÞ2 �
2
1 � 4
2

2�g

þ
Z dDkdDq

ð2�Þ2D
�6g
1ð�þ g	1Þ	2 þ g2	2

2

12ðk2 þM2Þðq2 þM2Þ½ðkþ qÞ2 þM2� : (B4)

The two-loop integrals were performed by dimensional reduction scheme, using the formulas from Ref. [26]. The final
results are written in Eq. (22).
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