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We compute the Casimir energy for a system consisting of a fermion and a pseudoscalar field in the

form of a prescribed kink. This model is not exactly solvable and we use the phase shift method to

compute the Casimir energy. We use the relaxation method to find the bound states and the Runge-Kutta-

Fehlberg method to obtain the scattering wave functions of the fermion in the whole interval of x. The

resulting phase shifts are consistent with the weak and strong forms of the Levinson theorem. Then, we

compute and plot the Casimir energy as a function of the parameters of the pseudoscalar field, i.e., the

slope of �ðxÞ at x ¼ 0 (�) and the value of �ðxÞ at infinity (� �0). In the graph of the Casimir energy as a

function of � there is a sharp maximum occurring when the fermion bound state energy crosses the line

of E ¼ 0. Furthermore, this graph shows that the Casimir energy goes to zero for � ! 0, and also for

� ! 1 when �0 is an integer multiple of �. Moreover, the graph of the Casimir energy as a function of �0
shows that this energy is on the average an increasing function of �0 and has a cusp whenever there is a

zero fermionic mode. We finally compute the total energy of a system consisting of a valence fermion in

the ground state. Most importantly, we show that this energy (the sum of the Casimir energy and the

energy of the fermion) is minimum when the background field has winding number one, independent of

the details of the background profile. Throughout the paper we compare our results with those of a simple

exactly solvable model, where a piecewise linear profile approximates the kink. We find that the kink is an

almost reflectionless barrier for the fermions, within the context of our model.
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I. INTRODUCTION

The Casimir effect arises from the distortion of the zero-
point energy of a quantum field due to the presence of
nontrivial background fields or the imposition of nontrivial
boundary conditions. This effect was first proposed by
Casimir in 1948 [1,2], when he predicted the existence of
an attractive force between two neutral infinite parallel
metallic plates in a vacuum, placed a few micrometers
apart. Since Casimir’s work, this effect has attracted
much interest and many authors have calculated the
Casimir energy and the resulting force caused by the pres-
ence of nontrivial boundary conditions for various geome-
tries such as parallel plates, cylinders, and spheres [1,3–21]
and other geometries [22–31]. Moreover, they have used
many different regularization and analytic continuation
schemes to remove the divergences. Some of these tech-
niques are the heat-kernel method [32–34], the Green
function formalism [5,35,36], the mode number summation
method combined with the zeta function analytic continu-
ation technique [37–42], and the multiple scattering expan-
sions [43–46]. The first experimental attempt to observe
this phenomenon was conducted by Marcus Sparnaay [47]
in 1958. In this experiment two parallel metallic plates were
used, and the results had a very poor accuracy. In 1997,
Steve K. Lamoreaux [48,49] measured the Casimir energy

with a high accuracy using a plate and a metallic spherical
shell, and this was the first successful experiment to verify
the Casimir effect. Since then, many different experiments
have been performed to measure the Casimir energy for
various geometries [50–59].
As mentioned above, the zero-point energy can also be

affected by the presence of nontrivial background fields.
The background field is usually chosen to be a soliton.
Also sometimes a very simple potential such as an electric
potential well is chosen as the background field. This
simple choice renders the problems of vacuum polariza-
tion and the Casimir energy exactly solvable [60]. The
Casimir energy also contributes to the lowest order quan-
tum correction to the mass of the soliton. Many authors
use this correction for models containing solitons such as
supersymmetric solitons [61–77]. For most of the models
with solitons, the problem is not exactly solvable.
Sometimes indirect methods such as the phase shift
method which relates the derivative of the phase shift
with respect to the momentum to the spectral deficiency
in the continuum states are used to calculate the Casimir
energy [60,61,72–74].
In this paper we calculate the Casimir energy for a

system containing a Fermi field chirally coupled to a
pseudoscalar field which is prescribed and has the form
of an isolated kink. In a previous work [77] we calculated
the Casimir energy for a similar system where the soliton
profile is approximated by a piecewise linear function, and
this renders the problem exactly solvable. The vacuum
polarization for that model has also been calculated [78].
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For that problem we calculated the Casimir energy exactly
and directly by subtracting the vacuum energy of the
system in the absence from the presence of the disturbance
which is the pseudoscalar field. Throughout this paper we
shall refer to that model as the simple exactly solvable
model. However, the present model is not analytically
solvable and we use the phase shift method to compute
the Casimir energy. As usually happens, the presence of the
disturbance, e.g., the kink, leads to the appearance of one
or more discrete bound states and also changes the con-
tinuum wave functions as compared to the free case. These
changes have many manifestations including induced
vacuum polarization and Casimir energy of the system.
We have previously investigated a similar system where
neither the Fermi field nor the pseudoscalar field, with
boundary values of a topologically nontrivial configura-
tion, were prescribed. They were allowed to interact and
the nonperturbative final results, i.e., the results beyond the
first order ‘‘backreaction’’ ones, revealed that the actual
solitary wave profile differs only very slightly from an
isolated kink [79]. This proximity is one of our motivations
to study the properties of the coupled fermion-kink system.

One of the main purposes of this paper is to investigate
how the functional form of a pseudoscalar background
field [�ðxÞ] affects the properties of the coupled fermion-
pseudoscalar field system. Some of these effects have
already been investigated (see for example Ref. [80]).
For example it is well known that changing the value of
�ðxÞ at spatial infinity (� �0) affects the spectral defi-
ciency in the continua, and this usually leads to what is
called the adiabatic contribution to the induced vacuum
polarization [81,82]. Moreover, changing the spatial profile
of the background field close to the center e.g., the value of
the slope of �ðxÞ at x ¼ 0 (�), changes the pattern of
energy levels crossing E ¼ 0. These crossings lead to
what is usually called the nonadiabatic contribution to
the vacuum polarization [78,82]. The same changes in
the spectrum of the system that lead to the induced vacuum
polarization, also affect its Casimir energy. In this paper we
investigate the effects of the functional form of�ðxÞ on the
Casimir energy and stability of the system. In order to
accomplish this we meticulously study and compare the
properties of the system which has the kink as the back-
ground field with those of the simple exactly solvable
model. For the comparison to be meaningful and refined,
we choose both background fields to have the same �0 and
�. In other words, this comparison serves a dual purpose:
we not only investigate the behavior of the systems as a
function of the parameters �0 and �, but also investigate
the difference between these two systems for the same
parameters. The latter investigation allows us to explore
the effect of the finer details of �ðxÞ on the overall prop-
erties of the system.

In Sec. II we briefly explain how to find the continuum
scattering wave functions of this system using the

Runge-Kutta-Fehlberg method of order 6. Then, in
Sec. III we compute the phase shifts. Using the relation
between the phase shift and the difference between the
density of states in the presence and absence of the distur-
bance, we can write an expression for the Casimir energy
in terms of the phase shift. We then calculate and plot the
Casimir energy as a function of the parameters of the
pseudoscalar field, i.e., the slope of the pseudoscalar field
�ðxÞ at x ¼ 0 (�) and the value of the field at infinity (�0).
In both cases we also show the results for the simple
exactly solvable model, for comparison. In Sec. IV we
add the Casimir energy to the energy of a system consisting
of a valence fermion in the ground state, when there is a
soliton as the background field and discuss the stability of
the system. For each result obtained and displayed for our
model, we also present the corresponding results of the
simple exactly solvable model, for comparison. In Sec. V
we summarize and discuss our conclusions.

II. THE SPECTRUM OF THE FERMION IN THE
PRESENCE OF THE PRESCRIBED KINK

We consider the coupling of a Fermi field and a pseudo-
scalar field governed by the following Lagrangian:

L ¼ �c ði��@� �Mei�ðxÞ�5Þc ; (1)

and we choose �ðxÞ to be prescribed in the form of

�ðxÞ ¼ m=
ffiffiffiffi
�

p
tanh½mx=

ffiffiffi
2

p � which is an isolated kink.
The parameters M and m denote the mass of the Fermi
and pseudoscalar field, respectively. Our purpose is to cal-
culate the Casimir energy of this system. For exactly solv-
able systems we usually compute the complete spectrum of
the fermion, including the bound states with their discrete
energies and the continuum states, and then we can calcu-
late the Casimir energy directly by subtracting the vacuum
energy of the system in the presence and absence of the
disturbance. However, the form chosen for the �ðxÞ makes
the Euler-Lagrange equation of c analytically unsolvable.
Therefore, we have to use an appropriate numerical method
to find the fermion spectrum. In order to facilitate the
numerical calculations, we take advantage of the solutions
of the exactly solvable model for choosing the initial values
as well as comparison purposes. The Lagrangian for the
simple exactly solvable model mentioned earlier is also the
one shown in Eq. (1). However, the form chosen for�ðxÞ is
piecewise linear which renders the problem exactly solv-
able. The �ðxÞ for this model is as follows:

�ðxÞ ¼
8><
>:
��0 for x < �l;

�x for � l < x < l;

þ�0 for l < x:

(2)

This form for the pseudoscalar field along with the kink is
shown in Fig. 1. In this figurewe indicate the parameters�,
the slope of �ðxÞ at x ¼ 0, and ��0, its values at the
boundaries.
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A. The bound state energies and wave functions

The spectrum of a Dirac field coupled to a background
field gets distorted as compared to the free case. These
distortions can be observed as spectral deficiencies in the
continua and also bound states could appear.

Choosing the representation �0 ¼ �1, �1 ¼ i�3 and
�5 ¼ �0�1 ¼ �2 for the Dirac matrices, the Dirac equa-
tion for the Lagrangian of Eq. (1) becomes

i�1@tc ��3@xc �M½cos�ðx;tÞþi�2 sin�ðx;tÞ�c ¼0;

(3)

where

c ¼ c 1

c 2

� �
:

We define

�ðx; tÞ ¼ e�iEt
�1ðxÞ
�2ðxÞ

 !
¼ c 1 þ ic 2

c 1 � ic 2

 !
: (4)

The equation obeyed by �ðx; tÞ is

i@x � E iMei�ðxÞ

�iMe�i�ðxÞ �i@x � E

 !
�1

�2

 !
¼ 0

0

 !
: (5)

In order to obtain the energies of the bound states of the
fermion, we use a numerical method called the relaxation
method. In an earlier paper we have explained and used
this method to study the bound states of a more compli-
cated system [79]. This method is used for solving the
boundary value problems. To solve N real coupled first-
order ODEs, we need N boundary conditions, some of
them are to be imposed at one boundary and the rest at
the other boundary. The relaxation method determines the
solution by starting with a guess and improving it, itera-
tively. We separate the real and imaginary parts of the
upper and lower components of

�1ðxÞ
�2ðxÞ

 !

as �1ðxÞ ¼ y1ðxÞ þ iy2ðxÞ and �2ðxÞ ¼ y3ðxÞ þ iy4ðxÞ. The
equations of motion for yis are as follows:

y01 þM cos�ðxÞy3 � Ey2 �M sin�ðxÞy4 ¼ 0; (6)

y02 þM cos�ðxÞy4 þ Ey1 þM sin�ðxÞy3 ¼ 0; (7)

y03 þM cos�ðxÞy1 þ Ey4 þM sin�ðxÞy2 ¼ 0; (8)

y04 þM cos�ðxÞy2 � Ey3 �M sin�ðxÞy1 ¼ 0; (9)

where prime denotes the derivative with respect to x. We
have an additional (fifth) equation E0 ¼ 0. To solve this set
of five coupled first-order ODEs we need five conditions on
the initial and final boundary points of the domain of the
spatial variable, which could be chosen to be just ½0;1Þ
instead of (�1, þ1), due to the invariance of the
Lagrangian under the parity. Then, we map the x-interval
½0;1Þ to ½0; 1� by the transformation X ¼ tanhðxÞ. Hence,
the two boundaries of X are X ¼ 0 and X ¼ 1. For bound
states we use the relaxation method and choose the con-
ditions at these boundaries as follows. At X ¼ 0we choose
two conditions: one parity condition and one assigning a
value to one of the yið0Þs. This value is allowed to change
so as to normalized c ðxÞ. At X ¼ 1 we choose three
conditions: three of the yið1Þs are set to zero. From now
on we rescale all the quantities of the problem with respect
to the mass of the Fermi field (M).
The bound state energies obtained from the numerical

results are depicted in Fig. 2. The upper graph shows the
bound energy levels of the fermion as a function of � at
�0 ¼ �, i.e., a soliton with winding number 1 and the
lower graph shows the bound energies as a function of �0
for the slope � ¼ 10. In both graphs the bound energy
levels for the model with kink and the simple exactly
solvable model are shown by solid and dashed lines,
respectively. The � signs refer to the parity of each of
the bound states. Notice that the rather small difference
between the profiles of these two background fields pro-
duces considerable difference between the pattern of
bound state energies.

B. The continuum scattering states

In this subsection we compute the continuum states
numerically, since the problem is not exactly solvable. In
general the numerical computations of the continuum
states are much more difficult than those of the bound
states, due to the oscillatory behavior of those states at
spatial boundaries, i.e., x ¼ �1. For the purpose of this
paper, we can either compute the continuum parity eigen-
states or the scattering states. We choose the latter, since
they are easier to compute numerically. For this purpose we
consider the case where a plane wave incident from the left

slope

l l
x

0

0

x

FIG. 1. The solid and dashed lines show �ðxÞ for the kink and
the simple exactly solvable model, respectively. The parameters
�0 and � are also shown in the figure.

CASIMIR ENERGY FOR A COUPLED FERMION-KINK . . . PHYSICAL REVIEW D 87, 045017 (2013)

045017-3



is partially reflected by the soliton and partially transmit-
ted. The appropriate state can be written as

�kðxÞ¼
y1ðxÞþ iy2ðxÞ
y3ðxÞþ iy4ðxÞ

 !

¼

8>>>>>>>>>>><
>>>>>>>>>>>:

a1þ ia2

a3þ ia4

 !
e�ikxþ b1þ ib2

b3þ ib4

 !
eikx for x!�1;

z1ðxÞþ iz2ðxÞ
z3ðxÞþ iz4ðxÞ

 !
for finitex;

c1þ ic2

c3þ ic4

 !
eikx for x!þ1;

(10)

where as, bs and cs are all constants. To start the numerical
method we begin on the far right-hand side, i.e., x � l,
where l is the scale of the spatial variation of the soliton
(see Fig. 1), and integrate backwards. It is convenient to
choose the following form for the numerical method:

�kðxÞ ¼ eikx	kðxÞ ¼ eikx

1ðxÞ þ i
2ðxÞ

3ðxÞ þ i
4ðxÞ

 !
: (11)

That is we have factored the term eikx, so that the initial
values are 
ið1Þ ¼ ci. Notice that by extracting the term
eikx, we have completely factored out the oscillatory term
which can cause unnecessary difficulties, and this factori-
zation is not possible for the continuum parity eigenstates
where the terms eikx and e�ikx are present at both bounda-
ries x ¼ �1. The ansatz for �kðxÞ given in Eq. (11) has to
satisfy the Dirac equation [Eq. (5)] for all x. Substituting
Eq. (11) into Eq. (5), we obtain


0
1 þ cos�ðxÞ
3 � ðEþ kÞ
2 � sin�ðxÞ
4 ¼ 0; (12)


0
2 þ cos�ðxÞ
4 þ ðEþ kÞ
1 þ sin�ðxÞ
3 ¼ 0; (13)


0
3 þ cos�ðxÞ
1 þ ðE� kÞ
4 þ sin�ðxÞ
2 ¼ 0; (14)


0
4 þ cos�ðxÞ
2 � ðE� kÞ
3 � sin�ðxÞ
1 ¼ 0: (15)

We solve this set as an initial value problem, using the
so-called Runge-Kutta methods. In order to find the solu-
tions with high accuracy, we use the Runge-Kutta-Fehlberg
method of order 6. We take advantage of the simple exactly
solvable model to determine the initial boundary values for
solving the equations. We already have all the solutions of
this model, including the wave functions for the scattering
process [78,83]. We can use the values of the scattering
wave functions of this simple model as the initial boundary
conditions for our model, since the form chosen for the
pseudoscalar field is identical to kink as the spatial variable
x tends to infinity. Therefore, we start at x ¼ þ1 with the
values of the scattering wave functions for the exactly
solvable model (after dropping the factor eikx and up to
the normalization factor) and go backwards in the x-interval
to find the values of the 
is for all the mesh-points of the
interval (�1, þ1) by solving Eqs. (12)–(15). We can
alternatively obtain the conditions on the initial values by
solving the Dirac equation [Eqs. (12)–(15)] for x � l,
where �ðxÞ ¼ �0.
Figure 3 shows 
is for the case with the parameters

�0 ¼ �, � ¼ 10, k ¼ 3:0 and E ¼ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þM2

p
. In this

figure we also show 
is of the simple exactly solvable
model, for comparison. The first two important conclu-
sions that we can obtain from Fig. 6 are as follows. First,
the solutions settle very quickly into their asymptotic forms
outside the region of variation of the kink, i.e., for jxj � l.
Second, the oscillations present in 
iðxÞ for x <�l indi-
cate the presence of e�ikx factors in �kðxÞ, as shown in
Eq. (10). We can actually obtain the eight coefficients ai
and bi, i ¼ f1; . . . ; 4g, by the following procedure. We first
substitute the expression for �kðxÞ for x � �l given in
Eq. (10) into the Dirac equation [Eqs. (12)–(15)] to obtain
four conditions. Second, we match the general form of
�kðxÞ given in Eq. (10) with the numerical solutions for
one particular finite value of x subject to x � �l, to obtain
four additional conditions. These eight conditions are

0. 2. 4. 6. 8. 10. 12.
1.

0.5

0.

0.5

1.

E
bo

un
d

0. 2 3 2 2
1.

0.5

0.

0.5

1.

0

E
bo

un
d

FIG. 2. The energies of the bound states of the fermion. The
upper graph shows the bound energies as a function of � at
�0 ¼ � and the lower graph shows the bound energies as a
function of �0 at � ¼ 10. In both graphs the solid and dashed
lines are for the model with kink and the exactly solvable model,
respectively. The parity of each bound state is indicated on the
graphs by � signs.
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sufficient to determine the eight unknown coefficients ais
and bis (up to an overall multiplicative constant complex
number). We have at our disposal two additional checks on
this procedure. First, we can repeat this procedure for
several other finite values of x, all satisfying x � �l and
check the consistency of the results obtained for the coef-
ficients ais and bis. Second, our simple exactly solvable
model serves as a testing ground for our procedure and this
has served as our triple check. That is we have first tested
completely all of our procedures on the simple exactly

solvable model and obtained the correct results, before
using them for the problem at hand.
It is also interesting to note that the oscillations are less

pronounced on the left for the kink model. This indicates
that there is less ‘‘reflection’’ from the kink, as is also
evident from the graph of the probability density �ðxÞ
shown in Fig. 4. It is worth mentioning that the kink is
totally reflectionless for the elementary bosons within the
��4 theory.

III. THE CALCULATION OF THE CASIMIR
ENERGY USING THE PHASE SHIFT METHOD

The Casimir energy for a system like ours, as it is well-
known, is given by the shift in the zero-point energies of
fermionic modes due to the presence of the disturbance,
and in general can be written in the following form:

ECasimir ¼
Z þ1

�1
dx
Z þ1

0

dp

2�

X
j¼�

�
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þM2

q �
�jy
p �j

p

þ
Z þ1

�1
dx
X
i

ðEi�
boundÞ
y

2bi

2bi

�
Z þ1

�1
dx
Z þ1

�1
dk

2�
ð�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þM2

p
Þvy

k vk

¼ �
Z þ1

0
dk

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þM2

p
ð�seaðkÞ � �sea

0 ðkÞÞ

þX
i

Ei�
bound þ

M

2
: (16)
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FIG. 3. The graphs of 
iðxÞs as functions of the spatial variable x, for the parameters �0 ¼ �, � ¼ 10, k ¼ 3:0 and

E ¼ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þM2

p
. The solid and dashed lines show the normalized 
iðxÞs for our model and the simple exactly solvable model,

respectively. Note that all of these graphs indicate that 
is are a superposition of a constant term and a term proportional to e�2ikx for
large negative values of x.

4 2 2 4
x

0.05

0.05

0.10

0.15

x

FIG. 4. The graph of �ðxÞ as a function of the spatial variable

x, for the parameters �0 ¼ �, � ¼ 10, k ¼ 3:0 and E ¼
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þM2

p
. The solid and dashed lines show the �ðxÞ for our

model and the simple exactly solvable model, respectively. The
amplitude of oscillations on the left is proportional to the
amplitude of reflection and the amplitude on the right is propor-
tional to the ‘‘transmission’’ probability.

CASIMIR ENERGY FOR A COUPLED FERMION-KINK . . . PHYSICAL REVIEW D 87, 045017 (2013)

045017-5



The first equality is the relation we derived in Ref. [77] for
the Casimir energy of a Fermi field in the presence of an

arbitrary disturbance. The functions �j
pðxÞ and vkðxÞ are the

normalized fermion wave functions for the negative
continuum states in the presence and absence of the dis-
turbance, respectively. The functions 
2biðxÞ are the nor-

malized fermion wave functions for the discrete bound
states with negative energy and Ei�

bound denote the energies

of these negative bound states. In the last line of the above
equation, the extraM=2 takes into account the contribution
from the half-bound state of the fermion at E ¼ �M in the
free case. The factor ½�seaðkÞ � �sea

0 ðkÞ� is the difference

between the density of continuum states with negative
energy in the presence and absence of the pseudoscalar
field.

In Ref. [77] we concluded that for the simple exactly
solvable model we can calculate the Casimir energy using
only the negative states or only the positive states, or the
average of all of the states and the results are exactly the
same in all cases. Since all the symmetries of the model
with kink are the same as the simple exactly solvable
model, the aforementioned argument is also true for the
present model.

A. The phase shift and Levinson theorem

The difference between the density of the continuum
states in the free and interacting cases can be written in
terms of the scattering phase shift in the following form:

�ðkÞ � �0ðkÞ ¼ 1

�

d

dk
�ðkÞ; (17)

where �ðkÞ ¼ �skyðkÞ þ �seaðkÞ, i.e., �ðkÞ is the sum of the

contributions from both positive and negative energies.
This relation is also true for the sea and sky, separately.
Therefore, the second term in the relation of the Casimir
energy, Eq. (16), can be written in terms of the phase shift,
as follows:

�
Z þ1

0
dk

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þM2

p
ð�seaðkÞ � �sea

0 ðkÞÞ

¼ �
Z þ1

0

dk

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þM2

p d

dk
�seaðkÞ

¼ �
Z þ1

0

dk

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þM2

p d

dk
ð�seaðkÞ � �seað1ÞÞ

¼
Z þ1

0

dk

�

kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þM2

p ð�seaðkÞ � �seað1ÞÞ

þ 1

�
Mð�seað0Þ � �seað1ÞÞ: (18)

In the second equality we have just subtracted a zero term
from the original one. For the last equality we have inte-
grated the expression by parts, since the final expression is
more convenient for the numerical analysis. Therefore, we

can compute the second term in the expression of the
Casimir energy using the phase shift.
Now, by comparing the coefficients of eikx on the left-

and right-hand sides of the scattering region, i.e., bi and ci
for i ¼ 1; . . . ; 4 given in Eq. (10), we can obtain the
scattering matrix element, which is related to the phase

shift by SðkÞ ¼ ei�ðkÞ.
As an example of our results, in Figs. 5 and 6 we plot

the phase shift for our system as a function of k, for the
parameters �0 ¼ � and � ¼ 10. Figure 5 shows the
�skyðkÞ, i.e., the phase shift for the states with the positive

energyþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þM2

p
and Fig. 6 shows �seaðkÞ, i.e., the phase

shift for the states with the negative energy�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þM2

p
. In

both figures we also show the phase shift of the simple
exactly solvable model with the same parameters, for
comparison.
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1.5

sky k

FIG. 5. The graphical representation of �skyðkÞ, for � ¼ 10
and �0 ¼ �. The results for the models with kink and the simple
exactly solvable model are shown by the solid and dashed lines,
respectively. For these parameters we can see from Fig. 2 that
two levels have exited from the sky and since N0

t;sky ¼ 1 at

E ¼ þ1:0, we expect �skyð0Þ=� ¼ 3=2.
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FIG. 6. The graphical representation of �seaðkÞ, for � ¼ 10
and �0 ¼ �. The results for the models with kink and the simple
exactly solvable model are shown by the solid and dashed lines,
respectively. For these parameters we can see from Fig. 2 that no
level has entered the sea and since N0

t;sea ¼ 1 at E ¼ �1:0, we
expect �seað0Þ=� ¼ �1=2.
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We can now check the consistency of the resulting phase
shifts with the Levinson theorem. The weak form of this
theorem for the Dirac equation is as follows [83]:

�� � ½�skyð0Þ � �skyð1Þ� þ ½�seað0Þ � �seað1Þ�

¼
�
N þ Nt

2
� N0

t

2

�
�; (19)

where N is the total number of bound states, including
positive and negative ones, Nt the total number of the
threshold bound states at the given strength of the potential,
and N0

t the number of threshold bound states at zero
strength of the potential, i.e., the free Dirac case. The
strong form of the Levinson theorem [83] relates the value
of the phase shift at each boundary of the continua to the
number of levels which have crossed those boundaries, in
the process of building up the disturbance. This form of
theorem can be expressed in the following form for k ¼ 0:

�ð0Þ ¼ ðNexit � NenterÞ�: (20)

This relation holds for each of the continua, separately. For
each continuum Nexit (Nenter) is the number of the bound
states that exit (enter) that continuum from that boundary
(E ¼ þ1:0 or E ¼ �1:0) as the strength of the potential is
increased from zero to its final finite value. In this equation
the threshold bound states, mentioned above, should
be included in Nexit and Nenter, with the coefficient 1=2.
Moreover, the strong form of the Levinson theorem for
k ¼ 1 can be written in the following form:

�ð1Þ ¼ ðNenter � NexitÞ�: (21)

This relation also holds for each continuum, separately. For
each continuum Nexit (Nenter) is the number of the bound
states that exit (enter) that continuum from k ¼ 1
(E ¼ þ1 or E ¼ �1) as the strength of the potential is
increased from zero to its final finite value. It is easy to
check that the phase shifts depicted in Figs. 5 and 6 are
consistent with both the weak and strong forms of the
Levinson theorem. In particular �ðE ¼ �1Þ ¼ ��0,
which is consistent with the results of the adiabatic method
of Goldstone and Wilczek [81].

B. The Casimir energy

Now we can calculate the Casimir energy using Eq. (16)
and show the results in some figures. In Fig. 7 we plot the
Casimir energy as a function of � at �0 ¼ �, i.e., a soliton
with winding number 1, for our model and for the simple
exactly solvable model. As can be seen in both cases, there
is a sharp maximum occurring when the bound energy
level crosses the line of E ¼ 0. This crossing occurs at a
larger value of� for our model, based on the bound energy
levels shown in the upper graph of Fig. 2. For the model
with kink the bound energy level crosses the line of E ¼ 0
at � � 3:821, while for the simple exactly solvable
model this crossing occurs at a lower value of the slope,

i.e., � � 2:957. Also, the value of the Casimir energy is
lower in the case of kink. The largest difference between
the graphs of these two models occurs around the maxi-
mum, as is shown in the zoomed box of this figure.
However, when � ! 0 or � ! 1, both graphs tend to
the same values. In both models the Casimir energy
reaches the expected value of zero when the slope of the
soliton at x ¼ 0 decreases to zero, i.e., the vacuum energy
approaches that of the trivial vacuum, despite the residual
nontrivial boundary conditions. Also, both graphs have the
same limit when the slope of the soliton tends to infinity.
This limit is zero at �0 ¼ n�, i.e., when we have a proper
soliton with winding number n. However, for other
values of �0 the Casimir energy is in general nonzero
when � ! 1 in both models (see Eq. (3.9) in Ref. [77]).
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FIG. 7. The graphical representation of the Casimir energy as a
function of �, the scale of variation of the soliton, at �0 ¼ �.
The solid and dashed lines show the results for the model with
the kink and the simple exactly solvable model, respectively.
In the box we focus on the small values of � to show the details
of the maximum and the differences between the results of two
models.
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FIG. 8. The Casimir energy as a function of �0, at� ¼ 10. The
solid and dashed lines show the results for the model with the
kink and the simple exactly solvable model, respectively.
The cusps occur when bound state energy levels cross E ¼ 0.
The bound energy levels cross E ¼ 0 at �0 � 0:601� and
�0 � 1:801�, for the model with kink, and at �0 � 0:576�
and �0 � 1:596�, for the simple exactly solvable model, in
the interval 0 < �0 < 2�.
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In Fig. 8 we present the Casimir energy as a function of
�0 for � ¼ 10, by the solid and dashed lines for the model
with kink and the simple exactly solvable model, respec-
tively. As can be seen, the Casimir energy is, on the
average, an increasing function of �0 for both models and
there are two mild cusps in each graph for 0 < �0 < 2�.
Comparing these graphs with the lower graph of Fig. 2, we
conclude that these cusps occur when the bound energy
levels cross the line of E ¼ 0.

IV. STABILITY OF THE SOLUTIONS

Finally, we consider the effect of the Casimir energy
on the total energy of a system consisting of a valence
fermion in the ground state. The total energy for such a
system consists of the Casimir energy and the energy of
the valence fermion. Note that the energy of the valence
fermion should not be added when this energy is nega-
tive, since it has already been taken into account in the
Casimir energy. The total energy is shown in Fig. 9. The
upper graph shows this energy as a function of the slope
of the pseudoscalar field (�) when �0 ¼ � and the lower
graph shows this energy as a function of the value of the

pseudoscalar field at infinity (�0) when � ¼ 10. In both
graphs the solid and dashed lines represent the total
energy for the model with kink and the simple exactly
solvable model, respectively. As can be seen in the lower
graph, for both models there is a minimum occurring at
�0 � �, which corresponds to a soliton with winding
number one. This means that not only this configuration
is energetically favorable, but also it is stable against
small fluctuations in the parameters of the background
field when this field is a soliton with a proper winding
number, as expected. Notice that there is no minimum in
the upper graph.

V. CONCLUSION

In this paper we compute the Casimir energy for a
Fermi field chirally coupled to a pseudoscalar field
chosen to be prescribed and in the form of the kink.
The equations of motion for this system are not exactly
solvable. Using the Runge-Kutta-Fehlberg method of
order 6 and taking the scattering solutions of an exactly
solvable model containing a fermion and a pseudoscalar
field in the simple form of a piecewise linear function as
the initial condition, we find the scattering wave func-
tions for the fermion in the system with the kink.
Comparison between the graphs of the scattering proba-
bility for the system with the kink and the one with the
simple background field shows that the kink is almost
reflectionless for the fermion, within the context of our
model. Then, comparing the values of these wave func-
tions at the boundaries of the x interval, i.e., x ! �1,
we obtain the phase shifts for the fermion’s wave func-
tions and plot them for the specific set of parameters of
the model. We check the consistency of the resulting
phase shifts with the weak and strong forms of the
Levinson theorem and conclude that this theorem is
completely consistent with our results. Then, using the
relation between the derivative of the phase shift and the
difference between the density of states in the presence
and absence of the kink, we calculate the Casimir energy
of our system and depict this energy as a function of the
parameters determining the kink, i.e., its scale of varia-
tions (�) and its value at infinity (�0). We show that in
the graph of the Casimir energy as a function of � there
is a sharp maximum occurring when the bound energy
level of the fermion crosses the line of E ¼ 0. Since this
crossing occurs at a larger value of � for the model with
kink as compared to the simple exactly solvable model,
the maximum of the Casimir energy for the model with
kink occurs at a larger value of �. Moreover, this graph
shows the expected results that the Casimir energy is
zero at the limits � ! 0, and � ! 1 for �0 ¼ � which
describes a kink with winding number one. The Casimir
energy is in general an increasing function of �0 and is
always positive and has a cusp whenever there is a zero
fermionic mode. The first few cusps are local maxima.
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FIG. 9. The upper graph shows the total energy (the sum of the
energy of a valence fermion and the Casimir energy) as a
function of � when �0 ¼ �. The lower graph shows the total
energy as a function of �0 for the slope � ¼ 10. In both graphs
the solid and dashed lines represent the total energy for the
model with kink and the simple exactly solvable model,
respectively. Notice that the system attains its lowest energy
at �0 ¼ �.
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Finally, we compute the total energy of a system con-
sisting of a valence fermion in the ground state. This
energy includes the Casimir energy of the system and
the energy of the valence fermion. We conclude that
there is no preferable finite � for the system consisting
of the background field with winding number one.
However, considering the effect of the changing the �0

for fixed �, the system is more stable for the soliton
with winding number one.
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