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We investigate the finite temperature expectation values of the charge and current densities for a

complex scalar field with nonzero chemical potential in the background of a flat spacetime with spatial

topology Rp � ðS1Þq. Along compact dimensions quasiperiodicity conditions with general phases are

imposed on the field. In addition, we assume the presence of a constant gauge field which, due to the

nontrivial topology of background space, leads to Aharonov-Bohm-like effects on the expectation values.

By using the Abel-Plana-type summation formula and zeta function techniques, two different represen-

tations are provided for both the current and charge densities. The current density has nonzero components

along the compact dimensions only and, in the absence of a gauge field, it vanishes for special cases of

twisted and untwisted scalar fields. In the high-temperature limit, the current density and the topological

part in the charge density are linear functions of the temperature. The Bose-Einstein condensation for a

fixed value of the charge is discussed. The expression for the chemical potential is given in terms of the

lengths of compact dimensions, temperature, and gauge field. It is shown that the parameters of the phase

transition can be controlled by tuning the gauge field. The separate contributions to the charge and current

densities coming from the Bose-Einstein condensate and from excited states are also investigated.
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I. INTRODUCTION

In recent years, there has been much interest in the
physical problems with compact spatial dimensions.
Several models of this sort appear in high-energy physics,
in cosmology, and in condensed matter physics. In particu-
lar, many high-energy theories of fundamental physics,
including supergravity and superstring theories, are formu-
lated in spacetimes having extra compact dimensions
which are characterized by extremely small length scales.
These theories provide an attractive framework for the
unification of gravitational and gauge interactions. The
models of a compact universe with nontrivial topology
may also play an important role by providing proper initial
conditions for inflation [1].

In the models with compact dimensions, the nontrivial
topology of background space can have important physical
implications in classical and quantum field theories, which
include instabilities in interacting field theories [2], topo-
logical mass generation [3,4], and symmetry breaking
[4,5]. The periodicity conditions imposed on fields along
compact dimensions allow only the normal modes with
suitable wavelengths. As a result of this, the expectation
values of various physical observables are modified. In
particular, many authors have investigated the effects of
vacuum or Casimir energies and stresses associated with
the presence of compact dimensions (for reviews see

Refs. [6,7]). The topological Casimir effect is a physical
example of the connection between quantum phenomena
and global properties of spacetime. The Casimir energy
of bulk fields induces a nontrivial potential for the com-
pactification radius of higher-dimensional field theories
providing a stabilization mechanism for the corresponding
moduli fields and thereby fixing the effective gauge
couplings. The Casimir effect has also been considered
as a possible origin for the dark energy in both Kaluza-
Klein-type models and in braneworld scenarios [8].
The main part of the previous papers, devoted to the

influence of the nontrivial topology on the properties of
the quantum vacuum, considers the vacuum energy and
stresses. These quantities are chosen because of their close
connection with the structure of spacetime through the
theory of gravitation. For charged fields another important
characteristic, which is bilinear in the field, is the expec-
tation value of the current density in a given state. In
Ref. [9], we have investigated the vacuum expectation
value of the current density for a fermionic field in spaces
with an arbitrary number of toroidally compactified dimen-
sions. We apply the general results to the electrons of a
graphene sheet rolled into cylindrical and toroidal shapes.
For the description of the relevant low-energy degrees of
freedom, we have used the effective field theory treatment
of graphene in terms of a pair of Dirac fermions. For this
model one has the topologies R1 � S1 and ðS1Þ2 for cylin-
drical and toroidal nanotubes, respectively. Combined ef-
fects of compact spatial dimensions and boundaries on the
vacuum expectation values of the fermionic current have
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been discussed recently in Ref. [10]. In the latter, the
geometry of boundaries is given by two parallel plates on
which the fermion field obeys bag boundary conditions.
The effects of nontrivial topology around a conical defect
on the current induced by a magnetic flux were investi-
gated in Ref. [11] for scalar and fermion fields.

In the present paper we consider the finite temperature
charge and current densities for a scalar field in back-
ground spacetime with spatial topology Rp � ðS1Þq. In
both types of models with compact dimensions used in
the cosmology of the early Universe and in condensed
matter physics, the effects induced by the finite tempera-
ture play an important role. The thermal corrections arise
from thermal excitations of the fluctuation spectrum, and
they depend strongly on the geometry. As a consequence of
this, thermal modifications of quantum topological effects
can differ qualitatively for different geometries. The ther-
mal Casimir effect in cosmological models with nontrivial
topology has been considered in Ref. [12]. A general
discussion of the finite temperature effects for a scalar field
in higher-dimensional product manifolds with compact
subspaces is given in Ref. [13]. Specific calculations are
presented for the cases when the internal space is a torus or
a sphere. In Ref. [14] the corresponding results are ex-
tended to the case in which a chemical potential is present.
In the previous discussions of the effects from nontrivial
topology and finite temperature, the authors mainly con-
sider periodicity and antiperiodicity conditions imposed on
the field along compact dimensions. The latter correspond
to untwisted and twisted configurations of fields, respec-
tively. In this case the current density corresponding to a
conserved charge associated with an internal symmetry
vanishes. As it will be seen below, the presence of a
constant gauge field, interacting with a charged quantum
field, will induce a nontrivial phase in the periodicity
conditions along compact dimensions. As a consequence
of this, nonzero components of the current density appear
along compact dimensions. This is a sort of Aharonov-
Bohm-like effect related to the nontrivial topology of the
background space.

The organization of the paper is as follows. In the next
section the geometry of the problem is described and the
thermal Hadamard function is evaluated for a complex
scalar field in thermal equilibrium. In Sec. III, by using
the expression for the Hadamard function, the expectation
values of the charge and current densities are investigated.
Various limiting cases are discussed. Alternative expres-
sions for the charge and current densities are provided in
Sec. V by making use of the zeta function renormalization
approach. Section VI is devoted to the investigation of the
Bose-Einstein condensation in the background under con-
sideration. The properties of the vacuum expectation value
of the charge density are discussed in the Appendix.
Throughout the paper we use the units ℏ ¼ c ¼ kB ¼ 1,
with kB being the Boltzmann constant.

II. GEOMETRY OF THE PROBLEM
AND THE HADAMARD FUNCTION

We consider the quantum scalar field ’ðxÞ on the
background of ðDþ 1Þ-dimensional flat spacetime with
spatial topology Rp � ðS1Þq, pþ q ¼ D. For the Cartesian
coordinates along uncompactified and compactified
dimensions, we use the notations xp ¼ ðx1; . . . ; xpÞ and

xq ¼ ðxpþ1; . . . ; xDÞ, respectively. The length of the lth

compact dimension we denote as Ll. Hence, for coordi-
nates one has �1< xl <1 for l ¼ 1; . . . ; p, and
0 � xl � Ll for l ¼ pþ 1; . . . ; D. In the presence of a
gauge field A� the field equation has the form

ðg��D�D� þm2Þ’ ¼ 0; (2.1)

where D� ¼ @� þ ieA� and e is the charge associated

with the field. One of the characteristic features of field
theory on backgrounds with nontrivial topology is the
appearance of topologically inequivalent field configura-
tions [15]. The boundary conditions should be specified
along the compact dimensions for the theory to be defined.
We assume that the field obeys generic quasiperiodic
boundary conditions,

’ðt;xp;xq þ LlelÞ ¼ ei�l’ðt;xp;xqÞ; (2.2)

with constant phases j�lj � � and with el being the
unit vector along the direction of the coordinate xl,
l ¼ pþ 1; . . . ; D. The condition (2.2) includes the period-
icity conditions for both untwisted and twisted scalar fields
as special cases with �l ¼ 0 and �l ¼ �, respectively.
The geometry under consideration can be used to

describe two types of models. The first one, with p ¼ 3,
q > 1, corresponds to the universe with Kaluza-Klein-type
extra dimensions. For the second model one has D ¼ 3,
and the results given below describe how the properties
of the universe are changed by one-loop quantum effects
induced by the compactness of spatial dimensions. Another
possible range for the applications of the results presented
in the present paper could be graphene-made structures
like cylindrical and toroidal carbon nanotubes. The long-
wavelength description of the graphene excitations can be
formulated in terms of the effective field theory in (2þ 1)-
dimensional spacetime. In addition to the Dirac spinor
field, this theory also contains complex scalar and gauge
fields (see, for instance, Ref. [16]). For cylindrical and
toroidal nanotubes the background space for the corre-
sponding effective field theory has topologies R1 � S1

and ðS1Þ2, respectively.
In the discussion below we will assume a constant gauge

field A�. Though the corresponding field strength vanishes,

the nontrivial topology of the background spacetime leads
to the Aharonov-Bohm-like effects on physical observ-
ables. In the case of constant A�, by making use of the

gauge transformation
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’ðxÞ ¼ e�ie�’0ðxÞ; A� ¼ A0
� þ @��; (2.3)

with � ¼ A�x
�, we see that in the new gauge one has

A0
� ¼ 0 and the vector potential disappears from the equa-

tion for ’0ðxÞ. For the new field we have the periodicity
condition

’0ðt;xp;xq þ LlelÞ ¼ ei~�l’0ðt;xp;xqÞ; (2.4)

where

~�l ¼ �l þ eAlLl: (2.5)

In what follows we will work with the field ’0ðxÞ, omitting
the prime. Note that for this field D� ¼ @�. As it is seen

from Eq. (2.5), the presence of a constant gauge field shifts
the phases in the periodicity conditions along compact
dimensions. In particular, a nontrivial phase is induced
for special cases of twisted and untwisted fields. As it
will be shown below, this is crucial for the appearance of
the nonzero current density along compact dimensions.
Another interesting physical effect related to the presence
of a constant gauge field is the topological generation of
gauge field mass by toroidal spacetime (see Ref. [17] and
references therein). Note that the term in Eq. (2.5) due to
the gauge field may be written as

eAlLl ¼ 2��l=�0; (2.6)

where �l is a formal flux enclosed by the circle corre-
sponding to the lth compact dimension and �0 ¼ 2�=e is
the flux quantum.

The complete set of positive- and negative-energy
solutions for the problem under consideration can be
written in the form of plane waves:

’ð�Þ
k ðxÞ ¼ Cke

ik�r�i!t; !k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

p
; (2.7)

where k ¼ ðkp;kqÞ, kp¼ðk1;...;kpÞ, kq¼ðkpþ1;...;kDÞ,
with�1< ki <þ1 for i ¼ 1; . . . ; p. For the momentum
components along the compact dimensions the eigenvalues
are determined from the conditions (2.4):

kl¼ð2�nlþ ~�lÞ=Ll; nl¼0;�1;�2; . . . :; (2.8)

with l ¼ pþ 1; . . . ; D. From Eq. (2.8) it follows that the
physical results will depend on the fractional part of
~�l=ð2�Þ only. The integer part can be absorbed by the
redefinition of nl. Hence, without loss of generality, we
can assume that j~�lj � �. The normalization coefficient in
(2.7) is found from the orthonormalization condition

Z
dDx’ð�Þ

k ðxÞ’ð�0Þ�
k0 ðxÞ ¼ 1

2!k

���0�kk0 ; (2.9)

where �kk0 ¼ �ðkp � k0
pÞ�npþ1;n

0
pþ1...

�nD;n
0
D
. Substituting

the functions (2.7), for the normalization coefficient
we find

jCkj2 ¼ 1

2ð2�ÞpVq!k

; (2.10)

with Vq ¼ Lpþ1 . . .LD being the volume of the compact

subspace and

!k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2
p þ k2

q þm2
q

; k2
q ¼

XD
l¼pþ1

�
2�nl þ ~�l

Ll

�
2
:

(2.11)

We will denote the smallest value for the energy by !0.
Assuming that j~�lj � �, we have

!0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXD
l¼pþ1

~�2
l =L

2
l þm2

vuuut : (2.12)

We are interested in the expectation values of the
charge and current densities for the field ’ðxÞ in thermal
equilibrium at finite temperature T. These quantities can be
evaluated by using the thermal Hadamard function

Gð1Þðx; x0Þ ¼ h’ðxÞ’þðx0Þ þ ’þðx0Þ’ðxÞi
¼ tr½�̂ð’ðxÞ’þðx0Þ þ ’þðx0Þ’ðxÞÞ�; (2.13)

where h� � �i means the ensemble average and �̂ is the
density matrix. For the thermodynamical equilibrium
distribution at temperature T, the latter is given by

�̂ ¼ Z�1e�	ðĤ��0Q̂Þ; (2.14)

where 	 ¼ 1=T. In Eq. (2.14), Q̂ denotes a conserved
charge, �0 is the related chemical potential, and Z is the
grand-canonical partition function,

Z ¼ tr½e�	ðĤ��0Q̂Þ�: (2.15)

In order to evaluate the expectation value in Eq. (2.13)
we expand the field operator over a complete set of
solutions:

’ðxÞ ¼ X
k

½âk’ðþÞ
k ðxÞ þ b̂þk’

ð�Þ
k ðxÞ�; (2.16)

with
P

k ¼ R
dkp

P
nq

and nq ¼ ðnpþ1; . . . ; nDÞ. Here and
in what follows we use the notation

X
n

¼ Xþ1

n1¼�1
� � � Xþ1

nl¼�1
; (2.17)

for n ¼ ðn1; . . . ; nlÞ. Substituting the expansion (2.16) into
Eq. (2.13), we use the relations

tr½�̂âþk âk0 � ¼ �kk0

e	ð!k��Þ � 1
;

tr½�̂b̂þk b̂k0 � ¼ �kk0

e	ð!kþ�Þ � 1
;

(2.18)

where � ¼ e�0. Note that the chemical potentials have
opposite signs for particles (�) and antiparticles (��).
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The expectation values for âkâ
þ
k0 and b̂kb̂

þ
k0 are obtained

from (2.18) by using the commutation relations, and the
expectation values for the other products are zero. For the
Hadamard function we get

Gð1Þðx;x0Þ¼Gð1Þ
0 ðx;x0Þþ2

X
k

X
s¼�

’ðsÞ
k ðxÞ’ðsÞ�

k ðx0Þ
e	ð!k�s�Þ�1

; (2.19)

where the first term in the right-hand side corresponds to
the zero temperature Hadamard function:

Gð1Þ
0 ðx; x0Þ ¼ h0j’ðxÞ’þðx0Þ þ ’þðx0Þ’ðxÞj0i

¼ X
k

X
s¼�

’ðsÞ
k ðxÞ’ðsÞ�

k ðx0Þ; (2.20)

with j0i being the vacuum state. In order to ensure a
positive-definite value for the number of particles, we
assume that j�j � !0, where !0 is the smallest value of
the energy [see Eq. (2.12)].

By using the expressions (2.7) for the mode functions
and the expansion ðey � 1Þ�1 ¼ P1

n¼1 e
�ny, the mode sum

for the Hadamard function is written in the form

Gð1Þðx;x0Þ¼ 1

Vq

Z dkp

ð2�Þpe
ikp��xp

X
nq

eikq��xq

!k

�
"
cosð!k�tÞþ

X1
n¼1

X
s¼�

e!kðsi�t�n	Þ�sn�	

#
;

(2.21)

where �xp ¼ xp � x0
p, �xq ¼ xq � x0

q, �t ¼ t� t0.
For the evaluation of the Hadamard function we apply to
the series over nr the Abel-Plana-type summation formula
[18,19] (for applications of the Abel-Plana formula
and its generalizations in quantum field theory, see
Refs. [6,20,21]),

2�

Lr

X1
nr¼�1

gðkrÞfðjkrjÞ¼
Z 1

0
dz½gðzÞþgð�zÞ�fðzÞþ i

Z 1

0
dz½fðizÞ�fð�izÞ� X

�¼�1

gði�zÞ
ezLrþi�~�r �1

; (2.22)

where kr is given by Eq. (2.8). For the Hadamard function we find the expression

Gð1Þðx; x0Þ ¼ Gð1Þ
pþ1;q�1ðx; x0Þ þ

Lr

�Vq

Z dkp

ð2�Þp
X
nr
q�1

eikp��xpþikq�1��xq�1

� X1
n¼�1

e�n	
Z 1

!p;q�1

dz
cosh

�
ð�t� in	Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 �!2

p;q�1

q �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 �!2

p;q�1

q X
�¼�1

e��z�xr

ezLrþ�i~�r � 1
; (2.23)

where nr
q�1 ¼ ðnpþ1; . . . ; nr�1; nrþ1; . . . ; nDÞ, kq�1 ¼

ðkpþ1; . . . ; kr�1; krþ1; . . . ; kDÞ, and

!p;q�1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2
p þ k2

q�1 þm2
q

: (2.24)

The first term in the right-hand side of Eq. (2.23),
Gð1Þ

pþ1;q�1ðx; x0Þ, comes from the first term on the right of
Eq. (2.22), and it is the Hadamard function for the topology
Rpþ1 � ðS1Þq�1 with the lengths of the compact dimen-
sions (Lpþ1; . . . ; Lr�1; Lrþ1; . . . ; LD).

For further transformation of the expression (2.23) we
use the expansion

e��z�xr

ezLrþ�i~�r � 1
¼ X1

l¼1

e�zðlLrþ��xrÞ��il~�r : (2.25)

With this expansion the z integral is expressed in terms of
the Macdonald function of the zeroth order. Then the
integral over kp is evaluated by using the formula from

Ref. [22]. For the Hadamard function we arrive at the final
expression

Gð1Þðx; x0Þ ¼ 2LrV
�1
q

ð2�Þp=2þ1

X1
n¼�1

X
nq

einr ~�rþn�	eikq�1��xq�1!p
nr
q�1

fp=2

�
!nr

q�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j�xpj2 þ ð�xr � nrLrÞ2 � ð�t� in	Þ2

q �
;

(2.26)

where

f�ðxÞ ¼ x��K�ðxÞ; !nr
q�1

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2
q�1 þm2

q
: (2.27)
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Note that the nr ¼ 0 term in Eq. (2.26) corresponds to the
function Gð1Þ

pþ1;q�1ðx; x0Þ. Hence, the part of the Hadamard
function in Eq. (2.26) with nr � 0 is induced by the
compactification of the rth direction to a circle with the
length Lr.

An alternative expression for the Hadamard function is
obtained directly from Eq. (2.21). We first integrate over
the angular part of kp, and then the integral over jkpj
is expressed in terms of the Macdonald function. The
corresponding expression is written in terms of the
function (2.27) as

Gð1Þðx;x0Þ¼ 2V�1
q

ð2�Þpþ1
2

X
nq

eikq��xq!p�1
nq

Xþ1

n¼�1
en�	

�fp�1
2

�
!nq

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j�xpj2�ð�t� in	Þ2

q �
; (2.28)

with the notation

!nq
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2
q þm2

q
; (2.29)

and k2
q is given by Eq. (2.11). Note that the explicit

information contained in Eq. (2.26) is more detailed.
Both representations (2.26) and (2.28) present the thermal
Hadamard function as an infinite imaginary-time image
sum of the zero temperature Hadamard function. This is
the well-known result in finite temperature field theory
(see, for instance, Ref. [23]).

III. CHARGE DENSITY

Having the thermal Hadamard function we can evaluate
the expectation value for the current density

jlðxÞ ¼ ie½’þðxÞ@l’ðxÞ � ð@l’þðxÞÞ’ðxÞ�; (3.1)

l ¼ 0; 1; . . . ; D, by using the formula

hjlðxÞi ¼ i

2
elim
x0!x

ð@l � @0lÞGð1Þðx; x0Þ: (3.2)

By making use of the relation @zf�ðzÞ ¼ �zf�þ1ðzÞ, from
Eq. (2.26) for the charge density (l ¼ 0) one finds

hj0i ¼ 8e	Lr

ð2�Þp2þ1Vq

X1
nr¼0

0
cos ðnr ~�rÞ

X1
n¼1

n sinh ðn�	Þ

� X
nr
q�1

!pþ2
nr
q�1

fp
2þ1

�
!nr

q�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2rL

2
r þ n2	2

q �
; (3.3)

where the prime on the sign of the sum means that the term
nr ¼ 0 should be taken with the coefficient 1=2.

As it is seen from Eq. (3.3), the charge density is an even
function of the phases ~�l and, for a fixed value of the
chemical potential, it vanishes in the zero temperature
limit. It is a periodic function of ~�l with the period
equal to 2�. In the case of zero chemical potential the
charge density is zero. In Eq. (3.3), the term with nr ¼ 0

corresponds to the charge density for the topology
Rpþ1 � ðS1Þq�1 with the lengths of the compact dimen-
sions (Lpþ1; . . . ; Lr�1; Lrþ1; . . . ; LD), and the contribution

of the terms with nr � 0 is the change in the charge density
due to the compactification of the rth dimension to S1 with
the length Lr. By taking into account Eq. (2.6), we see that
the charge density is a periodic function of fluxes �l,
with the period equal to the flux quantum. Note that the
sign of the ratio hj0i=e coincides with the sign of the
chemical potential.
An alternative expression for the charge density, more

symmetric with respect to the compact dimensions, is
obtained by applying the formula

Xþ1

n¼�1
cos ðn�Þf�

�
c
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ a2n2

p �

¼
ffiffiffiffiffiffiffi
2�

p
ac2�

Xþ1

n¼�1
w2��1

n f��1=2ðbwnÞ; (3.4)

with a, b, c > 0,wn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2�nþ �Þ2=a2 þ c2

p
, to the series

over nr in Eq. (3.3). This leads to the expression

hj0i ¼
4e	V�1

q

ð2�Þpþ1
2

X1
n¼1

n sinh ðn�	ÞX
nq

!pþ1
nq

fpþ1
2
ðn	!nq

Þ;

(3.5)

with the notation (2.29). This formula could also be di-
rectly obtained from Eq. (3.2) using the expression (2.28)
for the Hadamard function. The form (3.5) for the charge
density in the case of topology Rpþ1 � ðS1Þq�1 is also
obtained from Eq. (3.3), taking the limit Lr ! 1.
In the case of Minkowski spacetime one has p ¼ D,

q ¼ 0, and from Eq. (3.5) we get

hj0iðMÞ ¼ 4e	mDþ1

ð2�ÞDþ1
2

X1
n¼1

n sinh ðn�	ÞfDþ1
2
ðn	mÞ; (3.6)

with j�j � m. The thermodynamic properties of the
relativistic Bose gas in this case have been considered in
Refs. [24,25]. If all spatial dimensions are compactified,
the corresponding formulas are obtained from Eqs. (3.3)
and (3.5), taking p ¼ 0. In particular, from Eq. (3.5)
one has

hj0i ¼ 2e

Vq

X1
n¼1

sinh ðn�	ÞX
nq

e�n	!nq ; (3.7)

where we have used f1=2ðxÞ ¼
ffiffiffiffiffiffiffiffiffi
�=2

p
x�1e�x.

Let us consider some limiting cases of Eq. (3.5). If the
length of the lth compact dimensions is large compared to
other length scales, in the sum over nl in Eq. (3.5) the
contribution from large values of nl dominates and, to the
leading order, we replace the summation by the integration.
The corresponding integral is evaluated with the help of
the formula
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Z 1

0
dyðy2 þ b2Þpþ1

2 fpþ1
2

�
c
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 þ b2

q �
¼

ffiffiffiffi
�

2

r
bpþ2fp

2þ1ðcbÞ;
(3.8)

and from Eq. (3.5) we obtain the expression of the charge
density for the topology Rpþ1 � ðS1Þq�1.

If the length of the lth compact dimension is small
compared with the other length scales and Ll 	 	, under
the assumption j~�lj<�, the main contribution to the
corresponding series in Eq. (3.5) comes from the term
with nl ¼ 0. The behavior of the charge density is
essentially different, depending on whether the phase ~�l

is zero or not. When ~�l ¼ 0, we can see that, to the
leading order, Llhj0i coincides with the charge density
in (D� 1)-dimensional space of topology Rp � ðS1Þq�1

and with the lengths of the compact dimensions
Lpþ1; . . . ; Ll�1; Llþ1; . . . ; LD. In particular, this is the

case for an untwisted scalar field in the absence of a gauge
field. For ~�l � 0 and for small values of Ll, the argument
of the Macdonald function in Eq. (3.5) is large and the

charge density is suppressed by the factor e�j~�lj	=Ll .
In the low-temperature limit the parameter	 is large and

the dominant contribution to the charge density comes
from the term n ¼ 1 in the series over n and from the
term in the series over nq with the smallest value of !nq

which corresponds to nl ¼ 0, l ¼ pþ 1; . . . ; D. To the
leading order we find

hj0i 

4eV�1

q sgnð�Þ
ð2�Þp=2þ1	p=2

!p=2
0 e�	!0þj�j	; (3.9)

with !0 given by Eq. (2.12).
From Eq. (3.5) it follows that the expectation value of the

charge density is finite in the limit j�j ! !0 for p > 2,
and it diverges for p � 2. In order to find the asymptotic
behavior near the point j�j ¼ !0, we note that for
p � 2, under the condition 	ð!0 � j�jÞ 	 1, the main

contribution to Eq. (3.5) comes from the term with nl ¼ 0
(!nq

¼ !0), and in the corresponding series over n the

contribution from large n dominates. In this case we can
use the asymptotic expression for the Macdonald function
for large values of the argument, and to the leading order
this gives

hj0i 
 sgnð�Þ e

Vq

�
!0

2�	

�
p=2

Lip=2ðe�	ð!0�j�jÞÞ; (3.10)

where LisðxÞ is the polylogarithm function. For the latter
one has Li0ðxÞ ¼ x=ð1� xÞ, Li1ðxÞ ¼ � ln ð1� xÞ. By
taking into account that Lisðe�yÞ 
 �ð1� sÞys�1 for
jyj 	 1 and s < 1, one finds the following asymptotic
expressions:

hj0i 
 eT
sgnð�Þ�ð1� p=2Þ
Vqð!0 � j�jÞ1�p=2

�
!0

2�

�
p=2

; p ¼ 0; 1;

hj0i 
 �eT
!0sgnð�Þ
2�Vq

ln ½ð!0 � j�jÞ=T�; p ¼ 2:

(3.11)

In the left plot of Fig. 1 we present the charge density as
a function of the parameter ~�D=ð2�Þ in the D ¼ 4 model
with a single compact dimension of length LD. Note that
for an untwisted scalar field this parameter is the flux
measured in units of the flux quantum. For the chemical
potential and for the length of the compact dimensions, we
have taken the values corresponding to � ¼ 0:5m and
mLD ¼ 0:5. The numbers near the curves correspond to
the values of T=m.

IV. CURRENT DENSITY

Now we turn to the expectation value of the current
density. As it can be easily seen, the components of the
current density along the uncompactified dimensions van-
ish: hjri ¼ 0 for r ¼ 1; . . . ; p. By making use of Eq. (3.2)
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FIG. 1. The expectation values of the charge (left plot) and current (right plot) densities as functions of the parameter ~�D=2� for
the D ¼ 4 model with a single compact dimension and for � ¼ 0:5m, mLD ¼ 0:5. The numbers near the curves correspond to the
values of T=m.
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and the expression (2.26) of the Hadamard function, for the
current density along the rth compact dimension we get

hjri ¼ 8eL2
rV

�1
q

ð2�Þp=2þ1

X1
n¼0

0
cosh ð�n	Þ X1

nr¼1

nr sin ðnr ~�rÞ

� X
nr
q�1

!pþ2
nr
q�1

fp
2þ1

�
!nr

q�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2rL

2
r þ n2	2

q �
; (4.1)

with r ¼ pþ 1; . . . ; D and, as before, the prime means that
the term with n ¼ 0 should be taken with the weight 1=2.
Note that, unlike the case of the charge density, the current
density does not vanish at zero temperature for a fixed
value of the chemical potential. The zero temperature
current density is given by the n ¼ 0 term in Eq. (4.1):

hjri0 ¼
4eL2

rV
�1
q

ð2�Þp=2þ1

X1
nr¼1

nr sin ðnr ~�rÞ

� X
nr
q�1

!pþ2
nr
q�1

fp=2þ1

�
nrLr!nr

q�1

�
: (4.2)

The features of this current are discussed in detail in the
Appendix. For the model with a single compact dimension
the general formula reduces to

hjri ¼ 8eLrm
Dþ1

ð2�ÞDþ1
2

X1
n¼0

0
cosh ðn�	Þ X1

nr¼1

nr sin ðnr ~�rÞ

� fDþ1
2

�
m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2rL

2
r þ n2	2

q �
: (4.3)

An alternative expression of the current density is
obtained by making use of the formula (2.28) for the
Hadamard function in Eq. (3.2):

hjri ¼ hjri0 þ
4eV�1

q

ð2�Þpþ1
2 Lr

X1
n¼1

cosh ðn�	Þ

�X
nq

ð2�nr þ ~�rÞ!p�1
nq

fp�1
2

�
n	!nq

�
: (4.4)

From Eqs. (4.1) and (4.4) it follows that the current density
along the rth compact dimension is an odd periodic func-
tion of ~�r and an even periodic function of ~�l, l � r, with
the period equal to 2�. The current density is an even
function of the chemical potential, and it does not vanish
in the limit of zero chemical potential. In the absence
of uncompactified dimensions one has p ¼ 0, and from
Eq. (4.4) we get

hjri ¼ hjri0 þ 2e

VqLr

X1
n¼1

cosh ðn�	Þ

�X
nq

ð2�nr þ ~�rÞ e
�n	!nq

!nq

; (4.5)

where we have used f�1=2ðxÞ ¼
ffiffiffiffiffiffiffiffiffi
�=2

p
e�x. Here we as-

sume that!0 > 0. In the case!0 ¼ 0 there is a zero mode,

and the contribution of this mode should be considered
separately.
In a way similar to that for the case of the charge density,

we can see that, in the limit when the length of the lth
compact dimension is large (l � r), the leading term ob-
tained from Eq. (4.4) coincides with the current density in
the space with topology Rpþ1 � ðS1Þq�1, with the lengths
of the compact dimensions Lpþ1; . . . ; Ll�1; Llþ1; . . . ; LD.

For small values of Ll, l � r, the behavior of the current
density crucially depends on whether ~�l is zero or not. For
~�l ¼ 0 the dominant contribution comes from the term
with nl ¼ 0, and from the expression given above we can
see that, to the leading order, Llhjri coincides with the
corresponding quantity in (D� 1)-dimensional space with
topology Rp � ðS1Þq�1 and with the lengths of the compact
dimensions Lpþ1; . . . ; Ll�1; Llþ1; . . . ; LD. For ~�l � 0 and

for small values of Ll, the current density hjri is exponen-
tially suppressed.
If Lr � 	, the dominant contribution to the series

over n in Eq. (4.3) comes from large values of n� Lr=	.
In this case we can replace the summation by the integra-
tion, and the corresponding integral is evaluated by using
the formula from Ref. [22] (assuming that j�j<!nr

q�1
). To

the leading order we get

hjri 
 4eL2
rV

�1
q T

ð2�Þðpþ1Þ=2
X1
l¼1

nr sin ðnr ~�rÞ
X
nr
q�1

ð!2
nr
q�1

��2Þpþ1
2

� fðpþ1Þ=2
�
nrLr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!2

nr
q�1

��2
q �

: (4.6)

For a fixed value of Lr this formula gives the leading term
in the high-temperature asymptotic regime for the current
density. If, in addition, Lr � Ll, l � r, the dominant con-
tribution comes from the term with nr ¼ 1, nl ¼ 0, and the

current density hjri is suppressed by a factor e�Lr

ffiffiffiffiffiffiffiffiffiffiffiffiffi
!2

0r
��2

p
,

where

!0r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXD
l¼pþ1;�r

~�2
l =L

2
l þm2

vuuut : (4.7)

In order to see the asymptotic behavior of the current
density at low temperatures, it is more convenient to use
Eq. (4.4). Assuming that 	ð!0 � j�jÞ � 1, the dominant
contribution to the temperature-dependent part comes
from the mode with the smallest energy corresponding to
nl ¼ 0, and one has

hjri 
 hjri0 þ e~�r

!p=2�1
0 e�	!0þj�j	

ð2�Þp=2VqLr	
p=2

: (4.8)

In this case the temperature corrections are exponentially
small.
For p � 2 the current density, defined by Eq. (4.4), is

divergent in the limit j�j ! !0. The corresponding
asymptotic regime is found in a way similar to that for
the case of the charge density. To the leading order we have
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hjri 
 ~�rsgnð�Þ
Lr!0

hj0i; (4.9)

where the asymptotic expressions for hj0i for separate
values of p are given in Eq. (3.11).

In the right plot of Fig. 1 we display the current density
along the compact dimension xD as a function of ~�D=ð2�Þ
for the D ¼ 4 model, with a single compact dimension of
the length corresponding tomLD ¼ 0:5. The numbers near
the curves are the values of T=m, and for the chemical
potential we have taken the value � ¼ 0:5m.

V. ZETA FUNCTION APPROACH

The expectation values of the charge and current
densities can be evaluated directly from Eq. (3.1) by using
zeta function techniques (see, for instance, Ref. [26]). First
we consider the current density.

A. Current density

Substituting the expansion (2.16) for the field
operator and making use of the expression (2.7) for the
mode functions, for the current density along compact
dimensions one finds the following expression:

hjri ¼ e

ð2�ÞpVq

X
k

kr
!k

�
1þ X

s¼�

1

e	ð!k�s�Þ � 1

�
; (5.1)

with kr ¼ ð2�nr þ ~�rÞ=Lr and r ¼ pþ 1; . . . ; D. The
first term in the square brackets corresponds to the current
density at zero temperature. The s ¼ þ=� terms are
contributions coming from the particles and/or antiparti-
cles. For further transformations it is convenient to write
Eq. (5.1) in the form

hjri ¼ 2e

ð2�ÞpVq

X
k

kr
!k

X1
n¼0

0
e�n	!k cosh ðn	�Þ: (5.2)

In the special case p ¼ 0 this formula is reduced to
Eq. (4.5). In the representation (5.2), the zero temperature
part corresponds to the n ¼ 0 term. The divergences are
contained in this part only. The components of the current
density along uncompact dimensions vanish.

As the next step, in Eq. (5.2) we use the integral
representation

e�n	!

!
¼ 2ffiffiffiffi

�
p

Z 1

0
dse�!2s2�n2	2=4s2 : (5.3)

This allows us to write the expectation value of the current
density in the form

hjri ¼ 2��1=2e

ð2�ÞpVq

X
k

kr
Z 1

0
dse�!2

k
s2

X1
n¼�1

en	��n2	2=4s2 :

(5.4)

Now we apply to the sum of the series over n the Poison
summation formula

Xþ1

n¼�1
gðn�Þ ¼ 1

�

Xþ1

n¼�1
~gð2�n=�Þ; (5.5)

where ~gðyÞ ¼ Rþ1
�1 dxe�iyxgðxÞ. For the function

corresponding to the series in Eq. (5.4) one has

~gðyÞ ¼ ffiffiffiffi
�

p
ey

2=4�iys�. After integration over s we get the
expression

hjri¼ 2e	�1

ð2�ÞpVq

X
k

X1
n¼�1

kr
!2

kþð2�n=	þ i�Þ2 : (5.6)

The current density defined by Eq. (5.6) can bewritten as

hjri ¼ 2e

L2
r

X1
nr¼�1

ð2�nr þ ~�rÞ
rðsÞjs¼1; (5.7)

with the partial zeta function


rðsÞ¼ Lr

	Vq

Z dkp

ð2�Þp

�X
nr
q

�
k2
pþk2

qþ
�
2�nDþ1

	
þi�

�
2þm2

��s
; (5.8)

where nr
q ¼ ðnpþ1; . . . ; nr�1; nrþ1; . . . ; nDþ1Þ and k2

q is

given by Eq. (2.11). Hence, in order to find the renormal-
ized value for the current density, we need to have the
analytic continuation of the zeta function (5.8) at the
point s ¼ 1.
The analytic continuation can be done in a way similar

to what we have used in Ref. [9] for the zero temperature
fermionic current. We first integrate over the momentum
along the uncompactified dimensions:


rðsÞ ¼ �ðs� p=2ÞLr

ð4�Þp=2�ðsÞVq	

�X
nr
q

�
k2
q þ

�
2�nDþ1

	
þ i�

�
2 þm2

�p
2�s

: (5.9)

Next, the direct application of the generalized
Chowla-Selberg formula [27] to the series in Eq. (5.9)
leads to the following expression:


rðsÞ ¼ mD�2s
r

ð4�ÞD=2

�ðs�D=2Þ
�ðsÞ þ 21�smD�2s

r

ð2�ÞD=2�ðsÞ
�X

nr
q

0 cos ðnr
q � ~�qÞfD

2�sðmrgnr
q
ðLr

qÞÞ; (5.10)

where Lr
q ¼ ðLpþ1; . . . ; Lr�1; Lrþ1; . . .LDþ1Þ, ~�q ¼

ð~�pþ1; . . . ; ~�r�1; ~�rþ1; . . . ~�Dþ1Þ, with
LDþ1 ¼ 	; ~�Dþ1 ¼ i�	 (5.11)

and

m2
r ¼ ð2�nr þ ~�rÞ2=L2

r þm2: (5.12)
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The prime on the summation sign in Eq. (5.10) means that
the term nr

q ¼ 0 should be excluded from the sum, and we

use the notation

gcðbÞ ¼
 Xl
i¼1

c2i b
2
i

!
1=2

; (5.13)

for the vectors c ¼ ðc1; . . . ; clÞ and b ¼ ðb1; . . . ; blÞ. Note
that in Eq. (5.10), cos ðnr

q � �Þq can also be written as

cosh ðnDþ1�	ÞQD
l¼pþ1;�r cos ðnl ~�lÞ.

The contribution of the second term on the right-hand
side of Eq. (5.10) to the current density is finite at the
physical point. The analytic continuation is required for the
part with the first term only. This is done by applying
the summation formula (2.22) to the series over nr.
Further transformations are similar to what we have used
in deriving Eq. (2.26), and we get

�ðs�D=2Þ
ð4�ÞD=2�ðsÞ

Xþ1

nr¼�1

2�nr þ ~�r

Lrm
2s�D
r

¼ 22�smDþ3�2sL2
r

ð2�ÞðDþ1Þ=2�ðsÞ
X1
n¼1

n sin ðn~�rÞfDþ3
2 �sðnLrmÞ:

(5.14)

The right-hand side of Eq. (5.14) is finite at the point s ¼ 1.
Now, substituting Eq. (5.10) into Eq. (5.7) and using
Eq. (5.14), we find the following expression for the current
density:

hjri ¼ 4emDþ1Lr

ð2�ÞDþ1
2

X1
n¼1

n sin ðn~�rÞfDþ1
2
ðnLrmÞ

þ 2mD�2
r

ð2�ÞD2L2
r

Xþ1

nr¼�1
ð~�r þ 2�nrÞ

�X
nr
q

0 cos ðnr
q � ~�qÞfD

2�1

�
mrgnr

q
ðLr

qÞ
�
: (5.15)

Note that in the limit T ! 0 and Ll ! 1, l � r, the second
term in the right-hand side of this formula vanishes. The
first term presents the current density at zero temperature in
the model with a single compact dimension [see Eq. (4.2)
for a special case, p ¼ D� 1].

An alternative representation for the expectation value
of the current density is obtained if we apply the formula
(3.4) to the series over nr in Eq. (5.15). Under the condition
j�j � m, this leads to the following expression:

hjri ¼ 4eLrm
Dþ1

ð2�ÞðDþ1Þ=2
X1
nr¼1

nr sin ðnr ~�rÞ
X
nr
q

cosh ðnDþ1�	Þ

� cos ðnr
q�1 � ~�r

q�1ÞfDþ1
2

�
m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gn2

q
ðLqÞ þ n2Dþ1	

2
q �

;

(5.16)

where ~�r
q�1 ¼ ð~�pþ1; . . . ; ~�r�1; ~�rþ1; . . . ~�DÞ, Lq ¼

ðLpþ1; . . . ; LDÞ, and gn2
q
ðLqÞ is defined by Eq. (5.13).

In particular, for a massless field and for zero chemical
potential, � ¼ 0, from (5.16) we get

hjri ¼ 2eLr

�ððDþ 1Þ=2Þ
�ðDþ1Þ=2

X1
nr¼1

nr sin ðnr ~�rÞ

�X
nr
q

cos ðnr
q�1 � ~�r

q�1Þh
gn2

q
ðLqÞ þ n2Dþ1	

2
iðDþ1Þ=2 : (5.17)

The equivalence of the two representations for the
current density, Eqs. (4.1) and (5.16), can be seen by using
the relation

X
n

cos ðn ��Þf�
0
B@c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þXl

i¼1

a2i n
2
i

vuut
1
CA

¼ ð2�Þl=2
a1 . . . alc

2�

X
n

w2��l
n f��l=2ðbwnÞ; (5.18)

where n ¼ ðn1; . . . ; nlÞ, � ¼ ð�1; . . . ; �lÞ, and w2
n ¼P

l
i¼1ð2�ni þ �iÞ2=a2i þ c2. This relation has been proved

in Ref. [19] by using the Poisson resummation formula.
Note that the formula (3.4) is a special case of Eq. (5.18).
An expression for the current density, convenient for the

discussion of the high-temperature limit, is obtained from
Eq. (5.16), by applying to the series over nDþ1 the formula
(3.4), under the assumption j�j � m. This leads to the
following expression:

hjri ¼ 4eLr

ð2�ÞD=2	

X1
nr¼1

nr sin ðnr ~�rÞ
X
nr
q

cos ðnr
q�1 � ~�q�1Þ

� ½ð2�nDþ1=	þ i�Þ2 þm2�D=2

� fD=2

�
gnq

ðLqÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2�nDþ1=	þ i�Þ2 þm2

q �
:

(5.19)

At high temperatures the dominant contribution comes
from the nDþ1 ¼ 0 term, and to the leading order we have

hjri
 4eLrT

ð2�ÞD=2

X1
nr¼1

nr sinðnr ~�rÞ
X
nr
q�1

cosðnr
q�1 � ~�q�1Þ

�ðm2��2ÞD=2fD=2

�
gnq

ðLqÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2��2

q �
: (5.20)

The corrections to this leading term are exponentially
small. The equivalence of two representations, Eqs. (4.6)
and (5.20), for the leading order term can be seen by using
the relation (5.18).
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B. Charge density

Now we turn to the evaluation of the charge density
by using the zeta function approach. Similar to the case of
Eq. (5.1), we have the following mode sum:

hj0i ¼ e

ð2�ÞpVq

X
k

X
s¼�

s

e	ð!k�s�Þ � 1
: (5.21)

The zero temperature part in the charge density vanishes
due to the cancellation between the contributions from the
virtual particles and antiparticles. The corresponding con-
tributions to the finite temperature part have opposite signs
due to the opposite signs of the charge for particles and
antiparticles. Introducing the expectation values for the
numbers of the particles and antiparticles (per unit volume
of the uncompactified subspace),

hN�i ¼ 1

ð2�Þp
X
k

1

e	ð!k��Þ � 1
; (5.22)

the charge density is written as hj0i ¼ ehNþ � N�i=Vq. In

Eq. (5.22), the upper (lower) sign corresponds to particles
(antiparticles). Note that in the current density the contri-
butions from particles and antiparticles have the same sign
[see Eq. (5.1)]. This is due to the fact that, though the
charges have opposite signs, the opposite signs have

the velocities as well, vðþÞ
r ¼ kr=! for particles and

vð�Þ
r ¼ �kr=! for antiparticles [see the phases in the ex-

pression (2.7) for the mode functions]. The expression for
hN�i is obtained from Eq. (3.5) by the replacement
2e sinh ðn�	Þ=Vq ! e�n�	.

The expression (5.21) for the charge density may be
written in the form

hj0i ¼ 2e

ð2�ÞpVq

X
k

X1
n¼1

e�n	!k sinh ðn	�Þ: (5.23)

For further transformation of this expression we use the
relation

sin ðn	�Þ
en	!

¼
�
��

Z �

0
d�@		

�
e�n	!

!
cosh ðn	�Þ:

(5.24)

As a result, the expectation value of the charge density is
presented in the form

hj0i ¼ 2e

ð2�ÞpVq

�
��

Z �

0
d�@		

�

�X
k

X1
n¼1

e�n	!k

!k

cosh ðn	�Þ: (5.25)

Substituting Eq. (5.3) by the transformations similar
to what we have used in the case of the current density,
one finds

hj0i ¼ 2e

�
��

Z �

0
d�@		

�

ðsÞ

��������s¼1
; (5.26)

where the corresponding zeta function is defined as


ðsÞ ¼ 1

Vq	

Z dkp

ð2�Þp
X
nq

X1
n¼�1

�
!2

k þ
�
2�n

	
þ i�

�
2
��s

;

(5.27)

with !k defined by Eq. (2.11). After integration over the
momentum along uncompact dimensions, the function
(5.27) is written in the form


ðsÞ ¼ �ðs� p=2Þ
ð4�Þp2�ðsÞVq	

X
nqþ1

" XDþ1

l¼pþ1

�
2�nl þ ~�l

Ll

�
2 þm2

#p
2�s

;

(5.28)

where nqþ1 ¼ ðnpþ1; . . . ; nDþ1Þ and LDþ1, ~�Dþ1 are de-

fined by Eq. (5.11). The application of the generalized
Chowla-Selberg formula [27] to Eq. (5.28) gives


ðsÞ ¼ mDþ1�2s �ðs� ðDþ 1Þ=2Þ
ð4�ÞðDþ1Þ=2�ðsÞ þ 21�smDþ1�2s

ð2�ÞðDþ1Þ=2�ðsÞ
�X0

nqþ1

cos ðnqþ1 � ~�qþ1Þ

� fDþ1
2 �s

�
m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2nq

ðLqÞ þ n2Dþ1	
2

q �
; (5.29)

with Lqþ1 ¼ ðLpþ1; . . . ; LDþ1Þ and ~�qþ1 ¼
ð~�pþ1; . . . ; ~�Dþ1Þ. The prime on the summation sign in

Eq. (5.29) means that the term with nl ¼ 0, l ¼
pþ 1; . . . ; Dþ 1, should be excluded from the sum.
Substituting Eq. (5.29) into Eq. (5.26), for the charge

density one finds the expression

hj0i ¼ 4emDþ1	

ð2�ÞðDþ1Þ=2
X1
n¼1

n sinh ð�	nÞ

�X
nq

cos ðnq � ~�qÞfDþ1
2

�
m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2nq

ðLqÞ þ n2	2
q �

:

(5.30)

Note that the first term in the right-hand side of Eq. (5.29)
does not depend on temperature, and the corresponding
contribution in Eq. (5.25) vanishes. This expression for the
charge density is valid for the region j�j � m. The equiva-
lence of the representations (3.5) and (5.30) in this region is
proved by using the formula (5.18). In Eq. (5.30) the
term with nl ¼ 0, l ¼ pþ 1; . . . ; D, coincides with the
corresponding charge density in Minkowski spacetime
(p ¼ D, q ¼ 0) given by Eq. (3.6). Note that, by the
replacement 2e sinh ðn�	Þ=Vq ! e�n�	 in Eq. (5.30),

we can obtain the corresponding formula for hN�i.
An alternative expression for the charge density, conve-

nient for the investigation of the high-temperature limit,
is obtained from Eq. (5.30) if we first separate the part

E. R. BEZERRA DE MELLO AND A.A. SAHARIAN PHYSICAL REVIEW D 87, 045015 (2013)

045015-10



corresponding to hj0iðMÞ and then apply formula (3.4) to the

series over n in the remaining part. This leads to the
following expression:

hj0i ¼ hj0iðMÞ � 2ieT

ð2�ÞD=2

X
nq�0

cos ðnq � ~�qÞ

� Xþ1

n¼�1
ð2�nT þ i�Þ½ð2�nT þ i�Þ2 þm2�D2�1

� fD
2�1

�
gnq

ðLqÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2�nT þ i�Þ2 þm2

q �
: (5.31)

As before, the prime means that the term with nl ¼ 0,
l¼pþ1;...;D, should be excluded from the sum. At high
temperatures the dominant contribution to the second term
in the right-hand side comes from the term with n ¼ 0:

hj0i 
 hj0iM þ 2e�T

ð2�ÞD=2

X
nq

0 cos ðnq � ~�qÞðm2 ��2ÞD2�1

� fD
2�1

�
gnq

ðLqÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 ��2

q �
: (5.32)

The higher order corrections to this asymptotic expression
are exponentially small. Hence, similar to the case of the
current density, the topological part of the charge density is
a linear function of the temperature in the high-temperature
limit.

In order to find the asymptotic expression for the
part hj0iðMÞ at high temperatures, we use the integral

representation

f�ðzÞ ¼ 2��
ffiffiffiffi
�

p
�ð�þ 1=2Þ

Z 1

1
dtðt2 � 1Þ��1=2e�zt: (5.33)

Substituting this into Eq. (3.6) and changing the order
of integration and summation, the summation is done
explicitly, and to the leading order we get

hj0iðMÞ 
 2e�TD�1 �ððDþ 1Þ=2Þ
�ðDþ1Þ=2 
RðD� 1Þ; (5.34)

where 
RðxÞ is the Riemann zeta function. This result has
been obtained in Ref. [25]. As can be seen from Eq. (5.32),
for D> 2 the Minkowskian part dominates in the high-
temperature limit, and one has hj0i 
 hj0iðMÞ.

VI. BOSE-EINSTEIN CONDENSATION

In this section we consider the application of the for-
mulas given before for the investigation of Bose-Einstein
condensation (BEC). This phenomenon for a relativistic
Bose gas of scalar particles in topologically trivial flat
spacetime has been discussed in Refs. [24,25,28]. The
investigation of the critical behavior of an ideal Bose gas
confined to the background geometry of a static Einstein
universe is given in Ref. [29] for scalar and vector fields.
BEC in higher-dimensional spacetime with SN as a com-
pact subspace has been considered in Ref. [30]. The case of

an ultrastatic (3þ 1)-dimensional manifold with a hyper-
bolic spatial part is analyzed in Ref. [31]. The background
geometry of closed Robertson-Walker spacetime is dis-
cussed in Ref. [32]. Thermodynamics of ideal boson and
fermion gases in anti-de Sitter spacetime and in the static
Taub universe have been considered in Refs. [33,34]. In the
high-temperature limit, BEC in a general background has
been discussed in Refs. [35–37]. Recently, BEC on product
manifolds, when the gas of bosons is confined by the
anisotropic harmonic oscillator potential, has been inves-
tigated in Ref. [38].
Note that in the literature two criteria have been

considered for BEC (see, for instance, the discussion in
Ref. [39]). In the first one the existence of critical tempera-
ture, Tc > 0, is assumed for which the chemical potential
becomes equal to the single particle ground state energy.
The derivative @T� for a fixed value of a conserved charge
is discontinuous at the critical temperature, and the con-
densation corresponds to a phase transition. In the second
criterion, one assumes the existence of a finite fraction of
particle density in the ground state and in states in its
neighborhood at T > 0. In this case the presence of a phase
transition is not required and thermodynamical functions
can be continuous. In particular, in Ref. [25] it has been
shown that for massive particles there is no BEC in dimen-
sions D � 2 if one follows the first criterion.
In the discussion of the previous sections we have con-

sidered the charge and current densities as functions of the
temperature, chemical potential, and the lengths of com-
pact dimensions. From the physical point of view it is more
important to consider the behavior of the system for a fixed
value of the charge. We will denote by Q the charge per
unit volume of the uncompactified subspace, Q ¼ Vqhj0i.
From Eq. (3.5) for this quantity one has

Q¼ 4e	

ð2�Þpþ1
2

X1
n¼1

nsinhðn�	ÞX
nq

!pþ1
nq

fpþ1
2
ðn	!nq

Þ: (6.1)

For a fixed value of the charge, this relation implicitly
determines the chemical potential as a function of the
temperature, lengths of the compact dimensions, and the
charge.
For high temperatures the chemical potential determined

from Eq. (6.1) tends to zero. Hence, at high temperatures
we always have a solution with j�j<!0. The further
behavior of the function�ðTÞ with decreasing temperature
is essentially different in the cases p > 2 and p � 2. For
p > 2 the expression (6.1) is finite in the limit j�j ! !0.
We denote by Tc the temperature at which one has
j�ðTcÞj ¼ !0 for a fixed value of the charge. This is the
critical temperature for BEC. The formula

jQj ¼ 4jej	c

ð2�Þpþ1
2

X1
n¼1

n sinh ðn!0	cÞ
X
nq

!pþ1
nq

fpþ1
2
ðn	c!nq

Þ;

(6.2)
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with 	c ¼ 1=Tc, determines the critical temperature as a
function of the charge, of the lengths of the compact
dimensions, and of the parameters ~�l.

Simple asymptotic formulas for the critical temperature
are obtained for low and high temperatures. At low
temperatures, !0	c � 1, the dominant contribution in
Eq. (6.2) comes from the mode with the smallest energy
corresponding to nl ¼ 0. By using the asymptotic expres-
sion for the Macdonald function for large values of the
argument, from Eq. (6.2) to the leading order one finds

Tc 
 2�

!0

� jQ=ej

Rðp=2Þ

�
2=p

: (6.3)

This regime is realized for values of the charge correspond-
ing to jQ=ej 	 !p

0 . For an untwisted scalar field and in the

absence of a gauge field, the expression in the right-hand
side of Eq. (6.3) coincides with the standard expression for
the critical temperature of the nonrelativistic Bose gas in
p-dimensional space. Note that for ~�l � 0, the presence of
compact dimensions decreases the critical temperature.
At high temperatures, by taking into account that to the
leading order hj0i 
 hj0iðMÞ and by using the asymptotic

expression (5.34), one finds

Tc 

�

�ðDþ1Þ=2jQ=ejV�1
q

2!0�ððDþ 1Þ=2Þ
RðD� 1Þ
�
1=ðD�1Þ

: (6.4)

This asymptotic expression corresponds to jQ=ej �
Vq!

D
0 . In Fig. 2 we display the critical temperature as a

function of the charge density in the D ¼ 4 model with a
single compact dimension (p ¼ 3, q ¼ 1). The graphs are
plotted formLD ¼ 0:5 and for different values of ~�D=ð2�Þ
(numbers near the curves). As we show, for fixed lengths of
the compact dimensions, the critical temperature for the

phase transition can be controlled by tuning the value for
the gauge potential.
At temperatures T < Tc, Eq. (6.1) has no solutions with

j�j<!0. The consideration in this region of temperature
is similar to the standard one for the BEC in topologically
trivial spaces. We note that the expression (6.1) does
not include the charge corresponding to the states with
kp ¼ 0. At temperatures T < Tc the expression (6.1)

with j�j ¼ !0 determines the charge corresponding to
the states with kp � 0. We denote this charge by Q1:

Q1 ¼ 4e	sgnð�Þ
ð2�Þpþ1

2

X1
n¼1

n sinh ðn!0	Þ
X
nq

!pþ1
nq

fpþ1
2
ðn	!nq

Þ:

(6.5)

For the charge corresponding to the Bose-Einstein conden-
sate at kp ¼ 0, one has Qc ¼ Q�Q1. This charge van-

ishes at T ¼ Tc. At low temperatures, by making use of
Eq. (6.3), for the corresponding charges below the critical
temperature one finds

Q1 ¼ QðT=TcÞp=2; Qc ¼ Q½1� ðT=TcÞp=2�: (6.6)

For high temperatures we use the asymptotic formula (6.4),
with the results

Q1 ¼ QðT=TcÞD�1; Qc ¼ Q½1� ðT=TcÞD�1�: (6.7)

In particular, Eq. (6.7) coincides with the corresponding
result in Minkowski spacetime [25]. In Fig. 3 we plot the
chemical potential as a function of the temperature in
the D ¼ 4 model, with a single compact dimension
(p ¼ 3, q ¼ 1). The left and right plots correspond to
~�D ¼ 0 and ~�D ¼ �=2, respectively. For the length of
the compact dimension we have taken the value corre-
sponding to mLD ¼ 0:5, and the numbers near the curves
correspond to the values of the parameter m1�DQ=e.
Note that for T < Tc the scalar field acquires a nonzero

ground-state expectation value ’c. The latter can be found
in a way similar to Ref. [35] (see also Refs. [24,25]):

j’cj2 ¼ jðQ�Q1Þ=ej
2!0Vq

; (6.8)

with Q and Q1 given by Eqs. (6.1) and (6.5).
Having the chemical potential from Eq. (6.1) for T > Tc

and taking j�j ¼ !0 for T < Tc, we can evaluate the
current density for a fixed value of the charge by using
Eq. (4.4). Note that at high temperatures the chemical
potential tends to zero, and the leading term in the corre-
sponding asymptotic expansion for the current density is
obtained from Eq. (5.20), with � ¼ 0. For T < Tc the
formula (4.4) gives a part of the current density due to
the excited states only. In addition to this, there is a con-
tribution due to the condensate, given by the expression

jrc ¼ ~�rQc

Lr!0Vq

; (6.9)

0
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FIG. 2. The critical temperature as a function of the charge
density in the D ¼ 4 model with a single compact dimension.
The graphs are plotted for LDm ¼ 0:5 and for different values of
~�D, and the numbers near the curves correspond to the values of
the parameter ~�D=ð2�Þ.
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with r ¼ pþ 1; . . . ; D and j~�rj � �. For the expectation
value of the total current density one has hjrit ¼ jrc þ hjri.

In Fig. 4 we plot the expectation values of the total
current density (left plot, full curve) and of the particle
and antiparticle numbers in the states with kp � 0 hN�i
(right plot) versus the temperature for mLD ¼ 0:5, ~�D ¼
�=2 andQ=e ¼ 0:5mD�1 in theD ¼ 4model with a single
compact dimension. For the corresponding critical tem-
perature from Eq. (6.2) one finds Tc 
 0:63m. In the left
plot we have separately presented the contributions to the
current density coming from particles (dot-dashed line)
and antiparticles (large dashed line). The linear depen-
dence at high temperatures is clearly seen. On the left
panel we have also plotted the separate contributions to
the current density from the excited states, hjDi=ðemDÞ
(dashed line), and from the condensate, jDc =ðemDÞ (dotted
line). Note that for the current density given by Eq. (4.2) we
have hjDi0 ¼ 2:32emD. The total current and its first de-
rivative with respect to the temperature are continuous
functions at the point of the phase transition. This is not

the case for the separate parts coming from the condensate
and from the excited states.
For p � 2 the charge defined by Eq. (6.1) diverges in the

limit j�j ! !0, and for a finite value of charge density the
point j�j ¼ m cannot be reached. The corresponding
asymptotic expressions for the charge and current densities
are given by Eqs. (3.11) and (4.9). Thus, for p � 2 there is
no BEC by the first criterion given above. In particular, this
is the case in the model with compact space corresponding
to p ¼ 0. This result, for spaces of finite volume, in
general, has been obtained in Ref. [37]. As before, for
p � 2 and for a fixed value of the charge Q, the depen-
dence of the chemical potential on the temperature is
determined by Eq. (6.1). In the limit 	 ! 1 (low tempera-
tures) and for a fixed value of j�j � !0, the expression on
the right-hand side of Eq. (6.1) tends to zero. From this
we conclude that for a fixed value of Q we should have
j�j ! !0 for 	 ! 1. The corresponding asymptotic
behavior is found in a way similar to Eq. (3.10) and is
given by the same expression. Solving with respect to the
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FIG. 4. The expectation values of the current density along the compact dimension (left plot) and of the particle or antiparticle
numbers (right plot) as functions of the temperature in the D ¼ 4 model for mLD ¼ 0:5, ~�D ¼ �=2 and Q=e ¼ 0:5mD�1.
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FIG. 3. The chemical potential as a function of the temperature in the D ¼ 4 model, with a single compact dimension for
mLD ¼ 0:5. The left and right plots correspond to ~�D ¼ 0 and ~�D ¼ �=2, respectively. The numbers near the curves correspond to
the values of the parameter m1�DQ=e.
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chemical potential, we find the following asymptotic
expressions:

j�j 
 !0 �
�
!0

2�

� p
2�p

" jej
jQj�

�
1� p

2

�
T

# 2
2�p

; p ¼ 0; 1;

j�j 
 !0 � T exp

"
�jQj

jej
�
2�

!0T

�
p=2
#
; p ¼ 2;

(6.10)

in the limit T ! 0. In Fig. 5 we have plotted the chemical
potential versus temperature in the D ¼ 3 model with a
single compact dimension (p ¼ 2, q ¼ 1) for ~�D ¼ 0 and
for a fixed value of the charge density corresponding to
m1�Dhj0i=e ¼ 0:5. The numbers near the curves corre-
spond to the values of the parameter LDm. As can be
seen, although for a finite value of LD the derivative
@T�ðTÞ is a continuous function, in the limit LD ! 1 it
tends to the corresponding function in the D ¼ 3 model
with trivial topology (p ¼ 3, q ¼ 0) for which the function
@T�ðTÞ is discontinuous at the point T ¼ Tc.

VII. CONCLUSION

In the present paper we have investigated the finite
temperature expectation values of the charge and current
densities for a complex scalar field, induced by nontrivial
spatial topology. As an example, for the latter, we have
considered a flat spacetime with an arbitrary number of
toroidally compactified dimensions. This allowed us to
escape the problems related to the curvature and to extract
pure topological effects. The periodicity conditions along
compact dimensions are taken in the form (2.2) with gen-
eral constant phases. As special cases the latter includes the
periodicity conditions for untwisted and twisted fields. In
addition, we have assumed the presence of a constant
gauge field. By performing a gauge transformation, the

gauge field is excluded from the field equation. However,
this leads to the shift in the phases appearing in the peri-
odicity conditions given by Eq. (2.5).
In the evaluation of the expectation values for the

charge and current densities, we have used two different
approaches, which allowed us to obtain alternative repre-
sentations for the corresponding expectation values. In the
first approach we evaluated the thermal Hadamard function
by using the Abel-Plana-type summation formula for the
series over the momentum along a compact dimension.
The corresponding expression is given by Eq. (2.26). The
nr ¼ 0 term in that formula corresponds to the Hadamard
function for the topology Rpþ1 � ðS1Þq�1 and, hence, the
nr � 0 part is the change in the Hadamard function due
to the compactification of the rth direction. An alternative
representation for the Hadamard function is given by
Eq. (2.28).
Given the Hadamard function, the expectation values

of the charge and current densities are evaluated by
making use of Eq. (3.2). The charge density is given by
two equivalent representations, Eqs. (3.3) and (3.5).
The explicit information contained in Eq. (3.3) is more
detailed. The term with nr ¼ 0 in this representation
corresponds to the charge density for the topology
Rpþ1 � ðS1Þq�1, with the lengths of the compact dimen-
sions (Lpþ1; . . . ; Lr�1; Lrþ1; . . . ; LD), and the contribution

of the terms with nr � 0 is the change in the current
density induced by the compactification of the rth dimen-
sion. The charge density is an even periodic function of the
phases ~�l, with the period equal to 2�. The sign of the ratio
hj0i=e coincides with the sign of the chemical potential. If
the length of the lth compact dimension is small compared
with the other length scales and Ll 	 	, the behavior of
the charge density is essentially different, depending on
whether the parameter ~�l is zero or not. For ~�l ¼ 0, to the
leading order, Llhj0i coincides with the charge density in
(D� 1)-dimensional space with topology Rp � ðS1Þq�1

and with the lengths of the compact dimensions
Lpþ1; . . . ; Ll�1; Llþ1; . . . ; LD. For ~�l � 0 the charge den-

sity is suppressed by the factor e�j~�lj	=Ll . At low tempera-
tures and for a fixed value of j�j<!0, the charge density

is suppressed by the factor e�ð!0�j�jÞ=T . For a fixed tem-
perature and in the limit j�j ! !0, the charge density is
finite for p > 2 and it diverges for p � 2. The correspond-
ing asymptotic behavior in the latter case is given by
Eq. (3.11). In the high-temperature limit and for D> 2,
the Minkowskian part dominates in the charge density with
the leading term given by Eq. (5.34). In the same limit, the
topological part of the charge density is a linear function of
the temperature.
For the expectation value of the current density along the

rth compact dimension, we have derived representations
given by Eqs. (4.1) and (4.4). The components along un-
compactified dimensions vanish. The current density along
the rth compact dimension is an odd periodic function of
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FIG. 5. The chemical potential as a function of the temperature
in theD ¼ 3model with a single compact dimension for ~�D ¼ 0
and m1�Dhj0i=e ¼ 0:5. The numbers near the curves correspond
to the values of the parameter LDm.
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~�r and an even periodic function of ~�l, l � r, with the
period equal to 2�. The current density is an even function
of the chemical potential. Unlike the case of the charge
density, the current density does not vanish at zero
temperature for a fixed value of the chemical potential.
The corresponding expression is given by Eq. (4.2), and the
properties are discussed in the Appendix. For small values
of Ll, l � r, and for ~�l ¼ 0, to the leading order, the
quantity Llhjri coincides with the rth component of the
current density in (D� 1)-dimensional space, with topol-
ogy Rp � ðS1Þq�1 and with the lengths of the compact
dimensions Lpþ1; . . . ; Ll�1; Llþ1; . . . ; LD. For ~�l � 0 and

for small values of Ll, l � r, the current density hjri is
exponentially suppressed. At a fixed temperature and
for p � 2, the current density is divergent in the limit
j�j ! !0. The leading term in the corresponding asymp-
totic expansion is related to the charge density by Eq. (4.9).
For a fixed value of the chemical potential j�j<!0 and at
low temperatures, the finite temperature corrections are
given by Eq. (4.8), and they are exponentially small. In
the limit of high temperatures, the current density is a
linear function of the temperature.

In Sec. V we have derived alternative representations for
the expectation values of the charge and current densities
by using the zeta function approach. In both cases, by
applying to the corresponding zeta functions the general-
ized Chowla-Selberg formula, Eqs. (5.16), (5.19), (5.30),
and (5.31) are obtained for the current and charge densities,
respectively. At high temperatures, the leading term in the
asymptotic expansion of the current density is given
by Eq. (5.20), with the linear dependence on the tempera-
ture, and the next corrections are exponentially small. For
the charge density, for D> 2 the leading term in the high-
temperature expansion coincides with the corresponding
charge density in (Dþ 1)-dimensional Minkowskian
spacetime. The leading term in the correction induced
by nontrivial topology linearly depends on the tempera-
ture, and the following corrections are exponentially
suppressed.

The Bose-Einstein condensation is discussed in Sec. VI.
For a fixed value of the charge, the relation (6.1) deter-
mines the chemical potential as a function of the tempera-
ture, of the lengths of compact directions, and of the phases
in the periodicity conditions. For high temperatures the
chemical potential tends to zero. With decreasing tempera-
ture the chemical potential increases, and for p > 2 one has
j�ðTÞj ¼ !0 at some finite temperature T ¼ Tc. The criti-
cal temperature for BEC, Tc, is determined by Eq. (6.2).
Simple expressions are obtained for low and high tempera-
tures, Eqs. (6.3) and (6.4), respectively. At temperatures
T < Tc one has j�j ¼ !0; Eq. (6.1) determines the charge
corresponding to the states with kp � 0, and the remaining

charge corresponds to the charge of the condensate. At low
and high temperatures the charges are given by simple
expressions (6.6) and (6.7). Similar to the charge density,

for T < Tc the current density is the sum of two parts. The
first one is the contribution of excited states and is given by
Eq. (4.4) with j�j ¼ !0. The second part is due to the
condensate, and it is presented by Eq. (6.9). The total
current and its first derivative with respect to the tempera-
ture are continuous functions at the critical temperature.
For p � 2 the point j�j ¼ !0 cannot be reached for a
finite value of charge density. For a fixed value of the
charge, we have j�j ! !0 in the limit T ! 0. The corre-
sponding asymptotic behavior is given by Eq. (6.10). In
this case the thermodynamical functions are continuous
and there is no phase transition at finite temperature.
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APPENDIX: VACUUM EXPECTATION VALUE
OF THE CURRENT DENSITY

In this appendix we give some properties of the zero
temperature current density given by Eq. (4.2). An alter-
native expression is obtained from Eq. (5.16), taking the
limit 	 ! 1. In this limit only the term with n ¼ 0 sur-
vives, and we get

hjri0 ¼ 4eLrm
Dþ1

ð2�ÞðDþ1Þ=2
X1
nr¼1

nr sin ðnr ~�rÞ

� X
nr
q�1

cos ðnr
q�1 � �q�1ÞfDþ1

2
ðmgnq

ðLqÞÞ: (A1)

Let us consider the behavior of the zero temperature cur-
rent density in some limiting cases. First we consider the
limit where the length of the rth compact dimension, Lr, is
much larger than the other length scales. The behavior of
the current density in this limit crucially depends on
whether !0r, defined by (4.7), is zero or not. In the first
case, which is realized for ~�l ¼ 0, l � r, and m ¼ 0, the
dominant contribution in Eq. (4.2) for large values of Lr

comes from the modes with nl ¼ 0, l � r, for which
!nr

q�1
¼ !0r ¼ 0. The corresponding expression is ob-

tained from Eq. (4.2), taking the limit !nr
q�1

! 0, and to

the leading order we have

hjri0 
 2e�ðp=2þ 1Þ
�p=2þ1Lp

r Vq

X1
nr¼1

sin ðnr ~�rÞ
npþ1
r

: (A2)

For !0r � 0 and for large values of Lr, the main contribu-
tion to the zero temperature current density comes from the
mode nr ¼ 1, nl ¼ 0, l � r, and from Eq. (4.2) one finds

hjri0 

2eV�1

q sin ð~�rÞ!ðpþ1Þ=2
0r

ð2�Þðpþ1Þ=2Lðp�1Þ=2
r

e�Lr!0r : (A3)

In this case we have an exponential suppression.
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Now we discuss the asymptotic behavior of the current
density for small values of Lr. In this limit it is more
convenient to use Eq. (A1). First we separate the term
nl ¼ 0, l � r, in Eq. (A1) and use the asymptotic expres-
sion of the Macdonald function for small values of the
argument. For the remaining part in Eq. (A1), the dominant
contribution comes from large values of nr and, to the
leading order, we replace the summation over nr by
the integration. The corresponding integral involving the
Macdonald function is evaluated by using the formula from
Ref. [22]. In this way it can be seen that the contribution of
the mode with a given nr

q�1 is suppressed by the factor

exp ð�gr
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~�2
r=L

2
r þm2

p Þ, where gr ¼
P

D
l¼pþ1;�r n

2
l L

2
l . As

a result, we see that the dominant contribution to the
current density is due to the modes with nl ¼ 0, l � r,
and to the leading order we get

hjri0 
 2e�ððDþ 1Þ=2Þ
�ðDþ1Þ=2LD

r

X1
nr¼1

sin ðnr ~�rÞ
nDr

: (A4)

This leading term does not depend on the mass or on the
lengths of the other compact dimensions. As can be seen
from Eq. (A1), the expression in the right-hand side of
Eq. (A4) coincides with the current density for a massless
scalar field in the space with topology RD�1 � S1.
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