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We investigate a peculiar supersymmetry of the pairs of reflectionless quantum mechanical systems

described by n-soliton potentials of a general form that depends on n scaling and n translation parameters.

We show that if all the discrete energy levels of the subsystems are different, the superalgebra, being

insensitive to translation parameters, is generated by two supercharges of differential order 2n, two

supercharges of order 2nþ 1, and two bosonic integrals of order 2nþ 1 composed from Lax integrals of

the partners. The exotic supersymmetry undergoes a reduction when r discrete energy levels of one

subsystem coincide with any r discrete levels of the partner; the total order of the two independent

intertwining generators reduces then to 4n� 2rþ 1, and the nonlinear superalgebraic structure acquires a

dependence on r relative translations. For a complete pairwise coincidence of the scaling parameters

which control the energies of the bound states and the transmission scattering amplitudes, the emerging

isospectrality is detected by a transmutation of one of the Lax integrals into a bosonic central charge.

Within the isospectral class, we reveal a special case giving a new family of finite-gap first order

Bogoliubov-de Gennes systems related to the Ablowitz-Kaup-Newell-Segur integrable hierarchy.
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I. INTRODUCTION

Solitons and related topologically nontrivial objects
such as kinks, instantons, vortices, monopoles and domain
walls play an important role in diverse areas of physics,
engineering and biology [1–3]. Darboux and Bäcklund
transformations, with their origin in the theory of the linear
Sturm-Liouville problem and classical differential geome-
try, proved to be very effective in their study [4,5]. Darboux
transformations [4], on the other hand, underlie the con-
struction of supersymmetric quantum mechanics [6,7].
Via the Bogomolny bound and the associated first order
Bogomolny-Prasad-Sommerfield equations [8,9], super-
symmetry, in turn, turns out to be closely related with the
topological solitons [10–12].

Solitons and their periodic analogs appear as solutions
of classical nonlinear integrable field equations, and by
means of Lax representation [13] are related with reflec-
tionless and periodic finite-gap quantum systems [14,15].
As both families of quantum systems are characterized by
nontrivial, higher derivative integrals of motion, one could
expect that supersymmetric extensions of them should
possess some peculiar properties. This is indeed the case
[16–21], and exotic supersymmetric structures of reflec-
tionless and finite-gap systems found recently some inter-
esting physical applications [22–26].

The best known example of reflectionless systems is
given by a hierarchy of Pöschl-Teller potentials. The

Schrödinger Hamiltonians with one, two, or, in general,
n bound states Pöschl-Teller reflectionless potentials
control, respectively, the stability of kinks in sine-Gordon,
’4 or other exotic (1þ 1)-dimensional field theory
models [1,3,27–32]. These systems also appear in the
Gross-Neveu model [33,34]. The indicated hierarchy rep-
resents, however, only a very restricted case of a general
family of n-soliton potentials. The latter corresponds to
2n-parametric solutions of the Korteweg-de Vries (KdV)
equation [2,4,35].
More explicitly, the Schrödinger operator is at the heart

of the inverse scattering transform method of solving the
classical KdVequation, for which the reflectionless poten-
tials Vn provide the particlelike, n-soliton solutions. On the

other hand, the Schrödinger HamiltoniansH ¼ � d2

dx2
þ Vn

with reflectionless potentials Vn control the stability of the
above mentioned kink solutions in (1þ 1)-dimensional
field theories, and their certain supersymmetric quantum
mechanical structure proved particularly to be very useful
in the computing of the kink mass quantum shifts; see
Ref. [36].
In the present paper we study the exotic supersymmetry

that appears in the pairs of reflectionless systems described
by n-soliton potentials of the most general form. Namely,
we investigate a peculiar supersymmetric quantum me-
chanical structure of the class of one-dimensional systems
described by a matrix 2� 2 Hamiltonian

H ¼ � d2

dx2
þ VþðxÞ 0

0 � d2

dx2
þ V�ðxÞ

0
@

1
A; (1.1)
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with

VþðxÞ ¼ Vnðx; ~�; ~�Þ and V�ðxÞ ¼ Vnðx; ~�0; ~�0Þ (1.2)

to be n-soliton solutions of the KdVequation, each depend-
ing on the sets of n scaling parameters, denoted here as ~�
and ~�0, and n translation parameters, ~� and ~�0. One of the
possible (but not unique—see below) physical interpreta-
tions of the system (1.1) and (1.2) is that it can be consid-
ered as a Hamiltonian of a nonrelativistic spin-1=2 particle
with spin-dependent forces of a special form (not inducing
spin flips).

A nonsoliton system of a general form (1.1), with arbi-
trary chosen potentials VþðxÞ and V�ðxÞ, has just a trivial
integral given by the diagonal Pauli matrix �3. For a
special choice of potentials V� ¼ W2ðxÞ � dW

dx , this trivial

symmetry is extended for supersymmetric structure
related to nontrivial additional integrals of motion Q1 ¼
�i d

dx �1 þ �2WðxÞ, Q2 ¼ i�3Q1. They generate a linear

in H , Lie superalgebraic structure fQa;Qbg ¼ 2�abH ,
½H ; Qa� ¼ 0, a, b ¼ 1, 2, with the integral �3 playing
the role of the Z2-grading operator, ½�3;H � ¼ 0,
f�3; Qag ¼ 0. It is such a linear superalgebraic structure
that appears, particularly, in the Landau problem for a
nonrelativistic electron, where superpotential is a linear
functionWðxÞ ¼ !x, and (1.1) takes the form of the super-
oscillator Hamiltonian; see Ref. [7]. The existence of
the linear supersymmetric structure is equivalent to
the condition that the upper and lower components of the

matrix Hamiltonian, H� ¼ � d2

dx2
þ V�, are related by the

Darboux intertwining generators, HþAþ ¼ AþH�,
H�A� ¼ A�Hþ, being the first order differential operators
Aþ ¼ d

dx þWðxÞ and A� ¼ Ay
þ ¼ � d

dx þWðxÞ. With this

observation, the construction can be generalized to non-
linear supersymmetry if the potentials Vþ and V� are such
that the corresponding partner Hamiltonians are connected
by the intertwining relations of the same form, but with Aþ
and A� ¼ Ay

þ to be differential operators of order ‘ > 1.
If this happens, the system H possesses nilpotent
superchargesQþ¼Aþ�þ¼1

2ðQ2þiQ1Þ andQ�¼A���¼
Qy

þ, ½Q�; H� ¼ 0, Q2� ¼ 0, where �� ¼ 1
2 ð�1 � i�2Þ.

They generate a nonlinear supersymmetry of the form
fQa;Qbg ¼ 2�abP‘ðH Þ, where P‘ðH Þ is an order ‘ poly-
nomial. The simplest example of a system with nonlinear
supersymmetry is provided by a generalized super-
oscillator system H ¼ bþb� þ ‘ 1

2 ð1þ �3Þ, for which

Aþ ¼ ðb�Þ‘, b� are the usual creation-annihilation
bosonic oscillator operators, and the order ‘ polynomial
is P‘ðH Þ ¼ Q

‘�1
j¼0 ðH � j!Þ; see Ref. [37].

The peculiarity of the system (1.1) and (1.2), we study
here is that the n-soliton potentials (1.2) are reflectionless.
By a known construction based on Crum-Darboux trans-
formations, such potentials can be obtained from a free
particle system, which possesses a momentum integral
p ¼ �i d

dx . It will be shown that, as a consequence, the

n-soliton extended system is described by an exotic super-
symmetric structure that includes not only one but two
pairs of Z2-odd (antidiagonal) matrix supercharges, and
two Z2-even (diagonal) additional nontrivial bosonic inte-
grals being differential operators of order 2nþ 1. The
supercharges in the general case are higher order matrix
differential operators, two of which are of the even order
2r, and other two supercharges are of the odd order 2lþ 1
such that 2ðrþ lÞ � 2n. The corresponding superalgebra
generated by four supercharges is nonlinear, and includes
in its structure those additional nontrivial bosonic integrals
of motion which are nothing other than a Crum-Darboux
dressed form of the free particle momentum operator. The
supercharges also have a nature of the dressed integrals
of motion of the free spin-1=2 particle described by the
Hamiltonian (1.1) with Vþ ¼ V� ¼ 0. We shall show that
such a peculiar supersymmetric structure of the extended
n-soliton systems experiences radical changes in depen-
dence on the relation between the two sets of the scaling
and translation parameters of the partner potentials: the
differential order of supercharges can change, and in the
completely isospectral case when ~� ¼ ~�0, one of the addi-
tional bosonic integrals transforms into the central charge
of the corresponding nonlinear superalgebra. Analyzing
different faces of supersymmetry restructuring, we detect,
particularly, a special family of supersymmetric n-soliton
partner potentials when one pair of supercharges reduces to
the matrix first order differential operators. These first
order supercharges and H form between themselves a
linear superalgebra corresponding to the broken supersym-
metry. In such a case, one of the first order supercharges
can be reinterpreted as a first order Hamiltonian of a Dirac
particle. The reinterpretation provides us then with new
kink-antikink type solutions for the Gross-Neveu model by
means of the first order Bogoliubov-de Gennes system, in
which a superpotential takes the meaning of a condensate,
an order parameter, or a gap function depending on the
physical context.
The paper is organized as follows. In the next section,

we review the general construction of soliton potentials
with the help of Crum-Darboux transformations, summa-
rize the basic properties of the corresponding reflectionless
quantum systems, and formulate precisely the problems
related to supersymmetry of soliton systems (1.1) and (1.2)
to be studied here. Section III is devoted to the analysis of
supersymmetry of nonisospectral pairs of reflectionless
n ¼ 1 systems with different bound state energy levels
given in terms of nonequal scaling parameters �1 � �0

1.

In Sec. IV we investigate the changes this supersymmetric
structure undergoes in the isospectral case �1 ¼ �0

1.

Section V generalizes the results of Sec. III for the case
of n > 1 soliton pairs with completely broken isospectral-
ity. To clarify the supersymmetry picture in extended n > 1
systems with partially broken and exact isospectralities, we
study in detail the case of n ¼ 2 in Sec. VI. In Sec. VIAwe
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review the properties of the generic n ¼ 2 reflectionless
systems to identify the ingredients to be important for
further analysis. Then, in Sec. VIB, we discuss a general-
ization of Crum-Darboux transformations that is related to
alternative factorizations of the basic Crum-Darboux gen-
erators of order n > 1. The results of Secs. VIA and VIB
are employed in Secs. VI C and VID for an analysis of
supersymmetry in extended n ¼ 2 systems with partial
isospectrality breaking. Finally, in Secs. VI E, VI F, and
VIG we investigate the most tricky case of supersymmetry
in two-soliton extended systems with exact isospectrality.
We do this first in Sec. VI E for a particular case of exact
isospectrality with a common virtual n ¼ 1 subsystem. In
Sec. VI F we investigate a generic case of exact isospec-
trality, within which we detect yet another, very special,
particular case. The latter is studied in Sec. VIG, and
provides us with a new, first order finite-gap system
belonging to the Ablowitz-Kaup-Newell-Segur hierarchy
[15,38]. In Sec. VII we discuss how the results on partially
broken and exact isospectralities are generalized for the
systems (1.1) and (1.2) with n > 2. In Sec. VIII we con-
sider an interpretation of the system (1.1) and (1.2) as a
nonrelativistic spin-1=2 particle with spin-dependent
forces. We conclude the paper with discussion of the
obtained results and their possible developments and appli-
cations in Sec. IX.

II. FAMILY OF REFLECTIONLESS
n-SOLITON SYSTEMS

A Crum-Darboux transformation of order n, n ¼
1; 2; . . . , applied to a quantum free particle generates a
system characterized by the Hamiltonian [4]

Hn ¼ H0 þ VnðxÞ; Vn ¼ �2
d2

dx2
lnWn: (2.1)

Here H0 ¼ � d2

dx2
is a free particle Hamiltonian, and

Wn ¼ Wðc 1; . . . ; c nÞ is a Wronskian of its eigenfunctions

c 1ðxÞ; . . . ; c nðxÞ, H0c j ¼ Eð0Þ
j c j,

Wðf1; . . . ; fnÞ ¼ detA; Aij ¼ di�1

dxi�1
fj;

i; j ¼ 1; . . . ; n: (2.2)

A simple choice of c jðxÞ in the form of the unidirectional

plane waves eikjx, which are eingensolutions of H0,

produces the Wronskian of the form WnðxÞ ¼ const �
eiðk1þ...þknÞx, and, therefore, Vn ¼ 0. If we take a linear
independent set of linear combinations of left- and right-
moving plane waves c jðxÞ ¼ eikjx þ cje

�ikjx with cj � 0

for all j ¼ 1; . . . ; n, we obtain a nontrivial potential Vn 6�0,
which satisfies a higher order stationary g-KdV, g ¼ 2nþ
1, (Novikov) equation being a nonlinear ordinary differen-
tial equation with a linear highest derivative dgVn=dx

g

term [39,40]. (2.1) belongs then to a class of finite-gap,

or algebro-geometric systems.1 For real kj, the emergent

‘‘finite-gap’’ potential VnðxÞ has, however, singularities on
R and does not disappear at x ¼ �1. An appropriate
choice of the free particle nonphysical eigenfunctions
(corresponding to certain linear combinations of the left-
and right-moving plane waves evaluated at imaginary
momenta),

c j ¼
(
cosh�jðxþ �jÞ; j ¼ odd

sinh�jðxþ �jÞ; j ¼ even
;

0< �1 < �2 < � � �< �j�1 < �n; (2.3)

of energies Eð0Þ
j ¼ ��2

j , j ¼ 1; . . . ; n, gives rise to a

nodeless Wronskian WnðxÞ. A nonsingular 2n-parametric
potential

Vn ¼ Vnðx;�1; �1; . . . ; �n; �nÞ (2.4)

corresponds then to a reflectionless (Bargmann) systemHn

with nþ 1 nondegenerate states, separated by n gaps, n of

which, of energies EðnÞ
j ¼ ��2

j , j ¼ 1; . . . ; n, are the bound

states, while the nondegenerate state of zero energy,E ¼ 0,
lies at the bottom of the doubly degenerate continuous
spectrum with E> 0. From another perspective, reflection-
less potential Vnðx;�1; �1; . . . ; �n; �nÞ describes n-soliton
solutions of the KdV equation.
Eigenstates of Hn, Hnc ½n;�� ¼ �c ½n;��, different

from the physical bound states, are generated from
eigenfunctions c ½0;�� of the free particle, H0c ½0;�� ¼
�c ½0;��, � � ��2

j ,

c ½n;�� ¼ Wðc 1; . . . ; c n; c ½0;��Þ
Wðc 1; . . . ; c nÞ ; (2.5)

where c j are given by Eq. (2.3). Physical nondegenerate

bound states of Hn with � ¼ ��2
j are obtained by the

1Finite-gap periodic systems are given by the Its-Matveev
representation of the form (2.1) but with WðxÞ substituted by a
Riemann’s theta function [41]. If such a periodic potential is real
and regular on R, the spectrum of Schrödinger (Hill) operators is
organized in valence and conductance bands separated by gaps.
(2.1) with reflectionless, n-soliton potential (2.4) can be consid-
ered then as the infinite period limit of a periodic or almost
periodic finite-gap system. In the indicated limit, the valence
bands shrink, some of which can merge in this process, and
transform into the nondegenerate discrete energy levels of the
bound states of a resulting soliton potential; the semi-infinite
conductance band turns into the continuous part of the spectrum
of a reflectionless system. Quantum systems with periodic n-gap
and nonperiodic n-soliton potentials (whose discrete energy
levels and continuous spectrum are also separated by n gaps)
are characterized by the existence of the differential operator of
order 2nþ 1, related with a higher order Novikov equation, that
commutes with a Hamiltonian; see below. A free particle can be
treated in this picture as a zero-gap system (of an arbitrary
period), for which the corresponding first order differential
operator is just the momentum integral p ¼ �i d

dx . For the
theory of finite-gap and soliton systems including historical
aspects, see Refs. [14,42].
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same prescription (2.5) under the choice c ½0;�� ¼
sinh�jðxþ �jÞ for odd j, and c ½0;�� ¼ cosh�jðxþ �jÞ
for even j. The lowest nondegenerate state of the continu-
ous part of the spectrum of Hn corresponds to the
eigenstate c ½0; 0� ¼ 1 of H0.

Transmission scattering amplitudes a½n; k� for the
continuous part of the spectrum E ¼ k2, k > 0, of
reflectionless system Hn are defined by the scaling
parameters �j [4],

a½n; k� ¼ Yn
j¼1

k� i�j

kþ i�j

: (2.6)

The states (2.5) have an alternative but equivalent rep-
resentation, c ½n;�� ¼ An . . .A1c ½0;��, generated by an
n-sequence of the first order Darboux transformations,

c ½j;�� � c ½ð�; �ÞðjÞ;�� ¼ Ajc ½j� 1;��; (2.7)

where ð�; �ÞðjÞ denotes the set of 2j parameters

�1; �1; . . . ; �j; �j, and Aj ¼ Aj½ð�; �ÞðjÞ� are the first order

differential operators defined recursively in terms of the
states (2.3) by

A1 ¼ c 1

d

dx

1

c 1

¼ d

dx
� �1 tanh�1ðxþ �1Þ; (2.8)

Aj ¼ ðAj�1 . . .A1c jÞ ddx
1

ðAj�1 . . .A1c jÞ
¼ d

dx
�
�
d

dx
lnðAj�1 . . .A1c jÞ

�
: (2.9)

The first order operator Aj annihilates the state

Aj�1 . . .A1c j, that is a nonphysical eigenstate of Hj�1 of

eigenvalue ��2
j . As inverse to (2.7), there is, up to an

overall multiplicative constant, a relation

c ½j� 1;�� ¼ Ay
j c ½j;��: (2.10)

The zero mode of the first order operator Ay
j is

1=ðAj�1 . . .A1c jÞ. It is the ground state of Hj of the

energy ��2
j .

A reflectionless j-soliton Hamiltonian Hj admits two

factorization representations

Hj ¼ Ay
jþ1Ajþ1 � �2

jþ1 ¼ AjA
y
j � �2

j : (2.11)

In particular, the free particle zero-gap Hamiltonian

H0 ¼ � d2

dx2
has an alternative representation H0 ¼

Ay
1A1 � �2

1. From (2.11) there follow intertwining relations

AjHj�1 ¼ HjAj; Ay
j Hj ¼ Hj�1A

y
j ; j ¼ 1; . . . ; n:

(2.12)

Let us take now a pair of n-soliton reflectionless
systems,

Hn ¼ Hnð�1; �1; . . . ; �n; �nÞ and

H0
n ¼ Hnð�0

1; �
0
1; . . . ; �

0
n; �

0
nÞ; (2.13)

and consider the extended matrix 2� 2 Hamiltonian of the
form (1.1) with Hþ ¼ Hn and H� ¼ H0

n. Two sets of
parameters are supposed to be completely different, or
may partially coincide. If the two sets of the scaling
parameters �j, j ¼ 1; . . . ; n, and �0

j0 , j
0 ¼ 1; . . . ; n, do not

coincide, the two subsystems have not only different spec-
tra of bound states, but in accordance with (2.6), their
transmission amplitudes are also different. If, moreover,
�j � �0

j0 for all j, j
0 ¼ 1; . . . ; n, all the energy levels of

bound states for two n-soliton reflectionless systems are
different, and their transmission amplitudes are given by
rational functions of k with different zeros and poles.
Having in mind that the factorization relations (2.11) and
the associated intertwining relations (2.12) are reformu-
lated in terms of supersymmetric quantum mechanics con-
struction, one can ask a question:
(i) What supersymmetric structure is associated with

reflectionless pair (2.13) in a completely nonisospec-
tral case2 characterized by inequalities �j � �0

j0 for

all j; j0 ¼ 1; . . . ; n?
Such a kind of supersymmetry of the pairs of reflection-

less systems has not been investigated yet in the literature,
but, instead, supersymmetry of the pairs (Hþ ¼ Hj,

H� ¼ Hjþl), l � 1, belonging to the same Darboux chain

(2.12), is usually considered. In particular, the pairs of
reflectionless Pöschl-Teller systems (see below) appear in
the context of shape invariance [7,43,44]; they also emerge
in the infinite-period limit of finite-gap periodic crystal
structures [22,24]. Supersymmetry of reflectionless
Pöschl-Teller pairs (Hj, Hjþl) was studied recently from

the perspective of AdS/CFT holography and the Aharonov-
Bohm effect [45].
A special choice of the parameters

�j ¼ �0
j ¼ j�; �j ¼ �; �0j ¼ �0; j¼ 1; . . . ;n;

(2.14)

results in two copies of the n-soliton potentials
Vn¼�nðnþ1Þ�2sech2�ðxþ�Þ and V 0

n ¼ �nðnþ 1Þ�2�
sech2�ðxþ �0Þ, which describe two mutually shifted
reflectionless Pöschl-Teller systems with n bound states.
Since the partner potentials under the choice (2.14) have
exactly the same form, this corresponds to a particular
case of a shape invariance, whose analog in the case of
periodic supersymmetric systems was called by Dunne
and Feinberg ‘‘self-isospectrality’’ [17]. The exotic non-
linear supersymmetry of the simplest isospectral pair
(Hþ ¼ H1, H� ¼ H0

1) with �1 ¼ �0
1, �1 � �01 was

2Using this term we neglect the fact that the continuous
(scattering) parts of the spectra of the partner systems are the
same, E � 0.
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investigated and applied for the description of the kink and
kink-antikink solutions of the Gross-Neveu model [24,46].
One can expect that the self-isospectral pair of reflection-
less Pöschl-Teller systems with n > 1 bound states should
also be described by some yet-unstudied exotic nonlinear
supersymmetric structure.

In a more general case of the choice �j ¼ �0
j, j ¼

1; . . . ; n, different from (2.14), the partners with ~� � ~�0,
~� ¼ ð�1; . . . ; �nÞ, are completely isospectral; their bound
states’ energies and transmission amplitudes coincide, but
the potentials have a different form. We then arrive at the
natural questions related to that formulated above:

(ii) How does the supersymmetric structure of a gen-
eral, nonisospectral case detect the coincidence of
some of the scaling parameters of two systems in
(2.13)?

(iii) Particularly, for a partial coincidence of the bound
states’ energy levels, does the supersymmetry dis-
tinguish the coincidence of the scaling parameters
of the same level, �j ¼ �0

j, from that corresponding

to the case when distinct levels, �j ¼ �0
j0 with

j � j0, coincide?
(iv) Is the case of a complete isospectrality of the two

systems, �j ¼ �0
j, j ¼ 1; . . . ; n, detected somehow

by supersymmetric structure?
(v) Does the case of self-isospectrality possess some

special characteristics from the viewpoint of super-
symmetry in comparison with a general case of iso-
spectral systems with different forms of potentials?

In what follows, we study a peculiar supersymmetric
structure of the pair (2.13), and, particularly, respond to the
highlighted questions.

III. SUPERSYMMETRY OF n¼ 1
REFLECTIONLESS PAIR

WITH DISTINCT SCALINGS

We first investigate the supersymmetric structure of the
extended system

H 1 ¼
H1 0

0 H0
1

 !
(3.1)

described by the pair of n ¼ 1 reflectionless Pöschl-Teller
Hamiltonians H1 ¼ H1ð�; �Þ and H0

1 ¼ H1ð�0; �0Þ with
� � �0 and arbitrary displacement parameters � and �0.
This will allow us to trace how the restructuring of super-
symmetry happens in the self-isospectral case � ¼ �0, and
to form a base for further analysis for n > 1, where we will
restore index 1, omitted here to simplify notations, in the
scaling and translation parameters.

The choice of a nonphysical eigenstate c 1ð�; �Þ ¼
cosh�ðxþ �Þ, � > 0, � 2 R, of H0 produces a
Hamiltonian of the n ¼ 1 reflectionless Pöschl-Teller
system

H1 ¼ � d2

dx2
� 2�2

cosh2�ðxþ �Þ ; (3.2)

and first order operators A1 and Ay
1 defined by Eq. (2.8).

Operators A1 and A
y
1 factorize the HamiltoniansH0 andH1

shifted for an additive constant,

H1 ¼ A1A
y
1 � �2; H0 ¼ Ay

1A1 � �2; (3.3)

and intertwine them,

Ay
1H1 ¼ H0A

y
1 ; A1H0 ¼ H1A1: (3.4)

A degenerate pair of eigenstates in the continuous part,
E ¼ k2, k > 0, of the spectrum of H1 is constructed from
the free particle plane wave states,

c�k
1 ¼ A1ð�; �Þe�ikx ¼ ð�ik� � tanh�ðxþ �ÞÞe�ikx:

(3.5)

The lowest nondegenerate state with E ¼ 0 corresponds to
a boundary case k ¼ 0 of (3.5),

c 0
1 ¼ tanh�ðxþ �Þ: (3.6)

Another, bound nondegenerate state

c��2

1 ¼ �sech�ðxþ �Þ (3.7)

of energyE ¼ ��2 is obtained from the partner, ~c 1ð�;�Þ¼
sinh�ðxþ�Þ, of nonphysical eigenstate c 1ð�;�Þ¼
cosh�ðxþ�Þ of H0, c

��2

1 ð�;�Þ¼A1ð�;�Þ ~c 1ð�;�Þ.
Based on intertwining relations (3.4) and their analog

for the system H0
1 ¼ H1ð�0; �0Þ, we construct the second

order operator

Y2 ¼ Y2ð�;�;�0;�0Þ ¼ A1ð�;�ÞAy
1 ð�0;�0Þ ¼ A1A

0y
1 ;

Yy
2 ¼ Y2ð�0; �0;�;�Þ ¼ Y0

2;
(3.8)

that intertwines the partner Hamiltonians of the extended
system (3.1), Y2H

0
1 ¼ H1Y2. Taking into account that H0

has an integral p ¼ �i d
dx , one can obtain yet another, third

order intertwining operator,

X3 ¼ X3ð�; �; �0; �0Þ ¼ A1

d

dx
A0y
1 ;

Xy
3 ð�; �; �0; �0Þ ¼ �X3ð�0; �0; �; �Þ ¼ �X0

3;
(3.9)

X3H
0
1 ¼ H1X3, which is independent from the second

order intertwiner Y2.
Intertwining relations in the reverse direction are

obtained by a change �, � $ �0, �0, that corresponds to a
Hermitian conjugation of the corresponding relations,

Yy
2H1 ¼ H0

1Y
y
2 , X

y
3H1 ¼ H0

1X
y
3 ; see Fig. 1(a).

The free particle integral p ¼ �i d
dx and intertwining

relations (3.4) also generate a nontrivial integral for the
n ¼ 1 reflectionless Pöschl-Teller subsystem H1ð�; �Þ,
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Z3 ¼ Z3ð�; �Þ ¼ A1

d

dx
Ay
1 ; Zy

3 ¼ �Z3; (3.10)

and the analogous integral, Z0
3 ¼ A0

1
d
dx A

0y
1 , for H1ð�0; �0Þ.

Integral (3.10) is a nontrivial operator of a Lax pair for a
stationary KdV equation in the nonperiodic case.

Here and in what follows, the odd and even order
intertwining operators are denoted by X and Y, respec-
tively, while the odd order integrals of the corresponding
reflectionless systems are denoted by Z; the lower index
indicates the differential order of these operators.

Integral (3.10) detects both physical nondegenerate

states of H1ð�; �Þ by annihilating them Z3c
0
1ð�; �Þ ¼

Z3c
��2

1 ð�; �Þ ¼ 0. The third state of its kernel is a non-

physical eigenstate ~c��2

1 ðxÞ ¼ c��2

1 ðxÞR dx=ðc��2

1 ðxÞÞ2
of H1 of energy ��2, which is a linear combination of

the physical bound state c��2

1 ðxÞ of the same energy and of
a nonphysical eigenstate c 1ð�; �Þ ¼ cosh�ðxþ �Þ of H0.

The extended system (3.1) has an obvious integral of
motion �3. The intertwining relations together with inte-
gral (3.10) allow us to identify the nontrivial Hermitian
integrals for the system H 1,

Q1;1 ¼
0 Y2

Yy
2 0

 !
; Q1;2 ¼ i�3Q1;1;

S1;1 ¼
0 X3

Xy
3 0

 !
; S1;2 ¼ i�3S1;1;

(3.11)

P 1;1 ¼ �i
Z3 0
0 Z0

3

� �
; P 1;2 ¼ �3P 1;1: (3.12)

As �2
3 ¼ 1, we can take the integral � ¼ �3 as a

Z2-grading operator. It classifies then P 1;a, a ¼ 1, 2, as
bosonic integrals, ½�3;P 1;a� ¼ 0, while the integrals (3.11)
are identified as fermionic supercharges, f�3;Q1;ag ¼
f�3;S1;ag ¼ 0, of the supersymmetric structure of the

extended system H 1. There are other possibilities to
choose �, which are based on reflection operators and
classify the nontrivial integrals of the extended system in
a different way from that prescribed by the choice � ¼ �3.
The alternative choices for � find some interesting physical
applications (see Refs. [22,24,46,47]), and we return to the
discussion of this point in the last section.
Operators (3.11) and (3.12) are the Darboux-dressed

integrals of the extended system described by the
HamiltonianH 0 ¼ diagðH0; H0Þ composed from two cop-
ies of the free particle Hamiltonian H0. The system
H 0 possesses the set of 2� 2 matrix Hermitian integrals

I0 ¼�a; �ab�bp; 1p; �3p; a¼ 1;2: (3.13)

The Darboux dressing,

I 1 ¼ D1I0D
y
1 ; D1 ¼ diagðA1ð�; �Þ; A1ð�0; �0ÞÞ;

(3.14)

transforms them into the integrals (3.11) and (3.12) ofH 1.
We find the superalgebraic structure of the system H 1

by employing the intertwining and factorization relations
(3.4) and (3.5). It is given by the following nontrivial (anti)
commutation relations:

fQa;Qbg ¼ 2�abP1ðH 1; �ÞP1ðH 1; �
0Þ;

fSa;Sbg ¼ 2�abH 1P1ðH 1; �ÞP1ðH 1; �
0Þ;

(3.15)

fSa;Qbg ¼ 2�abP1ðH 1;KÞP 1; (3.16)

½P 1;Sa� ¼ iH 1P
�
0 ðH 1; �; �

0ÞQa;

½P 1;Qa� ¼ �iP�
0 ðH 1; �; �

0ÞSa;
(3.17)

½P 2;Sa� ¼ iH 1P
þ
1 ðH 1; �; �

0ÞQa;

½P 2;Qa� ¼ �iPþ
1 ðH 1; �; �

0ÞSa;
(3.18)

whereP1ðH 1; �Þ ¼ H 1 þ �2 � 1,P1ðH 1;KÞ ¼ H 1 þ
K2, K ¼ diagð�0; �Þ,

P�
0 ðH 1; �; �

0Þ ¼ P1ðH 1; �Þ � P1ðH 1; �
0Þ

¼ ð�2 � �02Þ � 1; (3.19)

Pþ
1 ðH 1; �; �

0Þ ¼ P1ðH 1; �Þ þ P1ðH 1; �
0Þ ¼ 2H 1þ

ð�2 þ �02Þ � 1, and to simplify the formulas, we omit the
index n ¼ 1 in the supercharges and bosonic integrals.
Though in the final expression for P�

0 in (3.19) the depen-

dence on H 1 disappears, it is indicated here in the
arguments having in mind a further generalization for
the n > 1 case, where this structure is substituted for the
polynomial of order n� 1 in the Hamiltonian.
The n ¼ 1 extended reflectionless system (3.1) is

described therefore by a nonlinear superalgebra generated
by four fermionic supercharges,Q1;a and S1;a, and by two

(a) (b)

FIG. 1 (color online). (a) Nonisospectral one-soliton
Hamiltonians H1 (blue dot) and H0

1 (white dot) are intertwined

by the second (Y2 and Y
y
2 ) and the third (X3 and X

y
3 ) order Crum-

Darboux operators via a virtual translation-invariant free particle
system H0 (half blue/half white dot). (b) In the isospectral case
� ¼ �0, a direct ‘‘tunneling’’ channel for intertwining by the first
order operators �X1 and �Xy

1 is opened. In both cases, Lax integrals

Z3 and Z0
3, being the dressed forms of the free particle integral

d
dx , are the ‘‘self-intertwining’’ generators for H1 and H0

1.
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bosonic integrals,3 P 1;a. The fermionic integrals are con-

structed from the intertwining operators of the second and
third orders, whose composition produces nontrivial third
order integrals of Lax pairs of the n ¼ 1 nonisospectral
subsystems. In this supersymmetric structure, the
Hamiltonian plays the role of the multiplicative central
charge. The nonlinear superalgebra depends here on the
scaling parameters � and �0 via the polynomials P1, P

þ
1

and P�
0 , but does not depend on the displacement parame-

ters � and �0.

IV. SUPERSYMMETRY OF THE
n¼ 1 SELF-ISOSPECTRAL PAIR

For the isospectral extended system H 1 with � ¼ �0,
the partner potentials have the same form and are mutually
displaced. This n ¼ 1 self-isospectral case is special from
the viewpoint of supersymmetric structure. As follows
from (3.17) and (3.19), for � ¼ �0 the integral P 1;1, com-

posed from the third order integrals of Lax pairs of super-
partner subsystems, commutes with all the integrals, and
so, transmutes into a bosonic central charge of the non-
linear superalgebra. We show now that the supersymmetric
structure in this case undergoes even more radical changes.

For � ¼ �0 the following reduction takes place:4

X3ð�; �; �; �0Þ ¼ ðH1ð�; �Þ þ �2Þ �X1ð�; �; �0Þ
� Cð�; �� �0ÞY2ð�; �; �; �0Þ; (4.1)

where

�X1ð�; �; �0Þ ¼ d

dx
� � tanh�ðxþ �Þ

þ � tanh�ðxþ �0Þ þ Cð�; �� �0Þ (4.2)

¼ A1ð�; �Þ � Ay
1 ð�; �0Þ þ Ay

C ð�; �� �0Þ; (4.3)

ACð�; �� �0Þ ¼ d

dx
þ Cð�; �� �0Þ;

Cð�; �� �0Þ ¼ � coth�ð�� �0Þ:
(4.4)

Relation (4.1) means that for � � �0, the first order

operator �X1 ¼ �X1ð�; �; �0Þ should be taken as a basic odd
order intertwining operator instead of X3ð�; �; �; �0Þ,

�X1H1ð�; �0Þ ¼ H1ð�; �Þ �X1;

�Xy
1 ð�; �; �0Þ ¼ � �X1ð�; �0; �Þ ¼ � �X0

1:
(4.5)

Note that in the limit �0 ! �1, we have H0
1 ! H0 and

�X1 ! A1, while for � ! �1, H1 ! H0 and �X1 ! �A0y
1 .

This is coherent with the intertwining relations (3.4).
Because of (4.1), the third order integrals S1;a are re-

ducible, S1;a ¼ ðH 1 þ �2Þ �S1;a � CQ1;a, and have to be

changed for the first order irreducible integrals

�S1;1 ¼
0 �X1

�Xy
1 0

 !
; �S1;2 ¼ i�3

�S1;1: (4.6)

Integrals �S1;a correspond, in accordance with (3.14), to

the dressed form of the integrals �sa ¼ �ab�bpþ C�a of
the extended free particle system H 0 ¼ diagðH0; H0Þ,
D�saDy ¼ �S1;aðH 1 þ �2Þ. Alternatively, the first order

matrix operator �s1 ¼ �2pþ C�1, or �s2 ¼ i�3 �s1, can be
considered as a first order Hamiltonian of the free Dirac
particle of mass jCj in (1þ 1) dimensions, while its

dressed form, �S1;1, can be identified as a Bogoliubov-de

Gennes Hamiltonian describing the kink-antikink solution
in the Gross-Neveu model [33]. Function �ð�; �Þ ¼
�ðtanhð�� �Þ � tanhð�þ �Þ þ coth2�Þ, that appears in

the structure of �X1 with � ¼ �ðxþ �þ�0
2 Þ and � ¼

�� ���0
2 , has then a sense of a gap function [23].

The following relations are valid:

�X 1
�Xy
1 ¼ H1ð�; �Þ þ C2; (4.7)

�X1A1ð�; �0Þ ¼ A1ð�; �ÞACð�; �� �0Þ;
Ay
1 ð�; �Þ �X1 ¼ ACð�; �� �0ÞAy

1 ð�; �0Þ:
(4.8)

The employment of (4.7) and (4.8) together with (4.5) gives
nontrivial nonlinear superalgebraic relations

f �S1;a; �S1;bg ¼ 2�abhC; fQ1;a;Q1;bg ¼ 2�abh
2
�;

(4.9)

f �S1;a;Q1;bg ¼ 2�abCh� þ 2�abP 1;1; (4.10)

½P 1;2; �S1;a� ¼ 2iðhCQ1;a � Ch� �S1;aÞ;
½P 1;2;Q1;a� ¼ 2ih�ðCQ1;a � h� �S1;aÞ;

(4.11)

which substitute nontrivial superalgebraic relations (3.15),
(3.16), (3.17), and (3.18) of the general, nonisospectral case
n ¼ 1. Here we denoted h� ¼ H 1 þ �2, hC ¼ H 1 þ C2.
As C2 > �2, the spectrum of hC is strictly positive, and the
Lie subsuperalgebra generated by the first order super-

charges �S1;a corresponds to a broken N ¼ 2 supersymme-

try. The P 1;1 commutes now with all the supercharges in

accordance with the observation made at the beginning of
the section.
While the third order intertwining operator (3.9) is well

defined at � ¼ �0, � ¼ �0 and reduces to the integral
Z3ð�; �Þ of H1ð�; �Þ, the first order intertwining operator
�X1ð�; �; �0Þ in the limit �0 ! � reduces to the operator d

dx

3There are four bosonic integrals if one counts the integrals
H 1 and �3.

4A reduction of the third order intertwining generators was
discussed in a general form in Ref. [48]. However, it gives no
special attention to a peculiar supersymmetric structure we study
here; see also Ref. [49].
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shifted for an infinite additive constant term �1 depend-
ing on which side the difference (�� �0) tends to zero. In
this case the extended Hamiltonian (3.1) reduces just to the
two identical copies of the Pöschl-Teller Hamiltonians,

H 1ð�; �Þ ¼ diagðH1ð�; �Þ, H1ð�; �ÞÞ. The integrals �S1;a,

a ¼ 1, 2, can be renormalized by multiplying them by
1=Cð�; �� �0Þ, and taking a limit �0 ! �. In such a way
they are reduced to the trivial integrals �a, a ¼ 1, 2, of
H 1ð�; �Þ. The second order intertwining operator (3.8)
reduces in the limit �0 ! � to H1ð�; �Þ þ �2, and the
second order supercharges Q1;a are reduced to the same

trivial integrals �a multiplied by a Hamiltonian Q1;a !
ðH 1ð�; �Þ þ �2 � 1Þ�a shifted for a constant. The only
nontrivial integrals we have in the limit �0 ! � are the
bosonic third order integrals P 1;að�; �Þ.

The special case of self-isospectrality in the n ¼ 1
extended system H 1 is detected, therefore, by a radical
change of nonlinear supersymmetric structure. One of the
bosonic integrals, P 1;1, turns into a central charge, and two

third order supercharges are substituted for the super-
charges of the first order. The reduction of the order of
the half of the supercharges at � ¼ �0 originates from
relation (4.1) and is accompanied by the appearance of
dependence of the superalgebraic structure on the distance
between mutually shifted one-soliton partner potentials by
means of a constant C ¼ � coth�ð�� �0Þ. In other words,
one can say that in a generic case � � �0, the H1 and H0

1

are intertwined by the third order operators X3 and X
y
3 , side

by side with the second order operators Y2 and Yy
2 , via the

free particle (zero gap) system, and the supersymmetric
structure does not feel a relative distance �-�0 between the
corresponding one-soliton subsystems because of the
translation invariance of H0. For � ¼ �0, a kind of a
‘‘tunneling’’ channel is opened: the one-soliton subsystems

are intertwined then directly by the first order operators �X1

and �Xy
1 , and the modified supersymmetric structure detects

a ‘‘tunneling distance’’ �-�0; see Fig. 1(b).

V. SUPERSYMMETRY OFAN n > 1 EXTENDED
SYSTEM: COMPLETE ISOSPECTRALITY

BREAKING

The discussion of the supersymmetric structure for an
extended system composed from two subsystems having
n � 2 bound states requires us to distinguish three cases:

(i) Complete isospectrality breaking, when �i � �0
j for

all i; j ¼ 1; . . . ; n, with no restriction on displace-
ment parameters �i and �0j.

(ii) Partial isospectrality breaking, in which some, but
not all, scaling parameters �i and �0

j of the two

subsystems coincide.
(iii) Exact isospectrality, that is characterized by the

complete coincidence of the sets of the scaling
parameters, ~� ¼ ~�0, accompanied by a restriction
~� � ~�0.

The case of a complete isospectrality breaking for n > 1
is a direct generalization of that for the n ¼ 1 case with
�1 � �0

1, which was studied in Sec. III. It is discussed in
the present section. The other two cases are more involved.
Though they generalize somehow the picture of the one-
soliton case (n ¼ 1) with �1 ¼ �0

1 ¼ �, investigated in the
previous section, the corresponding analysis for n > 1
requires a generalization of the described Crum-Darboux
transformation scheme. New peculiarities appear there,
and those two cases deserve a separate consideration. To
understand the picture, we study the case of n ¼ 2 in the
next section, and then in Sec. VII the results will be
extended for a generic case of n � 2.
With these comments in mind, let us consider an

extended system

H n ¼
Hn 0

0 H0
n

 !
; (5.1)

composed from a completely nonisospectral pair Hn ¼
Hnð ~�; ~�Þ and H0

n ¼ Hnð ~�0; ~�0Þ of the form (2.13), where
~� ¼ ð�1; . . . ; �nÞ, ~� ¼ ð�1; . . . ; �nÞ, and we assume that
there is no coincidence in the sets of the scaling parameters
of the two subsystems, �j � �0

j0 for all j, j
0 ¼ 1; . . . ; n;

see Fig. 2(a).
Following the general picture described in Sec. II, the

Hamiltonian Hn ¼ Hnð ~�; ~�Þ can be intertwined with a free
particle Hamiltonian H0 by order n differential operators

An ¼ Anð ~�; ~�Þ and Ay
n ¼ Ay

n ð ~�; ~�Þ,
A nð ~�; ~�Þ ¼ Anðð�; �ÞnÞAn�1ðð�; �Þn�1Þ . . .A1ð�1; �1Þ;

(5.2)

defined in terms of Darboux generators (2.8) and (2.9),

(a) (b) (c)

FIG. 2 (color online). (a) An n > 1 pair with complete iso-
spectrality breaking. Each subsystem, Hn and H

0
n, is specified by

indicating the set of intermediate, virtual systems in the plane
�-� via which the edge points are connected to the free particle
by means of the first order Darboux generators Aj and Ay

j , not

shown here. Figures (b) and (c) illustrate two alternative repre-
sentations for the same n ¼ 2 system, that is related to the two
different factorizations of the second order Crum-Darboux gen-
erator A2. In case (b) the virtual system is regular, while in case
(c) it is singular. So, a system is specified not only by indication
of the set of points in the �-� plane, but also by the path via these
points to a free system H0.
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A nH0 ¼ HnAn; Ay
nHn ¼ H0A

y
n : (5.3)

Making use of these relations, we construct an order 2n
operator

Y2n ¼ Y2nð ~�; ~�; ~�0; ~�0Þ ¼ AnA
0y
n ;

Yy
2n ¼ Y2nð ~�0; ~�0; ~�; ~�Þ ¼ Y0

2n;
(5.4)

where A0
n ¼ Anð ~�0; ~�0Þ, and two operators of the order

2nþ 1, X2nþ1 and Z2nþ1,

X2nþ1ð ~�; ~�; ~�0; ~�0Þ¼An

d

dx
A0y

n ;

Xy
2nþ1¼�X2nþ1ð ~�0; ~�0; ~�; ~�Þ¼�X0

2nþ1;

(5.5)

Z2nþ1 ¼ Z2nþ1ð ~�; ~�Þ ¼ An

d

dx
Ay

n ; Zy
2nþ1 ¼ �Z2nþ1:

(5.6)

Operators Y2n and X2nþ1 intertwine the components of the
matrix Hamiltonian H n,

5

Y2nH
0
n ¼ HnY2n; X2nþ1H

0
n ¼ HnX2nþ1; (5.7)

while Z2nþ1ð ~�; ~�Þ is an integral for Hnð ~�; ~�Þ,
½Z2nþ1; Hn� ¼ 0: (5.8)

Taking into account that the coefficients of the (2nþ 1)
order differential operator Z2nþ1 may be expressed in terms
of the potential Vn and its derivatives of the order less
than 2nþ 1 [40], relation (5.8) means that the potential
Vn satisfies a higher stationary g-KdV equation with
g ¼ 2nþ 1, mentioned in Sec. II.

In correspondence with an identity Z2
2nþ1 ¼

�Hn

Qj¼n
j¼1ðHn þ �2

j Þ2, the integral Z2nþ1 detects all the

physical nondegenerate states ofHn of energies E ¼ 0 and
Ej ¼ ��2

j by annihilating them. These are constructed

from the free particle nondegenerate eigenstate c 0
0 ¼ 1,

c 0
n ¼ An1, and nonphysical partners of the states (2.3),

~c 1 ¼ sinh�1ðxþ �1Þ, ~c 2 ¼ cosh�2ðxþ �2Þ; . . . , c��2
j

n ¼
An

~c j, j ¼ 1; . . . ; n. Other n states of the kernel of Z2nþ1

are nonphysical partners of the bound states c
��2

j
n ,

~c
��2

j
n ðxÞ ¼ c

��2
j

n ðxÞR dx=ðc��2
j

n ðxÞÞ2.
With the described operators, we construct six matrix

integrals Qn;a, Sn;a and P n;a for the extended system H n

in the form similar to that in (3.11) and (3.12) by changing
Y2, X3 and Z3 for, respectively, Y2n, X2nþ1 and Z2nþ1. As in
the n ¼ 1 case, these integrals correspond to a dressed
form of the integrals of the extended free particle system

H 0 obtained by means of Eq. (3.14) with the change of
D1 for Dn ¼ diagðAð ~�; ~�Þ;Anð ~�0; ~�0ÞÞ.
Applying factorization and intertwining relations, and

products of corresponding generators collected in the
Appendix, we find that the superalgebra (3.15), (3.16),
(3.17), and (3.18) of the n ¼ 1 case is generalized for

fQn;a;Qn;bg ¼ 2�abPnðH n; ~�ÞPnðH n; ~�
0Þ; fSn;a;Sn;bg

¼ 2�abH nPnðH n; ~�ÞPnðH n; ~�
0Þ; (5.9)

fSn;a;Qn;bg ¼ 2�abPnðH n;
~KÞP n;1; (5.10)

½P n;1;Sn;a� ¼ iH nP
�
n�1ðH n; ~�; ~�

0ÞQn;a;

½P n;1;Qn;a� ¼ �iP�
n�1ðH n; ~�; ~�

0ÞSn;a;
(5.11)

½P n;2;Sn;a� ¼ iH nP
þ
n ðH n; ~�; ~�

0ÞQn;a;

½P n;2;Qn;a� ¼ �iPþ
n ðH n; ~�; ~�

0ÞSn;a;
(5.12)

where PnðH n; ~�Þ¼
Q

n
j¼1ðH nþ�2

j �1Þ, Pþ
n ðH n; ~�; ~�

0Þ¼
PnðH n; ~�ÞþPnðH n; ~�

0Þ, P�
n�1ðH n; ~�; ~�

0Þ¼PnðH n; ~�Þ�
PnðH n; ~�

0Þ, PnðH n;
~KÞ ¼ Q

n
j¼1ðH n þK2

j Þ, Kj ¼
diagð�0

j; �jÞ.
Operator P�

n�1ðH n; ~�; ~�
0Þ is a polynomial of order

n� 1 in the extended Hamiltonian H n that vanishes for
~� ¼ ~�0. Then Eq. (5.11) signals that the supersymmetric
structure of the n > 1 reflectionless systemH n with exact
isospectrality simplifies as in the case n ¼ 1: the integral
P n;1 turns into a bosonic central charge of the nonlinear

superalgebra. Moreover, from the form of the polynomial
inH n coefficients in superalgebra, one can expect that the
supersymmetric structure should undergo some radical
changes even in the case when not all the pairs of the
scaling parameters coincide but only part of them. For
instance, if �0

j0 ¼ �j for some indexes j0 and j, which

may coincide, j0 ¼ j, or may be different, j0 � j, the
same factor ðH n þ �2

j � 1Þ, or its square, appears in all

the structure coefficients of the superalgebra. By analogy
with the n ¼ 1 case this indicates that some fermionic
supercharges may be substituted for supercharges of a
lower differential order. To understand what changes the
supersymmetric structure undergoes in the cases of a par-
tially broken or exact isospectrality, we investigate in detail
the extended system (5.1) for the case of n ¼ 2 in the next
section.

VI. SUPERSYMMETRY OF THE
n ¼ 2 EXTENDED SYSTEM

The explicit form of the supersymmetric structure for
the extended n ¼ 2 system with completely broken iso-
spectrality follows as a particular case from a generic
consideration of the previous section. Before analyzing
the partially broken and exact isospectrality cases, we first
discuss some properties of the n ¼ 2 reflectionless system

5Intertwining relations through multistep ladders of linear
Darboux generators and their superalgebraic reducibility have
been recently reviewed in Ref. [50], but in a very general and
abstract form.
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of the most general form. It is a particular case of
such a system, described by the two-soliton Pöschl-Teller
Hamiltonian, that appears in the ’4 field theoretical model
with a double well potential, where it controls the stability
of the kink and antikink solutions.

A. Generic reflectionless system with two bound states

The explicit general form of the Hamiltonian of an
n ¼ 2 reflectionless system is

H2ð ~�; ~�Þ ¼ � d2

dx2
þ V2ðx; ~�; ~�Þ; (6.1)

V2ðx; ~�; ~�Þ ¼ �2ð�2
2 � �2

1Þ�1ð�2
2csch

2�2ðxþ �2Þ
þ �2

1sech
2�1ðxþ �1ÞÞw2ðx; ~�; ~�Þ; (6.2)

where

wðx; ~�; ~�Þ ¼ ð�2
1 � �2

2Þð�2 coth�2ðxþ �2Þ
� �1 tanh�1ðxþ �1ÞÞ�1: (6.3)

In the limit �2 ! �1, the two-soliton system (6.1) trans-
forms into that of the one-soliton case,

V2 ! �2�2
1sech

2�1ðxþ �1 � �1Þ; (6.4)

where a shift parameter is defined by a relation

sinh�1�1 ¼ �1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2
2 � �2

1

q
. In another limit, �1 ! �1,

the two-soliton potential transforms into the one-soliton
potential given by an expression of the form (6.4)
but with the index 1 in the parameters changed to 2;
the shift parameter �2 is given then by a relation

sinh�2�2 ¼ �2=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2
2 � �2

1

q
. The indicated limits corre-

spond to a picture of a two-soliton scattering described
by the KdV equation, where the n ¼ 1 solitons of ampli-
tudes 2�2

1 and 2�2
2 in such a process suffer asymptotically

only temporal shifts [51].

Nondegenerate bound states of the system (6.1), c
��2

j

2 ¼
A2

~c j, j ¼ 1, 2, of energies E ¼ ��2
1 and E ¼ ��2

2 are

obtained from the partners, ~c 1 ¼ sinh�1ðxþ �1Þ and
~c 2 ¼ cosh�2ðxþ �2Þ, of nonphysical eigenstates c 1 ¼
cosh�1ðxþ �1Þ and c 2 ¼ sinh�2ðxþ �2Þ of H0 by apply-
ing to them the second order composite operator

A 2ð ~�; ~�Þ ¼ A2ð ~�; ~�ÞA1ð�1; �Þ; (6.5)

c
��2

1

2 ¼ �1sech�1ðxþ �1Þwðx; ~�; ~�Þ;
c

��2
2

2 ¼ ��2csch�2ðxþ �2Þwðx; ~�; ~�Þ:
(6.6)

Here

A2ð ~�; ~�Þ ¼ ðA1c 2Þ ddx
1

ðA1c 2Þ
¼ �Ay

1 ð�1; �1Þ þ wðx; ~�; ~�Þ; (6.7)

and A1 is defined by Eq. (2.8). Function (6.3) satisfies the
identities

dw=dx ¼ 1

2
V2; (6.8)

w2 þ 2�1w tanh�1ðxþ �1Þ ¼ 1

2
V2 þ �2

2 � �2
1; (6.9)

w2 þ 2�2w coth�2ðxþ �2Þ ¼ 1

2
V2 þ �2

1 � �2
2; (6.10)

which will play a fundamental role in what follows.
The degenerate pairs of the states of the continuous part

of the spectrum with E ¼ k2 > 0 are obtained from the
plane wave states of the free particle, c�k

2 ¼ A2e
�ikx,

c�k
2 ¼ ½�ðk2 þ �2

1Þ þ ð�ik� �1 tanh�1ðxþ �1ÞÞ
� wðx; ~�; ~�Þ�e�ikx: (6.11)

The boundary case k ¼ 0 gives a nondegenerate, zero
energy edge state c 0

2 at the bottom of the continuous

spectrum.
The particular case of a reflectionless n ¼ 2 Pöschl-

Teller system,

H2ð�; �Þ ¼ � d2

dx2
� 6�2sech2�ðxþ �Þ;

is obtained by putting �2 ¼ 2�1 ¼ 2� and �2 ¼ �1 ¼ �. In
this case, the function (6.3) and the operator (6.7) are reduced
to w ¼ �3� tanh� and A2 ¼ d

dx � 2� tanh�, the indicated

bound states are transformed, modulo overall multiplica-

tive constants, into c��2

2 ¼ sinh�sech2� (E ¼ ��2) and

c�4�2

2 ¼ sech2� (E ¼ �4�2), while the zero energy non-
degenerate state is c 0

2 ¼ 1� 3tanh2�, where we use the
notation � ¼ �ðxþ �Þ.

B. Generalized Crum-Darboux
transformation’s scheme

We have constructed a generic n ¼ 2 reflectionless
Hamiltonian (6.1) by employing a sequence of two
Darboux transformations described in Sec. II, namely, by
using first the nonphysical free particle state c 1 ¼
cosh�1ðxþ �1Þ, and then the state c 2 ¼ sinh�2ðxþ �2Þ.
The same final result also can be achieved with the
interchanged order of the indicated states. This corre-
sponds to the alternative factorization of the second order
operator (6.5),

A 2 ¼ B2B1; (6.12)

which intertwines H2 with the free particle Hamiltonian,

A2H0 ¼ H2A2, A
y
2H2 ¼ H0A

y
2 ; see Figs. 2(b) and 2(c).

The first order operators B1 and B2 are obtained from A1

and A2 via the substitution
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�1 $ �2; �1 ! �2 þ i
	

2�2

¼ ~�2;

�2 ! �1 þ i
	

2�1

¼ ~�1:
(6.13)

This substitution leaves invariant the Hamiltonian (6.1), the
second order intertwining operator A2, and the function
(6.3). It also leaves invariant the states (6.11) of the con-
tinuous spectrum, including the nondegenerate edge state
of zero energy, but interchanges the bound states (6.6),

c
��2

1

2 ! ic
��2

2

2 , c
��2

2

2 ! ic
��2

1

2 . Transformation (6.13)

changes, however, the first order intertwining operators
A1 and A2, which are regular on R1, for the singular first
order operators

B1 ¼ B1ð�2; �2Þ ¼ d

dx
� �2 coth�2ðxþ �2Þ;

B2 ¼ B2ð ~�; ~�Þ ¼ �By
1 ð�2; �2Þ þ wðx; ~�; ~�Þ:

(6.14)

In terms of the first order operators (6.14) we have

H0 ¼ By
1B1 � �2

2,
~H1 ¼ H1ð�2; ~�2Þ ¼ B1B

y
1 � �2

2 ¼
By
2B2 � �2

1, and H2 ¼ B2B
y
2 � �2

1. This means that with

the alternative factorization (6.12), the operator A2 inter-
twines Hamiltonian (6.1) with H0 via the n ¼ 1 system
described by a singular Hamiltonian

~H 1 ¼ H1ð�2; ~�2Þ ¼ � d2

dx2
þ 2�2

2

sinh2�2ðxþ �2Þ
: (6.15)

In what follows, the singular Hamiltonian (6.15) will
appear only as a virtual, or intermediate system, and the
described generalization of the Crum-Darboux schemewill
allow us to identify nontrivial intertwining operators for an
n ¼ 2 extended system with partially broken and exact
isospectrality. The picture with the alternative factoriza-
tions generalizes for the case n > 2. In this context it is
worth noting that the change of the order of the free particle
nonphysical states (2.3) in the construction of a reflection-
less system Hn, in comparison with that described in
Sec. II, corresponds to a certain permutation of the col-
umns of the Wronskian (2.2). This produces no effect for
the potential in Eq. (2.1).

To conclude the discussion of the generalized Crum-
Darboux transformation scheme, we present here the
relations which are helpful for computation of the corre-
sponding superalgebraic structures:

�X1ð�; ~�; ~�0ÞB0
1 ¼ B1ACð�; �� �0Þ;

By
1
�X1ð�; ~�; ~�0Þ ¼ ACð�; �� �0ÞB0y

1 ;
(6.16)

�X1ð�; ~�; �0ÞA0
1 ¼ B1ACð�; ~�� �0Þ;

By
1
�X1ð�; ~�; �0Þ ¼ ACð�; ~�� �0ÞA0y

1 ;
(6.17)

ACð�; �� ~�0ÞB0y
1 ¼ Ay

1
�X1ð�; �; ~�0Þ; (6.18)

where A1 ¼ A1ð�; �Þ, A0
1 ¼ A1ð�; �0Þ, B1 ¼ B1ð�; �Þ, B0

1 ¼
B1ð�; �0Þ, ~� ¼ �þ i 	

2� , and ~�0 ¼ �0 þ i 	
2� . These identi-

ties can be obtained from (4.8) via the substitution (6.13).

C. Generic case of partial isospectrality breaking

Now we are in position to discuss the supersymmetric
structure of the extended n ¼ 2 systems with partially
broken and exact isospectralities. We first consider three
cases of partial isospectrality breaking, in which one dis-
crete energy level��2

j of the subsystemH2 coincides with

any of the two discrete energy levels ��2
j0 of the partner

HamiltonianH0
2, but the corresponding translation parame-

ters are different, �j � �0j0 . All these cases are described by
a similar supersymmetric structure. Then, in the next sub-
section, we analyze the superalgebraic structure of the
same three cases but with coinciding associated translation
parameters, �j ¼ �0j0 .
We start with the case of partial isospectrality breaking

characterized by the conditions
(i) �1 ¼ �0

1; �1 � �01;

�2 � �0
2; no restrictions on �2; �

0
2; (6.19)

see Fig. 3(a).
The subsystems H2 ¼ H2ð�1; �1; �2; �2Þ and H0

2 ¼
H2ð�1; �

0
1; �

0
2; �

0
2Þ of the extended matrix Hamiltonian

H 2 are related by irreducible intertwining operators of

orders 4 and 3, Y4H
0
2 ¼ H2Y4, Y

y
4H2 ¼ H0

2Y
y
4 ,

�XA
3H

0
2 ¼

H2
�XA
3 , �XAy

3 H2 ¼ H0
2
�XAy
3 . Y4 is given, in correspondence

with the generic form (5.4), by Y4 ¼ A2A
0y
2 , while

�XA
3 ¼ A2ð�1; �2; �1; �2Þ �X1ð�1; �1; �

0
1ÞAy

2 ð�1; �
0
2; �

0
1; �

0
2Þ

¼ A2
�X1A

0y
2 (6.20)

appears instead of the fifth order intertwining operator

X5 ¼ A2
d
dxA

0y
2 because of the reduction

X5 ¼ ðH2 þ �2
1Þ �XA

3 � Cð�1; �1 � �01ÞY4: (6.21)

As follows from (6.20), the reduction (6.21) is related to the
opening of a tunneling channel via the virtual isospectral
pair of n ¼ 1 systems H1ð�1; �1Þ and H1ð�1; �

0
1Þ.

(a) (b) (c)

FIG. 3 (color online). The n ¼ 2 (a), (b), and (c) pairs corre-
sponding to the partially broken isospectrality cases (6.19),
(6.22), and (6.26).
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Taking the products of the described intertwining opera-

tors and Lax integrals of order 5, Z5 ¼ A2
d
dxA

y
2 , Z

0
5 ¼

A0
2

d
dxA

0y
2 , ½Z5; H2� ¼ 0, ½Z0

5; H
0
2� ¼ 0, presented in the

Appendix, we find the superalgebraic structure of the
system H 2 with partially broken isospectrality (6.19). It
is displayed below in the form that unifies (6.19) with two
other similar cases.

A partial isospectrality breaking with coinciding ground
state energy levels,

(i)
�2 ¼ �0

2; �2 � �02;

�1 � �0
1; no restrictions on �1; �

0
1; (6.22)

is similar to the previous case; see Fig. 3(b). Intertwining
operator Y4 and integrals Z5 and Z0

5 are given by generic

formulas with restriction (6.22). The third order irreducible
intertwining operator can be obtained from (6.20) via the
substitution (6.13),

�XB
3 ¼ B2

�X1ð�2; ~�2; ~�
0
2ÞB0y

2 ; (6.23)

where B2 and B0
2 are given by Eq. (6.14) with �0

2 ¼ �2,
while

�X1ð�2; ~�2; ~�
0
2Þ ¼

d

dx
� �2 coth�2ðxþ �2Þ

þ �2 coth�2ðxþ �02Þ þ Cð�2; �2 � �02Þ
¼ B1ð�2; �2Þ � By

1 ð�2; �
0
2Þ

þ Ay
C ð�2; �2 � �02Þ: (6.24)

Though all three first order operators that appear in the

factorization of �X3 in (6.23) are singular, the third
order intertwining operator itself is regular on R1. This
follows just from the reduction relation for the fifth
order intertwining operator for the case (6.22) under
consideration,

X5 ¼ ðH2 þ �2
2Þ �XB

3 � Cð�2; �2 � �02ÞY4: (6.25)

The third order intertwining operator (6.23) realizes the
intertwining between H2 and H0

2 by means of a tunneling
channel via a pair of singular n ¼ 1 Hamiltonians
H1ð�2; ~�2Þ and H1ð�2; ~�

0
2Þ of the form (6.15).6

The supersymmetric structure for partial isospectrality
breaking

(i) �1 ¼ �0
2;

�2 � �0
1; no restrictions on �1;2; �

0
1;2 (6.26)

[see Fig. 3(c)] is generated in a similar way. Here, the third
order irreducible intertwining operator is

�XAB
3 ¼ A2

�X1ð�1; �1; ~�
0
2ÞB0y

2 ; (6.27)

where B0
2 ¼ B2ð�0

1; �2; �
0
1; �

0
2Þ is given by Eq. (6.14),

and ~�02 ¼ �02 þ i 	
2�1

. In this case, we have a reduction

relation

X5 ¼ ðH2 þ �2
1Þ �XAB

3 � Cð�1; �1 � ~�02ÞY4: (6.28)

Unlike the two previous cases, Cð�1; �1 � ~�02Þ ¼
�1 tanh�1ð�1 � �02Þ is regular for any value of �1 and �02
associated with coinciding scaling parameters.7

The superalgebra for the described three cases of
partial isospectrality breaking can be presented in a
unified form:

f �Sa; �Sbg ¼ 2�abhdhd0hCl ;

fQa;Qbg ¼ 2�abh
2
i hdhd0 ;

(6.29)

f �Sa;Qbg ¼ 2�abClhihdhd0 þ 2�abhd0;dP 1; (6.30)

½P 1; �Sa� ¼ ið�2
d � �02

d ÞðhClQa � Clhi �SaÞ;
½P 1; Qa� ¼ ið�2

d � �02
d ÞhiðClQa � hi �SaÞ;

(6.31)

½P 2; �Sa� ¼ iðhd þ hd0 ÞðhClQa � Clhi �SaÞ;
½P 2; Qa� ¼ iðhd þ hd0 ÞhiðClQa � hi �SaÞ:

(6.32)

Here hi ¼ H 2 þ �2
i , hd ¼ H 2 þ �2

d, hd0 ¼ H 2 þ �02
d ,

hd0;d¼H 2þdiagð�02
d ;�

2
dÞ, hCl ¼ H 2 þ C2l , l ¼ 1, 2, 3;

�i denotes the coinciding scaling parameter of the pair; �d

and �0
d correspond to other, noncoinciding scaling parame-

ters of the subsystems H2 and H0
2, respectively, while C1 ¼

Cð�1; �1 � �01Þ for (6.19), C2 ¼ Cð�2; �2 � �02Þ for (6.22),

and C3 ¼ Cð�1; �1 � ~�02Þ for the case (6.26). Notation �Sa
reflects the reduction S2;a ¼ ðH 2 þ �2

i Þ �Sa � ClQa of the

supercharges constructed in terms of X5 and Xy
5 , and to

simplify notations, we do not supply the supercharges with
index l, and omit the index n ¼ 2 in all the integrals.
The fact of a partial isospectrality breaking is reflected

here in the superalgebraic structure. On the one hand,
relations (6.29), (6.30), and (6.32) are similar to the super-
algebraic structure (4.9), (4.10), and (4.11) of the n ¼ 1
isospectral case. At the same time, the commutators in

6By shifting the argument x ! xþ i�, where � is a real
constant, one can translate all the considerations for the case
of PT -symmetric quantum systems [52] with ~H1 and ~H0

1 to be
regular isospectral Hamiltonians; see Ref. [53].

7The operator (6.27) intertwines H0
2 and H2 via the virtual

n ¼ 1 systems ~H0
1 and H1 of different—singular and regular—

nature. After the imaginary shift mentioned in the previous
footnote, the latter pair will transform into regular n ¼ 1 reflec-
tionless Pöschl-Teller PT -symmetric Hamiltonians.
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(6.31), being of the nature of those in (3.17) for the n ¼ 1
nonisospectral family of the systems, show that a ‘‘non-
centrality’’ character of the Lax matrix integral P 2;1 is

measured by the scale of isospectrality breaking, �2
d � �02

d .

D. Partial isospectrality breaking with coinciding
associated translation parameters

Let us discuss now the supersymmetry of the systems
with partial isospectrality breaking, in which one discrete
energy level, �j ¼ �0

j0 , and the associated translation pa-

rameters, �j ¼ �0j0 , coincide; see Figs. 4(a)–4(c). The two

cases corresponding to either �1 ¼ �0
1 or �2 ¼ �0

2 are
similar. For them, supersymmetry undergoes restructuring,
and is generated by intertwining operators of the second
�ðY2Þ and fifth ðX5Þ orders, and by the fifth order integrals Z5

and Z0
5. The fifth order operators, X5 and Z5, in this case

include in their structure the third order integral of the
corresponding common virtual n ¼ 1 system.

For the sake of definiteness, consider the case �1¼�0
1,

�1¼�01, �2 � �0
2. We have X5 ¼ A2Z3A

0y
2 , Z5 ¼

A2Z3A
y
2 , and Z0

5 ¼ A0
2Z3A

0y
2 , where Z3 ¼ Z3ð�1; �1Þ ¼

A1ð�1; �1Þ d
dx A

y
1 ð�1; �1Þ is the third order Lax integral for

the common Pöschl-Teller virtual system H1ð�1; �1Þ.
The second order intertwining operator has a form �YA

2 ¼
A2A

0y
2 , with A2¼A2ð�1;�2;�1;�2Þ and A0

2¼ð�1;�
0
2;�1;�

0
2Þ,

and the fourth order intertwining operator Y4 ¼ A2A
0y
2 of a

generic case reduces as

Y4 ¼ ðH2 þ �2
1Þ �YA

2 : (6.33)

The second order operator �YA
2 can be obtained also from

the third order operator (6.20) of the case (6.19) considered
above. Indeed, multiplying (6.20) by �C�1ð�1; �1 � �01Þ,
and taking a limit �01 ! �1, we get �YA

2 . So, the change of
supersymmetric structure is related here to a singular
nature of Cð�1; �1 � �01Þ in the limit �01 ! �1. Another
case, with �2 ¼ �0

2, �2 ¼ �02, �1 � �0
1 is treated in a

similar way, and the superalgebraic structure for these
two cases can be presented in a unified form:

fSa; Sbg ¼ 2�abH 2h
2
i hdhd0 ; f �Qa; �Qbg ¼ 2�abhdhd0 ;

(6.34)

fSa; �Qbg ¼ 2�abhd0;dP 1; (6.35)

½P 1; Sa� ¼ ið�2
d � �02

d ÞH 2h
2
i
�Qa;

½P 1; �Qa� ¼ �ið�2
d � �02

d ÞSa;
(6.36)

½P 2; Sa� ¼ iH 2h
2
i ðhd þ hd0 Þ �Qa;

½P 2; �Qa� ¼ �iðhd þ hd0 ÞSa:
(6.37)

Notation �Qa reflects here the reduction Q2;a ¼
ðH 2 þ �2

i Þ �Qa, and, again, we omitted the index n ¼ 2 in
the specification of nontrivial integrals.
The case�1 ¼ �0

2, �1 ¼ �02,�1 � �0
2 is different from the

two previous ones because the corresponding parameter-
dependent function Cð�1; �1 � ~�02Þ ¼ �1 tanh�1ð�1 � �02Þ is
nonsingular for any values of �1 � �02, and, moreover, turns
into zero at �1 ¼ �02. Here, the intertwining operators are Y4

and �XAB
3 given by Eq. (6.27) with �1 ¼ �02. A nonsingular

nature of the latter is seen from (6.28). The superalgebra for
this case is obtained directly from (6.29), (6.30), (6.31), and
(6.32) just by putting C3 ¼ 0 there. Though here the irre-
ducible intertwining generators are different in comparison
with the previous two cases, the resulting superalgebra
(6.29), (6.30), (6.31), and (6.32) with C3 ¼ 0 has a similar
form to (6.34), (6.35), (6.36), and (6.37). Notice also a
remarkable similarity of (6.34), (6.35), (6.36), and (6.37)
with the superalgebra (3.15), (3.16), and (3.17) of the n ¼ 1
nonisospectral case.
We see that in all three cases of partial breaking of

isospectrality with corresponding coinciding translation
parameters (associated with coinciding discrete energy
levels), the superalgebraic structure does not depend on
the two remaining translation parameters associated with
the second, different discrete energy levels.

(a) (b) (c)

FIG. 4 (color online). The pairs with partially broken isospec-
trality, in which the translation parameters associated with the
equal scaling parameters do coincide. In case (a), a common
virtual system corresponds to a regular n ¼ 1 reflectionless
Pöschl-Teller system. In case (b) such a common virtual system
is singular. In case (c), the partners can be intertwined via a pair
of n ¼ 1 virtual systems, one of which is singular.

(a) (b) (c)

FIG. 5 (color online). The n ¼ 2 isospectral pairs with a
common (a) regular or (b) singular virtual system. A general
case of the n ¼ 2 isospectral pair with �j � �0j, j ¼ 1, 2, is

illustrated by (c).
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In all the cases of partial isospectrality breaking
described in this and previous subsections, the total order
of the two basic intertwining operators is the same,
3þ 4 ¼ 2þ 5 ¼ 7, decreasing by two in comparison
with the complete isospectrality breaking case.

E. Exact isospectrality with a common
virtual n¼ 1 system

The supersymmetric structure of the systems with exact
isospectrality, �1 ¼ �0

1 and �2 ¼ �0
2, depends on whether

the corresponding translation parameters are different,
�j � �0j, j ¼ 1, 2, or coincide in one of the pairs.8 The

analysis of the second case [see Figs. 5(a) and 5(b)] is
simpler, and we first consider it supposing, for the sake of
definiteness, that �1 ¼ �01, �2 � �02. The intertwining op-
erators for such an isospectral system with a common
regular virtual n ¼ 1 system H1ð�1; �1Þ are

�Y A
2 ¼ A2A

0y
2 ;

�XB
3 ¼ B2

�X1ð�2; ~�2; ~�
0
2ÞB0y

2 ; (6.38)

where in A0
2 and B0

2 we assume that �0
j ¼ �j, j ¼ 1, 2, and

�01 ¼ �1, �02 � �2. They can be obtained here via the
reduction relations of generic intertwining operators,

X5 ¼ ðH2 þ �2
2Þ �XB

3 � Cð�2; �2 � �02ÞY4;

Y4 ¼ ðH2 þ �2
1Þ �YA

2 :
(6.39)

The intertwining generators �YB
2 and �XA

3 , and the corre-
sponding reduction relations for the exact isospectrality
case �j ¼ �0

j, j ¼ 1, 2, �02 ¼ �2, �
0
1 � �1 are obtained

from (6.38) and (6.39) by changing �1 $ �2, �1 $ �2,
�01 $ �02, and A2 $ B2.

The nontrivial relations of superalgebraic structure for
the isospectral case with �1 ¼ �01, �2 � �02 are

f �Sa; �Sbg¼2�abhC2h
2
1; f �Qa;

�Qbg¼2�abh
2
2; (6.40)

f �Sa;
�Qbg ¼ 2�abC2h1h2 þ 2�abP 1; (6.41)

½P 2; �Sa� ¼ 2ih1ðhC2h1 �Qa � C2h2 �SaÞ;
½P 2;

�Qa� ¼ 2ih2ðC2h1 �Qa � h2 �SaÞ;
(6.42)

where C2 ¼ �2 coth�2ð�2 � �02Þ, hi ¼ H 2 þ �2
i , i ¼ 1, 2,

and hC2 ¼ H 2 þ C22. The superalgebra for the isospectral

case with �2 ¼ �02, �1 � �01 is obtained from the displayed
one by changing C2 ! C1, h1 $ h2 in the right-hand side
expressions. The supersymmetry (6.40), (6.41), and (6.42)
has the structure similar to that for the n ¼ 1 isospectral
case.

As it is expected, the integral P 2;1 transmutes here into

the bosonic central charge of nonlinear superalgebra. The
total order of the basic irreducible intertwining generators
decreases by two in comparison with the partially broken
isospectrality case and equals the order 5 of Lax integrals
Z5 and Z0

5. In correspondence with this, the anticommuta-

tor of the second order ( �Q2;a) and the third order ( �S2;a)

supercharges taken with different values of indexes a and b
are equal to the central charge P 2;1 up to a numerical,

Hamiltonian-independent, coefficient; see Eq. (6.41). The
superalgebraic structure also detects the difference of the
noncoinciding translation parameters.

F. Generic case of n ¼ 2 exact isospectrality

Consider a generic case of exact isospectrality charac-
terized by the relations �1 ¼ �0

1, �2 ¼ �0
2, �1 � �01, �2 �

�02; see Fig. 5(c). The second order intertwining operatorX5

possesses then two distinct reductions, (6.21) and (6.25),
in which it is necessary to put in addition, respectively,
�2 ¼ �0

2 and �1 ¼ �0
1. The existence of the two third order

intertwining operators means that a generic isospectral
case is described by the basic intertwining operators of
the orders 2 and 3, to which the intertwining operators X5

and Y4 are reduced. To see this, we note that �XA
3 and �XB

3 are
the third order operators with the same coefficient �1
before the leading derivative term. Then the difference of
these two operators has to be an intertwining differential
operator of the second order. This implies that the coeffi-
cient before the leading second order derivative term in
the latter should be a constant. Taking into account that

A2 ¼ �Ay
1 þ w and B2 ¼ �By

1 þ w, and employing rela-

tions (4.8) and (6.16), we find

�XA
3 � �XB

3 ¼ ðC1 � C2ÞG2 þ ð�2
2 � �2

1ÞX̂1; (6.43)

where C1¼�1coth�1ð�1��01Þ, and C2¼�2coth�2ð�2��02Þ,

G2 ¼ � d2

dx2
þ ðw0 � wÞ d

dx
þ dw0

dx
þ ww0

þ w�2 coth�2ðxþ �2Þ
þ w0�2 coth�2ðxþ �02Þ þ �2

2; (6.44)

X̂ 1 ¼ d

dx
þ ðw� w0Þ þ C1: (6.45)

In (6.44) and (6.45)w corresponds to the function (6.3), and
w0 is the same function but with �j changed for �

0
j, j ¼ 1, 2.

From (6.43) it follows immediately that the case C1 ¼ C2 is
special, and we shall consider it in the next subsection. So,
till the end of this subsection we suppose that

C 1 � C2: (6.46)

8The case when both pairs of translation parameters coincide
corresponds to H 2 composed from the two copies of the same
Hamiltonian H2. Such a system H 2 is described by a trivial
supersymmetric structure to be similar to that discussed for the
n ¼ 1 case in Sec. IV, with integral Z3 changed for Z5.
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We obtain then the second order intertwining operator

Ŷ 2 ¼
�XA
3 � �XB

3

C1 � C2
¼ G2 þ �2

2 � �2
1

C1 � C2
X̂1: (6.47)

The operator (6.47) intertwines H0
2 and H2, Ŷ2H

0
2 ¼ H2Ŷ2,

and satisfies the relation Ŷy
2 ¼ Ŷ0

2, where Ŷ
0
2 corresponds to

Ŷ2 with the interchanged translation parameters �j and �0j,
j ¼ 1, 2. Ŷy

2 generates the intertwining relation in the

reverse direction. Operator Ŷ2, and any of two third order

operators, �XA
3 or �XB

3 , play now the role of independent
intertwining generators. It is more convenient, however,
to take a linear combination

X̂ 3 ¼ C2 �X
A
3 � C1 �X

B
3

C2 � C1
; (6.48)

different from that in (6.43), as a third order intertwining

generator to be independent from Ŷ2. Using Eqs. (6.21) and
(6.25), we find that the generic intertwining operators X5

and Y4 are reduced here as follows:

ðC1 � C2ÞX5 ¼ ððC1 � C2ÞH2 þ C1�2
2 � C2�2

1ÞX̂3

þ ð�2
2 � �2

1ÞC1C2Ŷ2; (6.49)

ðC1 � C2ÞY4 ¼ ð�2
2 � �2

1ÞX̂3 þ ððC1 � C2ÞH2

þ C1�2
1 � C2�2

2ÞŶ2: (6.50)

Proceeding from the relations (6.49) and (6.50) and the
relations, presented in the Appendix, which correspond to
the products of operators X5, Y4 and Z5 with the imposed
isospectrality relations �j ¼ �0

j, j ¼ 1, 2, one can find all

the products of the irreducible intertwining operators Ŷ2,

X̂3, Ŷ
y
2 , X̂

y
3 , and Lax operators Z5 and Z0

5. With these, one

can compute the superalgebra generated by the second

order ( �Q2;a) and third order ( �S2;a) supercharges con-

structed in terms of Ŷ2 and X̂3 following the same rules
as we used before, and by the fifth order bosonic integrals
P 2;a. There is another, simpler way to compute the super-

algebra. Having in mind that fermionic supercharges are
matrix differentials operators of orders 2 and 3, the alter-
native form of superalgebra is generated by taking a linear

combination of them, FA
a ¼ C1 �Q2;a þ �S2;a and FB

a ¼
C2 �Q2;a þ �S2;a, constructed from �XA

3 and �XB
3 in correspon-

dence with relations (6.43) and (6.48),

FA;B
1 ¼ 0 �XA;B

3

�XA;By
3 0

0
@

1
A; FA;B

2 ¼ i�3F
A;B
1 : (6.51)

Modifying further the notations, Fð1Þ
a ¼ FA

a , Fð2Þ
a ¼ FB

a ,

and using the product relations of the operators �XA;B
3 , their

conjugate, �XA;By
3 , and Lax operators Z5 and Z0

5 (see the

Appendix), we present nonzero superalgebraic relations in
a compact form:

fFðiÞ
a ; FðjÞ

b g ¼ 2�abhijhihj þ 2�ab�
ij�CP 1; (6.52)

½P 2; F
ðjÞ
a � ¼ 2i

�C
ðð�1Þjh1h2h12FðjÞ

a þ �jkhjjh
2
kF

ðkÞ
a Þ:
(6.53)

Here hi ¼ H 2 þ �2
i , hij ¼ H 2 þ CiCj, i, j ¼ 1, 2, �C ¼

C2 � C1, and no summation in the indexes i and j is implied
in the right-hand sides.
Again, the integral P 1 ¼ P 2;1 transmutes here into

the bosonic central charge, and the structure coefficients
depend on both relative translation parameters via C1
and C2.
The nonzero superalgebraic relations for the third ( �S2;a)

and second ( �Q2;a) order supercharges and bosonic inte-

grals P 2;2 can now easily be obtained from (6.52) and

(6.53) by employing the relations �Q2;a¼ðFð2Þ
a �Fð1Þ

a Þ=
�C, �S2;a ¼ ðC2Fð1Þ

a � C1F
ð2Þ
a Þ=�C. The superalgebra has

the same structure (4.9), (4.10), and (4.11) as for the
n ¼ 1 isospectral case, but with Hamiltonian-dependent
coefficients of a more complicated form.

G. Special case of isospectrality with C1 ¼ C2
Let us consider the special case of isospectrality char-

acterized by the relation

C 1 ¼ C2: (6.54)

Equation (6.54) means that there is a special correlation
between relative displacements �1 � �01 and �2 � �02 and
scaling parameters, �1coth�1ð���01Þ¼�2coth�2ð�2��02Þ.
In correspondence with this relation, we may take an n ¼ 2
system H2 defined by arbitrary parameters �2 > �1, and
arbitrary, but finite, �1 and �2. Particularly, we can choose
the n ¼ 2 Pöschl-Teller system defined by the relations
�2 ¼ 2�1 and �1 ¼ �2. The partner Hamiltonian H0

2 is
given then by the same scaling parameters, the finite
parameter �02 may be chosen in an arbitrary way with the
only restriction �02 � �2, while �01 is fixed uniquely,
�01 ¼ �1 � 1

�1
arccothð�2

�1
coth�2ð�2 � �02ÞÞ.

As a consequence of relation (6.43), here a difference
�XA
3 � �XB

3 reduces to the first order intertwining operator

(6.45), which satisfies a relation X̂y
1 ð ~�; ~�; ~�0Þ ¼

�X̂1ð ~�; ~�0; ~�Þ ¼ �X̂0
1. Moreover, we will show below

that each of the third order intertwining operators �XA
3 and

�XB
3 is reducible, and so, here the irreducible intertwining

operators are X̂1 and Y4.

As the intertwining generator X̂1 is the first order
differential operator, let us define a superpotential W by
means of

X̂ 1 ¼ d

dx
þW; W ¼ w� w0 þ C1: (6.55)

In accordance with relations (6.8), (6.9), and (6.10), we
have W2 þW 0 ¼ V2 þ C21, W

2 �W 0 ¼ V 0
2 þ C21, and then

X̂ 1X̂
y
1 ¼ H2 þ C21; X̂yX̂1 ¼ H0

2 þ C21; (6.56)
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and X̂1H
0
2 ¼ H2X̂1, X̂

y
1H2 ¼ H0

2X̂
y
1 . The first order inter-

twining operator X̂1 has a form similar to that of the

operator �X1 in the n ¼ 1 isospectral case. The superpoten-
tial WðxÞ plays here the role of the gap function �
mentioned there in the context of its relation to the
Bogoliubov-de Gennes system.

Operator X̂1 together with the first order operators
�XA
1 ¼ �X1ð�1; �1; �

0
1Þ, �XB

1 ¼ �X1ð�2; �2; �
0
2Þ satisfies in addi-

tion the identities

�XA
1A

0y
2 ¼ Ay

2 X̂1; A2
�XA
1 ¼ X̂1A

0
2;

�XB
1B

0y
2 ¼ By

2 X̂1; B2
�XA
1 ¼ X̂1B

0
2:

(6.57)

Let us stress that like (6.56), these relations are valid only
in the special isospectral case (6.54). Employing them, we

find that the third order intertwining generators �XA
3 and �XB

3

are reducible,

�XA
3 ¼ ðH2 þ �2

2ÞX̂1; �XB
3 ¼ ðH2 þ �2

1ÞX̂1: (6.58)

As a consequence, the fifth order generic intertwining
operator also is reducible, X5 ¼ ðH2 þ �2

1ÞðH2 þ �2
2Þ�

X̂1 � C1Y4.
Applying the product relations (A32)–(A35) collected in

the Appendix, we can compute the superalgebra generated

by the fermionic supercharges Ŝ2;a constructed from X̂1

and X̂y
1 , by the supercharges Q2;a composed from Y4 and

Yy
4 , and by the bosonic integrals P 2;a constructed from Lax

operators Z5 and Z0
5. The nontrivial (anti)commutation

relations are

fŜa;Ŝbg¼2�abhC1 ; fQa;Qbg¼2�abh
2
1h

2
2; (6.59)

fŜa;Qbg ¼ 2�abC1h1h2 þ 2�abP 1; (6.60)

½P 2; Ŝa� ¼ 2iðhC1Qa � C1h1h2ŜaÞ;
½P 2;Qa� ¼ 2ih1h2ðC1Qa � h1h2ŜaÞ;

(6.61)

where hi ¼ H 2 þ �2
i , i ¼ 1, 2, hC1 ¼ H 2 þ C21, and we

omitted the index n ¼ 2 in the integrals.

Supercharges Ŝ2;a, a ¼ 1, 2, generate a Lie subsuper-

algebra of N ¼ 2 supersymmetry. Since C21 ¼ C22 > �2
2, it

corresponds to the spontaneously broken phase. However,
a peculiarity of the extended system H 2 is that it has a
structure of centrally extended N ¼ 4 nonlinear supersym-
metry with the two additional fourth order supercharges
Q2;a, and two bosonic integrals P 2;a. Again, the integral

P 2;1 plays here the role of the central charge. As in a

generic isospectral case from the previous subsection, the
sum of differential orders of the basic irreducible inter-
twining operators equals 5 and coincides with the order of
Lax operators. Again, the superalgebra (6.59), (6.60), and
(6.61) has a remarkable similarity with that for the n ¼ 1
isospectral case.

We conclude that with a chosen subsystem H2,
Eq. (6.54) defines a one-parametric family, in which �02,
�02 � �2, is a free parameter of the exactly isospectral
systemH0

2. Such a family of Schrödinger pairs is described
by the supersymmetry with the two first order super-
charges, two supercharges of order 4, and two bosonic
integrals of differential order 5, one of which is a central
charge. This generalizes the n ¼ 1 self-isospectral case
discussed in Sec. IV for the case of n ¼ 2 isospectral,
but not self-isospectral, pairs.

VII. PARTIALLY BROKEN AND EXACT
ISOSPECTRALITIES IN n > 2 SYSTEMS

The analysis of partially broken and exact isospectral-
ities can be generalized for n-soliton extended systems
with n > 2. The case n ¼ 2 considered in the previous
section shows that the concrete structure of supersymme-
try, namely its irreducible generators and coefficients in the
superalgebra, depends not only on how many scaling pa-
rameters coincide, but also on whether they correspond to
the same or different ordinal numbers of discrete energy
levels of subsystems. It also depends on relative translation
parameters associated with the corresponding coinciding
discrete energy levels, and may change in the cases
when such relative translation parameters turn into zero,
or are correlated via equalities of the form (6.54).
Correspondingly, a concrete form of supersymmetric struc-
ture is rather variable, but the general picture can be
summarized as follows. The n > 2 pair is characterized
by two irreducible basic intertwining operators, one of
which is a differential operator of odd order, while another
is of even order. Each n-soliton subsystem also is charac-
terized by a nontrivial integral to be a differential Lax
operator of order 2nþ 1. The orders of irreducible inter-
twining operators satisfy the following rules. As we saw,
the case of complete isospectrality breaking, when all the
scaling parameters of one subsystem are different from
those of the second subsystem, the supersymmetric pair
is characterized by intertwining operators, X2nþ1 and Y2n,
of differential orders jX2nþ1j ¼ 2nþ 1 and jY2nj ¼ 2n.
The sum of their differential orders, 4nþ 1, coincides
with the order of the composite differential operator of
the form ðHnÞnZn. When any pair of the scaling parameters
of the subsystems coincides, the total order of the two basic
irreducible intertwining operators decreases in such a way
that jXYyj ¼ jðHnÞn�1Pj ¼ 4n� 1. Any new coincidence
of some new pair of scaling parameters decreases the total
order of XYy by two. Finally, in the case of exact isospec-
trality, when all the n pairs of the scaling parameters
coincide, we have jXYyj ¼ jZnj ¼ ð4nþ 1Þ � 2n ¼
2nþ 1.
As an example, consider a generic case of exact iso-

spectrality for the pair of the reflectionless soliton systems,
each having three bound states. In this case, the composite
operator A3 has six different factorizations in dependence
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on the order of the free particle nonphysical states c j, j ¼
1, 2, 3, which are used to generate a three-soliton system.

For instance, factorization A3 ¼ Að3Þ
3 Að2Þ

2 Að1Þ
1 corresponds

to that described in Sec. V, while A3 ¼ Að3Þ
3 Að1Þ

2 Að2Þ
1 corre-

sponds to an alternative factorization like that described in

Sec. VI B, with Að2Þ
1 constructed in terms of the state c 2;

Að1Þ
2 constructed recursively in terms of Að2Þ

1 and c 1; and

finally, Að3Þ
3 is constructed recursively by employing Að2Þ

1 ,

Að1Þ
2 and c 3. In other words, the upper index indicates here

the index of a state c j we use to construct the first order

Darboux operator of the generation marked by the lower
index. The factorizations different from the standard one

A3 ¼ Að3Þ
3 Að2Þ

2 Að1Þ
1 correspond to permutations of columns

in the Wronskian (2.2), and in accordance with Eq. (2.1),
do not produce any effect on the final form of the three-
soliton potential V3. Employing the information on inter-
twining operators of the n ¼ 2 case, we construct three

intertwining operators of order 5, �Xð1Þ
5 ¼ Að3Þ

3
�Xð12Þ
3 A0ð3Þy

3 ,

�Xð2Þ
5 ¼ Að1Þ

3
�Xð23Þ
3 A0ð1Þy

3 , and �Xð3Þ
5 ¼ Að2Þ

3
�Xð31Þ
3 A0ð2Þy

3 , where

�Xð12Þ
3 ¼ A2

�Xð1Þ
1 A0ð2Þy

2 and �Xð1Þ
1 ¼ Að1Þ

1 � A0ð1Þy
1 � AC1 is

the first order operator constructed in accordance with
Eq. (4.2), and Cr ¼ �r coth�rð�r � �0rÞ, r ¼ 1, 2, 3. The
generic intertwining operator of order 7 reduces as

X7 ¼ ðH3 þ �2
rÞ �XðrÞ

5 � CrY6; r ¼ 1; 2; 3: (7.1)

Taking ð �Xð1Þ
5 � �Xð2Þ

5 Þ and ð �Xð2Þ
5 � �Xð3Þ

5 Þ, we get two inter-

twining operators of order 4, �Yð12Þ and �Yð23Þ, in which the
coefficients before the leading derivative term d4=dx4 will

be constants. Presenting �Yð12Þ and �Yð23Þ in a normal form,
with leading coefficients equal to 1, and taking a difference
of the resulting fourth order differential operators, we get
an irreducible intertwining operator of order 3. Taking any
one of the obtained two fourth order operators, we identify
finally a pair of the basic irreducible intertwining operators

X̂3 and Ŷ4 of orders 3 and 4. Three identities in (7.1) allow
us then, on the one hand, to express the generic intertwin-
ing operators X7 and Y6, which are reducible here, in terms

of X̂3 and Ŷ4 multiplied by certain polynomials in H3.
On the other hand, the same identities (7.1) indicate that
the cases with C1 ¼ C2 and/or C2 ¼ C3 are peculiar.
Coherently with the analysis of the previous section, one
can expect that in the special case C1 ¼ C2 ¼ C3 the basic
irreducible intertwining operators are of orders 1 and 6.
The analysis of this special case requires a separate con-
sideration and we do not present it here, but only note that a
corresponding isospectral pair is constructed similarly to
the case of the n ¼ 2. Namely, the scaling, �3 > �2 > �1,
and translation, �1, �2 and �3, parameters of the subsystem
H3 are taken arbitrarily, the scaling parameters of the
partner system H0

3 are the same, and parameter �03 can

take any finite value restricted by the condition �03 � �3.
The relation C2 ¼ C3 defines �02 uniquely in terms of the

already chosen parameters, and then the equality C1 ¼ C2
fixes uniquely the remaining displacement parameter �01.

VIII. SPIN-1=2 PARTICLE INTERPRETATION

In this section, following Ref. [22], we discuss shortly a
spin-1=2 particle interpretation of the studied class of the
soliton systems (1.1) and (1.2). This, particularly, will shed
a new light on a peculiarity of the special family of
isospectral n-soliton systems characterized by the first
order supercharges.
Consider a nonrelativistic particle (electron) of mass

m ¼ 1
2 , charge e ¼ �1 and gyromagnetic ratio g ¼ 2

confined to a plane in the presence of an electric field
described by a scalar potential 
ðx; yÞ and a perpendicular
magnetic field Bzðx; yÞ. The system is described by the
Pauli Hamiltonian

H¼
�
�i

d

dx
þAx

�
2þ

�
�i

d

dy
þAy

�
2þ�3Bz�
: (8.1)

Let us assume that electric and magnetic fields are homo-
geneous in the direction y, 
 ¼ 
ðxÞ, Bz ¼ BzðxÞ, and
choose Ax ¼ 0, Ay ¼ aðxÞ. Then Bz ¼ da

dx , and the spinor

wave function can be taken in the form �ðx; yÞ ¼
eikyc ðxÞ. The action of the Hamiltonian (8.1) on a spinor
c ðxÞ reduces to the matrix Hamiltonian of the form (1.1)
with V�ðxÞ ¼ ðkþ aðxÞÞ2 �
� da

dx . Our system (1.1) and

(1.2) corresponds to the scalar electric potential and
magnetic field of a special form


ðxÞ ¼ ðaðxÞ þ kÞ2 � 1

2
ðVn þ V0

nÞ;

BzðxÞ ¼ da

dx
¼ 1

2
ðVn � V 0

nÞ;
(8.2)

given by the n-soliton, reflectionless potentials Vn and V 0
n.

Taking into account Eq. (2.1), the potentials 
ðxÞ and aðxÞ
can be written in terms of the correspondingWronskians as


ðxÞ ¼ ðaðxÞ þ kÞ2 þ d2

dx2
lnðWnW

0
nÞ;

aðxÞ ¼ d

dx
ln

�
W 0

n

Wn

�
þ c0;

(8.3)

where c0 is an integration constant. Therefore, a spin-1=2
particle in the plane, subjected to electric and magnetic
fields of the special form (8.2) that are homogeneous in the
y direction, is described by an exotic supersymmetry that
was investigated and described in the previous sections.
Let us show now that the systems (1.1) and (1.2) con-

structed from the special isospectral pairs of the n-soliton
potentials, which are characterized by two first order super-
charges (alongside the supercharges of order 2n and
bosonic integrals P n;a, a ¼ 1, 2, being differential

EFFECT OF SCALINGS AND TRANSLATIONS ON THE . . . PHYSICAL REVIEW D 87, 045009 (2013)

045009-17



operators of order 2nþ 1), correspond to the case of a zero
electric field, i.e., a constant scalar potential 
.
First, consider a one-soliton case for which V1 ¼
�2sech2�ðxþ �Þ and V 0

1 ¼ �2sech2�ðxþ �0Þ. For it,
W1 ¼ cosh�ðxþ �Þ and W 0

1 ¼ cosh�ðxþ �0Þ. Putting the
integration constant c0 ¼ � coth�ð�� �0Þ � k, we obtain

aðxÞ¼��ðxÞ�k;

�ðxÞ¼�ðtanh�ðxþ�Þ� tanh�ðxþ�0Þ�coth�ð���0ÞÞ;
(8.4)

that, up to the constant term�k, coincides exactly with the
superpotential that appears in the first order intertwining
operator (4.2). The trigonometric identity

1� tanh� tanh�� cothð�� �Þðtanh�� tanh�Þ ¼ 0

(8.5)

gives then 
 ¼ �2coth2�ð�� �0Þ, that is a square of the
constant C defined in Eq. (4.4).

In the same way, for the special n ¼ 2 case discussed in
Sec. VIG, we find aðxÞ ¼ WðxÞ � k, where WðxÞ is the
superpotential appearing in the first order intertwining
operator (6.55), and the scalar electric potential reduces
to the square of the constant C1 ¼ �1 coth�1ð�� �0Þ, 
 ¼
C21. This picture with a disappearing electric field is also
valid for special isospectral n-soliton systems with n > 2,
which were briefly discussed in the previous section.

It is interesting to note that the electric field can also be
eliminated in the self-isospectral case of reflectionless
Pöschl-Teller systems, having n > 1 bound states, that
corresponds to the pair of mutually shifted soliton
potentials Vn ¼ �nðnþ 1Þ�2sech2�ðxþ �Þ and V 0

n ¼
�nðnþ 1Þ�2sech2�ðxþ �0Þ with n > 1. This, however,
can be done at the cost of changing the gyromagnetic ratio
g ¼ 2, corresponding to the Pauli Hamiltonian (8.1), to the

value gn ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2nðnþ 1Þp

. Indeed, changing the magnetic
term in (8.1) for 1

2gn�3Bz, an analogous analysis employ-

ing the identity (8.5) results in aðxÞ ¼ � 1
2gn�ðxÞ � k,

where �ðxÞ is the same as in Eq. (8.4), and 
 ¼
1
2 nðnþ 1Þ�2coth2�ð�� �0Þ. According to the discussion

in Secs. VI F and VII, a matrix system (1.1) and (1.2) with
mutually shifted reflectionless Pöschl-Teller potentials is
characterized by the pairs of the supercharges to be differ-
ential operators of orders n and nþ 1. This picture can be
contrasted with a nonlinear supersymmetric structure
appearing in the Landau problem for a charged spin-1=2
particle with special values of the gyromagnetic ratio
g ¼ 2n (see Ref. [54]), where supersymmetry is generated
by a pair of the supercharges to be differential operators of
order n.

IX. DISCUSSION AND OUTLOOK

A generic supersymmetric quantum mechanical system
with a 2� 2 matrix Hamiltonian, whose components are

intertwined either by first order Darboux or higher order
Crum-Darboux differential operators, is described by two
fermionic supercharges constructed from the intertwining
generators. The supercharges together with the matrix
Hamiltonian generate, respectively, either linear or non-
linear N ¼ 2 superalgebra. For the linear supersymmetry
(in the sense of superalgebra), the system has either one
nondegenerate zero energy level corresponding to the
ground state in the case of the nonbroken supersymmetry,
or only degenerate energy levels if the supersymmetry is
broken. For the nonlinear supersymmetry case the picture
is more complicated, and the system can possess 0	‘	n
nondegenerate states if nonlinear supersymmetry is of
order n; see Refs. [37,50] and references therein.
We studied a special class of reflectionless systems with

superpartners having the same number n of discrete energy
levels in their spectra. Each of the superpartner potentials
describes an n-soliton solution of a nonlinear KdVequation
that depends on n scaling and n translation parameters, and
satisfies the corresponding higher stationary equation of
the KdV hierarchy. Because of the peculiar, soliton nature
of the composite matrix Hamiltonians, their supersymmet-
ric structure, on the one hand, turns out to be richer in
comparison with a generic case, and, on the other hand, it
experiences essential changes depending on the relation
between the two sets of 2n parameters that characterize the
partner n-soliton potentials.
It is worth stressing here that according to the terminol-

ogy we used, the complete isospectrality breaking for a
pair of n-soliton potentials Vn ¼ Vnð�1; . . . ; �n; �1; . . . ; �nÞ
and V 0

n ¼ Vnð�0
1; . . . ; �

0
n; �

0
1; . . . ; �

0
nÞ means that �j � �0

j0

for all j; j0 ¼ 1; . . . ; n, and so, the energies of their bound
states, Ej ¼ ��2

j and E0
j ¼ ��02

j , have no coincidence,

i.e., the extended system (1.1) and (1.2) in this case has
2n discrete nondegenerate levels. At the same time, the
lowest, zero energy level at the bottom of the continuous
part of the spectrum of the extended system is doubly
degenerate, while all the energy levels with E> 0 inside
the continuous spectrum are fourfold degenerate.
There are four supercharges in the system (1.1) and (1.2),

two of which are composed from intertwining generators

X2kþ1 andX
y
2kþ1 to be differential operators of the odd order

2kþ 1 	 2nþ 1, while the two other fermionic integrals

are constructed from intertwining generators Y2l and Y
y
2l of

the even order 2l 	 2n, such that in the general case the
total order, jX2kþ1j þ jY2lj, of the basic irreducible inter-
twining operators satisfies a relation 2nþ 1 	 ð2kþ 1Þ þ
2l 	 4nþ 1. The system also possesses two bosonic
diagonal matrix integrals composed from nontrivial Lax
operators of the n-soliton subsystems, Z2nþ1 and Z0

2nþ1,

which are differential operators of order 2nþ 1, being the
Crum-Darboux dressed form of the free particlemomentum
p ¼ �i d

dx . Operator Z2nþ1 (Z
0
2nþ1) detects all the physical

nondegenerate states of the subsystem Hn (H
0
n) by annihi-

lating them.
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When the two sets of the scaling parameters are com-
pletely different, we have a complete isospectrality break-
ing, and the irreducible intertwining generators are of the
orders 2nþ 1 and 2n. In this case X2nþ1 and Y2n intertwine
the partner Hamiltonians Hn and H0

n via a virtual free
particle system. Operator Y2n detects all the bound states
of the H0

n subsystem, by annihilating them, while X2nþ1

makes the same job and, additionally, annihilates the non-
degenerate state of the zero energy at the bottom of the
continuous spectrum. The eigenstates ofH0

n not annihilated
by these intertwining operators are transformed by them
into the corresponding eigenstates of Hn. The operators

Xy
2nþ1 and Y

y
2n do the same with the eigenstates of Hn. The

anticommutator between the supercharges of differential
orders 2nþ 1 and 2n generates the diagonal Lax integral
P n;1 ¼ �idiagðZ2nþ1; Z

0
2nþ1Þ multiplied by the order n

polynomial of the matrix Hamiltonian. Both bosonic inte-
grals, P n;1 and P n;2 ¼ �3P n;1, commute nontrivially with

the supercharges. The Hamiltonian H n of the system
plays the role of the multiplicative central charge of the
nonlinear superalgebra, whose structure is insensible to the
translation parameters of the potentials.

In the simplest case of n ¼ 1, when the scaling parame-
ters �1 and �0

1 of the partner potentials coincide, a kind of

channel for a direct tunneling between the partners is
opened; the third order operator X3 is substituted for the
operator X1 of the first order, that intertwines H1 and H0

1

directly, without communication via the virtual free parti-
cle system; and bosonic integral P 1;1 transmutes into the

central charge of the superalgebra, whose structure starts to
depend on the tunneling distance �1 � �01. Operator X1

transforms now all the physical eigenstates of the H0
1

subsystem into the corresponding eigenstates of H1. In
the case n > 1, each time any two discrete energy levels
of the partner subsystems coincide, the basic intertwining
operators X and Y undergo a reduction, decreasing their
total differential order by two, and a dependence on a
relative translation parameter associated with a pair of
coinciding scaling parameters appears in the super-
algebraic structure. The details of the restructuring of
supersymmetry generators depend on whether the discrete
energy levels of the partners of the same or different
ordinal numbers do coincide. A structure of supersymme-
try also suffers abrupt changes in the orders of the basic
irreducible intertwining operators, leaving invariant their
total sum, when the coincidence of translation parameters,
associated with the coinciding scaling parameters, hap-
pens. The supersymmetry also experiences a restructuring
for another kind of correlation, �j coth�jð�j � �0jÞ ¼
�j0 coth�j0 ð�j0 � �0j0 Þ, j � j0, between the translation pa-

rameters associated with the coinciding pairs of discrete
energy levels of the different ordinal numbers, j � j0.

Only in the case of the exact isospectrality of the part-
ners, when all their discrete energy levels coincide pair-
wise, and as a consequence, their transmission scattering

amplitudes also coincide, the bosonic integral P n;1 trans-

mutes into the central charge of the superalgebra. In this
case the total order 2nþ 1 of the two basic irreducible
intertwining operators X and Y coincides with the differ-
ential order of bosonic integrals. A particular case of such a
situation corresponds to a self-isospectral pair of Pöschl-
Teller systems.
From the viewpoint of supersymmetric structure we

investigated, the self-isospectral Pöschl-Teller pairs pos-
sess, however, no special properties when n > 1, though
the special subfamily of the extended systems with exact
isospectrality that we detected corresponds to a general-
ization of the n ¼ 1 self-isospectral case. For n > 1, those
special isospectral pairs with the scaling and translation
parameters correlated by means of (n� 1) equalities
�1 coth�1ð�1 � �01Þ ¼ �j coth�jð�j � �0jÞ, j ¼ 2; . . . ; n,

are described by the basic irreducible intertwining gener-
ators X1 and Y2n. For n > 1, the corresponding isospectral
partner potentials have a form different from each other,
and if one of them is chosen to be a reflectionless Pöschl-
Teller potential with n > 1 bound states, an isospectral
partner does not belong to the Pöschl-Teller hierarchy of
potentials. More precisely, we identified and investigated
in detail the supersymmetric structure of such a special pair
in the case n ¼ 2, while we provided here only general
indications that the same happens for n > 2. The special
family of the completely isospectral pairs of n-soliton
systems with n > 2 requires a separate consideration and
will be presented elsewhere. The property jX1j ¼ 1 means
that any of the two Hermitian supercharges composed from

the irreducible intertwining generators X1 and Xy
1 may be

identified as a first order, Dirac type, Bogoliubov-de
Gennes finite-gap Hamiltonian that belongs to the
Ablowitz-Kaup-Newell-Segur integrable hierarchy. From
another perspective, we also observed the peculiarity of the
special family of completely isospectral pairs with jX1j ¼
1 from the viewpoint of the interpretation of the matrix
Hamiltonian (1.1) and (1.2) in terms of the nonrelativistic
spin-1=2 particle system. In this context, we showed that
the entire family of self-isospectral reflectionless Pöschl-
Teller systems also is special.
Analyzing the changes of the supersymmetric structure

associated with a coincidence of the scaling parameters, or,
that is the same, of the bound states’ energies, we referred
to the opening of tunneling channels conventionally. This
might correspond nevertheless to real tunneling processes
in some applications of the exotic supersymmetry, particu-
larly related to instantons.
We discussed the exotic supersymmetric structure from

the standpoint of a usual Schrödinger equation that corre-
sponds to a potential problem for a particle with a constant
mass. It would be interesting to reinterpret the results from
the perspective of a quantum problem for a particle with a
position-dependent mass [55] having in mind possible
applications for condensed matter physics.
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As it was noted, by displacing the coordinate x for a pure
imaginary constant, x ! xþ i�, our analysis can be gen-
eralized for the case of PT -symmetric quantum systems
[52]. Such a generalization seems to deserve a special
attention as it was proved to be useful for a particular
case of supersymmetric extensions of reflectionless
Pöschl-Teller and related systems, that helped recently to
clarify some peculiarities in the PT -symmetric quantum
mechanics [53]. Particularly, PT -symmetric generaliza-
tion might be useful for applications in quantum optics.

As we mentioned, n ¼ 1 and n ¼ 2 reflectionless
Pöschl-Teller systems control the stability of the kink
solutions in the sine-Gordon, ’4, and other exotic
(1þ 1)-dimensional field theoretical models.9 By consid-
ering the doublets of these fields with equal or different
masses [56,57], one could expect that the studied super-
symmetric structure may reveal itself somehow at the
level of the symmetries of the corresponding kink
solutions.

We investigated exotic supersymmetry of soliton sys-
tems with the primary focus on its quantum mechanical
aspects. The intriguing open question is whether it can be
related somehow to a space-time symmetry of relativistic
field systems having topological solitons. The develop-
ments in Sec. IV of Ref. [36] seem to point towards a
positive answer to this conjecture.

We discussed supersymmetric structure by choosing the
diagonal Pauli matrix as a grading operator �. Alternative
choices for � related to reflection operators are also pos-
sible. They provide the identification of the nontrivial
integrals of motion as fermionic and bosonic generators
in a way different from that described here. Particularly,
the treatment of P n;a as odd supercharges is possible; see

Refs. [24,37,46,47,49,58]. Supersymmetric structures for
alternative choices of � can be computed by employing the
product relations of the intertwining generators and Lax
operators collected in the Appendix. The alternative
choices were useful for identification of the hidden
supersymmetric structure in the systems described by the
first order Bogoliubov-de Gennes Hamiltonian, particu-
larly in those associated with the Schrödinger n ¼ 1
isospectral pair considered here [24,46]. In this direction,
it seems to be interesting to apply the results to a special
case of the two-soliton pairs with exact isospectrality
studied in Sec. VIG to the physics related to the Gross-
Neveu model.

Finally, it would be interesting to generalize our analysis
for finite-gap periodic systems, which also find many
interesting applications in physics [23,24,26,59,60]. In
that case it seems to be natural to restrict the considerations
to the isospectral pairs.
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APPENDIX

Here we collect the products of the intertwining opera-
tors and Lax operators necessary for computing the con-
crete superalgebraic relations.
In the n ¼ 1 nonisospectral case, �1 � �0

1, the basic
products of intertwining operators and Lax integrals are

X3X
y
3 ¼ H1ðH1 þ �2

1ÞðH1 þ �02
1 Þ;

Xy
3X3 ¼ H0

1ðH0
1 þ �2

1ÞðH0
1 þ �02

1 Þ;
(A1)

Y2Y
y
2 ¼ ðH1 þ �2

1ÞðH1 þ �02
1 Þ;

Yy
2 Y2 ¼ ðH0

1 þ �2
1ÞðH0

1 þ �02
1 Þ;

(A2)

X3Y
y
2 ¼ �Y2X

y
3 ¼ ðH1 þ �02

1 ÞZ3;

Yy
2X3 ¼ �Xy

3Y2 ¼ ðH0
1 þ �2

1ÞZ0
3;

(A3)

Z3X3 ¼ �H1ðH1 þ �2
1ÞY2;

X3Z
0
3 ¼ �H1ðH1 þ �02

1 ÞY2;
(A4)

Z3Y2 ¼ ðH1 þ �2
1ÞX3; Y2Z

0
3 ¼ ðH1 þ �02

1 ÞX3; (A5)

Z3Z
y
3 ¼ �Z2

3 ¼ H1ðH1 þ �2
1Þ2;

Z0
3Z

0y
3 ¼ �Z02

3 ¼ H0
1ðH0

1 þ �02
1 Þ2:

(A6)

The products Xy
3Z3, Z

0
3X

y
3 , Y

y
2 Z3 and Z

0
3Y

y
2 are obtained by

the Hermitian conjugation of (A4) and (A5). They are
given by expressions of the same form but multiplied by

�1 because of the property Zy
3 ¼ �Z3, and with substitu-

tionsH1 ! H0
1, X3 ! Xy

3 and Y2 ! Yy
2 . Relations (A6) are

needed for computing the superalgebraic structures in the
case of alternative choices of the grading operator.
In the n ¼ 1 isospectral case �1 ¼ �0

1, because of reduc-
tion (4.1), some relations are changed for

�X1
�Xy
1 ¼ H1 þ C2; �Xy

1
�X1 ¼ H0

1 þ C2; (A7)

�X1Y
y
2 ¼ Z3 þ CðH1 þ �2

1Þ;
Y2

�Xy
1 ¼ �Z3 þ CðH1 þ �2

1Þ;
(A8)

9Reflectionless n-soliton potentials of a general form like that
analyzed in Sec. VI for n ¼ 2 also appear in stability equations
for kink solutions in certain (1þ 1)-dimensional nonlinear field
models; see Ref. [36].
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Z3
�X1 ¼ �X1Z

0
3 ¼ CðH1 þ �2

1Þ �X1 � ðH1 þ C2ÞY2; (A9)

Z3Y2¼Y2Z
0
3¼ðH1þ�2

1ÞððH1þ�2
1Þ �X1�CY2Þ: (A10)

The products �Xy
1Z3 ¼ Z0

3
�Xy
1 and Yy

2 Z3 ¼ Z0
3Y

y
2 are

obtained by the Hermitian conjugation of (A9) and (A10)
as in the nonisospectral case.

For a pair of n-soliton systems with complete isospec-
trality breaking the basic products are

Y2nY
y
2n ¼ PnP

0
n; X2nþ1X

y
2nþ1 ¼ HnPnP

0
n; (A11)

X2nþ1Y
y
2n ¼ �Y2nX

y
2nþ1 ¼ P0

nZ2nþ1; (A12)

Z2nþ1Y2n¼PnX2nþ1; Y2nZ
0
2nþ1¼P0

nX2nþ1; (A13)

Z2nþ1X2nþ1 ¼ �HnPnY2n;

X2nþ1Z
0
2nþ1 ¼ �HnP

0
nY2n;

(A14)

Z2
2nþ1 ¼ �HnPn; (A15)

where Pn ¼ Q
n
l¼1ðHn þ �2

l Þ, P0
n ¼ Q

n
l¼1ðHn þ �02

l Þ.
Other products of the type Xy

2nþ1Y2n etc. are obtained

from these ones via the change �j $ �0
j, �j $ �0j with

taking into account that Xy
2nþ1 ¼ �X0

2nþ1, Y
y
2n ¼ Y0

2n and

Zy
2nþ1 ¼ �Z2nþ1.

For three cases (6.19), (6.22), and (6.26) of n ¼ 2 pairs
with partial isospectrality breaking, the basic product rela-
tions are obtained from (A11)–(A15) by taking into
account the reduction relations (6.21), (6.25), and (6.28).

The latter are presented in the unified form X5 ¼ h�i
�Xl
3 �

ClY4, and then for each of three cases, distinguished by the
index l ¼ 1, 2, 3 for (6.19), (6.22), and (6.26), respectively,
we have

�Xl
3
�Xly
3 ¼ hClh�d

h�0
d
; Y4Y

y
4 ¼ h2�i

h�d
h�0

d
; (A16)

�X l
3Y

y
4 ¼ h�0

d
ðZ5 þ Clh�i

h�d
Þ;

Y4
�Xly
3 ¼ h�0

d
ð�Z5 þ Clh�i

h�d
Þ;

(A17)

Z5Y4 ¼ h�i
h�d

ðh�i
�Xl
3 � ClY4Þ;

Y4Z
0
5 ¼ h�i

h�0
d
ðh�i

�Xl
3 � ClY4Þ;

(A18)

Z5
�Xl
3 ¼ h�d

ðClh�i
�Xl
3 � hClY4Þ;

�Xl
3Z

0
5 ¼ h�0

d
ðClh�i

�Xl
3 � hClY4Þ;

(A19)

where h� ¼ H2 þ �2, � ¼ �i, �d, �
0
d, Cl.

The n ¼ 2 partial isospectrality breaking case �1 ¼ �0
1,

�2 � �0
2, �1 ¼ �01, shown in Fig. 4(a), is characterized by

the following basic products of the intertwining and Lax
operators:

�Y A
2
�YAy
2 ¼ h�2

h�0
2
; X5X

y
5 ¼ H2h

2
�1
h�2

h�0
2
; (A20)

X5
�YAy
2 ¼ � �YA

2X
y
5 ¼ hk02Z5;

�YAy
2 X5 ¼ �Xy

5
�YA
2 ¼ h�0

2
Z0
5;

(A21)

Z5X5 ¼ �H2h
2
�1
h�2

�YA
2 ; X5Z

0
5 ¼ �H2h

2
�1
h�0

2

�YA
2 ;

(A22)

Z5
�YA
2 ¼ h�2

X5; �YA
2Z

0
5 ¼ h�0

2
X5: (A23)

For the n ¼ 2 isospectral case with a common n ¼ 1
virtual system, when �1 ¼ �0

1, �2 ¼ �0
2, �1 ¼ �01, �2 � �02,

the basic products are

�YA
2
�YAy
2 ¼ h2�2

; �YAy
2

�YA
2 ¼ h02�2

;

�XB
3
�XBy
3 ¼ hC2h

2
�1
; �XBy

3
�XB
3 ¼ h0C2h

02
�1
;

(A24)

�XB
3
�YAy
2 ¼ Z5 þ C2h�1

h�2
;

�YA
2
�XBy
3 ¼ �Z5 þ C2h�1

h�2
;

(A25)

�XBy
3

�YA
2 ¼ �Z0

5 þ C2h0�1
h0�2

;

�YAy
2

�XB
3 ¼ Z0

5 þ C2h0�1
h0�2

;
(A26)

Z5
�YA
2 ¼ �YA

2Z
0
5 ¼ h2�2

�XB
3 � C2h�1

h�2
�YA
2 ;

�YAy
2 Z5 ¼ Z0

5
�YAy
2 ¼ C2h0�1

h0�2
�YAy
2 � h02�2

�XBy
3 ;

(A27)

Z5
�XB
3 ¼ �XB

3Z
0
5 ¼ C2h�1

h�2
�XB
3 � hC2h

2
�1

�YA
2 ;

�XBy
3 Z5 ¼ Z0

5
�XBy
3 ¼ h0C2h

02
�1

�YAy
2 � C2h0�1

h0�2
�XBy
3 :

(A28)

Here h�i
¼ H2 þ �2

i , h0�i
¼ H0

2 þ �2
i i ¼ 1, 2, hC2 ¼

H2 þ C22, h0C2 ¼ H0
2 þ C22, and C2 ¼ �2 coth�2ð�2 � �02Þ.

Relations for the same isospectral case but with �2 ¼ �02,
�1 � �01 are obtained from these ones by interchanging
A $ B, �1 $ �2, �1 $ �2, �

0
1 $ �02 and by, correspond-

ingly, changing C2 ! C1.
In the generic n ¼ 2 isospectral case, �1 ¼ �0

1, �2 ¼ �0
2,

�1 � �01, �2 � �02, denoting �Xð1Þ
3 ¼ �XA

3 and �Xð2Þ
3 ¼ �XB

3 , we

have

�XðiÞ
3

�XðjÞy
3 ¼ hihjhij � ðCi � CjÞZ5;

�XðiÞy
3

�XðjÞ
3 ¼ h0ih0jh0ij þ ðCi � CjÞZ0

5;
(A29)

Z5
�XðiÞ
3 ¼ �XðiÞ

3 Z0
5

¼ � 1

�C
ðð�1Þih1h2h12 �XðiÞ

3 þ �ijhiih
2
j
�XðjÞ
3 Þ; (A30)

�XðiÞy
3 Z5¼Z0

5
�XðiÞy
3

¼ 1

�C
ðð�1Þih01h02h012 �XðiÞy

3 þ�ijh0iih02j �XðjÞy
3 Þ; (A31)
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where hi ¼ H2 þ �2
i , h0i ¼ H0

2 þ �2
i , hij ¼ H2 þ CiCj,

h0ij ¼ H0
2 þ CiCj, �C ¼ C2 � C1, and no summation in i,

j ¼ 1, 2 is implied on the right-hand sides.
For the n ¼ 2 special isospectral case C1 ¼ C2,

X̂1X̂
y
1 ¼ hC1 ; X̂y

1 X̂
¼
1 h

0
C1
;

Y4Y
y
4 ¼ h2�1

h2�2
; Yy

4 Y4 ¼ h02�1
h02�2

;
(A32)

X̂1Y
y
4 ¼ Z5 þ C1h�1

h�2
; Y4X̂

y
1 ¼ �Z5 þ C1h�1

h�2
;

(A33)

Z5X̂1 ¼ X̂1Z
0
5 ¼ C1h�1

h�2
X̂1 � hC1Y4;

X̂y
1Z5 ¼ Z0

5X̂
y
1 ¼ h0C1Y

y
4 � C1h0�1

h0�2
X̂y
1 ;

(A34)

Y4Z
0
5 ¼ Z5Y4 ¼ h�1

h�2
ðh�1

h�2
X̂1 � C1Y4Þ;

Z0
5Y

y
4 ¼ Yy

4 Z5 ¼ h0�1
h0�2

ðC1Yy
4 � h0�1

h0�2
X̂y
1 Þ;

(A35)

where h�i
¼ H2 þ �2

i , h0�i
¼ H0

2 þ �2
i i ¼ 1, 2, hC1 ¼

H2 þ C21, h
0
C1

¼ H0
2 þ C21.
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