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We construct the isospin particle system on n-dimensional quaternionic projective spaces in the

presence of the Belavin-Polyakov-Schwarz-Tyupkin instanton by the reduction from the free particle

on ð2nþ 1Þ-dimensional complex projective space. Then we add to this system a ‘‘quaternionic oscillator

potential’’ and show that this oscillatorlike system is superintegrable. We show that, besides the analogs of

quadratic constants of motion of the spherical (Higgs) and CPn oscillators, it possesses the third-order

constants of motion, which are functionally independent from the quadratic ones.
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I. INTRODUCTION

Hopf maps play a distinguished role in theoretical phys-
ics, appearing, sometimes in a hidden way, in most of the
key models. However, even the constructions related with
the second Hopf map, particularly, quaternionic projective
spaces HPn, are not properly studied or/and used. In fact,
explicitly quaternionic projective spaces appear in the
construction of the multi-instanton of self-dual Yang-
Mills theory only [1]. Even the classical and quantum
mechanical systems on quaternionic projective spaces
(except for the systems on HP1, i.e., the four-dimensional
sphere) were not paid enough attention. On the other hand,
there is no doubt that on these spaces, one can easily
construct the integrable systems of isospin particles
interacting with instantons: due to the existence of the
well-known fibration S2 ! CP2nþ1 ! HPn, the inclusion
of instanton fields should not destroy the symmetries of
the SpðnÞ-invariant systems on HPn. This is similar to
the well-known preservation of the symmetries of
UðNÞ-invariant systems on complex projective spaces after
inclusion of a constant magnetic field, which reflects the
existence of the fibration S1 ! S2nþ1 ! CPn related with
the first Hopf map. Moreover, it is obvious that onHPn one
can define the spðnþ 1Þ-invariant ‘‘quaternionic Landau
problem,’’ i.e., a free particle interacting with a constant
[Belavin-Polyakov-Schwarz-Tyupkin (BPST)] instanton
field, which is the quaternionic analog of the ‘‘Landau
problem’’ on CPn: a suðnþ 1Þ-invariant system of
particles interacting with a constant magnetic field. The
simplest, one-dimensional quaternionic Landau problem
on HP1 ¼ S4 [2] has been used previously for developing
the model of the ‘‘four-dimensional Hall effect’’ [3] and,
by this reason, it attracted much attention (see, e.g.,
Ref. [4] and the brief review [5]). Nevertheless, all these
studies were restricted to the systems on HP1 ¼ S4, and
there was no attempt to consider even the higher-
dimensional quaternionic Landau problem. Although,
technically this should not be a difficult problem, since

the fibration S2 ! CP2nþ1 ! HPn allows one to construct
the lift (or reformulate it) from the free particle systems
on the complex projective space CP2nþ1. For the n ¼ 1
case, this fibration was widely explored in the study of the
four-dimensional Hall effect, while the S4-Landau problem
in itself was explicitly constructed by the Hamiltonian
reduction of the free particle on CP3 in Ref. [6]. Below,
we will fill the mentioned gap, presenting the detailed
description of the Hamiltonian reduction of the free particle
onCP2nþ1 to the quaternionic Landau problem onHPn (see
the Sec. III). Besides, we will present the superintegrable
analog of the oscillator on quaternionic projective spaces,
which respects the inclusion of a constant instanton field. In
contrast with spherical (Higgs) [7] and CPn [8] oscillators,
whose hidden symmetries are of the second order in mo-
menta, our model has additional constants of motion, which
are of the third order in momenta (see Sec. IV). In Sec. II we
describe the fibration S2 ! CP2nþ1 ! HPn.

II. CP2nþ1 ! HPn FIBRATION

In this section we formulate the fibration and define the
mathematical objects we are going to deal with.
First, let us notice that the definition of projective spaces

defines an infinite series of fibrations, the natural projec-
tions of which are called Hopf maps. Indeed, by definition,
the projective space over a field F (F ¼ C, H) is the set of
all the lines through the origin. A natural chart on this
manifold is given by the formula

qðkÞi ¼ viv
�1
k ; i; k ¼ 1; . . . ; nþ 1; (2.1)

where v defines coordinates of the corresponding Fnþ1 and

qðkÞi is the ith coordinate of the kth chart of the FPn. These
maps define two infinite families of tautological fibrations

S2
N�1 ! S2

Nðnþ1Þ�1 ! FPn; (2.2)

where 2N (N ¼ 1, 2) is the dimensionality of the
corresponding field F. Each first element of these families
is the famous Hopf fibration of sphere over sphere:
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S1 ! S3 ! S2; S3 ! S7 ! S4: (2.3)

In our research we are interested in the projectivization
of the second fibrations in Eq. (2.2). Namely, it is possible
to project the total space and the fiber of Eq. (2.2) with
N ¼ 2 using the projection of the corresponding fibration
with N ¼ 1 as a map, so that it will not affect the base.
After projectivization we will arrive to the following fiber
bundle:

S2 ! CP2nþ1 ! HPn: (2.4)

Now, let us pass to the explicit construction of these
fibrations. We start from the 2nþ 2-dimensional complex
plane C2nþ2 ’ Hnþ1 with complex coordinates � or qua-
ternionic ones: vi ¼ �2i�1 þ j�2i (i ¼ 1; . . . ; nþ 1). By
definition the coordinates

q� ¼ v�v
�1
nþ1 � v�

�vn

kvnk2
; � ¼ 1; . . . ; n (2.5)

define a chart on the quaternionic projective space HPn.
The inverse formulas look like as follows:

v� ¼ q�vnþ1 ¼ q�ð�2nþ1 þ j�2nþ2Þ ¼ �2��1 þ j�2�:

(2.6)

Multiplying the last equation by ��1
2nþ2, one finds

q�ðz2nþ1 þ jÞ ¼ z2��1 þ jz2�; (2.7)

where the quantities zr ¼ �r=�2nþ2 (r ¼ 1; . . . ; 2nþ 1)
define a chart on the complex projective space CP2nþ1. It
is clear that any coordinate of CP2nþ1 by itself defines a
chart on aCP1 ’ S2. In particular, one can consider as such
the last coordinate z2nþ1.

We can rewrite Eq. (2.7) in the following form:

z2��1 þ jz2� ¼ q�ðuþ jÞ; z2nþ1 ¼ u: (2.8)

In this form those relations define a natural projection of
the fibration (2.4)

The form of transition functions can be easily found
from the construction described above.

For our further consideration, it is convenient, instead of
the quaternionic coordinates q, to use complex coordinates
w which we introduce by the following formula:

q� ¼ w2��1 þ jw2�: (2.9)

In these coordinates Eq. (2.8) takes the following form:

z2��1 ¼ w2��1u� �w2�; z2� ¼ w2�uþ �w2��1;

z2nþ1 ¼ u: (2.10)

In order to unify the first two expressions, we introduce a
matrix � by the following formula:

ð���Þ ¼

" 0 0 0 . . .

0 " 0 0 . . .

0 0 " 0 . . .

. . . . . . . . . . . . . . .

0
BBBBB@

1
CCCCCA
; " ¼ 0 1

�1 0

 !
:

(2.11)

With this matrix we can rewrite Eq. (2.10) in the
following form:

z� ¼ uw� þ��� �w�; z2nþ1 ¼ z2nþ1 ¼ u

�; � ¼ 1; . . . ; 2n: (2.12)

Remark. From this point we will make a difference
between the upper and lower indices. We define w� with
the upper index, while its complex conjugate has a lower
one: �w�. The rule of raising and lowering the indices is

given via the matrix ��� and its inverse ���:

����
�� ¼ ��

�: (2.13)

Thus, we define

w� ¼ ���w
�; �w� ¼ ��� �w�: (2.14)

The contraction is done, as usual, between upper and lower
indices. So,

z�z ¼ z� �z� ¼ �z� �z
�: (2.15)

Now, using the above established relations between
inhomogeneous coordinates of complex and quaternionic
spaces, let us relate metrics on these spaces.

It is known that the natural metric on S2
Nðnþ1Þ�1 induces

the Fubini-Study metric on the corresponding projective
space:

ds2 ¼ dz �dz

1þ z�z
� ð�zdzÞðzd�zÞ

ð1þ z�zÞ2 : (2.16)

The nondegenerate transformation (2.12) defines a connec-
tion on the fibration (2.4). Indeed, replacing the coordinates
zi with ðq; uÞ transforms the Fubini-Study metric on
CP2nþ1 to the form

ds2 ¼ dq �dq

1þ q �q
� ð �qdqÞðd �qqÞ

ð1þ q �qÞ2 þ ðduþ AÞðd �uþ �AÞ
ð1þ u �uÞ2 ;

(2.17)

where

A ¼ j
ð �u� jÞ �qdqðuþ jÞ

1þ w �w

��������C

� uð �wdw� wd �wÞ � ð �w�d �wÞ � u2ðw�dwÞ
1þ w �w

: (2.18)

Here, qjC � 1=2ðq� {q{Þ denotes the complex part of the
quaternion q. In complex coordinates w, the metrics of
HPn reads
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g�
� ¼ ��

�

1þ w �w
� �w�w

� þ w� �w�

ð1þ w �wÞ2 : (2.19)

The complex projective space is a Riemannian symmet-
ric space. Indeed, each sphere of the total space in Eq. (2.4)
can be represented as a coset space

Uðnþ 1Þ=UðnÞ ’ S2nþ1: (2.20)

Reducing this by the global factor Uð1Þ, we find
SUðnþ 1Þ=UðnÞ ’ CP2nþ1: (2.21)

Thus, the isometries of the complex projective space form
the suðnþ 1Þ algebra. These isometries are defined, in the
given parametrization, by the following vector fields:

Ri ¼ @i þ �zið�z �@Þ;
Ji

j ¼ {ðzj@i � �zi �@
jÞ þ {�j

i ððz@Þ � ð �z �@ÞÞ: (2.22)

These are all we need to know about the transformation of
coordinates of the CPn.

Now, we are ready to construct a mechanical system
of a particle on HPn in the vector potential (2.18) by the
reduction of the free particle on CP2nþ1.

III. LANDAU PROBLEM ON HPn FROM A FREE
PARTICLE ON CP2nþ1

Let us show that the free particle on CP2nþ1 is immedi-
ately reduced to the particle on HPn in the presence of a
BPST instanton field (which is natural to call the ‘‘Landau
problem on HPn’’).

In accordance with Eq. (2.16), the free particle on
CP2nþ1 is defined by the Lagrangian

L0 ¼
_�z � _z

1þ z�z
� ð _�zzÞð _z �zÞ

ð1þ z�zÞ2 : (3.1)

In terms of Eq. (2.12), it reads

L ¼ _q _�q

1þ q �q
� ð �q _qÞð _�qqÞ

ð1þ q �qÞ2 þ
ð _uþ AÞð _�uþ �AÞ

ð1þ u �uÞ2 : (3.2)

In order to reduce it to the system on HPn, it is convenient
to give the Hamiltonian formulation of this system and
then perform the Hamiltonian reduction associated with
the Hopf map. Precisely, in the Hamiltonian language, the
free particle system on CPn is defined by the triple

ðH0 ¼ ðg�1Þijpi �p
j;

! ¼ dpi ^ dzi þ d �pi ^ d�zi; T�CP2nþ1Þ; (3.3)

where ðg�1Þij ¼ ð1þ z�zÞð�j
i þ �ziz

jÞ are the components
of the inverse Fubini-Study metric (2.16). This system
possesses the suð2nþ 2Þ symmetry algebra given by the
generators (2.22). These generators define the following
Noether constants of motion:

Ri ¼ pi þ �zið�z �pÞ;
Ji

j ¼ {ðzjpi � �zi �p
jÞ þ {�j

i ððzpÞ � ð�z �pÞÞ: (3.4)

We can extend the transformation (2.12) to the canonical
one by adding the following transformation rule for the
conjugated momenta:

p� ¼ �u

1þ u �u
�� þ 1

1þ u �u
���;

p2nþ1 ¼ pu � 1

1þ u �u
ð �uw��� � w� ���Þ: (3.5)

It is an exercise to check that the canonical transformation
(2.10) and (3.5) leads to the following form of the
Hamiltonian:

H0 ¼ ðg�1Þ�� �P�P� þ ð1þ u �uÞ2pu �pu; (3.6)

where we introduced the inverse metric to Eq. (2.19),

ðg�1Þ�� ¼ ð1þ w �wÞð��
� þ �w�w

� þ w� �w�Þ; (3.7)

and the covariant momenta

P� ¼ �� � { �w�

I3
1þ w �w

� w�

Iþ
1þ w �w

; (3.8)

with the suð2Þ generators I�, I3 defining the isometries
of S2,

I3 ¼ �{ðupu � �u �puÞ; Iþ ¼ �pu þ u2pu;

I� ¼ pu þ �u2 �pu; (3.9)

fI3; I�g ¼ �{I�; fIþ; I�g ¼ 2{I3: (3.10)

The Poisson brackets between the quantities P� read

fw�; P�g ¼ ��
� ; fP�; P�g ¼ �2

���

1þ w �w
Iþ;

fP�; �P
�g ¼ {

��
�I3

ð1þ w �wÞ2 : (3.11)

Besides, we have

fP�; Iþg ¼
�w�Iþ

1þw �w
; fP�; I�g ¼ � �w�I�

1þw �w
� 2{

w�I3
1þw �w

;

fP�; I3g ¼
{w�Iþ
1þw �w

: (3.12)

Let us also present, for completeness, the some other
relations as well:

fI3; pug ¼ �{pu; fIþ; pug ¼ 2upu; fI�; pug ¼ 0;

fP�; pug ¼ � pu

1þ w �w
ð �w� þ 2uw�Þ: (3.13)

It is easy to see that the Casimir operator of these suð2Þ
generators is precisely the Hamiltonian of a free particle
moving on S2, in Eq. (3.6) as a second summand:

I2 ¼ IþI� þ I23 ¼ ð1þ u �uÞ2pu �pu: (3.14)
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Obviously, it commutes with the Hamiltonian and defines
an integral of motion of the system.

Our goal is to perform the Hamiltonian reduction by this
constant of motion. For this purpose we should fix the
ð4ð2nþ 1Þ � 1Þ-dimensional level surface of I2, by putting

I2 ¼ s2; (3.15)

and then factorize it, by the vector flow fI2; g, to the
ð8nþ 2Þ ¼ ð2 � 4nþ 2Þ-dimensional phase space. It is
clear that ð8nþ 2Þ functions commuting with I will play
the role of local coordinates on the reduced coordinates. In
order to find the Poisson brackets on the reduced phase
space, we should simply calculate the Poisson brackets
between these ‘‘I-invariant’’ functions and then restrict
them on the level surface (3.15). Similarly, for the con-
struction of the reduced Hamiltonian, we should express
the initial Hamiltonian in terms of I and these I-invariant
functions and then restrict the Hamiltonian to the level
surface as well (see, e.g., Ref. [9]). Let us find these
I-invariant functions, playing the role of coordinates of
the reduced phase space. The 8n coordinates of the reduced
phase space can be chosen to be P�,w

� given by Eqs. (3.8)

and (2.12). For finding the remaining two coordinates, we
should simply resolve the condition (3.14) preserving the
Poisson brackets (3.10):

Iþ ¼ s
2x

1þ x �x
; I3 ¼ s

1� x �x

1þ x �x
; s 2 R; x2 C:

(3.16)

This yields

x ¼ Iþ
sþ I3

: fx; �xg ¼ i

2s
ð1þ x �xÞ2;

fP�; xg ¼
�w�x

1þ w �w
� {

x2 �w�

1þ w �w
;

fP�; �xg ¼ � �w� �xþ {w�

1þ w �w
; fw�; xg ¼ fw�; �xg ¼ 0:

(3.17)

It is seen that we have reduced the phase space T�CP2nþ1

to the T�HPn � S2. The latter defines the phase space of
the suð2Þ-isospin particle on HPn interacting with the
BPST instanton field. Its Poisson brackets are defined by
the relations (3.11) and (3.17), or, equivalently, by (3.10),
(3.11), and (3.12).

The Hamiltonian of the free particle onCP2nþ1 given by
Eq. (3.3) [or, equivalently, by Eq. (3.6)], results, upon
reduction, in the one on HPn,

HHPn ¼ ðg�1Þ�� �P�P� þ s2: (3.18)

So, we reduced the free particle system on T�CP2nþ1 to the
isospin particle on HPn interacting with the BPST instan-
ton field. The subset of the Noether constants of motion
(3.4) commuting with Eq. (3.14) is reduced on HPn and

forms the Spðnþ 1Þ algebra of the isometries of the
reduced system.
These reduced generators are given by the expressions

L�
� ¼ J�

� þ J�� ¼ {ðw��� � �w� ���Þ
þ {ðw��

� � �w� ���Þ; (3.19)

L3 ¼ J2nþ1
2nþ1 ¼ I3 þ {

2
ðð�wÞ � ð �� �wÞÞ;

L� ¼ R2nþ1 ¼ ð ���w�Þ þ I�; Lþ ¼ �L�; (3.20)

L� ¼ {J2nþ1
� � R� ¼ ��� � ðð ���w�Þ � I�Þ �w�

þ ðð�wÞ � {I3Þw�: (3.21)

The 2nð2nþ 1Þ=2 generators L�� and three generators

L�, L3 form the spðnÞ � spð1Þ algebra, and these two sets
of generators, together with the 4n generators L�, form the

2n2 þ 5nþ 3-dimensional algebra of the isometries of
HPn, that is spðnþ 1Þ:

fL��; L��g ¼ �{ð���L�� þ���L��

þ���L�� þ���L��Þ; (3.22)

fLþ; L�g ¼ 2{L3; fL3; L�g ¼ �{L�;

fL��; L�g ¼ fL��; L3g ¼ 0; (3.23)

fL�;L�g ¼ 0; fL�; Lþg ¼ �L�; fL�; L3g ¼ {

2
L�;

fL�;L�
�g ¼ �{��

�L� � {L��
��; (3.24)

fL�; L�g ¼ 2���L�; f �L�; �L�g ¼ �2���Lþ;

fL�; �L�g ¼ {L�
� þ 2{�

�
� L3: (3.25)

The Casimir of spðnþ 1Þ is precisely the Hamiltonian
on HPn

HHPn ¼ L�
�L�

� þ 4L� �L� þ 8ðLþL� þ L2
3Þ

4
þ I2:

(3.26)

Hence, we established a complete correspondence between
the SUð2Þ (classical) Landau problem on HPn and the free
particle system on CP2nþ2.

IV. OSCILLATOR

In the previous section, we considered the free particle
on the n-dimensional quaternionic projective space HPn

and demonstrated that the inclusion of the SUð2Þ instanton
preserves its whole symmetry algebra spðnþ 1Þ. In fact,
HPn seems to be a natural candidate for the role of con-
figuration spaces of the (super)integrable systems interact-
ing with the BPST instanton field. At least, on these spaces
there should exist the proper generalizations of the systems
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on R4 respecting the inclusion of the BPST instanton. The
simplest system of this sort, besides the free particle, is the
4n-dimensional isotropic oscillator. How can we construct
its appropriate analog on HPn?

Let us consider a more complicated integrable system on
HPn, that is, the generalization of the oscillator, given by
the following expression:

Hosc ¼ HHPn þ!2
0w �w; (4.1)

where the first term is simply the free particle Hamiltonian
on HPn given by Eq. (3.18).

This potential has been suggested in Refs. [9,10] in
analogy with the earlier constructed oscillator potential
on CPn. In our opinion, it is deductive to present here
the speculations which lead to the suggestion of the above
system. Namely, in Ref. [8] two of the authors constructed
the model of the oscillator on CPn requiring that it should
have the hidden symmetries, resulting, in the flat limit, in
the ordinary oscillator on Cn. Such a model was found to
be unique. On CP1 it was found to be the well-known
Higgs oscillator, while for n > 1 it was defined by the
potential

VCPn ¼ !2
0z�z; (4.2)

with zi being the inhomogeneous coordinates on CPn.
Besides the uðnÞ Nöther constants of motion defined by
the second expression in Eq. (3.4), this system was found to
have hidden constants of motion (for n > 1) given by the
expression

Iij ¼ �RiRj þ!2
0z

i �zj; (4.3)

where Ri are the translation generators defined by the
first expression in Eq. (3.4). Surprisingly, it was found
that the inclusion of a constant magnetic field preserves
all symmetries (and, respectively, superintegrability) of the
system. Moreover, it was found that even on CP1, this
potential is a distinguished one. Namely, though the system
is not superintegrable in this case, it is exactly solvable and
preserves the exact solvability property after inclusion of
the constant magnetic field, while the Higgs oscillator on
S2 ¼ CP1, being a superintegrable system, looses the
superintegrability (and even the exact solvability) property
upon inclusion of a constant magnetic field. This allowed
the authors to call that system ‘‘CPn oscillator’’ for any n.
It was further studied in Ref. [11].

Keeping in mind that the potential of the Higgs
oscillator on the n-dimensional sphere (to be more precise,
on the real projective space) reads, in inhomogeneous
coordinates,

VRPn ¼ !2
0y

2

2
; yi ¼ ui

u0
; (4.4)

with ui, u0 being coordinates of the ambient Rn space
(ðuiÞ2 þ ðu0Þ2 ¼ 1), the authors of Refs. [9,10] claimed
that the oscillator potential on HPn should be given by

the same expression as in the case ofCPn, with the replace-
ment of inhomogeneous complex coordinates with quater-
nionic ones. And this system has to respect the inclusion of
the BPST instanton field. They have checked this in the
simplest case of HPn ¼ S4 and found that it is indeed the
case. However, in contrast with the Higgs oscillator on
RP1 ¼ S1, and with the CP1ð¼ S2Þ oscillator, the spec-
trum of the HP1 oscillator (and of its hyperbolic analog
[10]) system was found to be degenerate, which is a precise
indication of the existence of hidden symmetries.
Unfortunately, no explanation of these symmetries was
offered there. Moreover, this claim has never been checked
for nontrivial (higher-dimensional) cases.
Now, let us show that the Hamiltonian (4.1), together

with Poisson brackets (3.10), (3.11), and (3.12), defines a
well-defined oscillator system on HPn.
It is clear that the added oscillator potential does not

commute with the coset generators L�, �L�, while the rest

of the spðnÞ � spð1Þ generators L�
�, L�;3 remain as

symmetries of the system. However, the system possesses
a set of hidden symmetries:

I�
� ¼ L� �L� � �L�L� þ!2

0ðw� �w� � �w�w�Þ; (4.5)

which are constructed by analogy with the corresponding
integrals for the CPn oscillator (4.3). These quantities
commute with L�;3 and transform linearly with respect to

L��:

fI��;L��g ¼ {ð���I�� þ���I�� ����I�� ����I��Þ;
fL��;L�;3g ¼ fI��;L�;3g ¼ 0: (4.6)

However, in contrast to the case of the CPn oscillator,
where the symmetries of the system form a quadratic
algebra, in the case of the HPn oscillator, the Poisson
brackets between the hidden symmetry generators cannot
be expressed through the combination of L and I and give
us a new set of integrals of motion, which are, already,
cubic in momenta:

fI��; I��g ¼ {ðI��L�� þ I��L�� � I��L�� � I��L��Þ
þ���S�� þ���S�� ����S�� ����S��;

(4.7)

where

S�� ¼ 2L�L�L� þ 2 �L�
�L�Lþ þ 2{L3ðL�

�L� þ L�
�L�Þ

�!2
0ðL�� þ 2ðw�w�Lþ þ �w� �w�L�

� {L3ðw� �w� þ w� �w�ÞÞÞ (4.8)

defines the new set of cubic constants of motion. Their
Poisson brackets yield an additional, last set of constants of
motion,

T�� ¼ I�ð ���w� � ���w�Þ þ Iþð�� �w� � �� �w�Þ
� {I3ð��w� � ��w� þ ��� �w� � ��� �w�Þ: (4.9)
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Let us notice that the constants of motion (4.8) and (4.9)
have no analogs neither in Higgs nor in CPn oscillator
models. It seems that precisely these constants of motion
are responsible for the degeneracy of the spectrum of the
HP1 oscillator observed in Ref. [10].

Finally, let us notice that, repeating the speculations
given for the CPn oscillator, we can define the singular
version of the HPn oscillator respecting the inclusion of
the BPST instanton field,

V ¼ �2

w �w
þ!2

0w �w: (4.10)

The classical and semiclassical analysis of its CP1 analog
has been carried out in Ref. [12].

V. CONCLUSION

In this paper we constructed two basic one-particle
integrable systems on quaternionic projective spaces,
which are the quaternionic Landau problem on HPn, i.e.,
the particle moving in the presence of an instanton field,
and the HPn oscillator (interacting with the instanton
field). Both systems are superintegrable; the first one pos-
sesses the Spðnþ 1Þ symmetry algebra, while the symme-
try algebra of the second one is highly nonlinear, and it still
needs to be calculated. Note that both systems can be easily
lifted to the ones on the complex projective space, where

the instanton field is ‘‘absorbed’’ in the spatial coordinates.
The obvious next step is to consider the respective quantum
mechanical systems for n > 1 (for the n ¼ 1 case, it was
considered in earlier works). With the quantum mechanics
at hand, one can consider, e.g., the ‘‘quantum Hall effect on
HPn’’, in analogy with the ‘‘quantum Hall effect on CPn’’,
considered by Karabali and Nair (see Refs. [4,5]). A more
detailed description of the ‘‘singular HPn oscillator’’
defined by the potential (4.10) and the construction and
proper generalization of the Coulomb system are also in
order. Supersymmetric extensions of these systems, which
are similar to those on complex projective spaces, are of
special importance [13]. However, the natural desire to
obtain them by the Hamiltonian reduction from the com-
plex projective space seems to be technically irrelevant
[14], so that one should try to do it in a less obvious way.
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