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We construct a simple class of compactified five-dimensional metrics which admits closed timelike

curves (CTCs), and derive the resulting CTCs as analytic solutions to the geodesic equations of motion.

The associated Einstein tensor satisfies all the null, weak, strong and dominant energy conditions. In

particular, no negative-energy ‘‘tachyonic’’ matter is required. In extra-dimensional models where gauge

charges are bound to our brane, it is the Kaluza-Klein modes of gauge singlets that may travel through the

CTCs. From our brane point of view, many of these Kaluza-Klein modes would appear to travel backward

in time. We give a simple model in which time-traveling Higgs singlets can be produced by the LHC,

either from decay of the Standard Model Higgs or through mixing with the Standard Model Higgs. The

signature of these time-traveling singlets is a secondary decay vertex preappearing before the primary

vertex which produced them. The two vertices are correlated by momentum conservation. We demonstrate

that preappearing vertices in the Higgs singlet-doublet mixing model may well be observable at the LHC.
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I. INTRODUCTION

Time travel has always been an ambitious dream in
science fiction. However, the possibility of building a
time machine could not even be formulated as science until
the discovery of special and general relativity by Einstein.
From the early days of general relativity onward, theoreti-
cal physicists have realized that closed timelike curves
(CTCs) are allowed solutions of general relativity, and
hence time travel is theoretically possible. Many proposals
for CTCs in a familiar four-dimensional Universe have
been discussed in the literature. In chronological order
(perhaps not the best listing scheme for CTC proposals),
proposals include van Stockum’s rotating cylinder [1]
(extended much later by Tipler [2]); Gödel’s rotating uni-
verse [3]; Wheeler’s spacetime foam [4]; Kerr and Kerr-
Newman’s black hole event horizon interior [5]; Morris,
Thorne and Yurtsever’s traversable wormholes [6]; Gott’s
pair of spinning cosmic strings [7]; Alcubierre’s warp drive
[8]; and Ori’s vacuum torus [9]. More additions to the
possibilities continue to unfold [10].

Common pathologies associated with these candidate
CTCs are that the required matter distributions are often
unphysical, tachyonic, unstable under the backreaction of
the metric, or violate one or more of the desirable null,
weak, strong and dominant energy conditions [11]. These
common pathologies have led Hawking to formulate his
‘‘chronology protection conjecture’’ [12], which states that
even for CTCs allowed by general relativity, some funda-
mental law of physics forbids their existence so as to
maintain the chronological order of physical processes.
The empirical basis for the conjecture is that so far the
human species has not observed noncausal processes. The

logical basis for the conjecture is that we do not know how
to make sense of a noncausal Universe.
The possibility of time travel leads to many paradoxes.

The most famous paradoxes include the ‘‘grandfather’’ and
‘‘bootstrap’’ paradoxes [11]. In the grandfather paradox,
one can destroy the necessary initial conditions that lead to
one’s very existence; while in the bootstrap paradox, an
effect can be its own cause. A further paradox is the
apparent loss of unitarity, as particles may appear ‘‘now,’’
having disappeared at another time ‘‘then,’’ and vice versa.
However, after almost two decades of intensive research on
this subject, Hawking’s conjecture remains a hope that is
not mathematically compelling. For example, it has been
shown that there are points on the chronology horizon
where the semiclassical Einstein field equations, on which
Hawking’s conjecture is based, fail to hold [13]. This and
related issues have led many physicists to believe that the
validity of chronology protection will not be settled until
we have a much better understanding of gravity itself,
whether quantizable or emergent. In related work, some
aspects of chronology protection in string theory have been
studied in Refs. [14–17].
Popular for the previous decade has been the idea of

Arkani-Hamed-Dimopoulos-Dvali (ADD) [18] that the
weakness of gravity on our 4D brane might be explained
by large extra dimensions. A lowered Planck mass is
accommodated, with field strengths diluted by the extra
dimensions as given by Gauss’s law. The hope is that low-
scale gravity may ameliorate or explain the otherwise fine-
tuned hierarchy ratio Mweak=MPlanck. In the ADD scenario,
all particles with gauge charge, which include all of the
Standard Model (SM) particles, are open strings with
charged endpoints confined to the brane (our 4D space-
time). Gauge singlets, which include the graviton, are
closed strings which may freely propagate throughout the
brane and bulk (the extra dimensions). After all, wherever
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there is spacetime, whether brane or bulk, there is
Einstein’s gravity. Gauge singlets other than the graviton
are speculative. They may include sterile neutrinos and
scalar singlets. Due to mixing with gauge nonsinglet par-
ticles, e.g., active neutrinos or SM Higgs doublets, respec-
tively, sterile neutrinos or scalar singlets will attain a
nongravitational presence when they traverse the brane.

A generic feature in this ADD picture is the possibility
of gauge singlets taking ‘‘shortcuts’’ through the extra
dimensions [19–23], leading to superluminal communica-
tions from the brane’s point of view. The extra dimensions
could also be warped [24]. Of particular interest are the so-
called asymmetrically warped spacetimes [25] in which
space and time coordinates carry different warp factors.
Scenarios of large extra dimensions with asymmetrically
warped spacetimes are endowed with superluminal
travel—a signal, say a graviton, from one point on the
brane can take a ‘‘shortcut’’ through the bulk and later
intersect the brane at a different point, with a shorter transit
time than that of a photon traveling between the same two
points along a brane geodesic. This suggests that regions
that are traditionally ‘‘outside the horizon’’ could be caus-
ally related by gravitons or other gauge singlets. Exactly
this mechanism has been invoked as a solution to the
cosmological horizon problem without inflation [26].
Although this leads to an apparent causality violation
from the brane’s point of view, the full 5D theory may be
completely causal. Superluminal travel through extra-
dimensional shortcuts generally doesn’t guarantee a
CTC. To obtain a CTC, one needs the light cone in a
t-versus-r diagram to tip below the horizontal r axis for
part of the path. Then, for this part of the path, travel along
r is truly progressing along negative time. When the posi-
tive time part of the path is added, one has a CTC if the net
travel time is negative.

Recently, there was an exploratory attempt to find a CTC
using a spacetime with two asymmetrically warped extra
dimensions [27]. In this work, it was demonstrated that
paths exist which in fact are CTCs. However, these con-
structed paths are not solutions of geodesic equations. The
construction demonstrated the existence of CTCs in prin-
ciple for a class of extra-dimensional metrics, but did not
present CTCs which would actually be traversed by parti-
cles. Since geodesic paths minimize the action obtained
from a metric, the conjecture in Ref. [27] was that the same
action that admits constructed paths with negative or zero
time admits geodesic paths with even greater negative (or
zero) time.

The ambitions of this article are threefold: First of all,
we seek a class of CTCs embedded in a single compactified
extra dimension. We require the CTCs to be geodesic
paths, so that physical particles will become negative-
time travelers. Secondly, we ensure that this class of
CTCs is free of undesirable pathologies. Thirdly, we ask
whether particles traversing these CTC geodesics may

reveal unique signatures in large detectors such as
ATLAS and CMS at the LHC.
As we demonstrate in this article, we have successfully

found a class of 5D metrics which generates exactly solv-
able geodesic equations whose solutions are in fact CTCs.
We adopt an ADD framework where only gauge singlet
particles (gravitons, sterile neutrinos, and Higgs singlets)
may leave our 4D brane and traverse the CTC embedded in
the extra dimension. In this way, the standard paradoxes
(described below) are ameliorated, as no macro objects can
get transported back in time. Scalar gauge singlets, e.g.,
Higgs singlets, mixed or unmixed with their gauge non-
singlet siblings, e.g., SM Higgs doublets, may be produced
and detected at the LHC. The signature of negative-time
travel is the appearance of a secondary decay or scattering
vertex earlier in time than the occurrence of the primary
vertex which produces the time-traveling particle. The two
vertices are associated by overall momentum conservation.
Realizing that the grandfather, bootstrap, and unitarity

paradoxes may be logically disturbing, we now discuss the
paradoxes briefly. First of all, it bears repeating that in the
ADD picture, it is only gauge-singlet particles that may
travel CTCs. No claims of human or robot transport back-
wards through time are made. And while the paradoxes are
unsettling, as was/is quantum mechanics, we think that it is
naive to preclude the possibility of time travel on the
grounds of human argument/preference. The paradoxes
may be but seeming contradictions resulting from our
ignorance of some fundamental laws of physics which in
fact enforce consistency [28]. For instance, in Feynman’s
path integral language, one should sum over all possible
globally defined histories. It is possible that histories lead-
ing to paradoxes may contribute little or nothing to this
sum. In other words, while the grandfather paradox is
dynamically allowed by Einstein’s field equations, it may
be kinematically forbidden due to the inaccessibility of
self-contradicting histories in the path integral [29–34]. In
the bootstrap paradox, the information, events, or objects
in the causal loop do not seem to have an identifiable cause.
The entities appear as if they were eternally existing, with
the causation being pushed back to the infinite past. But the
logic of the bootstrap paradox does not seem to preclude
the possibility of time travel in any compelling manner.
The unitarity paradox is unsettling as it seems to suggest

that the past can get particles from the future ‘‘for free.’’ If
nature respects unitarity as one of her most fundamental
principles, she may have a consistent way (unknown at
present) to implement it even in the face of causality
violation. It is also conceivable that nature sacrifices uni-
tarity. Precedent seems to exist in quantum mechanics:
the ‘‘collapse’’ of a wave function, at the core of the
Copenhagen interpretation of quantum mechanics, is not
a unitary process, for such evolution has no inverse—one
cannot un-collapse a collapsed wave function. The ‘‘many
worlds’’ interpretation restores unitarity in a nonfalsifiable
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way. Perhaps there is a similar point of view lurking behind
CTCs. While it has been shown that when causality is
sacrificed in interacting field theories, then one necessarily
loses perturbative unitarity [31–33] (traceable to the fact
that the time-ordering assignment in the Feynman propa-
gator is ambiguous on spacetimes with CTCs). It has also
been proposed that just this sacrifice of unitarity be made in
a ‘‘generalized quantum mechanics’’ [35]. And again, in
the class of CTCs we consider, paradox considerations,
such as unitarity violation, apply only to the gauge-singlet
sector.

Even readers who do not believe in the possibility of
time travel may still find aspects of this article of intellec-
tual interest. The process of exploring time travel may
provide a glimpse of the ingredients needed to complete
Einstein’s gravity. This completion may require a quan-
tized or emergent theory of gravity, and/or higher dimen-
sions, and/or other. Furthermore, we will propose specific
experimental searches for time travel, and so stay within
the realm of falsifiable physics.

II. A CLASS OF METRICS ADMITTING CLOSED
TIMELIKE CURVES

The success of the ADDmodel inspires us to think about
the possibility of constructing viable CTCs by the aid of
extra dimensions. With the criteria of simplicity in mind,
we choose a time-independent metric and invoke only a
single compactified spatial extra dimension. We consider
the following form for the metric:

d�2 ¼ �ijdx
idxj þ dt2 þ 2gðuÞdtdu� hðuÞdu2; (2.1)

where i, j ¼ 1, 2, 3, �ij is the spatial part of the

Minkowskian metric, and u is the coordinate of a spatial
extra dimension. For convenience, we set the speed of light
c ¼ 1 on the brane throughout the entire article. As guided
by the wisdom from previous proposals of CTCs, such as
Gödel’s rotating universe [3], we have adopted a nonzero
off-diagonal term dtdu for a viable CTC. Another sim-
plicity of the above 5D metric is that its 4D counterpart is
completely Minkowskian. The determinant of the metric is

Det � Det½g��� ¼ g2 þ h: (2.2)

Aweak constraint arises from the spacelike nature of the u
coordinate, which requires the signature Det> 0 for the
whole 5D metric. In turn this requires that g2 þ h > 0
for all values of u, i.e., hðuÞ>�g2ðuÞ at all u. We nor-
malize the determinant by requiring the standard
Minkowskian metric on the brane, i.e., Detðu ¼ 0Þ ¼
g2ð0Þ þ hð0Þ ¼ þ1.

Since we have never observed any extra dimension
experimentally, we assume that it is compactified and has
the topology S1 of a one-sphere (a circle). Due to this
periodic boundary condition, the point uþ L is identified
with u, where L is the size of the extra dimension. We do

not specify the compactification scale L of the extra di-
mension at this point, as it is irrelevant to our construction
of the CTCs. A phenomenologically interesting number is
L * 1= TeV since this opens the possibility of new effects
at the LHC. We will adopt this choice in the discussion of
possible phenomenology in Sec. VIII.
In the coordinates fx�; ug, our compactified metric with

an off-diagonal term gðuÞ is reminiscent of a cylinder
rotating in u space, with axis parallel to the brane. Again,
this geometry is reminiscent of Gödel’s construction or the
van Stockum-Tipler construction. However, their ‘‘rotating
cylinder’’ in the usual 4D spacetime is here replaced with
an extra dimension having a compactified S1 topology. In
our case as well as theirs, the metric is stationary but not
static, containing a nonzero off-diagonal term involving
both time and space components.
The elements of the metric tensor must reflect the sym-

metry of the compactified dimension, i.e., they must be
periodic functions of u with period L. This in turn requires
that gðuÞ and hðuÞ must have period L. Any function with
period L can be expressed in terms of a Fourier series with
modes sinð2�nuL Þ and cosð2�nuL Þ, n ¼ 0; 1; 2; . . . Expanded in

Fourier modes, the general metric function gðuÞ is

gðuÞ ¼ g0 þ A� X1
n¼1

�
an cos

�
2�nu

L

�
þ bn sin

�
2�nu

L

��
;

(2.3)

where gð0Þ ¼ g0 and A � P1
n¼1 an are constants. An

analogous expansion can be written down for the metric
function hðuÞ, but in what follows we will not need it.
Below we will demonstrate that the 5D metric we have

constructed is sufficient to admit CTCs. It is worth men-
tioning that our 5D metric is easily embeddable in further
extra dimensions.

III. GEODESIC EQUATIONS
AND THEIR SOLUTIONS

On the brane, the metric in Eq. (2.1) is completely
Minkowskian. Accordingly, the geodesic equations of mo-
tion (EOMs) along the brane are simply a vanishing proper

acceleration €~r ¼ 0, with dot derivative denoting differen-
tiation with respect to the proper time �. Thus,

_~r ¼ _~r0; or ~r ¼ ~r0�: (3.1)

The geodesic equations for time and for the bulk direction
are more interesting. Since the metric is time independent
(‘‘stationary’’), there is a timelike Killing vector with an
associated conserved quantity; the quantity is

_tþ gðuÞ _u ¼ �0 þ g0 _u0; (3.2)

where on the right-hand side, we have written the constant
in an initial-value form. The initial value of _t, on the brane,
is just the boost factor �0. From this conserved quantity, we
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may already deduce that time will run backwards, equiv-
alently, that _t < 0, if gðuÞ _u > �0 þ _u0g0 is allowed by the
remaining geodesic equation. The remaining geodesic
equation involving the bulk coordinate u is

2ðg€t� h €uÞ � h0 _u2 ¼ 0; (3.3)

where the superscript ‘‘prime’’ denotes differentiation with
respect to u.

Taking the dot derivative of Eq. (3.2), we may separately
eliminate €t and €u from Eq. (3.3) to rewrite Eqs. (3.2) and
(3.3) as

€tð�Þ ¼ 1

2

�2g0hþ gh0

g2 þ h
_u2; (3.4)

€uð�Þ ¼ � 1

2

2gg0 þ h0

g2 þ h
_u2 ¼ � 1

2
ln0ðg2 þ hÞ _u2: (3.5)

The latter geodesic equation is readily solved with the

substitution � � _u, which implies that €u ¼ _� ¼
ðd�=duÞðdu=d�Þ ¼ �ðuÞðd�=duÞ. Let us choose the initial
conditions to be that at � ¼ 0, we have u ¼ 0. The solu-
tions for _u and u are

_uðuÞ ¼ _u0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2ðuÞ þ hðuÞp ; (3.6)

and Z uð�Þ

0
du

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 þ h

q
¼ _u0�; (3.7)

the latter being an implicit solution for uð�Þ. Having solved
explicitly for _uðuÞ in Eq. (3.6), we may substitute it into the
first of Eq. (3.4) to gain an equation for tðuÞ. Alternatively,
we may solve the implicit equation in Eq. (3.7) for uð�Þ,
and substitute it into Eq. (3.2) to get

tð�Þ ¼ ð�0 þ gð0Þ _u0Þ��
Z uð�Þ

dugðuÞ: (3.8)

The geodesic equations Eqs. (3.6) and (3.7) depend on
Det ¼ g2 þ h but not on g or h individually. It therefore
proves to be simple and fruitful to fix the determinant to

DetðuÞ ¼ g2ðuÞ þ hðuÞ ¼ 1; 8 u: (3.9)

We do so. With this choice, one readily obtains the EOM
€u ¼ 0, which implies the solutions

_uð�Þ ¼ _u0; (3.10)

and

uð�Þ ¼ _u0�; ðmodLÞ: (3.11)

In analogy to the historical CTCs arising from metrics
containing rotation, we will call the geodesic solutions
with positive _u0 ‘‘co-rotating,’’ and solutions with negative
_u0 ‘‘counter-rotating’’. So a co-rotating (counter-rotating)
particle begins its trajectory with positive (negative) _u0.

We note already at this point the possibility for periodic
travel in the u direction with negative time. From Eqs. (3.2)
and (3.10), we have

_t ¼ �0 � ðgðuÞ � g0Þ _u0; (3.12)

and its value averaged over the periodic path of length L

�_t ¼ 1

L

Z L

0
du _t ¼ �0 � ð �g� g0Þ _u0; (3.13)

where

�g ¼ 1

L

Z L

0
gðuÞdu ¼ g0 þ A (3.14)

is the average value of the metric element along the com-
pact extra dimension. The latter equality follows immedi-
ately from Eq. (2.3).
Apparently, closing the path in negative time will

depend on the relation between the mean value �g and the
value of the element on the brane g0, and on the relation
between the velocities of the particle along the brane and
along the bulk, characterized by �0 and _u0. In the next
subsections we examine this possibility in detail.

A. The CTC possibility

By definition, a CTC is a geodesic that returns a particle
to the same space coordinates from which it left, with an
arrival time before it left. The ‘‘closed’’ condition of the
CTC can be satisfied easily in our metric due to the S1

topology of the extra dimension. Namely, if a particle
created on the brane propagates into the extra dimension,
it will necessarily come back to u ¼ 0 due to the periodic
boundary condition.1 The other condition for a CTC, the
‘‘timelike’’ condition, is that the time elapsed during the
particle’s return path as measured by an observer sitting at
the initial space coordinates is negative. To ascertain the
time of travel, and its sign, we proceed to solve for tðuÞ. As
indicated by Eq. (3.8), to do so we need to specify gðuÞ.2
Our Fourier expansion of the general compactified metric
function [Eq. (2.3)] is sufficient for this task.
Our remaining task is to determine tðuÞ and see if it can

be negative. From Eqs. (3.8) and (3.11) we have

tðuÞ ¼
�
g0 þ 1

�0

�
u�

Z u

0
dugðuÞ; (3.15)

where we find it useful to define the symbol

1The geodesic equations for travel along the brane are trivially

just constancy of the three-vector part _~r of the four-velocity.
Added to the geodesic solution for uð�Þ, one gets a constant
translation of the circle S1 along the brane, resulting in a helical
motion which periodically intersects the brane (see Sec. VI).

2Once gðuÞ is specified, hðuÞ is given by hðuÞ ¼ 1� g2ðuÞ,
due to the choice made in Eq. (3.9). In particular, the periodicity
imposed in gðuÞ now automatically ensures that hðuÞ is periodic,
too.
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�0 ¼ _u0
�0

¼
�
du

dt

�
0
; (3.16)

for the initial velocity of the particle in the u direction as
would be measured by a stationary observer on the brane.
For the co-rotating particle, �0 > 0, while for the counter-
rotating particle, �0 < 0. Performing the integral over
Eq. (2.3) as prescribed in Eq. (3.15), we arrive at

tðuÞ ¼
�
1

�0

� A

�
uþ

�
L

2�

� X1
n¼1

�
1

n

��
an sin

�
2�nu

L

�
þ bn

�
1� cos

�
2�nu

L

���
: (3.17)

Due to the S1 topology of the compactified extra dimen-
sion, the particle returns to the brane at u ¼ �NL, for
integer N > 0. The plus (minus) sign holds for a co-
rotating (counter-rotating) particle. Physically, N counts
the number of times that the particle has traversed the
compactified extra dimension. When the particle crosses
the brane for the Nth time, the time as measured by a
stationary clock on the brane is

tN � tðu ¼ �NLÞ ¼ �
�
1

�0

� A

�
NL: (3.18)

This crossing time depends on the Fourier modes only
through A ¼ P

n¼1an, and is independent of the bn.
Thus, the potential for a CTC lies in the cosine modes of
the metric function gðuÞ, and not in the sine modes.3

B. The CTC realized: Negative time travel

A viable CTC is realized only if tN < 0, i.e.,
�Nð 1�0

� AÞ< 0. For a co-rotating particle (�0 > 0 and

positive signature), a viable CTC requires the conditions4

A >
1

�0

> 1: (3.19)

On the other hand, for a counter-rotating particle (�0 < 0
and negative signature), we require

A;�0 < 0 and jAj>
�������� 1

�0

��������> 1 (3.20)

to realize the CTC. In either case, co-rotating or counter-
rotating particles, the CTC conditions require that signðAÞ
be the same as signð�0Þ. Nature chooses the constant A
with a definite sign, and so the CTC conditions for co-
rotating and counter-rotating particles are incompatible.
For definiteness in what follows, we will assume that it is
the co-rotating particles which may traverse the CTC and

not the counter-rotating particles, i.e., that A > 1
�0

> 1

holds for some �0. The counter-rotating particles of course
exist, but they move forward in time.
We note that the negative time of the CTC scales linearly

with the number of times N that the particle traverses
the compact u dimension. The temporal period of this
march backwards in time is j 1

�0
� AjL, with the natural

time scale being L=c� 10ðL=mmÞ picoseconds. We next
give a useful analysis of world-line slopes derived from
our metric and their connection to time travel. Such an
analysis can offer considerable insight into negative-time
physics.

IV. LIGHT-CONE/WORLD-LINE
SLOPE ANALYSIS

A light-cone analysis of the metric, in a fashion similar
to the one in Ref. [27], is illuminating. Here we will make
the slight generalization to world lines of massive particles
rather than light cones of massless particles.
It is required for the existence of CTCs that the world

line tips so that evolution in the u direction occurs with
backward evolution in time t as measured from the brane.
Let � be the proper time of the massive particle in consid-
eration. When written in terms of the slopes s � dt=du for
the world line in the �u directions, the line element
becomes

d�2

du2
¼ 1

_u2ðuÞ ¼ s2 þ 2sgðuÞ � hðuÞ; (4.1)

and we have neglected possible nonzero d~r=dt since it does
not affect this discussion. The solutions of this quadratic
equation are the two slopes for the co-rotating and counter-
rotating world lines:5

s�ðuÞ ¼ �gðuÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2ðuÞ þ hðuÞ þ 1

_u2ðuÞ

s
: (4.2)

To ascertain the assignment of the two world lines to the
co-rotating and counter-rotating particles, we note that by
definition, s ¼ dt

du , so sðu ¼ 0Þ ¼ �0

_u0
. Thus, signðsð0ÞÞ ¼

signð _u0Þ, i.e., sþ is the world line for the _u > 0 co-rotating
particle, and s� is the world line for the _u < 0 counter-
rotating particle.
Equivalent to Eq. (4.2) are

s�ðuÞ þ sþðuÞ ¼ �2gðuÞ and

s�ðuÞsþðuÞ ¼ �
�
hðuÞ þ 1

_u2ðuÞ
�
:

(4.3)

If the u direction were not warped, we would
expect the Minkowskian result s� þ sþ ¼ 0 and
s�sþ ¼ �ð1þ _u�2Þ. Instead, here we have s�ð0Þ þ
sþð0Þ ¼ �2g0 and s�ð0Þsþð0Þ ¼ �h0 þ _u�2

0 , where

3This leads to a simple, necessary but not sufficient condition
on the metric function for the existence of a CTC: for the Det ¼
1 metric, g0 must differ from gðL2Þ.4Note that we here assume that j�0j< 1 when the particle is
created on the brane. We are allowed to make this assumption
because our metric class will not need superluminal speeds to
realize the CTCs.

5One obtains the (massless particle) light-cone results by
setting 1

_u2
(proportional to d�2) to zero.
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h0 � hð0Þ. So for g0 � 0 and/or h0 � 1, we have a warped
dimension beginning already at the brane slice u ¼ 0. We
maintain Minkowskian-like behavior at u ¼ 0 by choosing
h0 to be non-negative.

For the world line to tip into the negative t region, its
slope must pass through zero. This requires the product
s�ðuÞsþðuÞ and hence hðuÞ þ _u�2 to pass through zero. We
label the value of u where this happens as u?. Thus,
hðu?Þ ¼ � _u?

�2. Positivity of the metric determinant g2 þ
h at all u then demands at u?, where hðu?Þ þ _u?

�2 van-
ishes, that g2ðu?Þ> _u?

�2 � 0.
Next we implement our simplifying assumption that

g2 þ h ¼ 1 and its concomitant result _u ¼ _u0, 8 u
[Eq. (3.10)]. As a result, (i) the condition h0 � 0 in turn
implies that jg0j � 1; (ii) we have g2ðu?Þ ¼ 1� hðu?Þ ¼
1þ _u�2

0 , so the condition g2ðu?Þ � 0 is automatically

satisfied.
Importantly, time will turn negative if gðuÞ rises from its

value jg0j � 1 on the brane to above
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ _u�2

0

q
. Such

behavior of gðuÞ is easy to accommodate with a metric
function as general as Eq. (2.3). In Fig. 1 we show
sample curves for gðuÞ and hðuÞ ¼ 1� g2ðuÞ. A quick
inspection of the gðuÞ shown in this figure convinces one
that even a simple metric function can accommodate time
travel. In Fig. 2, we show explicitly the accumulation of
negative time as the particle travels around and around the
extra dimension.

One lesson learned from this slope analysis is that only
co-rotating or only counter-rotating particles, but not both,
may experience CTCs. This is because only one edge of the
light cone tips below the horizontal axis into the negative-
time half-plane. The development of co-rotating and
counter-rotating geodesics in the previous section is con-
sistent with this lesson. Another lesson learned is that
CTCs may exist for large _u0, but not for small _u0; i.e.,
there may exist a critical ð _u0Þmin such that CTCs exist for
_u0 > ð _u0Þmin, but not for _u0 < ð _u0Þmin. Finally, we remark
that the slope analysis presented here may be derived from
a more general covariant analysis. The connection is shown
in Appendix A.

V. COMPACTIFIED 5D CTCS COMPARED/
CONTRASTED WITH 4D SPINNING STRING

Before turning to phenomenological considerations of
particles traversing CTCs, we wish to show that the com-
pactified 5D metric admitting CTC geodesics is devoid of
pathologies that plague similar 4D metrics. This class of
5Dmetrics resembles in someways the well-studied metric
which describes a spinning cosmic string.

A. 4D spinning string(s)

The metric for the 4D spinning string is [36,37]

d�2spinning string ¼ ðdtþ 4GJd	Þ2 � dr2

� ð1� 4GmÞ2r2d	2 � dz2; (5.1)

where G is Newton’s constant, and J andm are the angular
momentum and mass per unit length of the cosmic string,
respectively. In three spacetime dimensions, the Weyl ten-
sor vanishes and any source-free region is flat. This means
that in the region outside of the string, local Minkowski
coordinates may be extended to cover the whole region.
Specifically, by changing the coordinates in Eq. (5.1) to ~t ¼
tþ 4GJ	 and ’ ¼ ð1� 4GmÞ	, the metric appears
Minkowskian, with the conformal factor being unity. As
with 	, the new angular coordinate ’ is periodic, subject to
the identification ’� ’þ 2�� 8�Gm. There is a well-
known wedge �’ ¼ 8�Gm removed from the plane, to
form a cone. However, although this transformation
appears to be elegant, in fact the new time ~t is a pathologi-
cal linear combination of a compact variable 	 and a non-
compact variable t: for fixed 	 (or ’) one expects ~t to be a
smooth and continuous variable, while for fixed t, one
expects the identification ~t� ~tþ 8�GJ in order to avoid
a ‘‘jump’’ in the new variable. In effect, the singularity at
g		 ¼ 0, i.e., at r ¼ 4GJ=ð1� 4GmÞ, is encoded in the
new but pathological coordinate ~t [36].
The form of our metric in the ðt; uÞ plane, viz.
d�2 ¼ dt2 þ 2gðuÞdtdu� hðuÞdu2

¼ ðdtþ gðuÞduÞ2 � ðg2ðuÞ þ hðuÞÞdu2; (5.2)

g u

h u

1 2 3 4

u

L

8

6

4

2

0

2

4

FIG. 1 (color online). gðuÞ (dashed) and hðuÞ ¼ 1� g2ðuÞ
(solid) versus u=L, for parameter choices g0 ¼ �0:9, a1 ¼ A ¼
1:8, and an�1 ¼ bn ¼ 0.

1 2 3 4

u

L

2.0

1.5

1.0

0.5

0.0

0.5

t u

FIG. 2. tðuÞ versus u=L, for the same parameter choices as in
Fig. 1, and with �0 ¼ 2=3.
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has similarities with the spinning string metric.
Analogously, we may define new exact differentials6

d�t � dtþ gðuÞdu; and d �u �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2ðuÞ þ hðuÞ

q
du;

(5.6)

which puts our metric into a diagonal ‘‘Minkowski’’ form:

d�2 ¼ �ijdx
idxj þ d�t2 � d �u2: (5.7)

Being locally Minkowskian everywhere, the entire 5D
spacetime is therefore flat. This accords with the theorem
which states that any two-dimensional (pseudo)Riemannian
metric (whether or not it is in a source-free region)—here,
the ðu; tÞ submanifold—is conformal to a Minkowskian
metric. In our case, the geometry is M4 � S1, which is not
only conformally flat, but flat period [the conformal factor
�ðu; tÞ is unity]. However, the topology of our 5D space,
like that of the spinning string, is nontrivial. The new
variable �t, defined by d�t ¼ dtþ gðuÞdu, is ill defined glob-
ally, being a pathological mixture of a compact (u) and a
noncompact (t) coordinate. Thus, the parallel between the
metric for a spinning cosmic string and our metric is clear.

We remark that time as measured by an observer (or
experiment) on our brane is just given by the coordinate
variable t. This is seen by constructing the induced 4D
metric. The constraint equation reducing the 5D metric to
the induced 4D metric is simply uðx�Þ ¼ 0. Taking the
differential yields du ¼ 0. Inputting the latter result into
the 5D metric of Eq. (2.1) [or into Eq. (5.7)] induces the
standard 4D Minkowski metric.

Next we investigate whether or not our metric suffers
from fundamental problems commonly found in proposed
4D metrics with CTCs.

B. 4D spinning string pathologies

Deser et al. [36] showed that the metric for the spinning
string admits CTCs. This metric has been criticized, by
themselves and others, for the singular definition of spin
that occurs as one approaches the string’s center at r ¼ 0.

With our metric, there is no ‘‘r ¼ 0’’ in u space—the
‘‘center’’ of periodic u space is simply not part of spacetime.
An improved CTC was proposed by Gott, making use of

a pair of cosmic strings with a relative velocity—spin
angular momentum of a single string is replaced with an
orbital angular momentum of the two-string system. Each
of the cosmic strings is assumed to be infinitely long and
hence translationally invariant along the z direction. This
invariance allows one to freeze the z coordinate, thereby
reducing the problem to an effective (2þ 1)-dimensional
spacetime with two particles at the sites of the two string
piercings. A CTC is found for a geodesic encircling the
piercings and crossing between them.
The nontrivial topology associated with Gott’s space-

time leads to nonlinear energy-momentum addition rules.
What has been found is that while each of the spinning
cosmic strings carries an acceptable timelike energy-
momentum vector, the two-string center-of-mass energy-
momentum vector is spacelike or tachyonic [38,39].
Furthermore, it has been shown that in an open universe,
it would take an infinite amount of energy to form Gott’s
CTC [40].
Blueshifting of the string energy is another argument

against the stability of Gott’s CTC [41]. Through each
CTC cycle, a particle gets blueshifted [12,40]. Since the
particle can traverse the CTC an infinite number of times, it
can be infinitely blueshifted, while the time elapsed is
negative. Total energy is conserved, and so the energy of
the pair of cosmic strings is infinitely dissipated even
before the particle enters the CTC for the first time.
Hence, no CTC can be formed in the first place.

C. Pathology-free compactified 5D CTCs

Our class of 5D metrics seems to be unburdened by the
pathologies [38,39] described immediately above. One
readily finds that all the components of the 5D Einstein
tensor as determined by the metric in Eq. (2.1) are identi-
cally zero. Therefore, by the Einstein equation, the energy-
momentum tensor TAB also vanishes. This implies that our
class of metrics with CTCs automatically satisfies all of the
standard energy conditions.7 Hawking has conjectured [12]
that nature universally protects chronology (causality) with

6This nontrivial transformation effectively defines a new time �t
measured in the frame that co-rotates with the circle S1. The
integrated, global version of these new coordinates is

�u ¼
Z �u

0
d �u ¼

Z u

0
du

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DetðuÞ

p
¼ u; sinceDet ¼ 1; (5.3)

�t ¼
Z �t

0
d�t ¼

Z t

0
dtþ

Z uðtÞ

0
gðuÞdu ¼ tþ

Z uðtÞ

0
dugðuÞ; (5.4)

¼ tþ ðg0 þ AÞu�
�
L

2�

� X1
n¼1

�
1

n

��
an sin

�
2�nu

L

�
þ bn

�
1� cos

�
2�nu

L

���
: (5.5)

7The standard energy conditions are, for any null vectors lA

and timelike vectors tA,

Null energy condition ðNECÞ: TABl
AlB � 0; (5.8)

Weak energy condition ðWECÞ: TABt
AtB � 0; (5.9)

Strong energy condition ðSECÞ: TABt
AtB � 1

2
TA
At

BtB; (5.10)

Dominant energy condition ðDECÞ: TABt
AtB � 0 and

TABT
B
Ct

AtC � 0: (5.11)
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applications of physical laws. The protection hides in the
details. Hawking has proved his conjecture for the case
where the proposed CTC violates the weak energy condi-
tion (WEC). Such WEC violations typically involve exotic
materials having negative energy density. Our CTCs do not
violate the WEC, and in fact do not require matter at all.
With our metric, it is the compactified extra dimension
with the S1 topology rather than an exotic matter/energy
distribution that enables CTCs. In the realm of energy
conditions, our metric contrasts again with Gott’s case of
two moving strings. Gott’s situation does not violate the
WEC, but it can be shown that the tachyonic total energy-
momentum vector leads to violation of all the other energy
conditions.

Furthermore, particles traversing our CTCs are not blue-
shifted, unlike the particles traversing Gott’s CTC. This
can be seen as follows. One defines the contravariant
momentum in the usual way, as

pA � mð _t; _~r; _uÞ; (5.12)

wherem is the mass of the particle. Then the covariant five-
momentum is

pA ¼ GABp
B ¼ mð _tþ g _u;� _~r; g _t� h _uÞ: (5.13)

According to Eq. (3.2), the quantity p0 ¼ mð _tþ g _uÞ is
covariantly conserved along the geodesic on and off the
brane. The conservation is a result of the time indepen-
dence of the metric GAB. Consequently, we identify the
conserved quantity as the particle energy E and conclude
that particles traversing the compactified 5D CTCs are not
blueshifted. In a more heuristic fashion, one may say that
energy conservation on the brane follows from the absence
of an energy source; TAB vanishes for our choice of metric
class.

In addition to conservation of p0, conservation of the
particle’s three-momentum along the brane follows imme-
diately from the EOM and solution Eq. (3.1). The only
component of the particle’s covariant five-momentum that
is not conserved along the geodesic is p5 ¼ mðg _t� h _uÞ.
This quantity may be written as (gE�m _u), where use has
been made of the relation g2 þ h ¼ 1. But even here, the
factors E and [from Eq. (3.10)] _u are conserved quantities,
and so it is just the factor gðuÞ that varies along the
geodesic. However, the metric elements including gðuÞ
are periodic in u ¼ NL, and return to their brane values
at each brane piercing. Thus, the particle’s entire covariant
five-momentum is conserved from the viewpoint of the
brane. We conclude that the possible instability manifested
by a particle’s blueshift [12,40,41] does not occur in our
class of 5D metric, nor do any other kinematic pathologies.
(Conservation and nonconservation of the components of
the particle’s five-momentum are discussed from another
point of view in Appendix III.)

In summary, we have just shown that while our class of
5D metrics bears some resemblance to the metric of the 4D

spinning string, the class is free from the r ! 0 pathology
of the spinning string, does not violate the standard energy
conditions as does Gott’s moving string pair, and does not
present particle blueshifts (energy gains) as does Gott’s
metric.

VI. STROBOSCOPIC WORLD LINES
FOR HIGGS SINGLETS

The braneworld model which we have adopted has SM
gauge particles trapped on our (3þ 1)-dimensional brane,
but gauge-singlet particles are free to roam the bulk as well
as the brane. We are interested in possible discovery of
negative time travel at the LHC, sometimes advertised as a
‘‘Higgs factory.’’ The time-traveling Higgs singlets can be
produced either from the decay of SM Higgs or through
mixing with the SM Higgs. We discuss Higgs singlet
production in Sec. VIII.

A. Higgs singlet pre-/reappearances on the brane

The physical paths of the Higgs singlets are the geo-
desics which we calculated in previous sections. The
geodesic EOMs for the four spatial components of the

five-velocity are trivially €~r and €u ¼ 0. Thus, the projection
of the particle’s position onto the brane coordinates is

~rð�Þ ¼ _~r0�þ ~r0 ¼ _~r0
u

_u0
þ ~r0 ¼ v0

�0

up̂0 þ ~r0: (6.1)

Here, p̂0 ¼ dðdrd�Þ0 ¼ cðdrdtÞ0 is the unit direction vector of the

particle’s three-momentum as seen by a brane observer, v0

is the initial speed of the particle along the brane direction8

v0 �
��������
�
d~r

dt

�
0

��������; (6.2)

and ~r0 is the point of origin for the Higgs singlet particle,
i.e., the primary vertex of the LHC collision.
Of experimental interest is the reappearance of the par-

ticle on the brane. Inserting u ¼ �NL into Eq. (6.1), one
finds that the particle crosses the brane stroboscopically;
the trajectory lies along a straight line on the brane, but
piercing the brane at regular spatial intervals given by

~r N ¼ v0

j�0jNLp̂0 þ ~r0: (6.3)

We note the geometric relation v0

�0
¼ j _~r0j

_u0
¼ cot	0, where 	0

is the exit angle of the particle trajectory relative to the
brane direction.
The result in Eq. (6.3) for the spatial intervals on the

brane holds for both co-rotating particles and counter-
rotating particles. The distance between successive brane

8Recall that _~r ¼ d~r
d� is a constant of the motion, but ~v ¼ d~r

dt
is not, due to the nontrivial relationship between � and t. This
nontrivial relationship between proper and coordinate times is
what enables the CTC.
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crossings, Lv0=�0, is governed by the size L of the com-
pactified dimension. These discrete spatial intervals are
likely too small to be discerned. However, the Higgs
singlet is only observed when it scatters or decays to
produce a final state of high-momenta SM particles. We
expect the decay or scattering rate to be small, so that many
bulk orbits are traversed before the Higgs singlet reveals
itself. We discuss many-orbit trajectories next.

B. Many-orbit trajectories and causality
violations at the LHC

The coordinate times of the reappearances of the particle
on the brane are given by Eq. (3.18) as

tN ¼ �
�
1

�0

� A

�
NL: (6.4)

We have shown earlier that the assumption A > 0, without
loss of generality, forces co-rotating particles having A >
1
�0

> 1 to travel in negative time. Thus, for the particles

traveling on co-rotating geodesics (with �0 > 0 and posi-
tive signature), their reappearances are in fact preappear-
ances. The time intervals for preappearances are

tN ðco-rotatingÞ ¼ �
�
A� 1

�0

�
NL< 0: (6.5)

For counter-rotating particles (with �0 < 0 and negative
signature), the time intervals are

tN ðcounter-rotatingÞ ¼
�
Aþ

�������� 1

�0

��������
�
NL> 0: (6.6)

The counter-rotating particles reappear on the brane at
regular time intervals, but do not preappear. We note that
even for co-rotating and counter-rotating particles with the
same j�0j, the magnitudes of their respective time intervals
are different; the co-rotating interval is necessarily shorter.
The mean travel times for co-rotating and counter-rotating
particles, respectively, are

htiðco-rotatingÞ ¼ �
�
AhNi �

	
N

�0


�
L < 0 (6.7)

and

htiðcounter-rotatingÞ ¼
�
AhNi þ

	
N

j�0j

�

L > 0: (6.8)

In Sec. VIII) we will show that these means are very large
numbers, inversely related to the decay/interaction proba-
bility of the Higgs singlet.

C. Higgs singlet apparent velocities along the brane

Wemay compute the observable velocity connecting the
production site for the Higgs singlet to the stroboscopic
pre- and reappearances by dividing the particle’s apparent
travel distance along the brane, ~rNðtÞ � ~r0 given in
Eq. (6.3), by the apparent travel time tN given in Eq. (6.4).

These are the velocities which an observer on the brane,
e.g., an LHC experimenter, would infer from measure-
ment. For the co-rotating particles with �0 > 0, we get

~v ðco-rotatingÞ ¼ � v0

�0A� 1
p̂0: (6.9)

The velocities of the co-rotating particles are negative for
�0A > 1 because the particles are traveling backwards in
time. For the counter-rotating particles with�0 < 0, we get

~v ðcounter-rotatingÞ ¼ v0

j�0jAþ 1
p̂0: (6.10)

The velocities of the counter-rotating particles are positive,
as the particles travel forward in time, and subluminal. For
a given exit angle 	0 ¼ cos�1ðv0=�0Þ, the speeds of the
co-rotating particles, traveling backwards in time, gener-
ally exceed the speeds of the counter-rotating particles.
We note that the apparent speeds of co-rotating particles

can be superluminal in either forward time (�0A < 1) or
backwards time (�0A > 1). We display the velocities in
Fig. 3 with a plot of v=v0 versus the parameter combina-
tion �0A. The particle speed diverges at �0A ¼ 1; the
value �0A ¼ 1 corresponds to the slope of the light cone
passing through zero, an inevitability discussed in Sec. IV.

c

e

a

b

CTC region

co rotating regioncounter rotating

region

d

2 1 1 2 3 4
A 0

3

2

1

1

2

3

v

v0

FIG. 3 (color online). Apparent brane velocity v as a fraction
of initial brane velocity v0 versus �0A. The counter-rotating
particle always moves subluminally forward in time, but the co-
rotating particle may move superluminally in either time direc-
tion. Brane velocities are divergent at �0A ¼ 1, which occurs as
the light cone crosses the horizontal axis of the spacetime
diagram. For �0A > 1, the co-rotating geodesic is a CTC. The
regions delineated by (a), (b), (c), (d), (e) map onto the world
lines of Fig. 4 with the same labels.
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The region �0A > 1 is the CTC region, of interest for this
article.

In Fig. 4 we show schematically the world lines on our
brane for co-rotating particles with negative transit times,
and for counter-rotating particles with positive (�0A < 1)
and negative (�0A > 1) transit times.

At some point along the world line, during one of the
brane piercings, the Higgs singlet decays or interacts to
produce a secondary vertex. As we show in the next para-
graph, during each brane piercing, the particle’s three-
momentum is just that missing from the primary vertex,
i.e., three-momentum on the brane is conserved. The
arrows in Fig. 4 are meant to denote the three-momentum
missing from the primary vertex at the origin, and reap-
pearing or preappearing in a displaced secondary vertex.
The piercings (dots) of the brane have a �r� the brane
widthw, and a�t� w=v0. We have seen in Sec. VC that a
three-momentum (in fact, a five-momentum) on the brane
is conserved for time-traveling particles. Therefore, the
particle slopes �t=�r� 1=v0 give no indication whether
the particles are negative-time travelers. Only the preap-
pearance of the secondary vertex with respect to the pri-
mary vertex reveals their acausal nature. Importantly, the
secondary and primary vertices are correlated by the con-
servation of a particle’s three-momentum: exactly the mo-
mentum missing from the primary vertex preappears in the
secondary vertex.

VII. 5D AND EFFECTIVE 4D FIELD THEORY FOR
TIME-TRAVELING HIGGS SINGLETS

In previous sections, we have constructed a class of 5D
metrics which admits stable CTC solutions of the classical
Einstein equations, and we have presented the solutions.
Similar to the ADD scenario, we will assume that all the
SM particles are confined to the branewhile gauge singlets,
such as Higgs singlets, gravitons and sterile neutrinos, can
propagate into the bulk. In this section, we first construct
the 5D Lagrangian for the coupled Higgs singlet-doublet
system. Then we derive the 5D equation of motion (5D
Klein-Gordon equation) in our spacetime, and solve it
subject to the compactified fifth-dimension boundary con-
dition. From this exercise, there results the interesting
energy-momentum dispersion relation. Next we integrate
out the fifth dimension to obtain the effective 4D theory.
Finally, we incorporate electroweak (EW) symmetry
breaking to obtain the effective theory relevant for EW-
scale physics.

A. 5D Lagrangian for the coupled Higgs
singlet-doublet system

A simple and economical model involves the Higgs
singlet
 coupling/mixing only with the SM Higgs doublet

H. We add the following Lagrangian density Lð5DÞ ¼
L0 þLI to the SM:

L0 ¼ GAB

2
@A
@B
�m2

2

2; (7.1)

L I ¼ � �1ffiffiffiffi
L

p 
� ffiffiffiffi
L

p
�3
HyH�ðuÞ � L�4


2HyH�ðuÞ;
(7.2)

where A, B ¼ f�; 5g and GAB is the 5D inverse metric
tensor, with entries

G00 ¼ hðuÞ; G05 ¼ G50 ¼ gðuÞ;
G55 ¼ Gii ¼ �1; (7.3)

and all remaining entries zero. From the 5D kinetic term,
one sees that the mass dimension of 
 is 3=2. Constant

factors of
ffiffiffiffi
L

p
have been inserted for later convenience, so

that the mass dimensions of �1, �3 and �4 have the usual
4D values of 3, 1, and 0, respectively. The appearance of

the delta function �ðuÞ in Lð5DÞ restricts the interactions
with SM particles to the brane (u ¼ 0), to which the SM
particles (here, the SM Higgs doublet H) are confined. A
consequence of the restriction of SM particles to the brane
via the delta function is that translation invariance in the u
direction is broken. This means that neither the Kaluza-
Klein (KK) number nor particle momentum in the u
direction is conserved; overall momentum conservation
is restored when the recoil momentum of the brane is
included.

a
b

c

d

e

co rotating region

counter rotating region

r

t

FIG. 4 (color online). Shown are stroboscopic piercings (dots)
of our brane by a returning Higgs singlet. World lines delineated
by (a), (b), (c), (d), (e) correspond to regions of Fig. 3 with the
same labels. In (a), the counter-rotating particle travels forward
in brane/coordinate time, within the forward light cone. The co-
rotating particle travels outside the brane’s forward light cone. In
(b), the world line is superluminal but moving forward in brane
time t. In (c), the world line is horizontal; the particle ‘‘moves’’
instantaneously in brane time. In (d) and (e), the particle travels
superluminally and subluminally, respectively, backwards in
brane time (signifying a CTC).
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1. Nonrenormalizable, effective field theory

The model in Eq. (7.2) is power-counting renormaliz-
able. However, the broken translational invariance in the
extra dimension(s) leaves the model nonrenormalizable.
For example, the operators 
4 (of dimension six and so
manifestly not renormalizable in 5D) and 
3 (5D-
renormalizable, but destabilizing the Hamiltonian until
large 
 values allow the 
4 operator to dominate) are
each induced on the brane by a virtual loop of the H field,
and they are increasingly divergent as the number of extra
dimensions increases. The fact that 
4 is a nonrenormaliz-
able operator, yet necessarily induced by the operator

2HyH�ðuÞ which is power-counting renormalizable, is

an indication thatLð5DÞ describes an effective theory on the
brane, not a renormalizable theory.

The induced operators 
4 and 
3 on the brane do not
affect the physics of interest in this paper, and so we do not
consider these operators any further. However, there are
further effects of the effective theory that cannot be
ignored. For example, higher-order Higgs-pair operators
ðHyHÞN are induced by a virtual loop of the 
 field. The
N ¼ 1 and N ¼ 2 operators may be renormalized by the
SM counterterms, but higher-order operators introduce
divergences for which there are no counterterms. If the
model were renormalizable, these higher-order operators
would be finite and calculable. Instead, they are divergent,
as we briefly illustrate in Appendix II. Consequently, the
model is an effective theory, valid up to an energy cutoff of
characteristic scale �� 1=ð�4LÞ.

Interestingly, the complications on the brane do not
pervade the bulk where the H field vanishes. Since H ¼
0 in the bulk, there are no H loops, and so no new induced
operators. In the bulk, 
 is described by free field theory.

We note that since 
 is a gauge singlet, its mass m is
unrelated to spontaneous symmetry breaking and is best
thought of as a free parameter. We further note that the
Higgs singlet is largely unconstrained by known physics.
For example, gauge singlets do not contribute to the 
 �
ðMW=MZ cos	wÞ2 parameter.

2. Scales of validity

In order to construct a wave packet smaller than the size
L of the extra dimension, we require L 	 1=

ffiffiffiffiffiffiffiffiffiffi
sLHC

p
.

Combined with the fact that our effective theory is valid
only up to the cutoff �� 1=ð�4LÞ, which we want to lie
above

ffiffiffiffiffiffiffiffiffiffi
sLHC

p
, we arrive at a small bounded value for �4:

�4 <
1

L
ffiffiffiffiffiffiffiffiffiffi
sLHC

p � 10�2

�
10�18 m

L

��
10 TeVffiffiffiffiffiffiffiffiffiffi
sLHC

p
�

 1: (7.4)

For the LHC energy scale to probe the extra dimension,
we must assume that the size of the extra dimensions L is
* 1=

ffiffiffiffiffiffiffiffiffiffi
sLHC

p
. Since the LHC is designed to probe electro-

weak symmetry, one may equivalently write L *
1= TeV * 10�19 m for the LHC reach. It is useful at this

point to briefly review the bounds on the size of extra
dimensions. The strongest constraint on the ADD scenario
comes from limits on excess cooling of a supernova due to
KK graviton emission [42] (analogous to limits from cool-
ing by axion emission). One extra dimension is ruled out.
For two extra dimensions, the lower bound on the funda-
mental Planck scale is 10 TeV and the upper bound on the
size of the extra dimensions is L & 10�7 m if the two extra
dimensions are of the same size, easily within the reach of
L * 10�19 m at the LHC. Consistency with the solar
system tests of Newtonian gravity also requires at least
two extra dimensions [43]. While we have shown that a
single extra dimension is sufficient to admit our class of
CTCs, our construction does not disallow further extra
dimensions.

B. Klein-Gordon solution and energy-momentum
dispersion relation

To develop the field theory of the Higgs singlet, we will
need the energy dispersion relation for the 
 particle
modes. The dispersion relation can easily be obtained
from the equation of motion for the free 
 field:

GAB@A@B
þm2
 ¼ 0: ð5DKlein-Gordon equationÞ
(7.5)

In fact, an inspection of Eq. (5.7) [and the definition of ~t in
the footnote Eq. (5.4)] suggests that the general solution to
this 5D Klein-Gordon (KG) equation for the nth energy
eigenfunction should take the form


ðKGÞ
n ¼ e�iEn½tþ

R
u

0
gðuÞdu�ei ~p� ~xei�u; (7.6)

where En is the energy of the nth mode (at fixed ~p) and ~p is
the standard three-momentum along the brane direction.
Since the extra dimension is compactified, we require

nðuþ LÞ ¼ 
nðuÞ which, in turn, requires that

� ¼ �gEn þ 2�n

L
with n ¼ 0;�1;�2; . . . ; (7.7)

where the mean value �g is defined in Eq. (3.14).9 Thus, the
solution to the KG equation is given by


ðKGÞ
n ¼ e�iEntei ~p� ~xe�iEn

R
u

0
ðg� �gÞdueinu=R; (7.8)

where we have defined an extra-dimensional ‘‘radius’’ R �
L=2� to streamline some notation.
To determine the energy dispersion relation, we simply

need to plug Eq. (7.8) into the 5D KG equation above and
solve for En. A bit of algebra yields the quadratic disper-
sion relation

9From Eq. (2.3) we also get the mean �h ¼ 1� ½ �g2 þ
1
2

P
na

2
n þ 1

2

P
nb

2
n�. We will not need this relation in the present

paper.
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ð1� �g2ÞE2
n � 2 �gEn

n

R
� ~p2 � n2

R2
�m2 ¼ 0: (7.9)

Solving for En then gives,10’11

En ¼
�g n
R þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� �g2Þð ~p2 þm2Þ þ n2

R2

q
1� �g2

: (7.10)

Equation (7.10) makes it clear that the mode energy En

depends on ~p as well as on n; nevertheless, for brevity of
notation, we will continue to use the ‘‘fixed ~p’’ notation for
both En and 
n. Here we have discarded the negative root
which is unphysical, and retained the positive root which is
physical for all n, positive, zero, and negative. In the above
derivation, we have assumed that j �gj ¼ jg0 þ Aj< 1.
This ensures that En is always real. Recall that we have
chosen h0 � 0 to maintain the Minkowskian signature of
the metric in Eq. (2.1) at u ¼ 0. This in turn implies that
jg0j � 1. Therefore, the ultimate conditions on the metric
which guarantee CTC solutions are simple, and three
in number: (i) jg0 þ Aj< 1, (ii) jg0j � 1, and from
Eqs. (3.19) and (3.20), that (iii) jAj> 1. As a result, g0
and A necessarily have opposite signs in the regions allow-
ing CTCs. The two regions are given by (I) �1 � g0 < 0
and 1< A< 2, and (II) 0< g0 � 1 and �2<A<�1. In
Fig. 5, we display the two regions in the g0-A plane that
allow CTCs.

The dispersion relation for En is interesting in several
respects. First of all, due to the time independence of the
metric GAB and the time-translational invariance of the

Lagrangian Lð5DÞ, the energy En of the particle is constant
during its propagation over the extra dimensional path (the
bulk) which forms the CTC. In other words, the energy is
covariantly conserved. Secondly, it is only for the zero
mode [with n ¼ 0 and �g effectively zero in Eq. (7.10)]
that the dispersion relation is trivial. The KK modes (n �
0) exhibit a contribution n2=R2 to the effective 4D mass
squared, a complicated dependence on �g, and a resultant

‘‘energy offset’’ ð �g
1� �g2

Þ nR which arises from the off-

diagonal, nonstatic nature of the metric.
Not surprisingly, the integer mode number n has a

quantum interpretation. It is the number of full cycles of

�ðKGÞ
n commensurate with the circumference L ¼ 2�R of

the extra dimension. We see this in the following way: The

half-cycles of �ðKGÞ
n are separated from u ¼ 0 by the

distance uk, where uk is the solution to

� En

Z uk

0
duðg� �gÞ þ 2�nuk

L
¼ k�; k ¼ 1; 2; . . .

(7.11)

Notice that the lengths of these half-cycles are not uniform.
However, the total number of half-cycles is obtained by
setting ðukÞmax ¼ L, for which Eq. (7.11) becomes simply
2�n ¼ k�. Thus, kmax ¼ 2n, and the number of full cycles
is kmax=2, which is n, identical to the number of wave-
lengths commensurate with L in the usual flat space
[gðuÞ � 0] case. We conclude that a nonzero gðuÞ alters
the lengths of the cycles in the extra dimension, but does

not alter their total number, which is n for the mode�ðKGÞ
n .

The sum on mode number plays the same role in the
extra dimension that

R
d3 ~p plays in 4D. Consequently, an

arbitrary field in the 5D spacetime can be expanded as a
linear combination of mode fields:


ðx�; uÞ ¼ X1
n¼�1

Z
d3 ~p ~
nðEn; ~pÞ
ðKGÞ

n ; (7.12)

where ~
nðEn; ~pÞ are the weight functions of n and ~p. This
completes the construction of the scalar field in 5D with a
periodic boundary condition in the fifth dimension.

C. Wave packet as a sum of many modes

The minimum quantum energy of the nth mode is
associated with motion purely in the compactified dimen-
sion. Thus we take the ~p ! 0 limit of the dispersion
relation to determine this minimum quantized energy.
From Eq. (7.10), we have

Enð ~p ¼ 0Þ ¼
�
n

R

�0@ �gþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð1� �g2Þ m2R2

n2

q
1� �g2

1A
!z�m2R2=n2
1

�
n

R

��
1

1� �g
þ z

2

�
þOðz2Þ: (7.13)

So for m2 
 n2=R2, we find an energy spectrum rising
(nearly) linearly in n. This means that the first nmax �ffiffiffiffiffiffiffiffiffiffi
sLHC

p
Rð1� �gÞ modes are excitable, in principle. In prac-

tice, decay of the SM Higgs to

, or mixing ofH with
,

2 1 0 1 2
1.0

0.5

0.0

0.5

1.0

A

g 0

FIG. 5. The two regions in the g0-A plane for which CTCs are
possible.

10We are grateful to A. Tolley for correcting an error in an
earlier version of our KG equation, and providing the dispersion
relation which solves the corrected equation.
11Note that �g but not �h ¼ 1� �g2 appears in the KG solution
and in the dispersion relation. This is related to the fact that a
coordinate change may bring the metric to Minkowski form with
no vestigial mention of h but with a pathologic ‘‘time’’ contain-
ing a boundary condition depending on �g. See Eqs. (5.6) and
(5.7).
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will excite many KK modes of
. We have nmax �MhR�
6� 1010ðR=10�7 mÞðMh=125 GeVÞ. Thus, we do not
expect single or few mode excitations to be relevant.

If a single mode were excited, its wave function would
span the entire compactified interval ½0; L�, analogous to a
plane wave in 4D. With a single mode, one would expect
quantum mechanics rather than classical concepts to apply.
However, when more modes are excited, which we expect
to be the relevant case, their weighted sum may form a
localized wave packet in ½0; L�, in which case the deduc-
tions for a classical particle in the earlier sections should
apply. We denote the relevant many-mode wave packet by

 �n, where �n is meant to be a typical or mean mode number
of the packet.

However, even an initially localized wave packet will
spread in time. Such packet spreading does no harm to our
conclusion—that the secondary vertex of the co-rotating
Higgs singlet will still precede the production vertex in
time. The spreading of the wave function just increases the
variance of the distribution in negative t. The classical
equation of motion for the u direction continues to describe
the group velocity of the centroid of the wave function as it
travels in the u direction. The same happens for the tau and
b fermions in Minkowski space, as they progress from their
production vertices to their decay vertices.

To understand the variance of the distribution of times
between primary and secondary vertices, we now quantify
the wave function spreading. To be explicit, we adopt a
Gaussian wave packet at t ¼ 0 with initial spatial spread
�L0 in the fifth dimension. The standard formula for wave
packet spread in a single dimension is ð�LÞ2 ¼ ð�L0Þ2 þ
ð�=m�L0Þ2. Here L is the circumference of the extra
dimension as usual, and � is the proper time of the wave
function (a priori independent of the time of the observer).
There are two characteristic times of interest to us. The first
is the time at which the packet begins to noticeably spread,
given by �1 � mð�L0Þ2. The second is the time when
the packet completely fills the compactified dimension,
given implicitly by �Lð�2Þ ¼ L, and explicitly by �2 ¼
mð�L0ÞL ¼ ð L

�L0
Þ�1. For an experimental energy such that

the nth mode is excitable, we have shown below
Eq. (7.11) that there are n full cycles within the extra
dimension. Each mode is a distorted plane wave filling
the compact dimension, with an initial width of roughly L.
Adding more modes decreases the width. We approximate
the initial width of the Gaussian wave packet with nmodes
to be roughly �L0 ¼ L= �n, where again, �n is the mean
mode number. We further approximate m� 2� �n=L, and
arrive at �1 � 2�L= �n. Finally, taking �n 
 L

ffiffiffiffiffiffiffiffiffiffi
sLHC

p
, say,

�ðL ffiffiffiffiffiffiffiffiffiffi
sLHC

p
=10Þ � L ðTeVÞ � L=10�19 m, we find �1 �

100=
ffiffiffiffiffiffiffiffiffiffi
sLHC

p � 10�27 s and �2 � �n�1 � ðL=10�19 mÞ �
10�27 s. Lab frame time t is related to time in the wave
function frame by t ¼ �u�, with �u being the Lorentz
factor for a boost in the u direction. However, �u is
nowhere near large enough to compensate for the many

orders of magnitude needed to qualitatively change the
results just obtained for wave packet spreading. We con-
clude that the times t1 and t2 which characterize the wave
function spreading in the lab frame are much shorter than
the * picosecond time associated with displaced vertices.
Consequently, the wave packet effectively spreads linearly
in time with coefficient ðm�L0Þ�1 � 1=2�, creating a
considerable variance in the times (negative for co-rotating
Higgs singlets and positive for counter-rotating Higgs
singlets) between primary and secondary vertices.
We make here a side remark that in addition to the

minimum energy associated with motion in the u direction,
the momentum in the u direction is also interesting. While
not observable, it is of sufficient mathematical interest that
we devote Appendix III to its description.
We have seen that the localized time-traveling particle is

a sum over many modes. The Lagrangian describing its
production, which we now turn to, is also a sum over
modes, with each mode characterized by an energy En

according to our dispersion relation, Eq. (7.10). The weight
functions in the Lagrangian are all unity. That is to say,
calculations begin in the usual fashion, as perturbations
about a free field theory.

D. 4D effective Lagrangian density

The reduction of the 5D theory to an effective 4D
Lagrangian density is accomplished by the integration

L ð4DÞ ¼
Z L

0
duðL0 þLIÞ; (7.14)

where L0 and LI are the 5D free and interacting
Lagrangian densities given in Eqs. (7.1) and (7.2). We are
interested in showing how the SM Higgs interacts with
the singlet Higgs’ energy eigenstates 
nðx�; uÞ. Thus, the
explicit expression for the Lagrangian density of the free
singlet

R
L
0 duL0 is irrelevant for the following discussions.

Now we turn to the interaction terms. Neglecting the

tadpole term � �1ffiffiffi
L

p 
 (which can be renormalized away,

if desired), we have for the 4D interaction Lagrangian
densityZ L

0
duLI¼� ffiffiffiffi

L
p

�3H
yH

Z L

0
du�ðuÞX

n


nðx�;uÞ

�L�4H
yH

Z L

0
du�ðuÞX

n1;n2


n1ðx�;uÞ
n2ðx�;uÞ

¼��3H
yH

X
n

ffiffiffiffi
L

p

nðx�;0Þ

��4H
yH

X
n1;n2

ffiffiffiffi
L

p

n1ðx�;0Þ

ffiffiffiffi
L

p

n2ðx�;0Þ

¼��3H
yH

X
n

�
n��4H
yH

X
n1;n2

�
n1
�
n2 ; (7.15)

where �
n ¼
ffiffiffiffi
L

p

nðx�; 0Þ is the singlet field on the brane,

normalized with
ffiffiffiffi
L

p
to its 4D canonical dimension of one.
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Note that since the energy is covariantly conserved, both

nðx�; uÞ and 
nðx�; 0Þ will have the same energy En.

E. Incorporating electroweak symmetry breaking

Electroweak symmetry breaking (EWSB) in Lð4DÞ is
effected by the replacement HyH ! 1

2 ðhþ vÞ2 in

Eq. (7.15), where v� 246 GeV is the SM Higgs vacuum
expectation value (VEV). The result is

Lð4DÞ ¼
Z L

0
duL0 � �3

2
ð2vhþ h2ÞX

n

�
n

� �4

2
ðv2 þ 2vhþ h2ÞX

n1;n2

�
n1
�
n2 : (7.16)

Omitted from Eq. (7.16) is a new tadpole term
� 1

2�3v
2
P

n
�
n linear in �
n. It is irrelevant for the purposes

of this article, so we here assume for simplicity that it can
be eliminated by fine-tuning the corresponding counter-
terms.12 The off-diagonal terms in �4

P
n1;n2

v2 �
n1
�
n2 mix

different �
n fields, while the terms
P

n�3vh �
n induce
singlet-doublet mixing. We make the simplifying assump-

tion that ð�3v; �4v
2Þ 
 m2 þ n2

R2 , so that upon diagonal-

ization of the mass matrix, the mass squared of the nth KK
mode remains close to M2

n � m2 þ ðnRÞ2. We emphasize

that this assumption is made so that the calculation may
proceed to a more complete proof of principle for acausal
signals at the LHC. In fact, it seems likely to us that acausal
signals are inherent in the present model even without this
simplifying assumption, and probably in other models not
yet explored.

We now turn to the details of Higgs singlet production
and detection at the LHC. As encapsulated in Eq. (7.16),
Higgs singlets can be produced either from decay of the
SM Higgs or through mass mixing with the SM Higgs. We
discuss each possibility in turn.

VIII. PHENOMENOLOGY OF PREAPPEARING
SECONDARY VERTICES

Motivated by the advent of the LHC, we will next
discuss the production and detection at the LHC of Higgs
singlets which traverse through the extra dimension and
violate causality.

How would one know that the Higgs singlets are cross-
ing and recrossing our brane? The secondary vertex may
arise from scattering of the singlet, or from decay (if
allowed by symmetry) of the singlet. These ‘‘vertices
from the future’’ would appear to occur at random times,
uncorrelated with the pulse times of the accelerator.13 The

essential correlation is via momentum. Exactly the three-
momentum missing from the primary vertex is restored in
the secondary vertex. Of course, the singlet particles on
counter-rotating geodesics will arrive back at our brane at
later times rather than earlier times. The secondary vertices
of counter-rotating particles will appear later than the
primary vertices which produced them, comprising a stan-
dard ‘‘displaced vertex’’ event.
The rate of, distance to, and negative time stamp for the

secondary vertices will depend on three parameters. First is
the production rate of the Higgs doublets, which is not
addressed in this paper. Secondly is the probability for
production of the Higgs singlet per production of the
Higgs doublet, which we denote as PP. Thirdly is the
probability for the Higgs singlet to interact, either by
scattering or by decaying, to yield an observable secondary
vertex in a detector. Of course, for the Higgs singlet to
scatter on or decay to SM particles (via coupling with the
SM Higgs doublet), the singlet must be on the brane. We
define PD to be the probability for the Higgs singlet to
create a secondary vertex per brane crossing.
Since 
 is a singlet under all SM groups, it will travel

almost inertly through the LHC detectors. Each produced
singlet wave packet �
 �n exits the brane and propagates into
the bulk, traverses the geodesic CTCs, and returns to cross
the brane at times tN given by Eq. (6.4). Classically, trans-
lational invariance in the u direction is broken by the
existence of our brane, and so u-direction momentum
may appear nonconserved.14 The classical picture that
emerges is the restoration of u-momentum conservation
when brane recoil is included.
It is worth noting that all equations from the first six

sections of this paper are classical equations, and so are
independent of mode number n. Thus, these equations
apply to the complete wave packet 
 �n formed from super-
posing many individual modes.
The probability for the Higgs singlet, once produced

with probability PP, to survive N traversals of the extra
dimension and ‘‘then’’ decay or scatter on the (N þ 1)th
traversal is

PðN þ 1Þ ¼ PDð1� PDÞN � PDe
�NPD : (8.1)

The latter expression, of Poisson form, pertains for PD 

1, as here. It is seen that even small scattering or decay
probabilities per crossing exponentiate over many, many
crossings to become significant. For this Poissonian proba-
bility, we have some standard results: the probability for
interaction after N traversals is flat up to the mean value

hNi ¼ 1=PD (very large), the rms deviation,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihN2i � hNi2p

,

12A different theory emerges if the counterterm is chosen to
allow a nonzero tadpole term. For example, the singlet 
 field
may then acquire a VEV.
13Preappearing events might well be discarded as ‘‘noise.’’ We
want to caution against this expediency.

14Momentum in fact is conserved in the following sense: From
the 5D point of view, energy-momentum is conserved as the
brane recoils against the emitted Higgs singlet. From the 4D
point of view, energy-momentum is conserved when the disper-
sion relation of Eq. (7.10) is introduced into the 4D phase space,
as is done in Appendix IV.
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is again 1=PD (very wide, as befits a flat distribution), and
the probability for the singlet to interact in fewer crossings
than hNi ¼ 1=PD is 1� e�1 ¼ 63%.

Thus, the typical negative time between the occurrence
of the primary vertex and the preappearance of the sec-
ondary vertex should be, from Eq. (6.4), of order

jthNij ¼ hNijt1j � L=c

PD

: (8.2)

The typical range of the secondary vertex relative to the
production site, from Eq. (6.3), is

rhNi ¼ cot	0L

PD

: (8.3)

(Recall that 	0 is the exit angle of the singlet relative to the
brane direction.) The probability (per unit SM Higgs pro-
duction) for the Higgs singlet to be produced and also
interact within a distance l of the production site is then

P ðrange of secondary vertex< lÞ

� PP

Z l
cot	0L

PD

0
dðNPDÞe�ðNPDÞ ¼ PP

h
1� eðl tan	0=LÞPD

i
;

(8.4)

which provides the limiting value

P ðrange of secondary vertex< lÞ � PPPD

l tan	0
L

;

for
l tan	0

L
PD 
 1: (8.5)

For the secondary vertex to occur within the LHC detec-
tors, one requires l ¼ lLHC � 10 m.

We will assume that htan	0i is of order unity. Then the
figure of merit that emerges for CTC detection is
PPPDlLHC=L. We have seen that the maximum allowed
value of L for two extra dimensions is 10�7 m, and that the
reach of the LHC is �1=

ffiffiffi
s

p � 10�19 m. Thus, we are
interested in an extra-dimensional size Lwithin the bounds
½10�19; 10�7� m. Below we shall see that the acausal pre-
appearance of the secondary vertex for the co-rotating
singlet may be observable at the LHC.

The Higgs singlet production and interaction mecha-
nisms depend on the symmetry of the Higgs singlet-
doublet interaction terms in the Lagrangian. Therefore
the production and detection probabilities PP and PD,
respectively, do as well. We discuss them next. There are
two possibilities for our 5D Lagrangian, with and without a
Z2 symmetry 
 $ �
.

A. Without the � $ �� symmetry

In this subsection, we ignore the possible Z2 symmetry
and keep the trilinear term �3H

yH
P

n
�
n in the Lagrangian

density. When the SM Higgs acquires its VEV v, we
have the resultant singlet-doublet mass-mixing term
�3vh

P
n
�
n in the 4D Lagrangian of Eq. (7.16). Note that

this singlet-doublet mixing can only occur when the singlet
particle �
n is traversing the brane, as the field H is con-
fined to the brane.
In Refs. [44,45], it was shown that mixing of the Higgs

field with higher-dimensional graviscalars enhances the
Higgs invisible width �inv while maintaining the usual
Breit-Wigner form. The invisible width is extracted from
the imaginary part of the Higgs self-energy graphs, which
includes the mixing of the Higgs with the many modes.
These calculations apply in an analogous way to the Higgs-
many mode mixing in our model. Thus the many-mode
wave function �
 �n, which we introduced in Sec. VII C, is
the Fourier transform of an energy-space Breit-Wigner
form. In practice, this means that the sum includes all
modes within the Higgs invisible width, sculpted by the
Breit-Wigner shape. Including modes with energy from
Mh � �inv=2 to Mh þ �inv=2, we have a mean mode num-
ber �n�MhR, and an effective coupling for h- �
 �n mixing of
�m2

mix ���3vR�inv, since 1=R is roughly the energy

spacing between modes. In the model of Ref. [44], the
branching ratio BRðh ! invisibleÞ is calculated and shown
to vary from nearly one with two extra dimensions, to three
orders of magnitude less with six extra dimensions. We
may expect something similar here.
Diagonalization of the effective 2� 2 mass-mixing

matrix leads to the mixing angle 	h �
 �n
between h and �
 �n.

We assume this angle to be small, an assumption equiva-
lent to assuming m2

mix 
 M2
h. We label the resulting mass

eigenstates of this 2� 2 subspace h2 and h1 with masses
M2 and M1. The mass eigenstates are related to the
unmixed singlet and doublet states �
 �n and h by

jh2i
jh1i

 !
¼ cos	h �
 �n

sin	h �
 �n

�sin	h �
 �n
cos	h �
 �n

 ! jhi
j �
 �ni

 !
; (8.6)

and the inverse transformation is

jhi
j �
 �ni

 !
¼ cos	h �
 �n

�sin	h �
 �n

sin	h �
 �n
cos	h �
 �n

 ! jh2i
jh1i

 !
: (8.7)

We will assume for definiteness that on the brane, the two
states (in either basis) quickly decohere due to a significant
mass splitting. This assumption is reasonable since the

decoherence time is tdeco � 2��u

�M � 10�23 ðGeV=�MÞ s.
(The differing mass peaks M2 and M1 may thus be distin-
guishable at the LHC.) So we consider only the classical
probabilities cos2	h �
 �n

and sin2	h �
 �n
in the remaining

calculation.
The electroweak interaction, which would otherwise

produce the SM Higgs, will now produce both mass eigen-
states h2 and h1, in the ratios of cos2	h �
 �n

and sin2	h �
 �n
,

times phase space factors. For purposes of illustration, we
take these phase space factors to be the same for both
modes. The �
 �n components of these mass eigenstates h2
and h1 are given by the probabilities sin2	h �
 �n

and

cos2	h �
 �n
, respectively. Thus, per production of a Higgs
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doublet, the probability that a singlet �
 �n is produced is

PP¼2sin2	h �
 �n
cos2	h �
 �n

¼ 1
2sin

2ð2	h �
 �n
Þ!	h �
 �n


1�2	2
h �
 �n

.

Upon returning to the brane, these pure �
 �n states mix
again and hence split into h2 and h1 states, with respective
probabilities sin2	h �
 �n

and cos2	h �
 �n
. The probabilities for

these h2 and h1 states to decay or interact as a SM Higgs h
are respectively given by cos2	h �
 �n

and sin2	h �
 �n
. Thus, the

total probability per returning �
 �n particle per brane
crossing to decay or interact as a SM Higgs h is again
PD ¼ PP ¼ 1

2 sin
2ð2	h �
 �n

Þ � 2	2
h �
 �n

, a very small number.

Therefore, per initial Higgs doublet production the proba-
bility for a singlet �
 �n component to be produced and to
acausally interact on the Nth brane crossing is approxi-
mately 4	4

h �
 �n
, nearly independent of the number of brane

crossings. These brane crossings happen again and again
until the interaction ends the odyssey. From the initial
production of the �
 �n component to its final interaction
upon brane crossing, the time elapsed (as measured by an
observer on the brane) is again given by tN in Eq. (6.4).

Therefore, in the broken 
 $ �
 symmetry model, we
expect the probability that a preappearing secondary vertex
will accompany each SM Higgs event to be

P ðrange of secondary vertex< lLHCÞ

� PPPDð10 mÞ=L� 108ð2	2
h �
 �n

Þ2
�
10�7 m

L

�
: (8.8)

Here, the negative time between the secondary and primary
vertices would be

jthNij � L

PD

� 3� 10�16

�
L=10�7 m

2	2
h �
 �n

�
s: (8.9)

Observability of a negative-time secondary vertex
requires that jthNij lies in the interval of roughly 1 pico-

second to 30 nanoseconds, and that the probability per
Higgs doublet P (range of secondary vertex< lLHCÞ
exceeds roughly one per million. Manipulation of
Eqs. (8.8) and (8.9) then reveals that the two observability
requirements are met with any L down to 10�14 m (as
discussed in Section VII B, we require L < 10�7 m to
avoid excessive supernova cooling), and

10�7

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L

10�7 m

s
� 2	2

h �
 �n

�

8>>><>>>:
10�3:5

�
L

10�7 m

�
; if L > 10�8 m;

10�4
ffiffiffiffiffiffiffiffiffiffiffiffi

L
10�7 m

q
; if L < 10�8 m:

(8.10)

For example, with the largest value of L allowed by SN
cooling rates for two extra dimensions, 10�7 m, one gets
10�7 � 2	2

h �
 �n
� 10�3:5. With the smallest value of L

allowed for observability in the LHC detectors, 10�14 m,
one gets 10�10:5 � 2	2

h �
 �n
� 10�7:5.

Thus, we have demonstrated that for a range of choices
for L and 	h �
 �n

, or equivalently, for PP and PD, preappear-

ing secondary vertices are observable in the LHC
detectors.

B. With the Z2 symmetry � $ ��

If one imposes the discrete Z2 symmetry
 $ �
, then
the coupling constants �1 and �3 are zero15 and the low
mode Higgs singlets are stable, natural, minimal candi-
dates for weakly interacting massive particle (WIMP) dark
matter [47,48]. Constraints on this model from the CDMS
II experiment [49] have been studied in Ref. [50,51]. The
discrete symmetry 
 $ �
 also forbids the Higgs singlet
to acquire a VEV. This precludes any mixing of the Higgs
singlet with the SMHiggs. With the Z2 symmetry imposed,
SM Higgs decay is the sole production mechanism of the
Higgs singlet. The decay vertex of the SM Higgs provides
the primary vertex for the production of the Higgs singlet,
and subsequent scattering of the singlet via t-channel
exchange of a SM Higgs provides the secondary vertex.
In Eq. (7.16), each term of the form �4vh �
n1

�
n2 pro-

vides a decay channel for the SMHiggs into a pair of Higgs
singlet modes, if kinematically allowed. The general case
h ! �
n1

�
n2 with n1 � n2 is considered in Appendix IV.

Here we exhibit the simplest decay channels to single
mode states, h ! �
n

�
�n and h ! �
n
�
n. The width for

h ! �
n
�
�n is

�h! �
n
�
�n

¼ �2
4v

2

16�Mh

�n;�n;

�n;�n ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �g2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4 �M2

n

ð1� �g2Þ2M2
h

s
;

(8.11)

while the width for h ! �
n
�
n is

�h! �
n
�
n
¼ �2

4v
2

8�Mh

�n;n;

�n;n ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �g2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4 �M2

n

ðð1� �g2ÞMh � 2 �gn
R Þ2

vuut ; (8.12)

where �M2
n ¼ ð1� �g2Þm2 þ n2

R2 .

The above formulas apply to single mode final states.
Reference [45] looked at Higgs decay to a pair of
graviscalars. The authors found via a quite complicated
calculation that the decay was suppressed compared to
simpler Higgs-graviscalar mixing. However, their model
concerned gravitational coupling, whereas our model
has completely different couplings for mixing. Thus, the

15The four-dimensional counterpart of this simple Z2 model
was first proposed in Ref. [46], where the 
 quanta are called
‘‘scalar phantoms.’’
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techniques of Ref. [45] may apply, but the conclusions do
not. We choose to finesse the hard calculation with an order
of magnitude estimate. Each sum on modes is constrained
by phase space (and not by �inv as in the broken-Z2 mixing
case), and so includes roughly nmax �MhR=2� 3�
1010ðR=10�7 mÞðMh=125 GeVÞ states. A typical mode
value will be �n�MhR=4. Thus, from here forward,
in Eqs. (8.11) and (8.12), we set n to �n taken as
MhR=4, and multiply the rhs by the mode-counting factor
nmax for each of the final state singlets, yielding the
rate-enhancing factor n2max � 2:3� 1019ðL=10�7 mÞ2�
ðMh=125 GeVÞ2.

It is illuminating to look at the ratio of decay widths to
�
 �n pairs and to �-lepton pairs. For the �, the coupling gY to
the SM Higgs is related to the � mass through EWSB:
g2Y ¼ 2m2

�=v
2. Neglecting terms of order ðm�=MhÞ2, the

ratio can be approximated as

�h! �
 �n
�
� �n

�h!�þ��
� �2

4v
4n2max

M2
hm

2
�

� �n;� �n: (8.13)

This ratio can be much greater than unity, even for pertur-
batively small �4, and so PP can be nearly as large as unity.
It thus appears likely that �
 �n particles will be copiously
produced by SM Higgs decay if kinematically allowed,
that their KK modes will explore extra dimensions if the
latter exist, and finally, that the KK modes will traverse the
geodesic CTCs, if nature chooses an appropriately warped
metric.

The exact Z2 symmetry of the model under considera-
tion forbids decay of the lighter 
 singlets. The Z2 model
does allow communication of the 
 with SM matter
through t-channel exchange of a SM Higgs. The top-loop
induced coupling of the SM Higgs to two gluons provides
the dominant coupling of the SM Higgs h to SM matter.
Despite the small couplings of h to the SM, and �4v at the
h �
 �n1

�
 �n2 vertex, singlet scattering is enhanced by nmax in

amplitude, and so n2max in rate. Moreover, the singlet will
eventually scatter since it will circulate through the peri-
odic fifth dimension again and again until its geodesic is
altered by the scattering event. The scattering cross section
is of order

�
 �nN �
�ð�4vnmaxÞ�ðh ! t�t ! ggÞð�s=4�Þ

M2
h

�
2
; (8.14)

where �ðh ! t�t ! ggÞ is the effective coupling of h to the
nucleon N through a virtual top loop at the Higgs end and
two gluons at the nucleon end. This coupling strength is of
order �s

4� � 10�2. Thus, we expect

�
 �nN �
�
ð5� 109�4Þ

�
125 GeV

Mh

��
L

10�7 m

��
2
fb: (8.15)

We get the scattering probability per brane crossing by
multiplying this cross section by the physical length of the

brane crossing �w, by the fraction of time spent on the
brane �t=t� w=L, and by the target density 
; the brane
width w is a free parameter, beyond our classical model,
but presumably of order �L. We find

PD ¼ 3� 10�20

�
�
 �nN

fb

��



5 g=cm3

��
w

L

�
2
�

L

10�7m

�
: (8.16)

As a scaling law, we have PD / Lw2=M2
h, which grows

linearly in L.
In summary, with the
 $ �
 symmetry, we expect the

probability that a preappearing secondary vertex will
accompany each Higgs event at the LHC to be

PPPDð10 mÞ=L� 10�12ð�
 �nN

fb Þð 

5 g=cm3ÞðwLÞ2 for PP � 1.

The negative time between the secondary and primary

vertices would be �L=PD � 104½ð�
 �nN

fb Þð 

5 g=cm3ÞðwLÞ2��1 s.

These numbers for the unbroken 
 $ �
 model are
encouraging or discouraging, depending on nature’s choice
for the compactification length L. The model with broken

 $ �
 symmetry is more encouraging.

C. Correlation of preappearing secondary
and postappearing primary vertices

Finally, we summarize the correlations between the
primary vertex producing the negative-time traveling
Higgs singlet and the secondary vertex where the Higgs
singlet reveals itself. As we have seen above, the first
correlation is the small but possibly measurable negative
time between the primary and secondary vertices.
The second correlation relating the preappearing sec-

ondary vertex and the postappearing primary vertex is the
conserved momentum. As with familiar causal pairs of
vertices, the total momentum is zero only for the sum of
momenta in both vertices. Momentum conservation can be
used to correlate the preappearing secondary vertex with its
later primary vertex, as opposed to the background of
possible correlations of the secondary vertex with earlier
primary vertices.
Thus, the signature for the LHC is a secondary vertex

preappearing in time relative to the associated primary
vertex. The two vertices are correlated by total momentum
conservation. If such a signature is seen, then a very
important discovery is made. If such a signature is not
seen, then the model is falsified for the energy scale of
the LHC.

IX. DISCUSSIONS AND FURTHER
SPECULATIONS

As we have just demonstrated with a simple model,
it is possible to have a significant amount of KK Higgs
singlets produced by decay of, or mixing with, SMHiggs at
the LHC. If nature chooses the appropriate extra-
dimensional metric, then these KK Higgs singlets can
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traverse the geodesic CTCs and thereby undergo travel in
negative time.16

One may wonder why such acausal particles, if they
exist, have not been detected up to now. One possible
answer is that these time-traveling particles may have
been recorded, but either unnoticed or abandoned as ex-
perimental background. Another possible answer could be
that there has not been sufficient volume or instrumenta-
tion available to the detectors before now to detect these
events. It may be that for the first time our scientific
community has built accelerators capable of producing
time-traveling particles, and also detectors capable of sens-
ing them.

One may also wonder whether an acausal theory could
be compatible with quantum field theory (QFT). After all,
in the canonical picture, QFT is built upon time-ordered
products of operators, and the path integral picture is built
upon a time-ordered path. What does ‘‘time-ordering’’
mean in an acausal theory? And might the wave packet
of a particle traversing a CTC interfere with itself upon its
simultaneous emission and arrival? We note that each of
these two questions has been discussed before, the first one
long ago in Ref. [55], and the second one more recently in
Ref. [56]. We offer no new insights into these questions.
Rather, we have been careful to paint a mainly classical
picture in this paper. We are content for now to let experi-
ment be the arbiter of whether acausality is realizable in
nature.

Finally, we would like to conclude with some specula-
tions. In special relativity, space and time are unified.
However, it seems that there is still an implicit difference
between space and time. The reason is that traveling back-
wards in space appears to be easy, while traveling back-
wards in time requires a superluminal velocity. So the
question arises: why is there an apparently inexorable
arrow of time in our Universe? The issue of chronology
protection may somehow be related to the very concept of
time. Further theoretical investigations are badly needed.

While string theory [57] and loop quantum gravity [58]
are formulated very differently, there is a common vision
between them. Namely, a true theory of quantum gravity
should be somehow background independent. This implies
that spacetime is actually a derived concept and hence
emergent [59]. In particular, the AdS/CFT correspondence
[60] suggests that gravity is emergent. As observed in
Ref. [61], the crucial point is that diffeomorphism

invariance simply characterizes the redundancies in the
description of the gravity theory. But spacetime coordi-
nates are themselves part of the redundant description in
general relativity. Thus, the emergence of a unique gravity
requires the emergence of spacetime as well. If the true
quantum theory of gravity is indeed background indepen-
dent and hence spacetime is emergent, then the idea of
CTCs or time travel is completely meaningless at the
energy scale of quantum gravity, since there is no space-
time at all. In this case, one can loosely say that chronology
is ‘‘trivially protected’’ in that time is simply undefined.
The discussion of chronology protection and time travel
then become intimately related with the dynamics of how
spacetime emerged.
If it turns out that the fundamental Planck scale is around

a TeVas proposed by ADD, then the LHC would be at the
right energy scale to elucidate our understanding of extra
dimensions. If it further turns out that nature chooses an
extra-dimensional metric which admits CTCs, then discov-
ery of acausal correlations at the LHC would offer a
fantastic new insight into the nature of spacetime.
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APPENDIX A: COVARIANTAPPROACH
TO LIGHT-CONE ANALYSIS

If a global time coordinate can be defined for a metric,
then the metric cannot contain CTC solutions. A time
function t is a global time coordinate if its four-gradient
@�t is everywhere timelike, i.e., if j@�tj2 > 0 everywhere.

This covariant condition for the absence or presence of a
CTC has been brought to our attention by A. Guth. He
references a proof of this theorem in Ch. 8 of Wald’s
textbook [62]. Here we wish to show that for our simple
metric, this condition reduces to the light-cone condition of
Eq. (4.1).
The condition for the absence of any CTC is that

j@�tj2 ¼ @�t@�tg
�� ¼ s�s�g

�� > 0 everywhere; with

s� � @�t: (A1)

Each of the four s� is the slope of the particle’s world line

in the � direction. (Note that s� is not a covariant four-

vector.) In this paper, we have chosen the time function to
be the coordinate time t. In addition, we have time-
translation invariance along the brane directions, but an
off-diagonal metric element gtu in the time-bulk plane.
This off-diagonal element mixes t and u, leading to a
nontrivial world line tðuÞ [see Eq. (3.17)]. Thus, for our
metric, Eq. (A1) becomes

16The idea of causality violation at the LHC is not new. For
example, a causality-violating SM Higgs has been proposed in
Ref. [52], by invoking an unconventional complex action. The
possibility of wormhole production at the LHC has been dis-
cussed in Ref. [53]. The idea of testing the vertex displacements
for the acausal Lee-Wick particles at the LHC has been proposed
by Ref. [54]. Also, some suggestive and qualitative effects
associated with time-traveling particles have been proposed in
Ref. [34], but without any concrete LHC signatures.
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j@�tj2 ¼ gtt þ 2sug
tu � s2ug

uu: (A2)

Recalling that g�� is the matrix inverse of the metric g��,

one readily finds for the 2� 2 t-u subspace that gtt ¼
�guu ¼ þhðuÞ, guu ¼ �gtt ¼ �1, and gtu ¼ þgtu ¼
gðuÞ. Substitution of these elements into Eq. (A2) then
gives

j@�tj2 ¼ �s2u þ 2gðuÞsu þ hðuÞ: (A3)

CTCs are allowed iff j@�tj2 passes through zero. The

quadratic form in Eq. (A3) may be written in terms of its
roots s� as�ðsu � s�Þðsu � sþÞ. Comparing the two qua-
dratic forms then gives

sþ þ s� ¼ 2gtuðuÞ and sþs� ¼ �hðuÞ: (A4)

Thus, we are led via the covariant pathway to the massless-
particle analog of our intuitive light-cone slope condition
for CTCs, given in Eq. (4.2). [The sign of gðuÞ is incon-
sequential since it can be reversed by simply redefining
u ! �u.]

APPENDIX B: DIVERGENCE-INDUCED
OPERATORS AND THE EFFECTIVE CUTOFF

In D dimensions, the N-pair Higgs operator is propor-
tional to

ðHyHÞNoperator /
YN

�4

Z
dDx�ðD�4Þð ~x?Þ�Fðx� yÞ; (B1)

with ~x? being the coordinates orthogonal to the brane. The
delta function in the integrand puts the operator on the
brane where the H field is nonzero. The interconnected
spacetime propagators DF are

�Fðx� yÞ ¼
Z

dDk
eik�ðx�yÞ

ðk2 �m2Þ : (B2)

Spacetime integrations lead to N four-dimensional delta
functions, each enforcing four-momentum conservation at
one of theN vertices. Finally, these 4D delta functions may
be integrated away to leave a single 4D delta function
enforcing overall momentum conservation, times �N

4 times

the following schematic product of integrals:Z dDk

ðk2 �m2Þ
YN�1

j¼1

Z dðD�4Þ ~kj?
ðk2j �m2 þ � � �Þ ; (B3)

where ~k? are the
-field momentum components orthogo-
nal to the brane, and the first four (‘‘brane’’) components of
the kj’s are fixed by the delta functions. This integral

product diverges as the ½4þ NðD� 6Þ�th power of the
cutoff �. For example, in five dimensions, the divergence
is quadratic for N ¼ 2 and logarithmic for N ¼ 3 (odd
powers of divergence are removed by the symmetric inte-
gration that follows a Wick rotation). In general, with more
Higgs pairs or with more space dimensions, the divergence
is worse. Consequently, the model is an effective theory,

valid up to an energy cutoff of characteristic scale
�� 1=ð�4LÞ.

APPENDIX C: MOMENTUM IN
THE BULK DIRECTION

In this appendix, we wish to discuss the occurrence of
conserved energy and brane three-momentum for the par-
ticle, and the nonconserved particle momentum in the bulk
direction, u. Although the bulk momentum p5 (and asso-
ciated p5 ¼ G5�p�) is neither conserved nor observable, it

is mathematically interesting in its own right.
The geodesic equation may be written as

_� A ¼ 1

2
ð@AGBCÞ�B�C; where �A � _xA (C1)

is the tangent vector. In this form, the geodesic equation
makes it clear that for each Killing vector @A (i.e., @A such
that @AGBC ¼ 0, 8 B, C), there is a conserved quantity
�A ¼ _xA. Note that the conserved quantity carries a cova-
riant (lower) index, rather than a contravariant (upper)
index. For the 4D Minkowski metric, this is a moot point
since upper and lower indices are simply related by �1.
However, for a more general metric, this point is crucial.
Since our metric depends only on u, it admits four

conserved quantities. These are _x0 ¼ G0A _xA ¼ _tþ gðuÞ _u,
and _xj ¼ GjA _xA ¼ � _xj ¼ �pj=m, i.e., the three-

momentum ~p on the brane is conserved. The conserved
quantity _tþ gðuÞ _u resulting from the Killing vector @0
must be proportional to the eigenvalue of the generator
of time translation, i.e., the energy operator. We derived the
energy eigenvalue En in the main text, and now we equate
the two. Using the initial value for conserved _tþ gðuÞ _u, we
have

En ¼ mð�0 þ g0 _u0Þ: (C2)

That the mass m is the proportionality constant is readily
determined by taking the 4D limit of this equation, i.e.,
setting n and �g to zero in En on the lhs, and _u0 to zero on
the rhs. In this paper, we do not exploit the relation (C2).
The momentum in the bulk direction is not conserved,

owing to the breaking of the translational invariance in the
u direction by the brane. Nevertheless, we may use the
relation between momentum operator and generator for
infinitesimal space translations to define it. The momentum
then satisfies the standard Dirac commutator with its
conjugate variable, x5. The momentum operator expressed
in position space then becomes P5 ¼ �i@5. Operating on
the nth-mode KG plane wave then determines its eigen-
value to be

p5 ¼ �EnðgðuÞ � �gÞ þ n

R
: (C3)

It is obvious that p5 is nonconserved, because gðuÞ varies
with u whereas all other terms in p5 are constants or
conserved quantities. The fact that p5 depends on the
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global element �g is an expression of ‘‘awareness’’ of the
periodic boundary condition in the u direction. It then
follows that En is also aware of the boundary condition
through �g, because En depends on p5 (as well as on ~p).

We conclude this appendix by noting that the value of p5

averaged over a cycle in u is

�p 5 � 1

L

Z L

0
dup5 ¼ n

R
; (C4)

as might have been expected by one familiar with com-
pactified extra dimensions having a diagonal (possibly
warped) metric. An implication of this result is that any
observable on the brane will depend on p5 only through a

n
R

term. Examples are the energy eigenvalues En, which are
invariants and so have the same value on or off the brane.
Thus, they may depend on p5 only through

n
R , and they do.

APPENDIX D: SM HIGGS DECAY: h ! ��n1

��n2

In this appendix, we calculate the decay width of a SM
Higgs doublet h of mass Mh to a pair of singlets 
n1 and


n2 . Here it is assumed that the states h and 
n are not

mixed. Such is the case if a 
n $ �
nZ2 symmetry is
imposed.

Care is needed to correctly incorporate the unusual
energy dispersion formula En of Eq. (7.10), and the com-
pactified nature of the extra dimension. The Lorentz

invariant integral
R d3 ~p

2E ¼ R
d4p�ðp2 �m2Þ�ðp0Þ, appro-

priate for flat Minkowski space, must be promoted to a
covariant integral. In principle, d4p is made covariant by

multiplying it with
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijDetðGABÞj

p
. However, decay of the

SM Higgs occurs only on the brane, so it is the determinant

of the induced 4D metric that enters here, and the induced
4D metric is nothing but the familiar Minkowski metric
with jDetj ¼ 1. Thus d4p is invariant. In addition, the
quadratic form in the delta function is the eigenvalue
of the scalar Klein-Gordon operator GAB@A@B þm2, so it
too is invariant. Thus, the correct, invariant phase space
integral is

X
n

Z
d4p�

�
ð1� �g2Þp2

0 � 2 �gp0

n

R
� ~p2 � n2

R2
�m2

�
	ðp0Þ

¼ X
n

Z d3 ~p

2½ð1� �g2ÞEn � �gn
R �

¼ X
n

Z d3 ~p

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� �g2Þð ~p2 þm2Þ þ ðnRÞ2

q : (D1)

Here the argument of the delta function is just the quadratic
form of the dispersion relation (the generalization of the
4D Minkowski space dispersion relation E2 ¼ ~p2 þm2)
given in Eq. (7.9), and the latter equality follows from
Eq. (7.10). The periodic boundary condition in the u di-
rection enters the dispersion relation through the mean
metric element �g.
Our calculation below for the decay width �h! �
n1

�
n2

follows the treatment given in Sec. 4.5 of Ref. [63].
Translational invariance in time (for any time-independent
metric) guarantees energy conservation, and translational
invariance in space along the three brane directions guar-
antees three-momentum conservation. Thus, the tree-level
decay width in the center-of-momentum frame is given by

�h! �
n1
�
n2

¼ 1

2Ecm

Z d3 ~p1

ð2�Þ32½ð1� �g2ÞEn1 � �gn1
R �

Z d3 ~p2

ð2�Þ32½ð1� �g2ÞEn2 � �gn2
R �

� jMðh ! �
n1
�
n2Þj2ð2�Þ4�ð3Þð ~p1 þ ~p2Þ�ðEcm � En1 � En2Þ

¼ �2
4v

2

2Ecm

Z dj ~p1jj ~p1j2d�
ð2�Þ32½ð1� �g2ÞEn1 � �gn1

R �2½ð1� �g2ÞEn2 � �gn2
R � ð2�Þ�ðEcm � En1 � En2Þ

¼ �2
4v

2

2Ecm

Z
d�

j ~pj2
16�2½ð1� �g2ÞEn1 � �gn1

R �½ð1� �g2ÞEn2 � �gn2
R �

� j ~pj
ð1� �g2ÞEn1 � �gn1

R

þ j ~pj
ð1� �g2ÞEn2 � �gn2

R

��1

¼ �2
4v

2

8�Ecm

� j ~pj
ð1� �g2ÞEn1 � �gn1

R þ ð1� �g2ÞEn2 � �gn2
R

�
: (D2)

Using the condition Ecm ¼ Mh ¼ En1ðj ~pjÞ þ En2ðj ~pjÞ and our dispersion relation, we arrive at

�h! �
n1
�
n2

¼ �2
4v

2

16�Mh

�n1;n2 ; (D3)

where

�n1;n2 ¼

ðð1� �g2ÞMh � �gðn1þn2Þ

R Þ4 � 2ðð1� �g2ÞMh � �gðn1þn2Þ
R Þ2ð �M2

n1 þ �M2
n2Þ þ ð �M2

n1 � �M2
n2Þ2

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �g2

p ðð1� �g2ÞMh � �gðn1þn2Þ
R Þ2

(D4)
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and �M2
nj � ð1� �g2Þm2 þ ðn2j

R2Þ. Perhaps a more familiar
form for �n1;n2 , obtained by rearrangement of terms,17 is

�n1;n2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ð½ð1� �g2ÞMh � �gðn1þn2Þ

R �2; �M2
n1 ;

�M2
n2Þ

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �g2

p ðð1� �g2ÞMh � �gðn1þn2Þ
R Þ2

; (D5)

where �ðs; m2
a; m

2
bÞ ¼ ðs�m2

a �m2
bÞ2 � 4m2

am
2
b is the

usual triangle function employed in flat space calculations.
Notice that when the final-state particles are identical,

there are two possible contractions in the amplitude rather
than one, and a reduction of the two-body phase space from
a sphere to a hemisphere to avoid double counting of
identical particles. The net result is an extra factor of
22 � 1

2 ¼ 2.

There is a subtlety associated with apparent momentum
nonconservation in the u direction. The existence of the brane
at u ¼ 0 breaks translational invariance in the u direction,
and so we should not expect particle momentum in the u
direction to be conserved. For q � ðn1 þ n2Þ, the particle
momentum leaving the brane in the u direction is q=R, q �
ðn1 þ n2Þ. The ‘‘missing momentum’’�q=R is absorbed by
the recoil of the brane. This is analogous to the apparent lack
of conservation of z momentum when a child jumps upward
from a surface, either rigid like the Earth’s surface or elastic
like a trampoline’s surface. Presumably, a form factor jFðqÞj2
which characterizes the dynamic response of the brane is
included in jMj2 above, and arrives as a factor in Eq. (D3).
Only for q ¼ 0, i.e., for n2 ¼ �n1, does the brane not enter
the dynamics, so jFð0Þj2 ¼ 1. In this work, we adopt the
rigid picture of the brane, in which the net momentum of the
exiting Higgs singlet pair, q=R, is so small compared to brane
tension that jFðqÞj2 � jFð0Þj2 ¼ 1 for all q.

Finally, we state the obvious, that the total width of the
SM Higgs to singlet Higgs pairs is

�h!

 ¼ X
n1;n2

�h! �
n1
�
n2
; (D6)

where
P

n1;n2
includes all pairs of modes which are kine-

matically allowed, i.e., all pairs of mode numbers for
which the � function in Eq. (D5) is positive.

APPENDIX E: HIGGS SINGLET-DOUBLET
MIXING

From Eq. (7.16), the contribution of
R
duLI to the mass-

squared matrix mixing the Higgs doublet and tower of
singlet states is

M2 ¼

M2
h �3v �3v �3v � � �

�3v M2
0 þ �4v

2 �4v
2 �4v

2 � � �
�3v �4v

2 M2
1 þ �4v

2 �4v
2 � � �

..

. ..
.

�4v
2 . .

.
�4v

2

0BBBBBBB@

1CCCCCCCA:

(E1)

(We do not consider here the mixing contribution fromR
duL0.) Subtracting �1 from this matrix and taking the

determinant then gives the secular equation for the mass-
squared eigenvalues �. We may use Schur’s determinant
equation to simplify the calculation. For a matrix of the
form

M ¼ Ap�p Bp�q

Cq�p Dq�q

 !
; (E2)

the determinant of M is given by DetðMÞ ¼
DetðDÞDetðA� BD�1CÞ. We chooseA to be the first entry
in the upper left corner, and work in zeroth order of �4v

2.
Schur’s form then implies that

0 ¼ DetðM2 � �1Þ

¼
�Y1
n¼0

ðM2
n � �Þ

��
ðM2

h � �Þ � ð�3vÞ2
X1
n¼0

1

ðM2
n � �Þ

�
:

(E3)

If we are interested in the mixing of the Higgs doublet
with a particular singlet mode �
n, we may organize the
secular equation as

0 ¼ ½ðM2
h � �ÞðM2

n � �Þ � ð�3vÞ2�

� ð�3vÞ2
�X1
q�n

ðM2
n � �Þ

ðM2
q � �Þ

�
: (E4)

For small enough values of �3, one may argue that the
mass-squared eigenvalue �n for the perturbed state �
n

remains sufficiently close to M2
n that [

P1
q�n

ðM2
n��Þ

ðM2
q��Þ ] may

be neglected. For this case, the mixing angle between states

h and �
n becomes tan2	h �
 �n
� 2�3v

jM2
n�M2

h
j . For larger values

of �3, or large values of �4, more care would be needed. To
quantify these remarks, we first solve the piece of the
secular equation in the first bracket of (E4) to get

�n ¼ 1

2

�
M2

n þM2
h þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðM2

n �M2
hÞ2 þ ð2�3vÞ2

q �
!�3v
ðM2

n�M2
h
Þ
M2

n þ ð�3vÞ2
ðM2

n �M2
hÞ
: (E5)

Then, we insert this perturbative result back into
Eq. (E4) to evaluate the residual given by the second
bracket. The result is

17The equivalence of the argument of the square root in
Eq. (D4) to the triangle function is easily seen by noting that
the former is of the form A2 � 2AðBþ CÞ þ ðB� CÞ2, which
when expanded explicitly displays the symmetric form of the
triangle function, �ðA; B; CÞ ¼ A2 þ B2 þ C2 � 2AB� 2BC�
2AC. A further feature of the triangle function, useful for
extracting ~p2ðEÞ, is that �ðA;Bþ ~p2; Cþ ~p2Þ ¼ 0 implies

that ~p2 ¼ �ðA;B;CÞ
4A .
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residual ¼ ð�3vÞ4
X
q�n

��
q2

R2
� n2

R2

�
ðM2

n �M2
hÞ � ð�3vÞ2

��1
: (E6)

Thus, for �3v 
 ðM2
n �M2

hÞ, the residual is a negligible order ð�3vÞ4 perturbation, and the results �n � M2
n þ ð�3vÞ2

ðM2
n�M2

h
Þ

and tan2	h �
 �n
� 2�3v

jM2
n�M2

h
j are robust.
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