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We evaluate in great detail one-loop four-graviton field theory amplitudes in pure N =4 D =4
supergravity. The expressions are obtained by taking the field theory limits of (4,0) and (2,2) space-time
supersymmetric string theory models. For each model we extract the contributions of the spin-1 and spin-2
N = 4 supermultiplets running in the loop. We show that all of those constructions lead to the same four-
dimensional result for the four-graviton amplitudes in pure supergravity even though they come from

different string theory models.
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L. INTRODUCTION

The role of supersymmetry in perturbative supergravity
still leaves room for surprises. The construction of candi-
date counterterms for ultraviolet (UV) divergences in
extended four-dimensional supergravity theories does not
forbid some particular amplitudes to have an improved UV
behavior. For instance, the four-graviton three-loop ampli-
tude in N = 4 supergravity turns out to be UV finite [1,2],
despite the construction of a candidate counterterm [3].
(Some early discussion of the three-loop divergence in
N = 4 has appeared in Ref. [4], and recent alternative
arguments have been given in Ref. [5].)

The UV behavior of extended supergravity theories is
constrained in string theory by nonrenormalization theo-
rems that give rise in the field theory limit to supersym-
metric protection for potential counterterms. In maximal
supergravity, the absence of divergences until six loops in
four dimensions [6—8] is indeed a consequence of the
supersymmetric protection for %—, }1- and %-BPS operators
in string [9,10] or field theory [11,12]. In half-maximal
supergravity, it was shown recently [2] that the absence of
three-loop divergence in the four-graviton amplitude in
four dimensions is a consequence of the protection of
the %—BPS R* coupling from perturbative quantum correc-
tions beyond one loop in heterotic models. We refer to
Refs. [13—15] for a discussion of the nonrenormalization
theorems in heterotic string.

Maximal supergravity is unique in any dimension and
corresponds to the massless sector of type II string theory
compactified on a torus. Duality symmetries relate differ-
ent phases of the theory and strongly constrain its UV
behavior [10,12,16-19].

On the contrary, half-maximal supergravity (coupled to
vector multiplets) is not unique and can be obtained in the
low-energy limit of (4,0) string theory models—with all the
space-time supersymmetries coming from the world-sheet
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left-moving sector—or (2,2) string theory models—with
the space-time supersymmetries originating both from the
world-sheet left-moving and right-moving sectors. The two
constructions give rise to different low-energy supergravity
theories with a different identification of the moduli.

In this work we analyze the properties of the four-
graviton amplitude at one loop in pure N = 4 supergrav-
ity in four dimensions. We compute the genus one string
theory amplitude in different models and extract its field
theory limit. This method has been pioneered by Ref. [20].
It has then been developed intensively for gauge theory
amplitudes by Refs. [21,22] and then applied to gravity
amplitudes in Refs. [23,24]. In this work we will follow
more closely the formulation given in Ref. [25].

We consider three classes of four-dimensional string
models. The first class, on which was based the analysis
in Ref. [2], are heterotic string models. They have (4,0)
supersymmetry and 4 < n, =< 22 vector multiplets. The
models of the second class also carry (4,0) supersymmetry;
they are type II asymmetric orbifolds. We will study a
model with n,, = 0 (the Dabholkar-Harvey construction;
see Ref. [26]) and a model with n,, = 6. The third class is
composed of type II symmetric orbifolds with (2,2) super-
symmetry. For a given number of vector multiplets, the
(4,0) models are related to one another by strong-weak S
duality and related to (2,2) models by U duality [27,28].
Several tests of the duality relations between orbifold
models have been given in Ref. [29].

The string theory constructions generically contain mat-
ter vector multiplets. By comparing models with n,, # 0
vector multiplets to a model where n, = 0, we directly
check that one can simply subtract these contributions and
extract the pure N = 4 supergravity contributions in four
dimensions.

We shall show that the four-graviton amplitudes
extracted from the (4,0) string models match that obtained
in Refs. [24,30-35]. We however note that all of those
constructions are based on a (4,0) construction, while our
analysis covers both the (4,0) and (2,2) models. The four-
graviton amplitudes are expressed in a supersymmetric
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decomposition into N = 4s spin-s supermultiplets with
s =1, %, 2, as in Refs. [24,30-35]. The N = 8 and N =
6 supermultiplets have the same integrands in all the
models, while the contributions of the N = 4 multiplets
have different integrands. Despite the absence of obvious
relation between the integrands of the two models, the
amplitudes turn out to be equal after integration in all the
string theory models. In a nutshell, we find that the four-
graviton one-loop field theory amplitudes in the (2,2)
construction are identical to the (4,0) ones.

The paper is organized as follows. For each model we
evaluate the one-loop four-graviton string theory ampli-
tudes in Sec. II. In Sec. III we compare the expressions that
we obtained and check that they are compatible with our
expectations from string dualities. We then extract and
evaluate the field theory limit in the regime a’ — 0 of
those string amplitudes in Sec. IV. This gives us the field
theory four-graviton one-loop amplitudes for pure N = 4
supergravity. Section V contains our conclusions. Finally,
Appendixes A and B contain details about our conventions
and the properties of the conformal field theory (CFT)
building blocks of our string theory models.

II. ONE-LOOP STRING THEORY AMPLITUDES
IN (4,0) AND (2,2) MODELS

In this section, we compute the one-loop four-graviton
amplitudes in four-dimensional N = 4 (4,0) and (2,2)
string theory models. Their massless spectrum contains
an N = 4 supergravity multiplet coupled to n, N =4
vector multiplets. Since the heterotic string is made of the
tensor product of a left-moving superstring by a right-
moving bosonic string, it only gives rise to (4,0) models.
However, type II compactifications provide the freedom to
build (4,0) and (2,2) models [36].

A. Heterotic CHL models

We evaluate the one-loop four-graviton amplitudes in
heterotic string Chaudhuri-Hockney-Lykken (CHL) mod-
els in four dimensions [37-39]. Their low-energy limits are
(4,0) supergravity models with 4 = n,, = 22 vector super-
multiplets matter fields. We first comment on the moduli
space of the model, then write the string theory one-loop
amplitude and finally compute the CHL partition function.
This allows us to extract the massless states contribution to
the integrand of the field theory limit.

These models have the following moduli space:

T\SU(1, 1)/U(1) X SO(6, n,; Z)\SO(6, n,)/SO(6)

X S0(n,), 2.1)

where n,, is the number of vector multiplets and I' is a
discrete subgroup of SL(2, Z). For instance, I' = SL(2, Z)
forn, = 22 and I = I';(N) for the Z,, CHL (4,0) orbifold.
[We refer to Appendix A 3 for a definition of the con-
gruence subgroups of SL(2,7).] The scalar manifold
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SU(1,1)/U(1) is parametrized by the axion-dilaton in the
N = 4 gravity supermultiplet.

The generic structure of the amplitude has been
described in Ref. [2]. We will use the same notations and
conventions. The four-graviton amplitude takes the follow-
ing form':

T\4 &7
M e = N(g) tg /an_e [T [1

~ I1=i<j=4

d2 V;

)

X

(ny)
e? Z(4,0)het

W, (2.2)
where D = 10 — d and 2N is the normalization constant
of the amplitude. The domains of integration are
F={r=n+irglnl=ilrP=1,7n>0and T :=

{v=v; +ivy || =1,0 = v, = 7). Then,
B <l‘l;}=] &l 5x(vj)eikj-x(uj)>

(2a/)4<l—l;}:1 eikj-X(Vj)>
is the kinematical factor coming from the Wick contrac-
tions of the bosonic vertex operators and the plane-wave
part is given by ([T}_, X)) = exp(Q) with

Q = Z 201']{,» ‘ k]?(l/l]),

1=i<j=4

WHB: (2.3)

(2.4)

where we have made use of the notation v;; := v; — v;.
Using the result of Ref. [41] with our normalizations we
explicitly write
4
- o
W = l_[ EI’ : Qr
r=1
1 B _ . o=
+ ﬁ(ﬂ Q&+ Q,& - &7T (vy) + perms)
1 B o = -
+ m(fl & & &T (v1)T (v34) + perms),
(2.5)
where we have introduced

4
9 == ktoP(vIn); T(v):= 8,Plr),  (2.6)
r=1

with P(z) the genus one bosonic propagator. We refer to
Appendix A 2 for definitions and conventions.

The CHL models studied in this work are asymmetric
Z y orbifolds of the bosonic sector (in our case the right-
moving sector) of the heterotic string compactified on
T> X S'. Geometrically, the orbifold rotates N groups of
€ bosonic fields X“ belonging either to the internal 7' or to
the 73 and acts as an order N shift on the S'. More

"The 13 tensor defined in Ref. [40], Appendix 9.A, is
given by tgF* = 4tr(FOF@ FO FW) — tr(FOF@)r(FO FW) +
perms(2, 3,4), where the traces are taken over the Lorentz
indices. Setting the coupling constant to one, fgF* =
stA"™e(1,2,3,4), where A"™°(1,2,3,4) is the color stripped or-
dered tree amplitude between four gluons.
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precisely, if we take a boson X“ of the (p + I)th
group (p=0,...,N—1) of € bosons, we have
a€{pt, pt+1,...,p+ (€ —1)} and for twists g/2,
h/2 €{0,1/N,...,(N — 1)/N} we get

Xz + 1) = €!™8PINXa(z),
X4z + 1) = e™P/Nga(z),

2.7

We will consider models with (N, n,,{) €
{(1,22,16), (2, 14,8), (3,10, 6), (5,6,4), (7,4,3)}. It is in
principle possible to build models with (N, n,, €) =
(11,2,2) and (N, n,,€) =(23,0,1) and thus decouple
totally the matter fields, but it is then required to compac-
tify the theory on a seven- and eight-dimensional torus,
respectively. We will not comment about it further, since
we have anyway a type II superstring compactification
with (4,0) supersymmetry that already has n, = 0 that
we discuss in Sec. IIB2. This issue could have been
important, but it appears that at one loop in the field theory
limit there is no problem to decouple the vector multiplets
to obtain pure N = 4 supergravity. The partition function
of the right-moving CFT is given by

Zzm)

@ohe(7) = |G| Z Z(4 O)het(T)’ (2.8)

where |G| is the order of the orbifold group i.e., |G| =
The twisted conformal blocks Z&"

Lo are a product of the
oscillator and zero mode part

h, h,
= Zo8 X Z8.

latt*

zhe

(4,0)het 2.9)

In the field theory limit only the massless states from the
h = 0 sector will contribute and we are left with

z (n,) (7) — ZO 0

(4,0)het (4,0)het (1) + ZZ(4 O)het(T (2.10)

The untwisted partition function (g = h = 0) with ge-
neric diagonal Wilson lines A, as required by modular
invariance, is

I'624)(G, A)

0,0
z RN

“, O)het( 7) = 2.11)
where I'64)(G, A) is the lattice sum for the Narain lattice
69 @ T @ Ty with Wilson lines [42]. It drops out
in the field theory limit where the radii of compactification
R ~ a' are sent to zero and we are left with the part
coming from the oscillators

Z % (™) = (2.12)

7

At a generic point in the moduli space, the 480 gauge
bosons of the adjoint representation of Eg X Eg get masses
due to Wilson lines, and only the € gauge bosons of the
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U(1)¢ group left invariant by the orbifold action [43,44]
stay in the matter massless spectrum.
The oscillator part is computed to be

N—1
hg hXp.g
Zosé = Z n(ZXXP&XP){”

{g.n} =0

(2.13)

where the twisted bosonic chiral blocks Zﬁ'(‘g are given in
Appendix A. For h = 0, 228 is independent of g when N is
prime and it can be computed explicitly. It is the inverse of
the unique cusp form f,(7) = (n(7)n(N7))**? for I';(N)
of modular weight € = k +2 =24/(N + 1) with n, =
2¢ — 2 as determined in Refs. [43,44]. Then (2.10) writes

1 1 -1
Z —>—( —— + — ) (2.14)

WO N\GET T 1 G)

To conclude this section, we write the part of the inte-
grand of (2.2) that will contribute in the field theory limit.
When o’ — 0, the region of the fundamental domain of
integration F of interest is the large 7, region, such that t =
a'T, stays constant. Then, the objects that we have intro-
duced admit an expansion in the variable ¢ = ¢*"™ — 0.
We find

1 _
Z (4,0)het — 7 + 2+ n, + 0(g). (2.15)
Putting everything together and using the expansions given
in (A16), we find that the integrand in (2.2) is given by

Zgoper WS — ™ m0(Whe2)|,

+(n, +2)(W8eQ)| 0 + 0(7).  (2.16)

Order g coefficients are present because of the 1/g chiral
tachyonic pole in the nonsupersymmetric sector of the
theory. Since the integral over 7; of §~'(W¥%¢<)| ;0 van-
ishes, as a consequence of the level matching condition, we
did not write it. We introduce A, the massless sector
contribution to the field theory limit of the amplitude at
the leading order in a', for later use in Secs. Il and IV:

n, 1 /m\4 -
Al = 5(5) W11+ a/8Q)

+ WP0Ql, + (n, + 2 WP0), (217

where we have made use of the notations for the g expansion

WP = WP+ g WP, + o(@),
Q =-—ma'n,Q+a'80 +qQl, +32l; + ollgl?).
(2.18)

B. Type II asymmetric orbifold

In this section we consider type II string theory on two
different kinds of asymmetric orbifolds. They lead to (4,0)
models with a moduli space given in (2.1), where the
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axion-dilaton parametrizes the SU(1, 1)/U(1) factor. The
first one is a Z, orbifold with n,, = 6. The others are the
Dabholkar-Harvey models [26,45]; they have n, = 0 vec-
tor multiplet.

First, we give a general formula for the treatment of
those asymmetric orbifolds. We then study in detail the
J

2 2
(1) . d T d V; 1
M(4,o)11_N/ M,[T n T eQ§
F 7y I=i<j=4 T2

a,b=0,1

where N is the same normalization factor as for the
heterotic string amplitude and C(a, b, g, h) is a model-
dependent phase factor determined by modular invariance
and discussed below. We have introduced the chiral parti-
tion functions in the (a, b)-spin structure

o;10017)*
Za,b = :’T)IZ;

The value of w determines the chirality of the theory:
u = 0 for type IIA and u = 1 for type IIB. The partition
function in a twisted sector (h, g) of the orbifold is denoted

ZZi Notice that the four-dimensional fermions are not

twisted, so the vanishing of their partition function in the
(a, b) = (1, 1) sector holds for a (g, h)-twisted sector:
Zi’:‘f = 0. This is fully consistent with the fact that, due
to the lack of fermionic zero modes, this amplitude does
not receive any contributions from the odd/odd, odd/even
or even/odd spin structures. We use the holomorphic
factorization of the (0,0)-ghost picture graviton vector
operators as

V00 — / Pz - V()& - V(2)ekX@D: (221

with
. . F
el . V(Z) =l gx — i 5 PRy
o o O (2.22)
EN.V(E) =¢eD-9x +i ;“/Il//”l//”:

where we have introduced the field strengths F 2),, =
Gfli)kiu - E(Vi)ki,u and F%)V = Eﬁ)kiv - gg)kiﬂ'
|

1
S4;a,b = W
{6 (kD}={1,2,3,4}
1
_ ? Z
{Gi, .k, 1)}=1{1,2,3,4}
82;a,b = 53

5
2 D= 112,3.4)

N 1
Sap(zij)Sap(zji) tf(F(’)F(J))(E(k) Qe -9, + Tf(k) : E(I)T(Zkl))-
o
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partition function of two particular models and extract the
contribution of massless states to the integrand of the field
theory limit of their amplitudes. A generic expression for
the scattering amplitude of four gravitons at one loop in
type IIA and IIB superstring is

1

Z (_1)a+h+abza’bwa’b_ z (_1)a+15+,u55(_I)C(ﬁ,E,g,h)Zgz}?;Wd‘E’

2|G| a,b=0,1
gh

(2.19)

The correlators of the vertex operators in the (a, b)-spin
structure are given by Wa’b and Wa,,; defined by,
respectively,

<n§:1 G(J) ' V(Zj)eikj.X(zj»a,b

ab — ; )
» 20")4 4_ elkj'X(Zj)
( )'<l-[171 | ) 2.23)
I <n;}:1 el . V(Zj)elk,-'x(z_,»)%,l;
" Qa)(T, N9

We decompose the Wa, 5 into one part that depends on
the spin structure (a, b), denoted Wf »» and another inde-
pendent of the spin structure W?:

Wp=WE, + W5 (2.24)
this last term being identical to the one given in (2.3). The
spin structure-dependent part is given by the following
fermionic Wick’s contractions:

Wih = S4;a,b + SZ;a,b’ (225)
where S,,.,, ,, arise from Wick contracting n pairs of world-
sheet fermions. Note that the contractions involving
three pairs of fermion turn out to vanish in all the
type II models by symmetry. We introduce the notation
200, ={1,234} - - - for the sum over the ordered parti-
tions of {1,2,3,4} into two sets where the partitions
{(1,2,3), 1} and {(1, 3, 2), 1} are considered to be indepen-
dent. In that manner, the two terms in (2.25) can be written
explicitly:

Sap(Zi)Sap(2ii)Sap(zk)Sap(zi) twr(FOFD) w(FOFD)

Sab(Zi)Sap(Zj)Sap(z)Sap(zr) tr(FOFU O FD),

(2.26)
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Because the orbifold action only affects the right-moving fermionic zero modes, the left movers are untouched and
Riemann’s identities imply (see Appendix A 2 for details)

Z (—1)etbrabz W, , = ( ) 1gF*. (2.27)
’
Notice that a contribution with less than four fermionic contractions vanishes. We now rewrite (2.19):
M(@ - ( ) [ f Q ( 1)a+b+,u,ab( l)C(abgh)ZhAW (2.28)
@ — T |icjeq T2 2|G| abzol

For the class of asymmetric Zy orbifolds with =,
Z(asym)

1
ZE)g’](s)ym) — \/_q + n, + 2+ O(Q)’

vector multiplets studied here,

(asym) __
Zo,ly B

g.h

the partition function

G713, (= Dbl Z87 " has the following low-energy expansion:

—(n, +2) +o(g);  Z¥™ =0+ o(g). (2.29)

Because the four-dimensional fermionic zero modes are not saturated we have Z7}" = 0.
Since in those constructions no massless mode arises in the twisted # # 0 sector, this sector decouples. Hence, at 0(g)

one has the following relation:

Z (—1)“+b+abzf;i;ym)wa,5 - (Wo,o - W0,1)|ﬁ + (n, + 2)(Wo,o + Wo,1)|q0- (2.30)
a,b=0,1
The contribution of massless states to the field theory amplitude is given by
A EZ,”O))" %(;)4ISF4((WO,O - Wo,l)L/q + (n, + 2)07‘/0,0 + W0,1)|40)- (2.31)
Using the Riemann identity (2.27) we can rewrite this expression in the following form:
‘AEZO)H i<727->4t8F4((2> tsF* + (n, — 6)(Woo + W01)| o+ 161"/10| ) (2.32)

Higher powers of g in Wa, » orin Q are suppressed in the
field theory limit that we discuss in Sec. IV.

At this level, this expression is not identical to the one
derived in the heterotic construction (2.17). The type II and
heterotic (4,0) string models with n,, vector multiplets are
dual to each other under the transformation S — —1/8,
where S is the axion-dilaton scalar in the N =4
supergravity multiplet. We will see in Sec. III that for the
four-graviton amplitudes we obtain the same answer after
integrating out the real parts of the positions of the vertex
operators.

We now illustrate this analysis on the examples of the
asymmetric orbifold with six or zero vector multiplets.

1. Example: A model with six vector multiplets

Let us compute the partition function of the asymmetric
orbifold obtained by the action of the right-moving fer-
mion counting operator (—1)f* and a Z, action on the torus
T° [29,46]. The effect of the (—1)F* orbifold is to project
out the 16 vector multiplets arising from the R/R sector,
while preserving supersymmetry on the right-moving

|
sector. The moduli space of the theory is given by (2.1)
with n, = 6 and I' = I'(2) (see Ref. [29] for instance).
The partition function for the (4,0) CFT Z, asymmetric
orbifold model Z*y™" "= — 15" 78V with
Zzi(w) = (—1)agtbhighz bl 4)F(2 2)[2], (2.33)
where the shifted lattice sum I'} 2)[ 1is given in Ref. [29]
and recalled in Appendix B. The chiral blocks Z,, have
been defined in (2.20) and "4 4) is the lattice sum of the T
Using the fact that I 2)[ ] reduces to O for A = 1 and to 1
for h = 0 and that I'y 4y — 1 in the field theory limit, we
see that the partition function is unchanged in the sectors
(a, b) = (0,0) and (0,1) while for the (a, b) = (1, 0) sector,

the (—1)8 in (2.33) cancels the partition function when
summing over g. One obtains the following result:

ZE{IS}’m), (n,=6) _ Zoo: Z(asym) (n,=6) _

Zl’

Z(lrjlgym), (n,=6) _ (2.34)
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Using (A6), one checks directly that it corresponds to
(2.29) with n,, = 6.

2. Example: Models with zero vector multiplet

Now we consider the type II asymmetric orbifold mod-
els with zero vector multiplets constructed in Ref. [26] and
discussed in Ref. [45].

Those models are compactifications of the type II su-
perstring on a six-dimensional torus with an appropriate
choice for the value of the metric G;; and B-field B;;. The
Narain lattice is given by I'P" ={p, pripL. pPr €
Aw(Q), pr — pr € Ag(q)}, where Ag(q) is the root lattice
of a simply laced semisimple Lie algebra g and Ay (g) is
the weight lattice.

The asymmetric orbifold action is given by |p;, pr) —
e PVl p,  gppr), Where gp is an element of the Weyl
group of g and v, is a shift vector appropriately chosen to
avoid any massless states in the twisted sector [26,45].
With such a choice of shift vector and because the asym-
metric orbifold action leaves p; invariant, we have a (4,0)
model of four-dimensional supergravity with no vector
multiplets.

The partition function is given by

" o[4] 1
Zasym _ b z ,gj’
i~ @) IG] {Zh}ﬂ o

(2.35)

where the sum runs over the sectors of the orbifold. For
instance, in the Z¢9 model of Dabholkar and Harvey, one
has g; € j X {%,g,%} with j =0,...,8 and the same for
h;. The twisted conformal blocks are

(o) > Gts)'

hg _
Z b a+h

ei7als— b)ZSIH(TI’) [?ii}

if (g, ) = (0,0) mod?2,

¥ (g, h) # (0,0) mod?2.

(2.36)
The phase in (2.19) is determined by modular
invariance to be C(a, b, gg hg) = Y ,(agh + bhi+
8rIR)-

In the field theory limit, we perform the low-energy
expansion of this partition function and we find that it
takes the following form for all of the models in
Refs. [26,45]:

_ (e gxeD - gx::el) - XV - IX:TTE, e
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_ 1
Zgagym):("» O—__ 4924 o(q);
’ q
o 1
ZEm =0 — = 9 1 o(g); (2.37)

Nz

Z(lf'(s)ym)’("":o) =0+ olg),

which is (2.29) with n, = 0 as expected.

C. Type II symmetric orbifold

In this section we consider (2,2) models of four-
dimensional N = 4 supergravity. These models can be
obtained from the compactification of type II string theory
on symmetric orbifolds of K5 X T?. The difference with
the heterotic models considered in Sec. IT A is that the
scalar parametrizing the coset space SU(1, 1)/U(1) that
used to be the axiodilaton S is now the Kédhler modulus of
the two-torus T2 for the type IIA case or complex structure
modulus for the type IIB case. The nonperturbative duality
relation between these two models is discussed in detail in
Refs. [29,39].

Models with n,, = 2 have been constructed in Ref. [36].
The model with n,, = 22isa T*/Z, X T? orbifold, and the
following models with n, € {14, 10} are successive Z,
orbifolds of the first one. The model with n,, = 6 s a freely
acting Z, orbifold of the T*/Z, X T? theory that simply
projects out the 16 vector multiplets of the R/R sector. The
four-graviton amplitude can be effectively written in terms
of the (g, h) sectors of the first Z, orbifold of the 7#, and
writes

1
j\,l(n f f
(22) T1<,<1<4 7-2 4|G|

X Z Z(_l)a+b+ab(_1)a+5+ab'

i a,b=0,1
h8= Oah 0.1

. -
X Zzz,i-(n )(Wa,bw‘—l,g + Wa,b;ﬁ,ﬁ)’

where N is the same overall normalization as for the

h,g,(n,
Za,(lg; (ny)
(2.38)

previous amplitudes and ZZ:i’(”") is defined in Appendix B.
The term Wa’ p:ap 18 @ mixed term made of contractions
between holomorphic and antiholomorphic fields. It does
not appear in the (4,0) constructions since the left/right
contractions vanish due to the totally unbroken supersym-
metry in the left-moving sector.

Two types of contributions arise from the mixed
correlators

ikr.X(Zr)>a b;a,b

(2.39)

weo . ;
a,bia,b (2a/)4<n;}:1 elk,~x(zj)>

W <E(i) coXeW - gxe® . ixed . §x l_li‘=1 eikr'X(zr)>ayb;_ .
a,b;a,b

ikj~X(zj)> ’

(2a/YXITL, e

(ij) # (kI),
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with at least one operator product expansion between a holomorphic and an antiholomorphic operator. Explicitly, we find

Wa,b;d;l; = Z

{:;Al}e{lzu}
(i, j)#(k,1)

(Sap (Wi (S5 5(7)? X tr(FOFD) tr(FOFO) X (e® - €T (k, i)(e? - €DVT (1, j) + €V - Q€0 9 )

F(ieoj)+e® -0, (D el ng”(l, i)+ e eNT(L je? - 0,))

>

{i,jk1}E{1,2,3,4}

where

TG, j) =

(1
i)

Forgetting about the lattice sum, which at any rate is equal
to one in the field theory limit,

o (efsJoY ezl 2]l
Zajé = Cp

(n()°(e[ 110l )
ofsJormefs:iJoimY
(n()6[ 1] o)

c'),,l_é,;/_’P(Vi — vj|7)

(2.41)

= cp(=1)lerhe . (242)

where c}, is an effective number whose value depends on &
in the following way: ¢y =1 and ¢y = /n, — 6. This
number represents the successive halving of the number
of twisted R/R states. We refer to Appendix B for details.

The sum over the spin structures in the untwisted sector

(g, h) = (0,0) is once again performed using Riemann’s
identities:
4
Y (—nerbrab Z0OW, ), = (g) FY. (243)
a,b=0,1

ab=0

In the twisted sectors (A, g) # (0,0) we remark that

Zo1 = Zoo 210 = Zoor Zip = Zop-and Zg) = 2 =
Z 1(1) = 0, which gives for the chiral blocks in (2.38)
Z (—1)arbrab Z0VW, = Zgo(Woo— Woa),
a,b=0,1
ab=0
D (=1etbrab ZIOW, = Zpg(Woo— W), (2:44)
e ’ ‘
Z (_1)a+h+ubZ:{‘;)/Wa,b = Z(l):i(/W()l - WI,O)'
a,b=0,1
ab=0

Therefore the factorized terms in the correlator take the
simplified form

1S, (i)I* X (tr(FOFD)2(e®) - DT (k, 1)(e - €T (1, k) + €0 - Q80 - Q) + (k= 1)),

(2.40)
at+b+ab at+b+ab 4
T
& a’b—().l
1 /m\8 1
= g(i) 131sR* + §|Zgj(1)(wo,o - W)l
1
+ §|Z(1):8(W0,0 - W)l
1
+31Zai(Wor = Wil (2.45)

where tgtgR* is the Lorentz scalar built from four powers of
the Riemann tensor arising at the linearized level as the
product r5tgR* = 13 F*1F* 2

The mixed terms can be treated in the same way with the
result

1

—G bZ 1)a+b+ab(_DHEMEZZ:iZg:}%wabal}
a.b=0,
|Z (woooo wo,l;o;l)
+ §|Z(1)18 2O’Vo,o;o,o - WI,O;I,O)
1
+ glz(l):}lz(wo,l;o,l - w1,0;1,0)- (2.46)

Since the conformal blocks Zhg have the ¢ expansion
[see (A3)]

Zoy=—=+4Jq+olg);  Z5g=4n, — 6+ 0(q);
Z5y = 4, = 6+ 0(q),

the massless contribution to the integrand of (2.45) is
given by

T
(2.47)

This Lorentz scalar is the one obtained from the four-graviton
tree amplitude fgtgR* = stuM"™°(1,2,3,4) setting Newton’s
constant to one.
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1 /m\8 1
AEZ;) = g(z) 1313R* + §|Wo,o|ﬁ - Wil g2

+ %(WO,O;O,OL/:? ~ Woroilg) +2(n, —6)
X (|Wo,o|q0 - W1,0|q0|2 +1Wo, |0 — W1,0|q0|2)
+2(n, = ) Won00lg0.50 + Worio.1lg050
=2 Wi 0.0l g0,50)-

We notice that the bosonic piece W? in Wa, p in (2.24)
cancels in each term of the previous expression, due to the
minus sign between the W, ,’s in the squares.

The integrand of the four-graviton amplitude takes a
different form in the (2,2) construction compared with
the expression for the (4,0) constructions heterotic in
(2.17) and asymmetric type II models in (2.32). We will
show that after taking the field theory limit and performing
the integrals the amplitudes will turn out to be the same.

As mentioned above, for a given number of vector
multiplets the type II (2,2) models are only nonperturba-
tively equivalent (U duality) to the (4,0) models. However,
we will see that this nonperturbative duality does not affect
the perturbative one-loop multigraviton amplitudes.
Nevertheless, we expect that both &' corrections to those
amplitudes and amplitudes with external scalars and vec-
tors should be model dependent.

In the next section, we analyze the relationships between
the string theory models.

(2.48)

III. COMPARISON OF THE STRING MODELS

A. Massless spectrum

The spectrum of the type II superstring in ten dimen-
sions is given by the following sectors in the Gliozzi-
Scherk-Olive projection the graviton Gy, the B-field
Byy, and the dilaton & come from the NS/NS sector,
the gravitini , and the dilatini A come from the R/NS
and NS/R sectors, while the one-form C,; and three-form
Cynp come from the R/R sector in the type IIA string. The
dimensional reduction of type II string on a torus preserves
all of the 32 supercharges and leads to the N = 8 super-
gravity multiplet in four dimensions.

The reduction to N = 4 supersymmetry preserves 16
supercharges and leads to the following content. The
NS/NS sector contributes to the N° = 4 supergravity mul-
tiplet and to six vector multiplets. The R/R sector contrib-
utes to the N =4 spin—% multiplet and to the vector
multiplets with a multiplicity depending on the model.

In the partition function, the first Riemann vanishing
identity

Y (—perbrabz, =0, 3.1)
a,b=0,1

reflects the action of the N' = 4 supersymmetry inside the

one-loop amplitudes in the following manner. The ¢

expansion of this identity gives

PHYSICAL REVIEW D 87, 045001 (2013)

(%mm(@)—(%—gm(@)

— (16 + o(q)) = 0. (3.2)

The first two terms are the expansion of Zy and Z;, and
the last one is the expansion of Z 4. The cancellation of the
1/.,/q terms shows that the Gliozzi-Scherk-Olive projec-
tion eliminates the tachyon from the spectrum, and at the
order ¢° the cancellation results in the matching between
the bosonic and fermionic degrees of freedom.

In the amplitudes, chiral N =4 supersymmetry
implies the famous Riemann identities, stating that for
0 = n = 3 external legs, the one-loop n-point amplitude
vanishes [see Eq. (A25)]. At four points it gives

Z (—Datbrabz W, = (g)4t8F4-

a,b=0,1

(3.3)

In W,Lb [see (2.25)] the term independent of the spin
structure W% and the terms with less than four fermionic
contractions S,.,, cancel in the previous identity. The
cancellation of the tachyon yields at the first order in the
q expansion of (3.3)

w0,0Iq“ - Wo’llqll == 0

The next term in the expansion gives an identity describing
the propagation of the N° = 4 super-Yang-Mills multiplet
in the loop

S(WO,OlqO + W0,1|q0 - 2’W1,0|q0)
4
+ (WO,Olﬁ - W0,1|ﬁ) = (g) tsF*.  (3.5)

(3.4)

In this equation, one should have vectors, spinors and
scalars propagating according to the sector of the theory.
In Wa,h, a = 01is the NS sector, and a = 1 is the Ramond
sector. The scalars have already been identified in (3.4) and
correspond to Wo,olqo + W0,1|q0- The vector, being a
massless bosonic degree of freedom, should then corre-
spond to W | N Wil /g~ Finally, the fermions corre-
spond to W1,0| - The factor of 8 in front of the first term is
the number of degrees of freedom of a vector in ten
dimensions; one can check that the number of bosonic
degrees of freedom matches the number of fermionic
degrees of freedom.

B. Amplitudes and supersymmetry

In this section we discuss the relationships between the
four-graviton amplitudes in the various /N = 4 supergrav-
ity models in the field theory limit. We apply the logic of
the previous section about the spectrum of left or right
movers to the tensor product spectrum and see that we can
precisely identify the contributions to the amplitude, both
in the (4,0) and (2,2) models. The complete evaluation of
the amplitudes will be performed in Sec. IV.
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As mentioned above, the field theory limit is obtained by
considering the large 7, region, and the integrand of the
field theory amplitude is given by

1 4
Al = j2, [Tav AL,
2i=1

where X € {(4, O)het, (4, 0)I1, (2, 2)} indicates the model,
as in (2.17) and (2.32) or (2.48), respectively.

At one loop this quantity is the sum of the contribution
from n,, N = 4 vector (spin-1) supermultiplets running in
the loop and the N = 4 spin-2 supermultiplet

3.6)

A= A AT G)

For the case of the type II asymmetric orbifold models
with n,, vector multiplets we deduce from (2.32)

in 1 (m\4 1 2
At =3() e [ [1aWaoly + Wolp)
21=
(3.8)

Since t3F* is the supersymmetric left-moving sector con-
tribution [recall the supersymmetry identity in (3.3)], it
corresponds to an N = 4 vector multiplet and we recog-
nize in (3.8) the product of this multiplet with the scalar
from the right-moving sector:

(14, 1/24, 06) =4 = (11, 1/24, 06) Ar=4 ® (01) Ar—0-

This agrees with the identification made in the previous
subsection where W, | » T Wl . Was argued to be a
scalar contribution.

The contribution from the JN° = 4 supergravity multi-
plet running in the loop is given by

(3.9)

; 1 /m\4 1 4
A?E’l(r)];[ = Z(5) t8F4 '/;21 l_!dl/l] [2(W0’0|40 + WO,llqO)
21=

+ (Wool g — Woil 21

The factor of 2 is the number of degrees of freedom of a
vector in four dimensions. Since Z7%" = 0 + o(g) for the
(4,0) model asymmetric orbifold construction, the inte-
grand of the four-graviton amplitude in (2.29) does not
receive any contribution from the right-moving R sector.
Stated differently, the absence of W],O implies that both
R/R and NS/R sectors are projected out, leaving only the
contribution from the NS/NS and R/NS. Thus, the four
N =4 spin-3 supermultiplets and 16 N =4 spin-1
supermultiplets are projected out, leaving at most six vec-
tor multiplets. This number is further reduced to zero in the
Dabholkar-Harvey construction [26].

From (3.10) we recognize that the N = 4 supergravity
multiplet is obtained by the following tensor product:

(21,3/24, 16, 1/24,0) zr—g = (11, 1/24,06) nr=4 ® (11) v
G.11)

(3.10)

PHYSICAL REVIEW D 87, 045001 (2013)

The two real scalars arise from the trace part and the
antisymmetric part (after dualization in four dimensions)
of the tensorial product of the two vectors. Using the
identification of Wyl + Wyl with a scalar
contribution and Eq. (A31) we can now identify
Wl N Wl /7 With the contribution of a vector and
two scalars. This confirms the identification of W | &
with a spin—% contribution in the end of Sec. IIT A.
Since

(3/21, 14, 1/2641, 041:3) N—a
= (14, 1/24, 06) ar=4 ® (1/2) xr—0.

we see that removing the four spin % (that is, the term
w1,o| 4 of the right-moving massless spectrum of the
string theory construction in asymmetric type II models
removes the contribution from the massless spin % to the
amplitudes. For the asymmetric type Il model, using (3.5),
we can present the contribution from the N = 4 super-
gravity multiplet in a form that reflects the decompo-
sition of the JN° = 8 supergravity multiplet into N = 4
supermultiplets:

(21, 3/28, 158, 1/256, 079) nr—s
= (21,3/24, 16 1/24, 0141) N =4
©4(3/2y, 14, 1/2641, 0413) n—4

(3.12)

® 6(11, 1/24, 06) a—s, 3.13)

as
AspinZ _ Aspin2 . 6Aspinl B 4ASpin% 314
@ — N =8 @or @01 (3.14)

where we have introduced the N* = 8 spin-2 supergravity
contribution

. 1/7\8
2
AR = 1(5) tytsRY, (3.15)
and the N =4 spin—% supergravity contribution
- m\4 1 4
At = _<§) 15 f Tl Wiglp.  Ga16)
3 i=1

For the (2,2) models the contribution of the massless
states to the amplitude is given in (2.48). The contribution
from a vector multiplet is

1 4
spin 1 2
Azg‘lg) = 2'[ll_!dVll(|’W0’0|q0 - ’leolqolz
21=
+ |w0,l|q0 - W1,0|[10|2)
% 4
1
+ 2 f_l l_[l dVi (FW(),();()’OlqO;qO
21=

+ Woroilpg = 2 Wiarolgeg)- (3.17)
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USing that |w0,0|q0 - W1,0|q0|2 = |’W0’1 |q0 - /Wl‘olqolz =
I Woolo+ Woilo—2Wiolol* as a consequence of
(3.4), we can rewrite this as

1
spinl __ [2 1 2
ATl = [ T @ Waolg + Wl —2Wiglyl
Til=i<j=4

1 4
2

+ 2 '/‘,l l_! dV}(WO,O;O,OlqO;qo + wO,l;O,l |qo;qo
21=

- 2w1’0;|’0|q0;qo),

showing that this spin-1 contribution in the (2,2) models
arises as the product of two N = 2 hypermultiplets
Q = (2 X 1/21, 2 X 02):]\[:22

2X (14, 1/24,06) =g = (2 X 1/24,2 X 03) pr—y
® (2 X 1/24,2 X 05) ar—s-

(3.18)

(3.19)

The contribution from the N = 4 supergravity multiplet
running in the loop [obtained from (2.48) by setting
n, = 0] can be presented in a form reflecting the decom-
position in (3.13):

3
Agg’f = ARPS —6ARS — A0, (3.20)
where A(2 2) 1s given by
spind spn2 .
A(z,z) - J\} 8 32 j n dV |Woo|f
2 1=i<j=4
- w0,1|ﬁ|2. (3.21)

C. Comparing of the string models

The integrands of the amplitudes in the two (4,0) models
in (2.17) and (2.32) and the (2,2) models in (2.48) take a
different form. In this section we show first the equality
between the integrands of the (4,0) models and then that
any difference with the (2,2) models can be attributed to the
contribution of the vector multiplets.

The comparison is done in the field theory limit where
7, — +00 and ' — 0 with 1 = a'7, held fixed. The real
parts of the »; variables are integrated over the range

—3=v! =1 In this limit the position of the vertex
operators scale as v; = v! + iT,,. The positions of the
external legs on the loop are then denoted by 0 = w; = 1
and are ordered according to the kinematical region under
consideration In this section we discuss the integration
over the »!’s only; the integration over the w;’s will be
performed in Sec. I'V.

1. Comparing the (4,0) models

In the heterotic string amplitude (2.17), we can identify
two distinct contributions: n, vector multiplets and one
N = 4 supergravity multiplet running in the loop. At the
leading order in &', the contribution of the vector multip-
lets is given by

PHYSICAL REVIEW D 87, 045001 (2013)

Az LMV [ [T W
“onet — 575 ) 18 1“ Vi 7%
“3i=1

and the one of the supergravity multiplet by

(3.22)

2\2
+ W0 Ql; + 2 WP,

spin 1 (m\* 1 4 _
A(E,O)zhet = _(_) t8F4j- . ndV}((wqu(] + a/ﬁQ)
2i=1
(3.23)

The vector multiplet contributions take different forms in
the heterotic construction in (3.22) and the type II models
in (3.8). However using the expansion of the fermionic
propagators given in Appendix A 2, it is not difficult to
perform the integration over »! in (3.8). We see that

[_] l_[ dvl(W Ol—o + nglqo) =0

2 1=i<j=4

(3.24)

Thus there only remains the bosonic part of Wa, », and we
find that the contribution of the vector multiplet is the same
in the heterotic and asymmetric orbifold constructions:

Aspin 1

__ 4spinl
(4,0)het A

@o)I (3.25)

The case of the N = 4 supergraviton is a little more
involved. In order to simplify the argument we make the
following choice of helicity to deal with more manageable
expressions: (17%,27%,377 477), We set as well the
reference momenta ¢;’s for graviton i = 1,...,4 as fol-
lows: g, = g, = k3 and g5 = g4 = k;. At four points in
supersymmetric theories, amplitudes with more + or —
helicity states vanish. In that manner the covariant quanti-
ties tgF* and tgtgR* are written in the spinor helicity
formalism® 2 F* = (ki k,)*[k3ks* and  41gtgR* =
(kyko)*ksk,]*, respectively. With this choice of gauge
el e® =0fork=23,4 €% €l =0withl=2,4
and only €® - €® # 0. The same relationships hold for the
scalar product between the right-moving € polarizations
and the left- and right-moving polarizations. We can now
simplify the various kinematical factors WP for the het-
erotic string and the Wa ;s for the type Il models. We find

wh —1t8F4W where

WE =W+ - W2, (3.26)

with

3A null vector k2 = 0 is parametrized as k,, = k,k;, where
a, @ =1, 2 are SL(2, C) two-dimensional spinor indices. The
positive and negative helicity polarization vectors are given by

€tk @) e = 7‘15“(—7( and € (k, q)pq = — 7"23[‘2—‘;(] respectively,

where g is a massless reference momentum. The self-dual and

anti-self-dual field strengths read F gz = oy, %’1‘1 and

F;B =G F = %—, respectlvely.

045001-10



ONE-LOOP FOUR-GRAVITON AMPLITUDES IN ...

WP = (3P(12) — §P(14)(3P(21) — 3P(24))(FP(32)
— JP(4)(aP42) — GP(43)),
W2 = 2P4)(GP(12) — IP(14))(3P(32) — 3P(34)).
(3.27)

In these equations it is understood that 2(ij) stands for
P(v; — v;). We find as well that W, = L1sF4 W, with
FWg,b = 84;%;, + Sz;a,hs where

~ 1
Saap = ?(Sa,b(lz)zsa,b(34)2 = S,,(1234)
- Su,b(1243) - Sa,b(1423)):

By = 2—14(3?(12) — 0P(14)(9P(21) — 9P(24))

X (S, (34)% + %(aﬂ’(_%z) — 9P(4))(9P(42)

— 9P(43))(S,,(12)), (3.28)

where we have used a shorthand notation: S,,(ij)
stands for S,,(z; —z;) while S,,(ijkl) stands for
San(zi = 2805z = 2)Sap(zk = 2)8ap(z — z)).  With
that choice of helicity, we can immediately give a simpli-
fied expression for the contribution of a spin-1 supermul-
tiplet in the (4,0) models. We introduce the field theory

limit of W:

2 4 1 4 ~
wom () [ o o
2 “2i=1

In this limit, this quantity is given by W2 = W, + W, with

W, — %(ap(lz) — 9P(14))(9P(21) — 9P(24))(9P(32)

— dP(34))(0P(42) — 9P(43)),

1 1
27 4n a'Tyu

— dP(34)),

02P(24)(0P(12) — aP(14))(aP(32)
(3.30)

where 9"P(w) is the nth derivative of the field theory
propagator (3.35) and where a'r, is the proper time of
the field one-loop amplitude. We can now rewrite (3.22)
and find

. 1 8
AP —(3) totsROWP. (3.31)

(4,0)het 4\2

Let us come back to the comparison of the N* = 4 spin-
2 multiplet contributions in the type I asymmetric orbifold
model given in (3.10) and the heterotic one given in (3.23).

PHYSICAL REVIEW D 87, 045001 (2013)
We consider the following part of (3.23):

1

1 4 _ _
]21 [TdviOW?l,(1 + &/80) + W10 0Ql,), (3.32)

“2i=1

defined in the field theory limit for large 7,.

The integral over the v} will kill any term that have a
nonzero phase e!™@i+brteritdvy) where a, b, ¢, d are
non-all-vanishing integers. In W? we have terms of
the form 96P(ij) X dP(ji)l; X (IP(kl) — aP(k'l')) X
(0P(rs) — dP(r's")). Using the definition of 8 P(ij) given
in (A15) and the order g coefficient of the propagator in
(A14), we find that

im?
X sgn(w,;)e?men@n)vi, - (3.33)

which integrates to —7?/4. All such terms with (ij) =
(12) and (ij) = (34) contribute in total to

1

m\4
§<§) [(9P(12) — aP(14))(aP(21) — aP(24))

+ (0P(32) — 0P(34))(0P(42) — 9P(43))], (3.34)

where dP(ij) is for the derivative of the propagator in the
field theory dP(w; — w;) given by

IP(w) = 2w — sgn(w). (3.35)

The last contraction in W% for (ij) = (24) leads to the same

kind of contribution. However, they will actually be can-

celled by terms coming from similar contractions in
* B . L

W, | - More precisely, the nonzero contractions involved

yield

a'm?

(92P(24)e?) Iq = — (cos(27rvy,)e2imsen(@a)ry

— 2e2imen@nagin? (vy,)),  (3.36)
which integrates to —a’#7?/2. The a' compensates the
1/a’ factor in (3.26) and this contribution precisely cancels
the one from (3.33) with (ij) = (24). Other types of terms
with more phase factors from the propagator turn out to
vanish after summation. In all, we get —7T4W3 /4, where

W, = —é((ap(n) — 9P(14))(9P(21) — 9P(24))

+ (0P(32) — aP(34))(0P(42) — aP(43))). (3.37)
Finally, let us look at the totally contracted terms of the
form 96P(ik)dSP(kl)dSP(1j) X aP(ij)l; that come from

C B - .
‘W |g. Those are the only terms of that type that survive
the »' integrations since they form closed chains in their
arguments. They give the following terms:
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4
LT
l 3 Sln(ﬂ'Vij)Sgn(wik)Sgn(wkz)sgﬂ(wzj)

X eZiW(Sgn(wik)Vik+Sgﬂ(wk1)Vk1+Sgﬂ(wtj)V1j)_ (3.38)
They integrate to 77*/16 if the vertex operators are ordered
according to 0=w; <oy <w;<w;=1 or in the

reversed ordering. Hence, from Wl we will get one of
the orderings we want in our polarization choice, namely
the region (s, ¢). From W,e2, a similar computation
yields the two other kinematical regions (s, u) and (7, u).
In all we have a total integrated contribution of 77*/16. We
collect all the different contributions that we have
obtained, and (3.23) writes

) 1 8
Asme — _<g) t8[8R4(1 - 4W-; + ZWB)J (339)

(4,0)het 4

where we used that fgtgR* = tsF*tF* and (3.29) and
(3.30).

We now turn to the spin-2 contribution in the type II
asymmetric orbifold models given in (3.10). Using the
g-expansion detailed in Appendix A 2 c, we find that

L 4 - -
le nd”z'l(wo,oLﬁ - W0,1|ﬁ)
~7i=1
R L - F
- lnd”i(wo,dﬁ— Wo,1|ﬁ)
~3i=1

1 4
2 \ 1 7F

= 2/jl I I1 dV}WO,O|ﬁ~
21=

We have then terms of the form Sz;o,o and 5‘4;0,0. Their
structure is similar to the terms in the heterotic case with,
respectively, two and four bosonic propagators contracted.
The bosonic propagators do not have a ,/g piece and since
30,0(12)2|ﬁ = SQO(34)2|\/§ = 47% we find that the terms
in Sy, give

2[ l_[dv Sr00l 5= —4 ( )W;, (3.41)

including the 1/2* present in (2.26). The S, terms have
two different kind of contributions: double trace and single
trace [see, respectively, first and second lines in (2.26)]. In
the spin structure (0,0) the double trace always vanishes in

S4;o,o|ﬁ since
3 1
,[1 smz('n'vkl)

(3.42)

(3.40)

sin(7v;;)

[ l_[ Sln2(7TVk]) s1n(7r1/,j)

However the single trace terms are treated in the same
spirit as for the heterotic string. Only closed chains of sines
contribute and are nonzero only for specific ordering of the
vertex operators. For instance,
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4 Sin(WVij)

—(@2m)4,

~7'2—>00

sin(7rv ;) sin(7rvy,) sin(7v);)
(3.43)

for the ordering 0 = w; < w; < w; < w; = 1. Summing
all of the contributions from :94;0,0 gives a total factor of
—7*/16, including the normalization in (2.26). We can
now collect all the terms to get

Aspin 2

@01 (3.44)

1 8
= Z(g) t8t8R4(1 - 4W’; + 2WB),

showing the equality with the heterotic expression

Asme _ Aspm2

(4,0)het @01 (3.45)

We remark that the same computations give the contribu-
tion of the spin—% multiplets in the two models, which are
equal as well and write

_ Aspm2

i03
spins
A (4,0)11

_ L(m\s 4 B
(4,0)het Z(E tgth (W3 - 2W ) (346)

Thanks to those equalities for the spin 2, spin 3 and spin

S with

1 in (3.25), from now we will use the notation A
s=1,3 5,2

The perturbative equality between these two (4,0)
models is not surprising. For a given number of vector
multiplets n, the heterotic and asymmetric type II con-
struction lead to two string theory (4,0) models related by §
duality, S — —1/S, where S is the axion-dilaton complex
scalar in the N* = 4 supergravity multiplet. The perturba-
tive expansion in these two models is defined around
different points in the SU(1, 1)/U(1) moduli space. The
action of N = 4 supersymmetry implies that the one-loop
amplitudes between gravitons, which are neutral under the
U(1) R symmetry, are the same in the strong and weak
coupling regimes.

2. Comparing the (4,0) and (2,2) models

In the case of the (2,2) models, the contribution from the
vector multiplets is given in (3.18). The string theory
integrand is different from the one in (3.8) for the (4,0)
as it can be seen using the supersymmetric Riemann iden-
tity in (3.5). Let us first write the spin-1 contribution in the
(2,2) models. Performing the v} integrations and the same
kind of manipulations that we have done in the previous
section, we can show that it is given by

spinl __ 1 /m\8 4 2 1
Al _ Z(E) tg1sR ((W3) + EWZ).
This is to be compared with (3.31). The expressions are

clearly different but will lead to the same amplitude. In the
same manner, we find for the spin %

spin 3 I (7\8 1
Ay = 1(5) fstsR4(W3 - 2((W3)2 + EWz))‘ (3.48)

(3.47)
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This differs from (3.46) by a factor coming solely from the
vector multiplets.

We now compare the spin-2 contributions in the (4,0)
model in (3.16) and the (2,2) model in (3.21). Again, a
similar computation to the one we have done gives the
contribution of the spin-2 multiplet running in the loop for
the (2,2) model:

spin 1 /m\8 1
A(g‘z)z = Z(E) t8t8R4<1 - 4W3 + 2<(W3)2 + EWz))

(3.49)

We compare this with (3.39) and (3.44) that we rewrite in
the following form:
i 1 /m\8
2

AEX,I(I)])II = Z(E) t8t8R4(1 - 4W3 + 2(W1 + Wz)) (350)
The difference between the two expressions originates
again solely from the vector multiplet sector. Considering
that the same relation holds for the contribution of the
N =4 spin—% multiplets, we deduce that this is coherent
with the supersymmetric decomposition (3.13) that gives

AspinZ _ Aspin2 + Z(Aspinl . Aspinl).

22) (4,0) 2.2) 4,0) (3.51)

The difference between the spin-2 amplitudes in the two
models is completely accounted for by the different vector
multiplet contributions. The string theory models are re-
lated by a U duality exchanging the axion-dilaton scalar S
of the gravity multiplet with a geometric modulus
[27,28,36]. This transformation affects the coupling of
the multiplet running in the loop, thus explaining the
difference between the two string theory models.
However at the supergravity level, the four graviton ampli-
tudes that we compute are not sensitive to this fact and are
equal in all models, as we will see now.

IV. FIELD THEORY ONE-LOOP AMPLITUDES
IN N = 4 SUPERGRAVITY

In this section we shall extract and compute the field
theory limit a’ — 0 of the one-loop string theory ampli-
tudes studied in previous sections. We show some relations
between loop momentum power counting and the spin or
supersymmetry of the multiplet running in the loop.

As mentioned above, the region of the fundamental
domain integration corresponding to the field theory am-
plitude is 7, — oo, such that t = a'r, is fixed. We then
obtain a world-line integral of total proper time t. The
method for extracting one-loop field theory amplitudes
from string theory was pioneered in Ref. [20]. The general
method that we apply consists in extracting the 0(g)° terms
in the integrand and taking the field theory limit and was
developed extensively in Refs. [23,24,47]. Our approach
will follow the formulation given in Ref. [25].

The generic form of the field theory four-graviton
one-loop amplitude for N =4 supergravity with a

PHYSICAL REVIEW D 87, 045001 (2013)
spin-s (s = 1, %,

loop is given by

Mspins _ <i)4 MZe foo dr
X w) w2 Jo t¥

2
3 .
><[A l_[dw,»e_mQ(“’)XAzfms,

i=1

2) N = 4 supermultiplet running in the

.1

where D =4 —2e and X stands for the model, X =
(4, 0)het, X = (4,0)II or X = (2,2), while the respective
amplitudes AY"" are given in Secs. IIIB and IIIC. We
have set the overall normalization to unity.

The domain of integration A, = [0, 1] is decomposed
into three regions A,, = Ay UA(,) U A, given by the
union of the (s, 7), (s, u) and (#, u) domains. In the A,
domain the integration is performed over 0 = w| = w, =
w3 = 1, where Q(w) = —sw (w3 — w;) — H{w, — w;) X
(1 — w3) with equivalent formulas obtained by permuting
the external legs labels in the (7, u) and (s, u) regions (see
Ref. [48] for details). We used that s = —(k; + k,)?,
t = —(k; + k4)* and u = —(k, + k3)> with our conven-
tion for the metric ( — + -+ +).

We now turn to the evaluation of the amplitudes. The
main properties of the bosonic and fermionic propagators
are provided in Appendix A 2. We work with the helicity
configuration detailed in the previous section. This choice
of polarization makes the intermediate steps easier as the
expressions are explicitly gauge invariant.

A. Supersymmetry in the loop

Before evaluating the amplitudes we discuss the action
of supersymmetry on the structure of the one-loop ampli-
tudes. An n-graviton amplitude in dimensional regulariza-
tion with D = 4 — 2€ can generically be written in the
following way:

5 [ A4 (e, k;z €)
Q)P Bk (= STk

M, = 4.2)
where the numerator is a polynomial in the loop momen-
tum € with coefficients depending on the external momenta
k; and polarization of the gravitons €;. For ¢ large this
numerator behaves as Ji(e;, k;; €) ~ €% in nonsupersym-
metric theories. In an N extended supergravity theory,
supersymmetric cancellations improve this behavior,
which becomes €2~N  where 2N is the number of four-
dimensional supercharges:

NN (e;, ki3 €) ~ €2~ N for [€] — oo. 4.3)

The dictionary between the Feynman integral presentation
given in (4.2) and the structure of the field theory limit of
the string theory amplitude states that the first derivative of
a bosonic propagator counts as one power of loop momen-
tum 9P ~ €, 9>P ~ ¢> while fermionic propagators
count for zero power of loop momentum S,;, ~ 1. This
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dictionary was first established in Ref. [47] for gauge
theory computation and then applied to supergravity
amplitudes computations in Ref. [24] and more recently
in Ref. [25].

With this dictionary we find that in the (4,0) model the
integrand of the amplitudes have the following behavior:

. S 3
ATRU_ g4 ATy

APRZ ] g2 g4,

.0) 4.4)

The spin-1 contribution to the four-graviton amplitude has
four powers of loop momentum as required for an N =4
amplitude according (4.3). The N =4 spln-— supermul-
tiplet contribution can be decomposed into an N = 6
spin-% supermultiplet term with two powers of loop mo-
mentum and an N = 4 spin-1 supermultiplet contribution
with four powers of loop momentum. The spin-2 contribu-
tion has an N = 8 spin-2 piece with no powers of loop
momentum, an N = 6 spin—— piece with two powers of
loop momentum and an N = 4 spin-1 piece with four
powers of loop momentum.

For the (2,2) construction we have the following
behavior:

spin 2
AR~ (22, AL~ 2+ ()2,
AP~ 1+ 02 + (£2)2. (4.5)

22

Although the superficial counting of the number of loop
momenta is the same for each spin s = 1,3 5, 2 in the two
models, the precise dependence on the loop momentum
differs in the two models, as indicated by the symbolic
notation €* and (¢2)2. This is a manifestation of the model
dependence for the vector multiplet contributions. As we
have seen in the previous section, the order 4 terms in the
loop momentum in the spin-% and spin-2 parts are due to
the spin-1 part.

At the level of the string amplitude, the multiplets run-
ning in the loop (spin 2 and spin 1) are naturally decom-
posed under the N = 4 supersymmetry group. However,
at the level of the amplitudes in field theory it is convenient
to group the various blocks according to the number of
powers of loop momentum in the numerator:

Aspin s

~ pa2-
N=4s f( S)’

3
s=1, > 2, (4.6)
which is the same as organizing the terms according to the
supersymmetry of the corresponding N = 4s spin-s = 1,
%, 2 supermultiplet. In this decomposition it is understood
that for the two JN° = 4 models the dependence in the loop
momenta is not identical.

From these blocks, one can reconstruct the contribution
of the spin-2 N' = 4 multiplet that we are concerned with
using the following relations:
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spm

Mspm2 _ Mspm2 _ 4M 2 + ZMspm 1 (47)
where the index X refers to the type of model, (4,0) or
(2,2).

This supersymmetric decomposition of the one-loop
amplitude reproduces the one given in Refs. [24,30-35].

We shall come now to the evaluation of those integrals.
We will see that even though the spin-1 amplitudes have
different integrands, i.e., different loop momentum depen-
dence in the numerator of the Feynman integrals, they are
equal after integration.

B. Model-dependent part:
N = 4 vector multiplet contribution

In this section we first compute the field theory ampli-
tude with an JN° = 4 vector multiplet running in the loop
for the two models. This part of the amplitude is model
dependent as far as concerns the integrands. However, the
value of the integrals is the same in the different models.
Then we provide an analysis of the IR and UV behavior of
these amplitudes.

1. Evaluation of the field theory amplitude

The contribution from the N = 4 spin-1 vector super-
multiplets in the (4,0) models is

" 4
Msplnl _ (_) [
4.0 ar, 77'2 0 [[z

spin 1
40)
(A17). Integrating over the proper time ¢ and setting D =

4 — 2¢€, the amplitude reads

3 — ( spinl
[ B we 2@ ><A 40)’

(4.8)

where A is given in (3.31) for instance and Q defined in

ME = rgzgR‘*[ B[l + €07 "W,
, N

+TQ2+ €)Q 2 W] (4.9)

The quantities W, and W, are given in (3.30); they have the
following form in terms of the variables w;:

1
W= g(wz — w3)(sgn(w; — wy) + 2w, — 1) (sgn(w,; — w;)
+ 2(1)1 - 1)(Sgn(a)3 - a)z) + 20)2 - 1),
11
W2 = _——(20)2 -1+ Sgn(w3 wz))

X (2w, —1+sgn(w;

— ®,))(1 — 6(wy4)). (4.10)

Using the dictionary between the world-line propagators
and the Feynman integral from the string-based rules
[24,25,47], we recognize in the first term in (4.9) a six-
dimensional scalar box integral and in the second term
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four-dimensional scalar bubble integrals.* Evaluating the
integrals with standard techniques, we find’

4
spinl __ Ig1gR 2 _ —1
Mo = o (s s(u—1) log<—_u

o))

The crossing symmetry of the amplitude has been broken
by our choice of helicity configuration. However, it is
still invariant under the exchange of the legs 1 < 2 and
3 < 4 which amounts to exchanging ¢ and u. The same
comment applies to all the field theory amplitudes eval-
uated in this paper. This result matches the one derived in
Refs. [24,30-34] and in particular Eq. (3.20) in Ref. [35].
Now we turn to the amplitude in the (2,2) models:

i 4\4 pu2€ [oo dt -
spinl __ M 3 —7t0(w spin 1
Moz = <_) ,[0 = ,[A dwe”0W X AT

D —6
o T2 2
4.12)

@.11)

spin 1
(2.2)
proper time t, one gets

where A is defined in (3.18). After integrating over the

Mz =kt d3w[F(2 + 90 (W)

+ %I‘(l + e)Q—1-€W2], (4.13)

where Wj, defined in (3.37), is given in terms of the w;
variables by

1
W; = —g(Sgn(M —wy) 2w, — 1)
X (sgn(wy — ;) + 2w — 1)

+ %(Sgn(w3 - (1)2) + 2&)2 - 1)((1)3 - a)z). (414)

There is no obvious relation between the integrand of this
amplitude with the one for (4,0) model in (4.9). Expanding
the square one can decompose this integral in three pieces
that are seen to be proportional to the (4,0) vector multiplet
contribution in (4.11). A first contribution is

*In Refs. [25,49] it was wrongly claimed that N = 4 ampli-
tudes do not have rational pieces. The argument in Ref. [25] was
based on a naive application of the reduction formulas for N =
8 supergravity amplitudes to N* = 4 amplitudes where bound-
ary terms do not cancel anymore.

The analytic continuation in the complex energy plane
corresponds to the +ie prescription for the Feynman
propagators 1/(£> — m? + ig). We are using the notation that
log(—s) =log(—s — i) and that log(—s/ — 1) :=1log((—s —ig)/
(—1—ig)).
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tgtgR*

5 wa FPo[l2+ €02 W,

1 o
+T(1 + €)Q 1" <W,] = EM“"“] (4.15)

4,0)

and we have the additional contributions

tgtgR* I+ e
% fA d3a)W((sgn(a)l - (,()2) + 2(()2 - ])
1 spin
X (sgn(wy — @) + 2w, — 1))* = ZM(XO)I, (4.16)
and
tetgR* Irec+e
8684 L d%)? X ((Sgn(a)3 - w2)
1 in
+ 2w, — D(ws — @,))? = ZM‘(SE’O)I. (4.17)
Performing all the integrations leads to
Mspinl _ Mspinl (418)

(22) 4,0) *

It is now clear that the vector multiplet contributions to
the amplitude are equal in the two theories, (4,0) and (2,2).
It would be interesting to see if this expression could be
derived with the double-copy construction of Ref. [35].

In this one-loop amplitude there is no interaction
between the vector multiplets. Since the coupling of indi-
vidual vector multiplet to gravity is universal [see for
instance the N = 4 Lagrangian given in Eq. (4.18) in
Ref. [50]], the four-graviton one-loop amplitude in pure
N = 4 supergravity has to be independent of the model it
comes from.

2. IR and UV behavior

The graviton amplitudes with vector multiplets running
in the loop in (4.11) and (4.18) are free of UV and IR
divergences. The absence of IR divergence is expected,
since no spin-2 state is running in the loop. The IR diver-
gence occurs only when a graviton is exchanged between
two soft graviton legs (see Fig. 1). This fact has already
been noticed in Ref. [30].

This behavior is easily understood by considering the
soft graviton limit of the coupling between the graviton and
a spin-s # 2 state. It occurs through the stress-energy
tensor V#¥(k, p) = T*"(p — k, p), where k and p are,
respectively, the momentum of the graviton and of the
exchanged state. In the soft graviton limit the vertex
behaves as V*”(p — k, p) ~ —k*p” for p# ~ 0, and the
amplitude behaves in the soft limit as

a*e
T, =k, OT*({, €+ k
j;~0€2(€ . kl)(€ . kz) ,MV( 1 ) ( 2)
a*e

S — 4.1
o U RN ) 419

-~ (kl ’ kz)
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(a)

FIG. 1.
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(b)

Contribution to the IR divergences when two external gravitons (double wavy lines) become soft. If a graviton is exchanged

as in (a), the amplitude presents an IR divergence. No IR divergences are found when another massless state of spin different from two

is exchanged as in (b).

which is finite for small values of the loop momentum
£ ~ 0. In the soft graviton limit, the three-graviton vertex
behaves as V#¥(k, p) ~ k*k” and the amplitude has a
logarithmic divergence at € ~ O:

d*e

. 2 = 00
(ki - ko) [e~o€2(€-k1)(€'k2) (4-20)

The absence of UV divergence is due to the fact that the
R? one-loop counterterm is the Gauss-Bonnet term. It
vanishes in the four-point amplitude since it is a total
derivative [51].

C. Model-independent part

In this section we compute the field theory amplitudes
with an 2N" =8 supergraviton and an N =6 spin-3
supermultiplet running in the loop. These quantities are
model independent in the sense that their integrands are the
same in the different models.

1. The N = 6 spin- % supermultiplet contribution

The integrand for the JN' =4 spin-3 supermultiplet
contribution is different in the two (4,0) and (2,2) con-
structions of the N = 4 supergravity models. As shown in
Egs. (3.46) and (3.48), this is accounted for by the contri-
bution of the vector multiplets. However, we exhibit an
N =6 spin—% supermultiplet model-independent piece by
adding two N = 4 vector multiplet contributions to the
one of an N =4 spin-% supermultiplet:

3

) /R A

spin % spin

M = MY 4.21)

The amplitude with an N = 6 spin-% multiplet running in
the loop is

spin% _ t8t8R4
N=6 8

M f Bol'2 + eW;0727¢, (4.22)
A,

where Wjs is given in (4.14). The integral is equal to the six-
dimensional scalar box integral given in Eq. (3.16) in
Ref. [35] up to o(e€) terms. We evaluate it and get

in2 tota R —t
M?}rfé = - 8282 (logz(—) + 772).
A —Uu

(4.23)

This result is UV finite as expected from the superficial
power counting of loop momentum in the numerator of the
amplitude given in (4.4). It is free of IR divergences
because no graviton state is running in the loop (see the
previous section). It matches the one derived in
Refs. [24,30-34] and in particular Eq. (3.17) in Ref. [35].

2. The N = 8 spin-2 supermultiplet contribution

We now turn to the N = 8 spin-2 supermultiplet con-
tribution in (4.7). It has already been evaluated in
Refs. [20,52] and can be written as

M2 — fytsR* Bol(2 + €)Q2¢ (4.24)
N—g 1 N w € . .

Performing the integrations we have

=t =s —u
M?z;njs _ tthR4 |:% (log(,uz) " 10g(ﬂ«2) n 10g(M2)>

€ Su tu st

st tu

log(2¥) IOg(ﬁ))]
+ )
us

where w? is an IR mass scale. This amplitudes carries an €
pole signaling the IR divergence due to the graviton run-
ning in the loop.

Now we have all the blocks entering the expression for
the N = 4 pure gravity amplitude in (4.7).

.\ (1og(;—§) log(Z) , logGh log )

(4.25)

V. CONCLUSION

In this work we have evaluated the four-graviton ampli-
tude at one loop in N = 4 supergravity in four dimensions
from the field theory limit of string theory constructions.
The string theory approach includes (4,0) models where all
of the supersymmetry come from the left-moving sector of
the theory and (2,2) models where the supersymmetry is split
between the left- and right-moving sectors of the theory.

For each model the four-graviton one-loop amplitude is
linearly dependent on the number of vector multiplets n,,.
Thus we define the pure N = 4 supergravity amplitude by
subtraction of these contributions. This matches the result
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obtained in the Dabholkar-Harvey construction of string
theory models with no vector multiplets. We have seen
that, except when gravitons are running in the loop, the one-
loop amplitudes are free of IR divergences. In addition, all
the amplitudes are UV finite because the R? candidate
counterterm vanishes for these amplitudes. Amplitudes
with external vector states are expected to be UV divergent [53].

Our results reproduce the ones obtained with the string-
based rules in Refs. [24,30] unitarity-based method in
Refs. [31-34] and the double-copy approach of Ref. [35].
The structure of the string theory amplitudes of the (4,0)
and (2,2) models takes a very different form. There could
have been differences at the supergravity level due to the
different nature of the couplings of the vector multiplet in
the two theories as indicated by the relation between the
two amplitudes in (3.51). However, the coupling to gravity
is universal. The difference between the various N = 4
supergravity models are visible once interactions between
vectors and scalars occur, as can be seen on structure of the
N = 4 Lagrangian in Ref. [50], which is not the case in
our amplitudes since they involve only external gravitons.
Our computation provides a direct check of this fact.

The supergravity amplitudes studied in this paper are
naturally organized as a sum of /N = 4s spin-s = 1, %, 2
contributions, with a simple power counting dependence
on the loop momentum ¢*?~%). Such a decomposition has
been already used in the string-based approach to super-
gravity amplitudes in Ref. [24]. Our analysis reproduces
these results and shows that the N* = 4 part of the four-
graviton amplitude does not depend on whether one starts
from (4,0) or (2,2) construction. We expect amplitudes
with external scalars or vectors to take a different form in
the two constructions.
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APPENDIX A: WORLD-SHEET CFT:
CHIRAL BLOCKS, PROPAGATORS

In this Appendix we collect various results about the
conformal blocks, fermionic and bosonic propagators at
genus one, and their g expansions.

1. Bosonic and fermionic chiral blocks

The genus one theta functions are defined to be

H[a](Z|7) = Z q%(n+%)262i77'(z+%)(n+%)y
b n€zZ

(AL)
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and Dedekind eta function

n(r) =g [0 — ¢, (A2)
n=1

where g = exp(2i7r7). Those functions have the following
q — 0 behavior:

e:i:(o,7)=o; 0[(1)](0,7')=—2q1/8+0(q);
9_8_(0,T)=1+2\/5+0(q);
0-(1)-(0, )=1-2g+0(q); n(1)=q¢"*+0(q). (A3)

The partition function of eight world-sheet fermions in
the (a, b)-spin structure, ¥(z + 1) = —(—1)>*¥(z) and
W(z + 7) = —(—1)**W¥(z), and eight chiral bosons is
o210l

n'3(r)

it has the following behavior for g — 0:

Za,b (T) = (A4)

Zl,l = O, Zl,() = 16 + 162q + 0(q2)’
1
Zy = —=— 8+ o(\/q).
0,1 \/a \/_

(A5)

1
Zoo = \/_§+ 8 + 0(\/9),

The partition function of the twisted (X, W) system in the
(a, b)-spin structure is

X(z+ 1) = (=1D)*X(2);
W+ 1) = —(- )2 Be),
X(z+7)=(-1)*X(2);
Ve + 1) = —(— 1P EU(),

(A6)

The twisted chiral blocks for a real boson are

@ )"
Zh’g[X]=<ie""gqh2/2%) . (A
0[l+g:|

The twisted chiral blocks for a Majorana or Weyl fermion
are

0[2+h] 1/2
2t = (emmsenngen L) T )
n(7)

The total partition function is given by

Zyslx, W] = Zhe[x]Z;5[ V]

— ei%(l +2g+a(g+b))

(A9)

\e[ie]
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2. Bosonic and fermionic propagators
a. Bosonic propagators

Our convention for the bosonic propagator is

(x'u(V)xV(O»one-loop = 2“”’7””?(747'), (A]O)
with
1 o[ 1(vl7) |2 w2
Plr)=——In|—_"| +-2+
(vlr)=—=7In 3,000l | 27, C(r)
:77_1/%_1 sin(7v) |2
27, 4 T
g™ sin*(mmv)
—Z( - +c.c.>+c(r), (Al1)
m=1 l_q m

where C(7) is a contribution of the zero modes (see e.g.,
Ref. [48]) that anyway drops out of the string amplitude
because of momentum conservation so we will forget it in
the following.

We have as well the expansions

1
9, P(v|T _Th 7

BT agsinQav)+olg)
2iTy, 4tan(mv) mgsin2mv)+olq)

T T
41, 4 sin*(7v)

0,8, Pl =5( -~ 57(0))
2

2 P(v|r)=— =272 gcos(Qmr) +o(q),

(A12)

leading to the following Fourier expansion with respect
to v;:

2 .
a,,,.p(l/lT) Z%(TL; —sgn( 1/2)) + l’gsgn(yz)ngoemn’msgn(yz)y
—mgsin(2Qmv) +o(q),
812/?(147') :4—777_-2(7'25(112) - 1) — WZVglmeZimeg"(Vz)V
—2mgcos(2mr) +o(q). (A13)

Setting v = v; + iT,w we can rewrite these expressions in
a form relevant for the field theory limit 7, — oo with
t = a't, kept fixed. The bosonic propagator can be
decomposed in an asymptotic value for 7, — oo (the field
theory limit) and corrections originating from massive
string modes:

Plv|r) = — %P(w) + 8P(v) — gsin*(wv)

— gsin?(7p) + o(q?) (A14)

and
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P(o) = o* — |ol;

SP(v) = Z !

m¢04|m|

(A15)

e2i7rm v —277|mv2|'

The contribution 6P corresponds to the effect of massive
string states propagating between two external massless
states. The quantity Q defined in (2.4) writes in this limit

Q9 =—t70(w) +a'8Q0 — 27’ Z k; kj(qsinz(wv,»j)

1=i<j=4
+ gsin*(7w;))) + o(q?), (A16)
where
O(w) = Z ki - ij(wij),
1=i<j=4 (A17)
1=i<j=4 ' '

b. Fermionic propagators

Our normalization for the fermionic propagators in the
(a, b)-spin structure is given by

!

<¢M(Z) wy(O»one-loop = i Sa,b(le)-

> (A18)

In the even spin structure fermionic propagators are

0[¢)(zl) a.0[;1(0]7)

Sap(zlT) = - (A19)
! 0L;1017) o[}](zl7)
The odd spin structure propagator is
a,60[ 1zl T
Sia(zl7) = 381, 1l7) (A20)

oL )(lr)

and the fermionic propagator orthogonal to the zero
modes is

Szl = 8;,(zl7) — 2l'7Tj_—2 = —49,P(z|7). (A21)
2

The fermionic propagators have the following g-expansion
representation [54]:

00 n

— ™ q .
Sl‘l(ZlT) = m + 477.’; 1= qn Sll’l(zl’l’?TZ),

S10(zlT) = vl 77;1 o sin(nz),
&) n—1
o q 2 .
S 7)=———47 Y ———sin((2n — 1)72),
00(elm) = g ~ 4 X 1y Sin(@n — D)
o0 n—1
v q" 2 .
S = +4 2n — 1)),
0.1(zl7) sin(772) W’; 11— q"’% sin((2n )7z)

(A22)
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Riemann supersymmetric identities written in the text
(2.27) derive from the following Riemann relation relation:

4 4
5 (_1)a+b+abng[2](v,.)= 2[Jow),  (Aa23)
i=1 i=1

a,b=0,1
with vi=i(—v,+v,+tvs+vy), vh=iv,—v,+v3+
vy), vy = %(vl + vy — vy +vy), and v, = %(vl + v, +
v; — vy). This identity can be written, in the form used in
the main text, as vanishing identities

D (=1)etbrabz, (1) =0,

a,b=0,1
ab=0

(A24)

3 (—1)etbrabz, (7) ﬂ Sup(2)=0 1=n=3  (A25)
r=1

a,b=0,1
ab=0

and the first nonvanishing one

4
S (=1artrabz, (D] Saslzilr) = —2m*  (A26)

a,b=0,1 i=1
ab=0

with z; +---+z, =0 and where we wused that
9.0[110017) = 76310l O[]0 )6[T](0l7) = 277’ (7).

Two identities consequences of the Riemann relation in
(A23) are

NGzl 7
$h0) = st = (o]} Jorm Sy,
1
(sl r (A27)
55,0~ 520 = (o[ Jotn S
1

¢c. ¢ expansion

The ¢ expansions of the fermionic propagators in the
even spin structure are given by

T .
S10(zl7) = ——— — 4mqsin(2mz) + o(g?),
tan(7z)

SoolzlT) = SinZTWZ) — 4 /g sin(7z) + o(q), (A28)
So1(zlT) = WW;TZ) + dar Jgsin(z) + o(q).

Setting S,
expansion:

= [T~ S.»(z;)l7) we have the following

Sty = ﬁ 7Tcot(7rz,-)<1 - 8¢q i sinz('n'zi)> + o(g?),
i=1 i=1

S0 = [T wtsintrz) (1 = 4g 3 sin' () + o),
i=1 i=1

Sgy = ﬁ 7T(SiIl(7TZl'))71(1 + 4q i sinz(wzi)) + o(g?).
i=1

i=1
(A29)

PHYSICAL REVIEW D 87, 045001 (2013)

Applying these identities with n = 2 and n = 4 we derive
the following relations between the correlators Wf b
defined in (2.25):

wgolqo = ngl 0,

Using the g expansion of the bosonic propagator, it is not
difficult to realize that W5| N 0, and we can promote
the previous relation to the full correlator Wa, ; defined in
(2.23) [using the identities in (A27)]:

w0,0|q0 = wo,1| 05

Woolg=—Woilg (A3D)

Other useful relations are between the g expansion of the
derivative bosonic propagator d P and the fermionic propa-
gator S o:

TV, 1
0,7 T g ,
Pl = 55, = T3 Swlinly (A32)
1
3, Pv|n)|, = +ZS1,0(V|T)|[,-

3. Congruence subgroups of SL(2, 7)

We denote by SL(2, Z) the group of 2 X 2 matrix with
integers entries of determinant 1. For any N integers we
have the following subgroups of SL(2, 7):

a b a b % %
FO(N)={<C d)esuz,zn(c d>=<0 *) modN},
a b a b 1 *
rl(N)={<C d)esuz,zn(c d>=<0 1) modN},
r(N)z{C Z)esuz,zn(j Z)=((l) (1)) modN}.

They satisfy the properties that I'(N) C I'j(NV) C

T'o(N) C SL(2, 7).

APPENDIX B: CHIRAL BLOCKS
FOR THE TYPE II ORBIFOLDS

We recall some essential facts from the construction of
Ref. [29]. The shifted 72 lattice sum writes

F(%)[h] = >

8 PL,pREF(2}2)+w%’

2 2
LTk
2 2

ei7rgl~wq q : (Bl)

where € -w = m;b' + a;n’ where the shift vector

w = (a;, b") is such that w> = 2a - b = 0 and
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Ulm; +a;2) = (my + ax) + T(n' + b'8) + TU(n? + b?4)|? h h
pa MU F @) = (mp ¥ apy) + Tn +675) + TU(Z + 71 Pi—P§=2(m,+a1‘)<”l+b1_)’ (52
2T,U, 2 2

T and U are the moduli of the 72. We recall the full expressions for the orbifold blocks:

oo Z,p = (2.20) (h, g) = (0,0)
Zyp = 6101700321017\ 2 : (B3)
b 4(_1)(0"’]’!)8(W) X F(Z,Z)(T? U) (h, g) # (O, 0)
: 1 < n n
Zy ke = - Z’“”[ ]FW [ ] (B4)
a,b 2 h/,gz/:o a,b g/ 2,2) gl
: 1 &« | « h;hy, h hy, h
Z(lO),h,g _ 1 1 Zh’g[ s I Z]FWI,WZ[ 1> 2]’ v h, g (BS)
“b 2 h1§=02 hz,gZFo “lgign gl ®? Lgi g
For the n,, = 6 model, the orbifold acts differently and we get
: 1 ¢ n
6)shg _ I+ gh! FheTw
8=

In the previous expressions, the crucial point is that the shifted lattice sums F(Wz 2) [g;] act as projectors on their untwisted
h' = 0 sector, while the g’ sector is left free. We recall now the diagonal properties of the orbifold action (see Ref. [29]

again) on the lattice sums:
, h, 0 h 0,h h h, h h
B R A A R A A R A
@2 g0 @2)] ¢ @2 [0, ¢ 22)] o @2 g ¢ @2)] ¢
The four-dimensional blocks Z% have the following properties : szi[g] = ZZZ;‘;[Q] = ZZ:i (ordinary twist); Zg’g[g] isa
(4,4) lattice sum with one shifted momentum and thus projects out the 7 = 0 sector. Equivalent properties stand as well for
the n,, = 10 model.
One has then in the field theory limit

(14);h, 0,0 0,1 1 1,0 1 1,1 (10);h, 0,0 0,1 1 1,0 1 1,1 (6);h, 0,0 0,1
Za,h ¢ S {Za,b’ Za,b’ 5 Za,h’ 5 Za,b}’ Za,h ¢ S {Za,h’ Za,b’ Z Zu,h’ Z Za,b ’ Zu,h ¢ S {Za,b’ Zu,b’ O’ O}’ (BS)

from where we easily deduce the effective definition given in (2.42) and the number c,.
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