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Geodesic motion in the (charged) doubly spinning black ring spacetime
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In this article we analyze the geodesics of test particles and light in the five-dimensional (charged)
doubly spinning black ring spacetime. Apparently it is not possible to separate the Hamilton-Jacobi
equation for (charged) doubly spinning black rings in general, so we concentrate on special cases: null
geodesics in the ergosphere and geodesics on the two rotational axes of the (charged) doubly spinning
black ring. We present analytical solutions to the geodesic equations for these special cases. Using
effective potential techniques we study the motion of test particles and light and discuss the

corresponding orbits.
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I. INTRODUCTION

A promising candidate to solve the problem of quantum
gravity is string theory. For its internal consistency more
than four dimensions are required. This led to growing
interest in higher-dimensional solutions and especially
higher-dimensional black holes (see e.g., Ref. [1]). The
higher-dimensional analogon of the stationary axisym-
metric Kerr black hole was found by Myers and Perry
[2]. They also conjectured the existence of higher-
dimensional black holes with a nonspherical event hori-
zon. Emparan and Reall [3] found such a solution with a
topology of S' X 82, the rotating black ring. Since there is
a certain range of values for the angular momentum where
five-dimensional black holes as well as two branches of
black rings exist, the uniqueness theorem is no longer
valid in higher dimensions.

The first black ring solution found possesses a single
angular momentum. A black ring with two angular mo-
menta rotating in two independent planes was constructed
by Pomeransky and Sen’kov [4].

In 2003 Elvang presented a charged singly spinning
black ring solution [5]. The doubly spinning version of
the charged black ring was found by Hoskisson [6].
Gal’tsov and Scherbluk [7] constructed a three-charge
doubly spinning black ring, but unless the Dirac-Misner
string is removed by setting two of the charges to zero, this
solution is unbalanced. Various further black ring solutions
are known (see e.g., Refs. [8—11]).

The geodesic equations for test particles and light in
Myers-Perry black hole spacetimes are separable [12—14].
Apparently this is not possible in black ring spacetimes, in
general. However one can separate the equations of motion
in special cases: geodesics on the two rotational axes
(which are actually planes) of the charged doubly spinning
black ring and zero energy null geodesics (which can only
exist in the ergosphere) [15,16].

The geodesic motion in the singly spinning black ring
spacetime was studied by Hoskisson [15]. He discussed the
separability of the Hamilton-Jacobi equation and studied
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numerically the motion in the equatorial plane and the
rotational axis of the black ring. Elvang et al. [17] analyzed
some aspects of null geodesics in the equatorial plane. Also
zero energy null geodesics in the singly spinning dipole
black ring spacetime were studied by Armas [18]. Igata
et al. [19] found numerically stable bound orbits on and
near the rotational axis.

Analytical solutions of the equations of motion for zero
energy null geodesics, geodesics in the equatorial plane
and on the rotational axis of the singly spinning black ring
were given in Ref. [20], where also the possible orbits were
discussed.

Geodesics of the doubly spinning black ring were
studied by Durkee [16], who separated the equations of
motion for zero energy null geodesics and on the two
rotational axes and analyzed the effective potential.

But so far neither numerical nor analytical solutions of
the equations of motion have been given in the (charged)
doubly spinning black ring spacetime.

Hagihara [21] was the first to solve the equations of
motion in a black hole spacetime analytically. He found the
solution of the equations of motion in the Schwarzschild
spacetime in terms of the elliptic Weierstrall ¢ function.

When the cosmological constant is added to the
Schwarzschild metric, the geodesic equations are of
hyperelliptic type. The analytical solution of the geodesic
equation in Schwarzschild—(anti-)de Sitter spacetimes
was found in Ref. [22]. Also in higher-dimensional
Myers-Perry spacetime [23] and in higher-dimensional
Schwarzschild, Schwarzschild—(anti-)de Sitter, Reissner-
Nordstrom and Reissner—Nordstrom—(anti-)de Sitter spac-
time [24] the equations of motion were solved analytically.

Mathematically speaking the integration of the equa-
tions of motion can be reduced to the solution of the
Jacobi inversion problem. The solution can be found by
restricting the problem to the theta divisor, the set of zeros
of the theta function. This method was developed in 2003
by Enolski et al. [25] to solve the problem of the double
pendulum.
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In this article analytic solutions of the geodesic equa-
tions in the charged doubly spinning black ring spacetime
are presented (for special cases). In the case E =m = 0
the equations of motion are of elliptic type; however on the
two rotational axes of the doubly spinning black ring, the
equations are of hyperelliptic type.

II. (CHARGED) DOUBLY SPINNING
BLACK RING SPACETIME

The metric of an uncharged doubly spinning black ring
can be written in the form [16]

__H(,x) R?H(x, y)
I = ey YTV T =
[d_xz _dy?
G& GO

A(y, x)d¢p* — 2L(x, y)dpdyy — A(x, y)d¢2]
+ .
H(x, y)H(y, x)

(D
The metric is given in toroidal coordinates (see Fig. 1)

where —1 =x =1, —co<y=—1land —0o<t< 00, ¢
and ¢ are 27r-periodic. The metric functions are

G(x)=(1—x3)(1 + Ax + vx?)

H(x,y) =1+ A2 = 1>+ 2xv(1 — x?)y + 2xA(1 — y*1?)
+ x2?v(1 — A2 = 1?)

L(x,y) = AVr(x = y)(1 = 2)(1 = y)[1 + A% = »?
+2(x + y)Av — xyv(l — A2 — 1?)]

Alxy) =G = )1 —»*) = A)(1 + »)
+ yA(1 — A2 + 2v — 317)]
+ G(Y)[2A% + xA((1 — v)* + A?) + x*((1 — »)?
— A1+ v)+ A1 — A2 =32 +213)
+ x*v(1 — v)(1 — A2 — 12)]. )

The parameters R, A and v describe the shape, mass and
angular momenta of the ring and lie in therange 0 = v < 1
and respectively 2,/v = A <1 + v. If v = 0 the metric
reduces to the singly spinning black ring.

A ringlike curvature singularity is located at y = —oo.
The metric has a coordinate singularity at G(y) = 0, so
there are two horizons

—A+ VA2 -4y
yh+ :2—]}’ (3)

—A— VAT 4y

> “4)

Yh— =
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FIG. 1. Toroidal coordinates (or ring coordinates) on a cross
section at constant angles ¢ and ¢. Solid circles correspond to
y = const and dashed circles correspond to x = const [29].

The ergosphere is determined by H(y,x) = 0. In
the singly spinning case » = 0 the ergosphere has
S! X §? topology like the horizon, but in the doubly
spinning case v # 0 the shape of the ergosphere becomes
more complicated. Depending on the parameters v and A
the shape of the ergosphere varies from ringlike S' X §?
topology to spherical $3 U S* topology (see Ref. [16] for
a detailed description). There also exists an ergosphere-
free region behind the inner horizon (y <y;,_),
which is not mentioned in Ref. [16]. An example for a
ringlike ergosphere is shown in Figs. 2(a) and 2(b) and
an example for a spherical ergosphere is depicted in
Figs. 2(c) and 2(d).

The doubly spinning black ring has two angular
momenta and thus the rotation is described by

QO =Q,dy + Q,de, (5)
where
Q. — CRAW2((1T+w)* =A%) 1+y
v H(y, x) 1—-A+v
X1+ A—v+x2yv(l — A=)+ 2vx(1 — y)),
(6)
and
2 _ 2
0, = CRAM2((0+ )2 - A )(1 N

H(y, x)

One can split the polynomials A(x, y) and L(x, y) into
x- and y-parts which will be useful later:
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(b) v = 0.1 and A = 0.7: ring-like ergo-
nates sphere in z3-z4 coordinates

(¢) v = 0.2 and A = 0.9: spherical ergosphere in a-b coor-
dinates

(d) v = 0.2 and A = 0.9: spherical ergo-
sphere in z3-z4 coordinates

FIG. 2 (color online). Different shapes of the ergosphere plotted in a-b coordinates and x3-x, coordinates. The a-b coordinates
describe a plane of constant angles ¢ and ¢. The x3-x4 coordinates describe the equatorial plane of the ring where x = *=1. A more
detailed explanation of the different coordinates and planes will be given in Sec. VI. The ergosphere is depicted as a light red area
with a red dotted border. There is no ergosphere in the white region. The black and gray dashed circles are the inner and outer horizons

of the black ring.

Alx, y) = G(x)a(y) + G(y)B(x)
L(x,y) = G(x)8(y) — G(y)8(x), 8)

where

a(é) = v(l = E)—(1+ 1) = v(l —»)
+ AR —3v) — (1 — A%)&7]

B(&) =(1+A%) + A£(1 + (1 = »)?)
—vE2Q2A + v(1 — v) — A2E(B - 2v)
—2&1 - A2+ vl —v)

8(8) = Al — (A — (1 = )€ — Avé?). 9)

In Ref. [7] a three-charged version of the doubly spin-
ning black ring was constructed. Here we use the balanced
version where two of the charges are set to zero to remove
the Dirac-Misner string. Compared to [7] the metric of the
charged doubly spinning black ring is written in a slightly
different way so that the metric functions G(x), H(x, y),
A(x, y), L(x, y) stay the same as in the uncharged case from
Ref. [16].

The metric is

H 5
ds* = —D(x,y)"%/? HEy x)

)(dt + cQ)? + D(x, y)'/3

]

R?H(x,y) I:dx2 B dy?
(x =1 -»?LGx) Gy
+ A(y’ x)dd)z - 2L(X, )’)dﬁbd‘ﬁ - A(x’ Y)d¢2]

H(x, y)H(y, x)
(10)
The function D(x, y) is defined as
H(y, x)
D(x,y) = c2 — s2
Y H(x, y)
2A(1 — —y)(1 -

Ay

H(x,y)
The charge is represented by the parameters
c=cosh(a) and s =sinh(a) with a € R (12)

The horizons have the same coordinates as in the un-
charged case [see Eq. (4)] and the ergosphere is still
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determined by H(y,x) =0. If c=1 and s =0 then
D(x,y) = 1 and one obtains the metric of the uncharged
black ring.

The nonvanishing components of the inverse metric of
the charged doubly spinning black ring are

g" = —D(x, y)“% + 2D(x, y)~1/3 %
o [%A(y, x) — 2022;,,5(; y) — Q3 A, y)]

g'¢ = cD(x, y)" 1/ Ig};( xy’);) QwL(x’Gy()x)—Gg l)pA(x, y)
¢ = cD(x,y) /3 Ig;( xy’)yz) Q¢L(x’(;}()x;_GgabA(y’ x)
€49 = D) S oy
€ =Dl S
£ = D e o)

g = Dy 1 g

g” = —D(x,y)"" 3%6@)- (13)

The metric of the charged doubly spinning black ring
and its Hamiltonian H = %g”b P.Pp do not depend on the
coordinates ¢, ¢ and ¥, so we have three conserved
momenta p, = g,,X” with the associated killing vector
fields 9/0t, 9/d¢ and 9/ . A dot denotes the derivative
with respect to an affine parameter 7.

pi= =Dl y) PP+ b+ ) = -
(14)
|
— 2 _ 2/3 ( y) 2 13()(
0=m?— D(x, y)*3—"22FE* + D(x, y)~"/
H(y, x)

o [0

A(x W@ + cQyE)? — 2L(x, y)(P + cQ LE) (Y + cQyE) —
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R2
_ _ /3
P = ey E = D) e Ty
X (=A@, x)$ + L(x, y)¢p) = @ (15)
1/3 R
Pu = —ey = D) S R = o
X (e, )i + L(x, 1)) = (16)

E is the energy, ® and V¥ are the angular momenta in the ¢
and ¢ directions. The conjugate momenta in the x and y
directions are

R?H(x, y)x

— nl/3

N R (e N
2 .

py= DR HG (18)

(x =y = v)?*Gk)
To obtain the equations of motion for an uncharged

particle in the charged doubly spinning black ring space-
time we need the Hamilton-Jacobi equation:

a—S + H(x", a—S) 0. (19)
T dxP

We already have three constants of motion (E, ® and V)
and the mass shell condition g*’p,p, = —m? gives us a
fourth, so we can make the ansatz

S(r,t,x,y, ¢, ) = %mZT —Et+dp+ Ty
+ 8:(x) + S,(y). (20)

Inserting this ansatz into (19) gives

o)

(1= »)’G()G()

The Hamilton-Jacobi equation does not seem to be sepa-
rable in general. However, it is possible to separate the
equation in the special case E = m = 0. These zero energy
null geodesics are only realizable in the ergoregion.

We can also obtain equations of motion for geodesics on
the ¢ and ¢ axes by setting y = —1 (¢ axis) or x = *1
(¢ axis). The plane y = —1, which is called the ¢ axis,
corresponds to one of the two rotational axes of the doubly
spinning black ring. The plane x = *1, which is called the

2
AQy, x)(¥ + cQ,E) ] 1)

[

¢ axis, is the equatorial plane of the black ring and also the
second rotational axis.

In the next sections we will study these special cases and
solve the corresponding equations of motion analytically.

III. NULL GEODESICS IN THE ERGOSPHERE

For E = m = 0 it is possible to separate the Hamilton-
Jacobi equation:
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IS\2 —B(x)D? — 26(x) DV + a(x)P?
6 (3,) (- v
_ 9S\2 _ a()®? —28(y)PWV — B(y)W?
50)(3,) (1 - 12G0)
(22)
With a separation constant k, Eq. (22) splits into two:
as\2 _ U(x)
(5) (1= PGP @y
as:_ V)
(&) =~ T=wreor 29
where
U(x) = —[-B(x)®? — 28(x)®V¥ + a(x)¥? + kG(x)]
(25)
V() = —[a()®* - 26(n)PV — BV + kG(y)]
(26)

Using p, =25 and (14)—(18) the separated Hamilton-

T
Jacobi equation gives the equations of motion:

= =X 27)

dy
ay —\Y() (28)

d¢ _[A(x, y)® — L(x, y)V]
dy G(Y)G(y)

(29)

dyp _[—Lx y)® — A(y, x)¥]
dy G()G(y)

(30)

e _ . do _ . d¢
E_ c Qd’(x’y)dy c Qtl/(x’y)dy’ (€2))

where

X(x) = —(1—»)2U(x) (32)

Y(y) = —(1 = »)’V(y) (33)

are polynomials of fourth order. We also introduced the

Mino-time [26] dy = D(x, y)~'/3 R(f;(i)i) dr.

From (27)—-(31) we see that the x, y, ¢» and ¢ equations
of motion do not depend on the charge. Therefore the
charge of the black ring has no effect on the possible orbits
for null geodesics in the ergosphere.

In the sections below we will solve Eqgs. (27) and (28)
analytically. The ¢ equation (31) cannot be solved in gen-
eral because it cannot be separated into x- and y-parts.

PHYSICAL REVIEW D 87, 044054 (2013)

Only in the special case » = 0 which corresponds to the
singly spinning black ring, it is possible to solve the ¢
equation (see Ref. [20]).

A. Classification of geodesics

Equations (27) and (28) can be written as

U(x) and V(y) can be regarded as effective potentials (see
Ref. [16]). To get real solutions for the x and y equations
the effective potentials have to be negative. The zeros of
the effective potentials (because E = 0) and hence X and Y
mark the turning points of the motion of light or a test
particle (in this case we only have light since m = 0). Thus
the number of zeros determines the type of the orbit.

Since X and Y are polynomials of fourth order it is
difficult to calculate the zeros analytically. A good way
to determine the number of zeros are parametric diagrams.

For the x motion we use the equations U(x) = 0 and
dg)((x) = 0 to construct a parametric ®-¥ diagram. The
diagram for the y motion can be found analogously. If
both ®-¥ diagrams are shown in the same plot they
form regions for the different numbers of zeros. Here one
has to keep in mind that -1 = x =l and —co <y = —1
to find the allowed regions.

Figure 3 shows the parametric ®-V¥ diagram for the x
motion (gray lines) and y motion (black lines). Inside the
gray and black colored region different types of orbits are
possible. Here U(x) has zeros in the range —1 =< x =< 1 and
V(y) has zeros in the range —oo <y =< —1. Outside the
colored regions U(x) has no zeros or is positive for —1 <
x = 1 and therefore no motion is possible.

If |®| > 0 and W lies in the colored region the effective
potential U(x) always has two zeros between —1 and 1. If
® = 0 the effective potential has the zeros —1 and 1
because

U= =00—-v)>*1+v=*A)>P2% (36)

Also a third zero between —1 and 1 is possible in the case
D =0.

From (36) it is clear that U(*1) is always positive for
|®| >0, which means that there is a potential barrier
preventing the photons from reaching the ‘“‘equatorial
plane” at x = *=1. One can also conclude that U(x) is
negative between its two zeros and the x motion takes
place between these two values.

Inside the gray region of the parametric diagram V(y)
has two zeros. For small » and A a new region appears [the
black region in Fig. 3(a)]; here V(y) has only one zero.
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(a) k=1, v=0.1 and A =0.7

For small v and A there are regions (black) where V (y)

has only one zero.

(¢) k=0.1,»=0.1 and A = 0.9

If the separation constant k becomes smaller, the al-

lowed region also becomes smaller.

PHYSICAL REVIEW D 87, 044054 (2013)

(b) k=1,r=0.1and A =0.9
For larger A, V(y) has always two zeros.

(d) k=0,r=0.1and A =0.9
If k = 0 the allowed region vanishes.

FIG. 3. Parametric W-® diagrams of the charged doubly spinning black ring for E = m = 0. In the allowed (colored in gray and
black) region U(x) has two zeros. V(y) has two zeros in the gray and one in the black region. In the special cases ® = 0 and/or ¥ = 0,

three zeros of U(x) and V(y) are possible (see text).

Aty = —1 we have
V(=1)= (1 —v)*(1 + v — 2)*V¥2 (37

For ¥ = 0 one of the zeros lies at y = —1, in this case
V(y) has up to three zeros. If || > 0 a potential barrier
prevents photons from reaching y = —1 since V(—1) >0
for || > 0.

The influence of the separation constant k can be seen in
Figs. 3(c) and 3(d) . If k becomes smaller the colored
region of the W-® diagram, where orbits are possible,
shrinks. For k = O the colored region vanishes; now only

solutions with ® = W = ( are possible, and for k£ < 0 no
orbits are possible.
Possible orbits for null geodesics in the ergosphere of a
(charged) doubly spinning black ring are
(1) Terminating orbits (TO): The photon approaches the
black ring, crosses both horizons and falls into the
singularity.
(2) Bound orbits (BO): The photon circles the black
ring on a periodic bound orbit. In the ergosphere
these orbits can only exist on the axis of the i
direction (y = —1); moreover a special condition
for the separation constant has to be fulfilled.
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TABLE 1.

PHYSICAL REVIEW D 87, 044054 (2013)

Types of orbits of light in the (charged) doubly spinning black ring spacetime for

E = m = 0. The thick lines represent the range of y and the turning points are shown by thick
dots. The horizons are indicated by a vertical double line. The single vertical line at the left end is
the singularity. The coordinate y ranges from —oo to —1. Since the BO of type C is located at

y = —1, the separation constant has to fulfill a certain condition [Eq. (38)].

Type Zeros Range of y Orbit
A 1 | | TO

B 2 - o— I MBO
C 3 - o— I . MBO, BO
Cy 3 } + + ® MBO, BO

(3) Many-world bound orbits (MBO): The photon
circles the black ring on a periodic bound orbit,
but crosses both horizons several times on its flight.
Every time both horizons are traversed twice, the
photon emerges into another universe.

From the effective potential U(x) we see that the x
motion is always bounded. Either the motion takes place
between two zeros or x is constant at — 1 [this is possible if
U(x) has three zeros in the special case ® = 0]. To deter-
mine the type of the orbit we have to consider V(y), too.
Depending on the number of zeros of V(y) and accordingly
Y(y) three different orbit types are possible. Table I shows
an overview of all possible orbit types; some examples of
the effective potential can be seen in Figs. 4-6.

(i) Type A: Y(y) has one zero in the range —co <y = —1,

X(x) has two positive zeros between x = —1 and
x = 1. Only TOs are possible.

(ii) Type B: Y(y) has two zeros. Since the orbit crosses
both horizons, MBOs are possible.

(iii) Type C: This orbit type is only possible for ¥ = 0.

Y(y) has three zeros. Between two of the zeros
a MBO can be found; the third zero is located at

(a) Potential U(x)

FIG. 4 (color online).

y = —1 and belongs to a BO. X(x) has a positive
and a negative zero. If additionally ® = O the turn-
ing points of the MBO lie directly on the horizons
since then V(y) = —cG(y).

The BO lies on the axis of the ¢ rotation (y = —1).
Since the shape of the ergosphere varies from ringlike to
spherical, sometimes the axis y = —1 is not in the ergo-
sphere and sometimes parts of the axis are inside the
ergosphere. If the axis y = —1 is not in the ergosphere,
no such bound orbit should be possible. For this reason the
separation constant k has to fulfill a specific condition if
y=—1:

v[2+ v(1 —v)+ A2 — 3v)]
1—-A+vw '

kaxis =2 (38)
If k = k,;, then every BO at y = —1 which would be lying
outside the ergosphere is forbidden by X(x) (X will be
positive and will have no zeros). A BO at y = —1 in the
ergosphere will still be allowed and its turning points will
be located at the border of the ergosphere.

k. can be found if the x equation for E = m = 0 (27)
is compared with the x equation on the ¢ axis (see

(b) Potential V (y)

k=1,v=0.1,A=0.7,® = —0.2 and ¥ = 3.6 Effective potentials U(x) (red) and V(y) (blue). The vertical

black dashed lines indicate the position of the horizons. The horizontal green dashed line represents the energy and the green dot shows
the position of the turning point. In the right picture an example of an orbit of type A can be seen.
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0,4 1 r1o

0,21

r-10

r-20

r-30

(a) Potential U(x) (b) Potential V (y)

FIG. 5 (color online). k=1,»v=0.1, A = 0.7, ® = 0.4 and ¥ = 0.8 Effective potentials U(x) (red) and V(y) (blue). The vertical
black dashed lines indicate the position of the horizons. The horizontal green dashed line represents the energy and the green dots show
the position of the turning points. In the right picture an example of an orbit of type B can be seen.

Sec. IV). Both equations have to be the same for y = —1 a,;=—(1—v)?[(P2 — ¥)A2(3 — 2v) — Ak] (41)
and E=m = 0. '
a,y = —(1 =) [V2r2A2 + v(1 — v)) + 2OW(A2y + A)

B. Solution of the x equation
+ V22N r + (1 — v)) + k(v — 1)] (42)

Equation (27) can be written as

2
(dx) = X(x) = ay4x* + a 333 + aox® +ag x +a, ay1=—(1=v)[-O2A(1 + (1= »)*) + 20V /v (1 — »?)

dy
7 + W2 Ap(2 — 30) + kA] 43)
(39)
where X is a polynomial of fourth order with the  a,,=—(1—»)’[—®*(1+ A?)
coefficients 2OV V(A2 — 2+ v+ 1) +k] (44)
ags = —(1 = v)[@*2(1 = A% + »(1 — »)) _ : :
5 ) The substitution x = * - + x,, where x is a zero of X(x),
—20WAw + V(1 — A7) — kv (40)  reduces the polynomial X(x) to third order:
0,41 o
0,2 -0
\
\
0',5 1 } r-2
h |
| v
| k-4
\
\
\ -6
|
\
\ \ 8
-0,84 \ \
(a) Potential U(x) (b) Potential V (y)

FIG. 6 (color online). k=1, » =0.1, A = 0.7, ® = 0.4 and ¥V = 0 Effective potentials U(x) (red) and V(y) (blue). The vertical
black dashed lines indicate the position of the horizons. The horizontal green dashed line represents the energy and the green dots show
the position of the turning points. In the right picture an example of an orbit of type C can be seen. The bound orbit at y = —1 is not
allowed for the chosen parameters » and A, since U(x) has no zeros if one chooses the right value for the separation constant [Eq. (38)].
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du\2
(E) - bx,3u3 + bx‘zuz + bx,lu + bX,O' (45)
The coefficients are

bx,3 = i(4'ax,4x(?; + 3ax,3x% + 2ax,Z)CO + ax,l): (46)

bx,2 = 661)(‘4)((2) + 361X‘3X0 + ax,Zr (47)
bx,l = i(4'a)c,4x() + ax,S)’ (48)
bx,(] = ax,4' (49)

b)',Z

A further substitution u = %3(41} — 22} transforms that

into the standard Weierstrafl form

3

dv)2
( ) = 4v° — 8x2V ~ 8x3 T Px,3(v)’ (50)

dy.
where
b)2c2 bxlbx3
8x2 = B —74 and
bxlbx2bx% beb)zc’% biZ
= o s D s s 51
8x3 48 16 216 D

Equation (50) is of elliptic type and is solved by the
Weierstral3 elliptic function [27]
v(Y) = 9(¥ = Yin 8x2 8x3): (52)
1

J A /! —
Where ')/in = 'yin + jf";,in ,\/W dv and U)C,irl =
bx‘ - hx2
T’z(-xin - xO) b+ 1 -
Then the solution of (27) takes the form

bx,3
4p(y — Vi 8x2 8x3) —

x(y) == — +txo. (53)

%2
3

C. Solution of the y equation

Equation (28) can be written as

dy

2
(@) =Y0) = ay’4y4 + a%3y3 + a)',2y2 + a1y + ay 0

(54)

where Y is a polynomial of fourth order with the coeffi-
cients

ayq = —(1 = »)[V22(1 = A2 + v(1 — v)) — 2¥ DAy
+ ®2p(1 — A2) — kv), (55)

ay; = —(1 = v)![(¥? — ®HAr*(3 — 2») — Akl (56)

ayy = —(1 =2 [ V20222 + v(1 — »)) + 2V D(A2p + A)
+ ®2Q2N% v + 2(1 —v)) + k(v — 1)], (57)
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ay;=—(1=vP[=P2A(1+ (1 - »)?) +2¥DPA/v(1 - »?)
+ ®2\v(2—3v) + kA, (58)

ayo = —(1 = v [=PX(1 + A?) =29 DA% /v
— PN -1+ v+ 1)+ Kkl (59)

The problem can be solved analogously to the x equation.
The polynomial Y(y) is reduced to third order by the
substitution y = =1 + y [y, is a zero of Y(y)]:

du\2
(ﬁ) = byau® + by + byu+ by, (60)

where

bys = *(4a, 4y} + 3a,3y5 + 2a,,y0 + a,;) (61)

by,2 = 6ay,4y% + 3ay,3y0 + ay,2 (62)
by, = *(4ay4yo + ay3) (63)
byo = ay4. (64)

Next the polynomial is transformed into the Weierstrafl
form by substituting u = b\% (4v — %):

dv\2
<E) =40’ — g, v —g,3:=P,5(v), (65)
where

2
bia  byibys

2Ty Ty M

by1byby5 b}’0b§3 bﬁz

= 2»17y2%y3  Z»0%y3  “y2 66
Ex3 43 16 216 (66)

Since (65) is solved by the Weierstrall g function, the
solution of (28) yields

b
yy) == - 5 Ty (67)

4p(y = Vin &v2 &v3) — 3

I — — [ ! .=
where Yin = VYin -[Uv’in B —g v =g, 5 dv’ and Uy,m
’ » 3,3
b_vj bv2

22 (yin — yo) ' T 3

D. Solution of the ¢ equation

To solve (29) the x- and y-parts have to be separated.
Inserting A(x, y) and L(x, y) from (8) yields

d¢é _ Bx)® + 6(x)¥  a(y)® + S(y)¥
dy R2G(x) R>G(y)

Using (27) and (28) we get

(68)
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BX)P + §(x)¥  dx

RG(x)  JX(x)

_a()® + sV dy
R*G(y) YO)
(69)

dg =

So the ¢ equation consists of an x-integral and a y-integral:
BND + (¥ dx!
f R*G(x') JXG&)
[y ad)P + 80NV dy
/ . RGO)  JYG)
=1, +1,. (70)

b.3

Let us first consider /,. Here we substitute x = * —ﬂ

¢_¢in:

Xo to transform the polynonial X(x) into the We1erstra13
form P, ;:
)qf

B<+ 2 + XO)(D + 6(
I _ [u 4y — r
in R2G< 4—?‘12 + xo)

!/
5 G 1)

Y P,5(u')

PHYSICAL REVIEW D 87, 044054 (2013)

This integral has four poles p;, p,, p; and p, (zeros of the
function G with respect to u). We next apply a partial
fraction decomposition upon (71):

ARG

K; are constants which arise from the partial fraction
decomposition and depend on the parameters of the metric
and the test particle. Then we substitute u = p(v, 8., &,.3)

with ¢'(v) = \/4p3(v) — g,20(v) — g.3. Equation (72)
now yields

4 !
Z ) .
j=1 Dj

Px,3(u/)

L= f (s jzlmv) e @

with v, = v,(y) = v — ¥{, and v, = v.(vin).
The second integral , can be rewritten by canceling the
factor (1 — y?):

in

We substitute

u—2
Y (y) into the Weierstral form P, 5 and apply a partial fraction
decomposition upon (74) where the constants L ; arise. Note
that the two poles p; and p, of I, are also poles of /,.

I, = [ m(LO i ,) \/;%_Z‘_;;/_). (75)
4
Vyin) + Z

K;
o))

o0 = {Kolw, - (zzxw,»)(vx -

_ /.v -1+ —v(1 =)+ A2 -3v)— (1 — 22?1 ®+ AS[A— (1 =)y — Avy?]- ¥ ay
) R2(1 + Ay + vy?)

vx,in) + 10g

VYO

(74)

If we now substitute u = p(v, gy,, 8,3) With p'(v) =
V4 ) = 8,20() — gy, Eq. (72 yields

I, = f (L0+ )dv (76)
Y Vyin leoy - D

with vy = vy(y) = v — yj and v, 5, = v, (Vin)-
After solving the elliptic integrals of the third kind in
(73) and (76) (see e.g., [28]), the final solution is

1 o (v, +v)) )}
o8 Ux(vx,in + vj)

O-X(vx - Uj)

a-x(vx,in - Uj)

Lol = vy + ley (260w, — vy + log% 1og%)} ton (D
|
with p; = p(v;) and E. Solution of the ¢ equation
To solve (30) the x- and y-parts have to be separated.
9:(v) = p(v, 812, 8x3), 9,(v) = p(v, g2, 8y,3), Inserting A(x, y) and L(x, y) from (8) yields
&) = L(v, 812, 843) &) = L(v, gy2 8y3) dy (0D — a()W (D + BT 79
o.(v) =0V, 8.2 8.3,  0,(v) =0(v, 8, 8,3) dy R*G(x) R*G(y)

(78)

Using (27) and (28) we get

044054-10
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S(x)® — a(x)¥ dx S(y)® + B(HyY)¥ dy

R I RGY) )
(30)
or
o x (D — a(x)¥  dx'
l/’ wm —/;m RZG(XI) (_X(x,)
fy SONP + OV dy 81
. RG(O)  JvO)

The ¢ equation can be solved analogously to the ¢ equa-
tion from the previous section. Here the solution is

_ _ - M; o
$) = Moy =) + 3 (2600w

+ IOg a-x(vx - vj) _ 10g O-x(vx + vj) )}

o (Vgin — V) o (Vgin T v))
o, vy + Z e (2600, ~ vy

T log o,(vy,—v)) “log o,(v, + vJ-) )} .

a'y(vy,in - Uj) a-y(vy,in + vj)

(82)

where v = v(y) = y — ¥i,, vin = v(vin), p; = 9(v;) and
g)y(v) = SO(Uy gy,Z’ g)',3):
gy(v) = {(U, gy,Z’ gy,3)’
U),(U) = O-(U, gy,2r gy,3)'

(83)

9:(v) = p(v, g2, 8x3),
gx(v) = ;(U’ 8x,25 gx,3)!
O'X(‘U) = O-(U: 8x,25 gx,S)’

M; and N; are constants which arise from the partial
fraction decomposition and depend on the parameters of
the metric and the test particle.

IV. GEODESICS ON THE ¢ AXIS

The surface y = —1 is the axis of ¢ rotation of the
doubly spinning black ring. Here the Hamilton-Jacobi
equation depends on the coordinate x only. We set
y=-1,¥=0and p, = "S = 0 in the Hamilton-Jacobi

equation (21):

— w2 — D3 — 1 HE D Sy —
0 2 — D*3(x, 1)H(_1’x)E2+D 13(x, —1)
(x + 12(1 — »)? aS\2 (P + cQ E)?
% R2H(x, —1) {G(x)<£) " (1 — v)?
B) 2+ v(l —v)+ A2 —3v)]
x [G(x) I1—A+v ]} (84)

This can be rearranged to

PHYSICAL REVIEW D 87, 044054 (2013)

D'3(x, ~)R*H(x, —1) <D2/3(Xy -1

(x+ D21 — v)’G(x)

(5:) -

Hx,—1) , ) (P+ cQ4E)>
“HCLoE " ) (1 - 2260
y (B(x) 24+ vl —-v)+ A2 - 31/)])
G(x) 1—A+v
= X, (85)
Then we have
S = %mzr —Et+d¢ + [Jx_sdx. (86)

Now we set the partial derivatives of S with respect to the
constants m?, E and ® to zero in order to obtain the

equations of motion. With the Mino-time [26] dy =

W dr the equations of motion take the form
dx
— = VX(x) 87)
dy

d¢ (x+ DH(x, —1DH(—1,x)

dy (1 +v-2Gk)

(@ + cQ4E)  (88)

dr _ R D(x, —1)H?*(x, —1) _ (x+ DH(x, —1)H(—1,x)

dy (x+ 1)H(—1,x) (14 v—A)2G(x)
X cQy (D + cQyE) (89)
where
X(x)=(01—-»)? ZEX T 1; {R2G(x)[D(x, —1)H(x, —1)E?
— D'Y3(x, —1)H(—1, x)m?] — (l(fj\_j_)zy)z

X [H(~1, )@ + cRAYTY2((1 + v)> — A?)
X (1 — xZ)E]Z} (90)

and
H-1,x)=0-=-22 =22+ vx*(1 — A2 = 2 + 2Ap)
Hx,—1) =1+ X2 —22=2Av(1 — x3) + 2Ax(1 — 1?)
+ x2v(1 — A2 — 1?)
_ s
H(x, —1)
RAV2((1 + v)? — A?)
H(—1,x)

D(x,—1)=1+ [2A(1 = v)(x + DA + vx)]

O, = (1 — x2)/v. 91)

Solving the equations of motion (87)—(89) analytically
is only possible if X(x) is a polynomial. This happens in
two cases:
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(1) D(x, —1) =1 (which implies ¢ =1 and s = 0):
uncharged doubly spinning black ring

(2) m = 0: charged doubly spinning black ring with
photons

In both cases X(x) is a polynomial of sixth order, so that the
equations of motion are of hyperelliptic type (genus g = 2).

A. Classification of geodesics
From (87) we can read off the effective potential con-
sisting of two parts U (x) and U_(x):

X=ax)(E—-U.)E—-U-). (92)

Since X(x) can be written as X(x) = a(x)E? + b(x)E +
c(x) the effective potential takes the form

—b(x) = b(x)?* — 4a(x)c(x)

Us(x) = ) .93
where
o LHG D) o
ax) = (1 V)2m<R2G(x)D(x, DHG —1)
czﬂéHz(—l, x)(x +1)2
a (1= A+ )2 )
o cQyH(—1, x)H(x, —1)(x + 1)
b(x) = —2(1 — v)*® T
() = —(1 — pPH(x, —1)(R2G(x)D1/3(x, )
(x + 1)2H(—1, x)P?
01— A+ ) ) O

PHYSICAL REVIEW D 87, 044054 (2013)

Figure 7 shows the effective potential for the motion on
the ¢ axis. U, is plotted in red (solid line) while U_ is
plotted in blue (dotted line). The gray area between the two
parts of the potential is a forbidden zone where no motion
is possible because X(x) becomes negative there. If & = 0
then X(x) has no zeros or one zero and U, and U_ are
symmetric (U, = —U_). If |®| > 0 there is a potential
barrier which prevents the geodesics from reaching x =
+1. X(x) can have up to three zeros.

Possible orbits are bound orbits (BO), where light or test
particles circle the black ring, and escape orbits (EQO),
where light or a test particle approaches the black ring,
turns around at a certain point and escapes the gravitational
field.

There are five different types of orbits (see Table II),
which exist in the charged as well as in the uncharged black
ring spacetime:

(1) Type A: X(x) has no zero. EOs without a
turning point exist. The orbit crosses the equatorial

plane (x = +1) and reaches infinity (x = —1 and
y=—1).

(ii) Type B: X(x) has one zero. BOs with a turning point
on each side of the ring exist, so that the orbit
crosses the equatorial plane (x = +1).

(iii) Type C: X(x) has one zero. EOs with a turning point

exist.

(iv) Type D: X(x) has two zeros. BOs which do not
cross the equatorial plane exist.

(v) Type E: X(x) has three zeros. BOs which do not
cross the equatorial plane and EOs exist.

B. Solution of the x equation

In the two cases D(x, —1) =1 (i.e., s=0)and m =0
Eq. (87) can be written in the form

(a) =0 M) d=1

(c) =38

Examples of orbits of types A and B. Examples of orbits of types C and
D. If |®| > 0 there is a potential
barrier which prevents the geodesics
from reaching ¢ = +1. X (z) can have
one or two zeros.

FIG. 7 (color online).

represent energies and green points mark the turning points.
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Example of an orbit of type E.
The potential can have local extrema
which lead to three zeros of X (z).

R=1,m=1,s=1,v=0.1and A = 0.7 Effective potentials U, (x) (red solid line) and U_ (x) (blue dotted
line) on the ¢ axis (y = —1) of the black ring. The gray area is a forbidden zone, where no motion is possible. Green dashed lines
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TABLE II.

PHYSICAL REVIEW D 87, 044054 (2013)

Types of orbits of light and particles in the charged doubly spinning black ring

spacetime for y = —1, W = 0. The thick lines represent the range of the orbits. The turning
points are shown by thick dots. The coordinate x ranges from —1 to +1. An orbit of type A or B

crosses the equatorial plane.

Type Zeros Range of x Orbit
A 0 EO
B 1 o BO
C 1 o EO
D 2 o o BO
E 3 o c o EO, BO

dx\2 o 6 ;
(@) = X(x) = Zoa,.x. (95)

A separation of variables gives the hyperelliptic integral
o dy
Xin ‘\/ X(.xl) .

Since X(x) is a polynomial of sixth order, the genus of the
Riemann surface is g = 2. A canonical basis of holo-
morphic (du;) and meromorphic (dr;) differentials associ-
ated with the hyperelliptic curve w? = X(x) is given by
(see Ref. [24] or Ref. [28])

Y~ Yin = (96)

97)

2¢+1—i xk
dr; = k+1—19)A — dx
i kZ:l ( i) k+1+14w

(98)

with i =1,...,g and A; being the coefficients of the
hyperelliptic curve written as

+ Ao
99)

W2 = /\2g+2x23+2 + /\2g+1x23+1 + /\ngzg + -

Furthermore we introduce the holomorphic and meromor-
phic period matrices 2w, 2w’) and (27, 271'):

tj

.- A —
2w;; = f‘ du,, Zwij = du;,
C(j j

b
2m;; = —f dr;, 277;/ = —ﬁ dr; (100)
aj j

with i, j=1,...,g, where {a,0;li=1,..., g} is the
canonical basis of closed paths.
The solution of Eq. (96) is extensively discussed in

Refs. [22-24,28] and is given in terms of the derivatives

a 0
u, . u == — _
au»a( ) U'j( ) du; du;

4

o(u)=— o(u),

(101)

of the Kleinian sigma function o (u) = ke~ (/24" no™'ux
HQRw) 'u + K, ;7):

_ o1(ve)
) o (ve)

. <'y - 7i/n>
Yo = :
Y2

The constant y/, = y;, + ff:’n du; depends on 7;, and x;,
only. y, is defined by the vanishing condition of the
Kleinian sigma function: o(yg) = 0, so that 2w) 'y
is an element of the theta divisor (the set of zeros of the
theta function).

(102)

where

(103)

C. Solution of the ¢ equation
With Egs. (87) and (88) yields

_ (x+ DHx —DH(—1,x) dx

(104)
This can be rewritten as
dg — Pl dx (105)

P3(x) /X(x)

where P,(x) is a polynomial of fourth order and P;(x) is a
polynomial of third order. So we have to solve the integral

[ Pu) dY
¢ — i jxm P3(x') m

which has poles at p, , = ”i27 V,i‘L‘“’ and p; = 1. We apply
a partial fraction decomposition upon (106):

(106)

/

b — by = [’C(iﬁﬂg + K5x’)J%,

i=1

(107)

where K; are constants which arise from the partial fraction
decomposition.
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If D(x, —1) =1 (i.e,, s = 0) or m = 0 then X(x) is a
polynomial of sixth order and Eq. (107) consists of hyper-
elliptic integrals of the first and third kind.

First we will solve the holomorphic integrals of the first

kind fxm \/_ (in this case i = 0, 1, 2, 3). We intro-
duce a variable v so that v — vy = [ \/JT The inver-
sion of this integral yields x(v) = — ”‘(“) j (see Sec. IV B or

Ref. [28]), where

u=91,.+< vt
filv —vg)

The function f(v — v,) can be found from the condition
o(u) = 0. The vector 2; identified with each branch point
e; is defined as [28]

>, f1(0)=0. (108)

(e;,0)
9, = [ du=2we, + 20,  i=1,...6
(109)
with the vectors g; and €/ € R? with entries equal to % or 0.
The matrix
g/ gl el
[91,-]=< )=< . ’2> (110)
€ €1 &p
is called the characteristic of a branch point e;.
Equation (107) now reads
’%
3 X K
¢ - ¢in = [ : K4(U — UO)
,-:Zl x X = i JX()
+ stl(l) - 'Uo). (111)

The remaining hyperelliptic integrals of the third kind
can be solved with the help of the following equation (see
Ref. [28]):

it )
~2('e’ + me) — 3 B W]
o(fF du — fg‘g))du - K)

n
o(ff du + ]g‘g))du - K.)

o(f2 du — fgvg))du— K.)

= W) )

U(foo du + f(e ,0) du °°)
(112)

P and P’ are points on the hyperelliptic curve, Z is a pole,
W = w(Z) and w? = X(x). The zeros e; of w?(x) are the
branch points of the curve w?. du is the vector of the
holomorphic differentials of the first kind du; = 71 dx
with i =1,...,g. { and o are Kleinian functions and
K, is the vector of Riemann constants.

PHYSICAL REVIEW D 87, 044054 (2013)

The gth component (in this case genus g = 2) of the
vector 3(Z, W) is 3,(Z, W) =10 and for 1 = j<g we
have

i w
2(Z, W "
SJ( ) nk 2(2 - eZk)
8§—Jj—
Xy ( D)s~KHITIZES o ja(e).  (113)
k=0

The S;(e) are elementary symmetric functions of order k
built on g — 1 branch points ey, ..., e5,: Sop =1, §; =
eq+ oo+ ey, elc.

Finally the solution of the ¢ equation (88) is

b= b + éK[% (f au) (& [( “’0:” s K.

1 a(W3(x))
53(1’1’ Wi)) + lnm

:I + Ky(v — vg) + Ksf (v — vp),
(114)
where W;=4/X(p,) and W'2(x)= [% du= j(‘” W)du

— 2(1]’8’ + 7’8) —

O-(Wz(xin))

I W ()

D. Solution of the ¢ equation
With Egs. (87) and (89) yields
D(x, —1)H*(x, —1)
(x+ 1DH(—-1,x)
(x+ DH(x, —1)H(—1,x)
(I + v - )Gk

dr = (RQE

dx

XG0

(115)

This can be rewritten as
_ Pg(x) dx
Ps(x) JX(x)

where P,(x) are polynomials of order d. Ps(x) has
—AVA 4y

(116)

the zeros p;,=-—"=7—", p3=1 and pys=
A0 0=15y)
V(A:(i\ +I;)(/\V) ) 'So we have to solve the integral

. / /
z—zmzf Pelx) _dx (117)

w Ps(X) XY

We apply a partial fraction decomposition where the con-
stants M; arise:

5 /
X M

1= tn = (Z% =
Xin i:]x i X('x)

If D(x, -1)=1 (ie., s=0) or m =0 then X(x) is a
polynomial of sixth order and Eq. (118) can be integrated

+M6 +M7X’) (118)
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analytically. The hyperelliptic integrals of the first and
third kind can be solved as shown in Sec. IVC. The
solution of the ¢ equation (89) is

S VRDICTACRTS

~2'e’ + me) — 5 30 W)

o(W200) . (W)
+mdww»_mwwwmj
T Mo(v — vo) + My fy (v — vo)} Tt (119)
where  W;=4X(p,) and  W'2(x) = [% du =

(pi,W;) _
f(fzo) du — K...

E. Solutions in the case of double roots

In this section we assume that either D(x, —1) = 1 (i.e.,
s =0) or m =0, so that X(x) is a polynomial of sixth
order.

If we consider a polynomial X(x) with double roots, the
genus of the Riemann surface reduces to g = 1. In this case
the solutions of the geodesic equations can be expressed in
terms of the elliptic ¢, o and ¢ functions. Double roots can
be found from the equations

X(x)=0 and dX()

=0. (120)

Let xp be a double root of X(x); then the x equation (87)
can be written as

(E)Z = (X - XD)2P4(X),

& (121)

where P,(x) is a polynomial of fourth order. A separation
of variables yields an elliptic integral of the third kind:

x 1 dx/’
Y = Yin T [

i X' = Xp JPo ()

The polynomial P, can be reduced to third order by the
substitution x = t$+ X9, where xy is a zero of P,.

A further substitution u = bl3(4u

polynomial into the standard Weierstral form (compare
Secs. III B, III C, NI D, and IIT E). If we now use u = p(v),
Eq. (122) becomes

y—yin=/:m<Ko (,)_ )dv

The constants K,, K; and the pole p, depend on the
parameters of the metric and the test particle and on the
zeros xo and xp. If Eq. (123) is integrated (see e.g.,
Ref. [28]) we get an expression y(v) (where v depends
on Xx):

(122)

— %) transforms the

(123)
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Y0) = Kolo — vg) + o (20(wp)0 — vi)
ov—-vp) o(v + vp)
T G~ vp) a(vh1+-vD>) "
(124)
with Pp = XO(UD).
The ¢ equation (88) can now be written as
B _ (x(+ DHX, —DH(—1,x")
¢ — b= fxm 0+ =G0 (D + cQyE)
d’ (125)

X :
(" = xp)YPy(x))

We use the same substitutions as before and apply a partial
fraction decomposition:

4

b — din = [v<Lo + 2 lﬁ_pl)dv (126)

The constants L; and the poles p; depend on the parameters
of the metric and the test particle and on the zeros x, and
Xp- So here the solution of the ¢ equation is

B) = Lo(w — ) + ¥ (24w — vy
o(v — v,-) _ o(v+v)
- log U(vin - U,’) g O-(Uin + vi)) * d)in
(127)
with p; = p(v;).
The ¢ equation (89) can now be written as
R L D(x', —1)H?*(x/, —1)
== [ (R
_ (x'+1DHX, —1)H(—1,x")
(1 +V—/\)2G(x/) CQ¢((I)+CQ¢E))
dr (128)

Xe——
(" = xp)W P4 (x)

We use the same substitutions as before and apply a partial
fraction decomposition:

6
v M.
=ty = f (M0+ — )dv’. (129)
Vin ,':1@(1))_%

The constants M; and the poles g; depend on the para-
meters of the metric and the test particle and on the zeros x
and xp. So here the solution of the ¢ equation is
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6 .
ww=wmu—wo+z;%3@aww—vm
i=1 i

olv—uv;) olv+v) )
+1 — + t. 130
=) ol o) Y
Wlth qi = KJ(UZ').

V. GEODESICS ON THE ¢ AXIS

The surface x = =1 is the axis of ¢ rotation. It can be
seen as the equatorial plane of the black ring, which is
divided into two parts. The first part x = +1 is the plane
enclosed by the ring (or more precisely, enclosed by the
singularity), which we will refer to as ““inside” the ring.
The second part x = —1 describes the equatorial plane
around the black ring (or more precisely, around the sin-
gularity), which we will refer to as ‘““outside” the ring.

If we set x==*=1, ® =0 and px—§=0 in the
Hamilton-Jacobi equation (21), it depends on the coordi-
nate y only:

0= m?— D?3(%1, )HE L y;E — D7 13(x1,y)
(=1 —y)*(1 — »)? (\I’ + cQyE)?
% R H(*1,y) { ( )< ) (1-w»)?
B(y) v[2+ v(l—v)* A2 —3v)]
x [G(y) l=A+v ]} (13D)

This can be rearranged to

(&) -

D1/3(J—“1r)’)R2H(J—“1rY)( 2 i1, y)

(=1 =1 =2)G(y)
H(xl,y) 2) (P +cQ,E)?

H(y, =1) (1= v)*G(y)
B(y) v[2+v(l—v)*A2—-3v)]\ _.
><(G(y) l=A+v )_'YS'
(132)

Then we have

1
=§m27—Et+\I’¢ + '[\/sty. (133)
Now we set the derivatives of § with respect to
the constants m?, E and ¥ to zero in order to obtain the

equations of motion. With the Mino-time [26] dy =

(x1-y)

mdr the equations of motion take the form

dy

dy = —\Y(») (134)
dgp (1 —y)H(=1,y)H(y, 1)
i vz iy (YT euB) (139)

PHYSICAL REVIEW D 87, 044054 (2013)

dr ., D(=1,y)H*(*=1,y)
dy (x1—=y)H(y, £1)
(1= y)H(=1,y)H(y, 1)
1+ v = )G0)

(136)
where
Yo) = (1 - )”ﬁlﬂﬁm@wwmyﬂmz
N (1 —y)?
CDHELYE] = e
X [H(y, C1)W — cRM2((1+ )2 — A2)
1+y
7(1_)“'_ )(l—i-/\—v-i-yv(l—)\—v)

+2u(1 — y))E] } (137)

and

Hx1L,y)=(1*xA)>— >+ y*v(1 — A2 — 12 % 2Av)
H(y,=1)=1+ A% =22 £2Av(1 —y?) +2Ay(1 — 1?)
+y2v(1 — A2 —1?)
2

D(xl,y)=1+ H(+71)[2/\(1 —v)(E1—y)(1 ¥ vy)]
Q. — _RAV2((1 + v)??—AY) 1+y
v H(y, *1) I1—A+v
X(I+A=v+yv(1—2A—v»)x2v(1 —y)).

(138)

Solving the equations of motion (134)—(136) analytically is
only possible if Y(y) is a polynomial. This happens in two
cases:
(1) D(*=1,y) =1 (which implies ¢ =1 and s = 0):
uncharged doubly spinning black ring
(2) m = 0: charged doubly spinning black ring with
photons

In both cases Y(y) is a polynomial of sixth order, so that the
equations of motion are of hyperelliptic type (genus g = 2).

A. Classification of geodesics

From (134) we can read off an effective potential con-
sisting of the two parts V,(y) and V_(y):

Y =a(y)(E—-V)E-V.) (139)

Since Y(y) can be written as Y(y) = a(y)E*> + b(y)E +
c(y) the effective potential takes the form
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_ + 7 _ gap in the potential barrier appears which allows test
bb) = Jbz(;)zy) 4a(y)c(y)’ (140)  particles and light to reach the singularity.
Possible orbits outside the black ring are

(1) Terminating orbits (TO): Light or test particles

approach the black ring, cross both horizons and

,H(x1,y) 5 fall into the singularity.

alx) = (1—-») m<_R G()D(£1, y)H(£1, y) (2) Many-world bound orbits (MBO): Light or

22 22 ’_+ IR test particles circle the black ring on a periodic

_¢ QI#H (o =D(E1 —y) ) bound orbit, but cross both horizons several times

1A+ p)? on their flight. Every time both horizons are trav-

cQ HQy, =DH(£1,y)(=1 — y)? ersed twice light or the test particles emerge into

another universe.

Vily) =

where

b(x) = =2(1 — »)*¥

(1+ A+ p)? ; . .
(3) Escape orbits (EO): Light or test particles approach
c(x) = (1 — v)2H(=*1, y)(RZG(y)Dl/3(il,y)m2 the black ring, turn around at a certain point and
escape the gravitational field.
(=1 — y)?H(y, =1)¥? (4) Tvo-world escape orbits (TEO): Light or test parti-
- (141) : :
1+ X+ )7 cles approach the black ring, cross both horizons,
turn around at a certain point, cross the horizons a
The two cases x = +1 (geodesics inside the ring) and second time and escape the gravitational field. Since
x = —1 (geodesics outside the ring) have to be discussed both horizons are traversed twice light or the test
separately. particles emerge into another universe.

There are four different types of orbits (see Table III).
(i) Type A: Y(y) has no zeros and only TOs exist.

(ii) Type B: Y(y) has one zero and only TEOs exist.
(iii) Type C: Y(y) has two zeros and only MBOs exist.

1. Geodesics outside the ring

Let us first take a look at the motion on the surface

outside the blac].< ring. nge we have - —1. Figure 8 In a special case the two turning points lie on the
shows the effective potential V(y) for different values of horizons
the parameters. V, and V_ meet at the horizons. Mainly (iv) Type D: Y(y) has three zeros. MBOs and EOs exist.

the angular momentum W defines the shape of the effective
potential, the charge parameter s has less influence. For
¥ = 0 the potential is symmetric with respect to the y axis
[V(y) = 0] and Y(y) has one or two zeros. A potential
barrier prevents the test particles and light from falling
into the singularity. The effective potential for geodesics on the surface

If | ¥| > 0 the potential is no longer symmetric andupto  enclosed by the black ring (x = +1) is shown in Fig. 9.
three zeros of Y(y) are possible. If || is large enough a  Again, if we have ¥ = 0 the potential is symmetric and

In a special case the two turning points of the MBO
lie on the horizons.

2. Geodesics inside the ring

! I r4 | | r2,8
[ [ | |
LB, \ \ -
T T o \ 20
\ \ | \
\ \ 1 P tos
LAl ————
| | ‘ P22
‘ Ny —mm — gt v | H————— 4 o« 7
| [ | D | E
| | | | P E20
. — 1 ‘ ‘
18 16 14 -12 10 8 6|4 & | \ 18
y } } | \
L | \
| |t ‘ ‘ F1,6
Lo e
| | -7 -6 -5 -4 -3 -2 -1
' ' -2 X
(a) s=0.5and ¥ =5 (b) s=1and ¥ =0 (c) s=1and ¥ =10
Examples of orbits of types A and Examples of orbits of types C and Examples of orbits of types D and
B. Co. Do.

FIG. 8 (color online). R =1,m =1, » = 0.1 and A = 0.7 Effective potentials V, (y) (red solid line) and V_(y) (blue dotted line) on
the ¢ axis outside the (charged) doubly spinning black ring. The gray area is a forbidden zone, where no motion is possible. The
horizons are marked by vertical dashed lines. Horizontal green dashed lines represent energies and green points mark the turning
points.
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TABLE III.
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Types of orbits of light and particles in the (charged) doubly spinning black ring

spacetime for x = —1 and ® = 0. The thick lines represent the range of y and the turning points
are shown by thick dots. The horizons are indicated by a vertical double line. The single vertical
line at the left end is the singularity. The coordinate y ranges from —oo to —1.

Type Zeros Range of y Orbit
A 0 ” H TO
B 1 | o—1 i TEO
C 2 : — T MBO
Co 2 + + MBO
D 3 . o— — o MBO, EO
Dy 3 ¢ 4 o MBO, EO
Y(y) has no zeros or one zero. In the case |V|>0 a (iii) Type C: Y(y) has one zero and only MBOs exist.

potential barrier appears which prevents test particles and
light from reaching y = —1. In contrast to the motion of
light and test particles outside the black ring, the charge
parameter s has now significant influence on the effective
potential and the possible orbits. If s > 0 up to four zeros of
Y(y) are possible; if s = 0 a maximum of three zeros is
possible. In the case of four zeros, bound orbits of test
particles (not light) behind the inner horizon are possible.
Possible orbits are terminating orbits (TO), many-world
bound orbits (MBO) and bound orbits (BO). The bound
orbits, which are only possible in the charged case, exist
behind the inner horizon of the charged doubly spinning
black ring.
There are six different types of orbits (see Table IV).
(i) Type A: Y(y) has no zeros and only TOs exist. Test
particles or light come from infinity (y = —1) and
fall into the singularity (y = —o0).
(ii) Type B: Y(y) has one zero and only TOs exist. The
orbit starts at a certain point and ends in the
singularity.

Light or a test particle crosses the center of the ring
x=+1Ly=-1).

(iv) Type D: Y(y) has two zeros and only MBOs exist.
In a special case the two turning points lie on the
horizons.

(v) Type E: Y(y) has three zeros. MBOs and TOs exist.
In a special case the two turning points of the MBO
lie on the horizons.

(vi) Typ F: Y(y) has four zeros. MBOs and BOs exist.
The BOs lie behind the inner horizon and are only
possible if the doubly spinning black ring is
charged and m # 0.

B. Solution of the y equation

If D(=1,y) =1 (i.e., s =0) or m = 0 then Y(y) is a
polynomial of sixth order and Eq. (134) can be solved
analogously to (87). A separation of variables yields

vy dy

Y~ Yin= (142)

i YO

r3v

r T T T T
-9 -8 -7 -6 -5
y

(a) v=01,A=07,m=1and ¥ =0 (b) »=02,A=09, m=0and ¥ =5 (¢c) » =02, A =09, m=1and ¥ =

Examples of orbits of types A,C,D

and Dg. and Eog.

FIG. 9 (color online).

Examples of orbits of types B, E

20
Examples of orbits of type F.

R = 1 and s = 0.1. Effective potentials V, (y) (red solid line) and V_(y) (blue dotted line) on the ¢ axis inside

the (charged) doubly spinning black ring (x = +1). The gray area is a forbidden zone, where no motion is possible. The horizons are
marked by vertical dashed lines. Horizontal green dashed lines represent energies and green points mark the turning points.
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TABLE IV. Types of orbits of light and particles in the (charged) doubly spinning black ring
spacetime for x = +1 and ® = 0. The thick lines represent the range of y and the turning points
are shown by thick dots. The horizons are indicated by a vertical double line. The single vertical
line at the left end is the singularity. The coordinate y ranges from —oo to —1.

Type Zeros Range of y Orbit
A 0 1 1 TO
B 1 0 o TO
C 1 : — - MBO
D 2 o—t o MBO
D, 2 ¢ o MBO
E 3 > o—| I TO, MBO
E, 3 . & . TO, MBO
F 4 —e o |- BO, MBO
The solution is 43 /
Y K; dy
== [ (Tt ke ky) e aa)
yy) = _oi(ye) (143) 3 \SY P vY(y)
o2(ve) where K; are constants which arise from the partial fraction
where decomposition.
If D(=1,y) =1 (i.e., s =0) or m = 0 then Y(y) is a
—y+y polynomial of sixth order and Eq. (148) consists of hyper-
Yo = ( y " ) = @oo- (144)  elliptic integrals of the first and third kind. The solution can
2

- \/‘i)(—‘,) depends on vy;, and y;,
only. y, is defined by the vanishing condition of the
Kleinian sigma function: o(yg) = 0 so that 2w) 'y is
an element of the theta divisor (the set of zeros of the theta
function).

The constant y/, = y;,

C. Solution of the s equation
With Egs. (134) and (135) yields

(x1—=y)H(*1,y)H(y, 1) dy
dy = — v O E)——.
v Grrznich) L etb)
(145)
This can be rewritten as
Py(y) dy
= e 146
P3(y) JY(y) (146)

where P,(y) is a polynomial of sixth order and P;(y) is a
polynomial of third order. So we have to solve the integral

[y Pyy)  dy
va P307) YY)
which has poles at p,, = =A53A=4 — v and py = —1

(if x=+1)or p3 =1 (if x = —1). We apply a partial
fraction decomposition upon (147):

b — Yin (147)

be found in the same way as in Sec. III D or IV C:

: 2 y T (pi,Wy)
=it Ki[—(j du) (f(] du+Koo)
ZZ{ WilJy, (€,0)

1 W2
—2'e’ + me) — 5 3(p; W,-)) PNCAULC)

a(Wi(y)
W2 in)
%] + Ky(v = vo) + Ksf1(v = vy),

(149)

—1In

where W;=4/Y(p;) and W'2(y) = [%du= jzé’;(v)‘;”)du -K..

D. Solution of the ¢ equation
With Egs. (134) and (136) yields
D(*1,y)H*(*1,y)
(=1 =yH@, =1)
(=1 —y)H(x1,y)H(y, =1)
(1+ v+ 1)2G(y)

dr = <R2E

dy
Xchp(‘If—i-cQwE))—. (150)
VY (y)
This can be rewritten as
_ P7()’) dy (151)

"T P 7O

where P,(y) are polynomials of order d. P¢(y) has the
zeros p; (i = 1,...,6). So we have to solve the integral
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P !/ d/
t_tinzjy 7))  dy (152)

vin Ps(3) ,/Y(y’)'

We apply a partial fraction decomposition where the con-
stants M, arise:

6

t_tin:<z /]%z dy .

i=1Y ~ Pi Y(y')

If D(x1,y)=1 (ie., s=0) or m =0 then Y(y) is a
polynomial of sixth order and the equation can be solved.
The hyperelliptic integrals of the first and third kind can be
solved as shown in Sec. III D or IV C. The solution of the ¢
equation (136) is

6
2 T (pis W)
f= 1, + {zM,.[_([y du) (g(/" du + Km)
i=1 WiN\Jy, (€2,0)

/

+ M, + ng’) (153)

~ 2'e’ + ) — (W)
2(n'e’ + ne) 28(pi, Wi)) +1n 0D
a(W2(y.
- ln#&:;;] + M7(v = vo) + Mgfi(v — vo)},
(154)

(a) z1-z3-24 plot (¢ = T)

(¢) ®3-z4 plot

FIG. 10 (color online).
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where W, = /Y(p;) and Wl’z(y)=fﬁoduifg;g;’)du—
K.

E. Solutions in the case of double roots

In this section we assume that either D(*1,y) = 1 (i.e.,
s =0) or m =0, so that Y(y) is a polynomial of sixth
order.

If we consider a polynomial Y (y) with double roots, the
genus of the Riemann surface reduces to g = 1. In this case
the solutions of the geodesic equations can be expressed in
terms of the elliptic ¢, o and ¢ functions. Double roots can
be found from the equations

rG) _
dy '

Y(y) =0 and (155)

Let yp be a double root of Y(y); then the y equation (134)
can be written as

d
(d—y)2 = (y — yp)*Py(y), (156)
Y

(b) x1-w2-z3 plot (P = F)

(d) a-b plot (6 = = 3)

k=1, =01, A=0.7, ® =04 and ¥ = 0.8 Many-world bound orbit for light in the ergosphere

(E = m = 0). The tori (a) or spheres (b) are the inner and outer horizons of the black ring. In (c) and (d) the ergosphere is depicted as a
light red area with a red dotted border. The black and gray dashed circles in (c) and (d) are the inner and outer horizons.
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(a) z1-z3-z4 plot (¢ = T)

FIG. 11 (color online).

PHYSICAL REVIEW D 87, 044054 (2013)

P

'y
e
il o

(b) xi-w2-z3 plot (= F)

k=1,v=0.1,A= 0.7, ® = —0.2 and ¥ = 3.6 Terminating orbit for light in the ergosphere (E = m = 0).

The tori (a) or spheres (b) are the inner and outer horizons of the black ring.

where P,(y) is a polynomial of fourth order. A separation
of variables yields an elliptic integral of the third kind:

y 1 dy’
Y~ Yin T T
y

wY = b PO

The polynomial P, can be reduced to third order by the
substitution y = L + y, where y, is a zero of Pj.

(157)

A further substitution u = b% (4u — %) transforms the pol-

ynomial into the standard Weierstra3 form (compare Secs.
IIB, IIIC, IIID, and IIE). If we now use u = p(v),
Eq. (157) becomes

jw(K K )d’
~ Yin = ——|dv".
Y Yin v 0 p(v/) - pp

The constants Ky, K; and the pole pp depend on the
parameters of the metric and the test particle and on the

(158)

(a) x1-x3-T4 plot (¢ = g)

FIG. 12 (color online).

zeros yg and yp. If Eq. (123) is integrated (see e.g., Ref. [28])
we get an expression y(v) (where v depends on y):

K (
v) = Ko(v —vy,) + 2L (vp)(v — vy,
y(v) = Kol ) ) {(vp)( )
1o olv—vp) olv + vp) ) '
Yoo —vp) olum tup) T
(159)
Wlth Pp = KJ(‘UD).
The ¢ equation (135) can now be written as
g— g — [y _(F1 = y)H(F1LY)HG', £1)
R (1+ v = 1?G()
dy’
X(V+ cQyE)——F—o0— (160)

v — yD)VP4(y/).

(b) x1-za-z3 plot (Y = %)

k=057, v=02,1=0.9,d = 0.5 and ¥ = 0 Bound orbit for light on the axis of ¢ rotation, i.e.,y = —1,

and also in the ergosphere (E = m = 0). The tori (a) or spheres (b) are the inner and outer horizons of the black ring.
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\

(a) w1-w3-z4 plot (¢ = T) (b) z1-w2-x3 plot (v = §)

FIG. 13 (color online). »=02,A=0.9, V=5 m=1, s =0 and E = 1.38 Escape orbit for particles in the outer equatorial
plane (x = —1 and ® = 0) of an uncharged black ring. The tori (a) or spheres (b) are the inner and outer horizons of the black ring.

.‘\\

(a) w1-w3-x4 plot (¢ = F) (b) w1-w2-x3 plot (v = §)
b 17

{I/“\\‘ 05 /,a"\\‘

" ! ‘| L \ |’ J 2 J 4
]
-3 15
(c) z3-z4 plot (d) a-bplot (p = = %)

FIG. 14 (coloronline). » =0.1,A=0.7, ¥ =5,m = 0,s = 0.5 and E = 2 Two-world escape orbit for light in the outer equatorial
plane (x = —1 and ® = 0) of a charged black ring, i.e., x = —1 and ® = 0. The tori (a) or spheres (b) are the inner and outer horizons
of the black ring. In (c) and (d) the ergosphere is depicted as a light red area with a red dotted border. The black and gray dashed circles
in (c) and (d) are the inner and outer horizons.
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(a) z1-z3-z4 plot (¢ = T) (b) x1-x2-x3 plot (v = %)
2
b
il
-, I oy
(o Fa
T .
4 2‘\\\_/' 9 \\\5’/’ i b
ad
-4 2
.............................. . L

(c) w3-z4 plot (d) a-bplot (p =3 =)

FIG. 15 (color online). » =0.2, A=09, ¥ =5 m=1, s =0 and E = 0.1 Many-world bound orbit for particles in the outer
equatorial plane (x = —1 and ® = 0) of an uncharged black ring. The tori (a) or spheres (b) are the inner and outer horizons of the
black ring. In (c) and (d) the ergosphere is depicted as a light red area with a red dotted border. The black and gray dashed circles in (c)
and (d) are the inner and outer horizons.

We use the same substitutions as before and apply a partial The ¢ equation (136) can now be written as
fraction decomposition:

t— ty

— [7(r2 D(£1,y)H*(*1,)))

" - Li / yin<R £ (=1 =y)H(', £1)

w - win B /;m(LO " i_lm)dv . (161) . (il — y/)H(ilyy/)H(yl’ _,__1)
1+ v+ A)*G()

/
The constants L; and the poles p; depend on the parameters X cQy (¥ + cQ wE)) v (163)

of the metric and the test particle and on the zeros x, and (v = ypWP 4()’/)'

Xp- So here the solution of the i equation is
We use the same substitutions as before and apply a partial
fraction decomposition:

4 Li
() = Lo(v — vy) + ;W@g("")(” — v) ,, .
r—t, = f <M0 + Zi’)dv’. (164)

T log ov-v) o(v +v;) ) . - Z o0 — g,
U(vin - vi) O-(Uin + vi)
(162)
The constants M; and the poles g; depend on the parame-
ters of the metric and the test particle and on the zeros y,
with p; = p(v,)). and yp. So here the solution of the r equation is
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M
t(v) = MO(U - vin) + lzzlz@/(lil) (2§(Uz)(v - Uin)
olv—-—v) _ o(v+ v,
+ log o(viy, — v;) o(vy, + Ui)) +t, (165)
with ¢; = p(v).

VI. THE ORBITS

One can think of ring coordinates as two pairs of polar
coordinates

x; = r;sin(¢) ond X3 = rysin (i) (166)
xy = rycos(¢) x4 = rycos (i)
where
VI -2 V-1
=R and =R 67
xX—y -y

(see Refs. [15,29]). xq, xp, x3, x4 are four-dimensional
Cartesian coordinates.

If ¢ is constant, the horizon of the black ring consists of
two S? spheres. If we look at the rotational axis where y =
—1, the coordinates x; and x, describe the plane between

(a) z1-z3-24 plot (¢ = )

(c) m3-z4 plot

PHYSICAL REVIEW D 87, 044054 (2013)

these two spheres, so the horizons and the singularity
cannot be seen in this plane.

If ¢ is constant, the horizon has ! X S! topology. So if
x = *1 the coordinates x3 and x, describe the equatorial
plane “‘as seen from above,” so each horizon consists of
two circles. The singularity is a circle of radius 1.

If both angles are constant, the coordinates describe the
x-y plane. Here we can change from ring coordinates (x, y)
to polar coordinates (p, #) via the transformation

R/2_2 2 _
p:#’ tanﬂ: y
xX—y 1—x

S (168)

Then conventional Cartesian coordinates take the form

a = psiné, b= pcosf (169)

(see Ref. [15]). The singularity of the black ring is at a =
*1,b=0.
Note that a = r, and b = r; so that

Xy = pcos(0)cos(p)
x4 = psin(0)cos ().

x; = pcos(0)sin ()
x3 = psin (@) sin ()

Figures 10-17 show examples for possible orbits in the
(charged) doubly spinning black ring spacetime. The orbits

(170)

(b) x1-w2-23 plot (Y = F)

(d) a-bplot (p =9 = %)

FIG. 16 (color online). » =0.1,A = 0.8, ¥ = 10, m = 1, s = 0 and E = 3.34 Terminating orbit for particles in the outer equatorial
plane (x = —1 and ® = 0) of an uncharged black ring. The tori (a) or spheres (b) are the inner and outer horizons of the black ring. In
(c) and (d) the ergosphere is depicted as a light red area with a red dotted border. The black and gray dashed circles in (c) and (d) are
the inner and outer horizons.
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(a) z1-z3-74 plot (¢ = F)

FIG. 17 (color online).

PHYSICAL REVIEW D 87, 044054 (2013)

(b) z1-z2-z3 plot (¥ = F)

vr=01,A=07,Y=5 m=0,s=0.5and E = 0.1 Terminating orbit for light in the inner equatorial

plane (x = +1 and ® = 0) of a charged black ring. The tori (a) or spheres (b) are the inner and outer horizons of the black ring.

are shown for ¢ = 7 = const (x;-x3-x4 plot) and ¢ = T =
const (x;-x,-x3 plot). Sometimes the orbit is also plotted in
the equatorial plane (x3-x4 plot) and the plane of constant
angles (a-b plot), in these plots we have also marked the
ergosphere.

From the plots where one or both angles were set con-
stant one might get the impression that the motion takes
place only on one “‘side” of the black ring. In the x;-x3-x4
plots the orbit seems to be either above or below the
equatorial plane, while in the x;-x,-x3 plots the motion
seems to take place only in the vicinity of one of the two
spheres that show the horizon. However, this is an artifact
of the chosen representation. When none of the angles is
set constant, particles and light move all around the black
ring with respect to their turning points. Nevertheless, we
choose to exhibit the orbits with constant angle for reasons
of clarity.

A MBO and a TO for light in the ergosphere are depicted
in Figs. 10 and 11. Figure 12 shows a BO for light on the
axis of ¢ rotation, this orbit also lies in the ergosphere. An
EO for particles in the equatorial plane of an uncharged
black ring can be seen in Fig. 13.

ATEO for light around a charged black ring is shown in
Fig. 14. The orbit forms a little loop, which can be ex-
plained by the fact that there is an ergosphere-free region
inside the black ring (see Sec. II). After the light has left the
ergosphere it is no longer dragged along by the rotation of
the black ring and changes its direction. The light reaches
its turning point and approaches again the ergosphere
where it turns around a second time.

A MBO for particles in the equatorial plane of an
uncharged black ring is depicted in Fig. 15. TOs in the
equatorial plane are shown in Fig. 16 (particles in the
uncharged black ring spacetime) and Fig. 17 (light in
the charged black ring spacetime). In Fig. 16 the effect of
the ergosphere can be seen as the particle changes its

direction after entering the ergosphere-free region inside
the black ring.

VII. CONCLUSION

In this paper we presented the analytical solutions of the
geodesic equations of the charged doubly spinning black
ring for special cases. Since the Hamilton-Jacobi equation
seems not to be separable in general, we had to concentrate
on the zero energy null geodesics in the ergosphere (E =
m = 0), geodesics on the axis of i rotation (y = —1) and
geodesics on the equatorial plane (x = *1), which is the
axis of ¢ rotation. We discussed the general structure of the
orbits and gave a complete classification of their types.

In the case E = m = 0 terminating orbits, many-world
bound orbits and bound orbits for y = const = —1 are
possible. The charge of the black ring has no effect
on the orbits in the ergosphere. If the black ring is
singly spinning (» = 0) only terminating orbits exist (see
Ref. [20]).

On the axis of ¢ rotation y is constant, so here the x
motion determines the type of orbit. We found escape
orbits and bound orbits in the (charged) doubly spinning
spacetime like in the singly spinning black ring spacetime.

The axis of ¢ rotation (the equatorial plane) is divided
into two parts: the plane enclosed by the ring (x = +1) and
the plane surrounding the ring (x = —1). On the plane
enclosed by the ring (x = +1) terminating orbits and
many-world bound orbits are possible. If the doubly spin-
ning black ring is charged, bound orbits behind the inner
horizon exist. If the black ring is singly spinning only
terminating orbits are possible.

On the plane surrounding the ring (x = —1) escape
orbits, terminating orbits, two-world escape orbits and
many-world bound orbits are possible. If the black ring is
singly spinning, only escape orbits and terminating orbits
exist.

044054-25



SASKIA GRUNAU, VALERIA KAGRAMANOVA, AND JUTTA KUNZ

The separability of the Hamilton-Jacobi equation is a
coordinate related phenomenon, so one might think
of a coordinate system in which it would be possible to
separate the Hamilton-Jacobi equation in general. But re-
cently Igata er al. found evidence of chaotic motion in the
singly spinning black ring spacetime using the Poincaré
map [30]. From that one could conclude that it is in general
not possible to separate the Hamilton-Jacobi equation of
singly spinning black rings in any coordinate system. It
would be interesting to see if chaotic motion also appears
in the (charged) doubly spinning black ring spacetime.

PHYSICAL REVIEW D 87, 044054 (2013)

The methods shown in this paper can be applied to other
black ring spacetimes, like for example the supersymmet-
ric black ring [8,9]. This will be done in future work.
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