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The coupling of conserved p-brane currents with non-Abelian gauge theories is done consistently by

using Chern-Simons forms. Conserved currents localized on p-branes that have a gravitational origin can

be constructed from Killing-Yano forms of the underlying spacetime. We propose a generalization of the

coupling procedure with Chern-Simons gravities to the case of gravitational conserved currents. In odd

dimensions, the field equations of coupled Chern-Simons gravities that describe the local curvature on

p-branes are obtained. In special cases of three and five dimensions, the field equations are investigated in

detail.
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I. INTRODUCTION

Couplings with external sources in gauge theories are
described by the well-known minimal coupling procedure.
However, this is relevant only for the external point
sources, and in the case of extended objects the situation
is different. Extended objects that have p space dimensions
are called p-branes and they have (pþ 1)-dimensional
worldvolumes. p-branes are the generalizations of the point
particles to higher dimensions. Charges that are localized
on p-branes define conserved currents in spacetime. The
coupling of these currents with non-Abelian gauge theories
in the standard minimal coupling procedure is problematic
[1,2]. However, in the case of Chern-Simons (CS) gauge
theories, the problem of coupling with extended sources has
a natural solution.

CS theories of non-Abelian gauge fields are metric-free
and background-independent gauge theories that exist in odd
dimensions. CS theories of gravity are also defined in odd
dimensions by using the de Sitter (or anti–de Sitter) gauge
connections in the first-order formalism of gravity [3–5]. The
coupling of extended sources with CS gauge theories
generalizes the minimal coupling procedure by using the
transformation properties of CS forms under gauge trans-
formations. CS forms transform as Abelian gauge connec-
tions and this property produces a consistent gauge-invariant
coupling between a conserved current and a CS form. The
interaction term in the action is gauge invariant up to a
boundary term if the coupling current is conserved. So the
conserved currents on 2p-branes can couple with CS grav-
ities consistently. However, CS theories can only be defined
in odd dimensions and hence only the coupling of even-
dimensional branes can bewritten. Even-dimensional branes
and odd-dimensional CS forms define a consistent interac-
tion term in the action. One example of conserved currents
are the electromagnetic currents that are defined on p-brane

worldvolumes. The coupling between electromagnetic ex-
tended sources and CS gravities were recently studied in the
literature [6,7]. The coupling of extended charged events
with CS theories was also considered in Ref. [8].
Conserved charges in theories of gravitation can be

defined from the asymptotical symmetries of the space-
time. Killing vector fields of asymptotically flat or asymp-
totically AdS spacetimes are used in defining the mass and
angular momentum in general relativity [9]. On the other
hand, for extended objects like p-branes, the definition of
conserved currents can be generalized by using Killing-
Yano (KY) forms [10,11]. KY forms define hidden sym-
metries of spacetime that are generalizations of Killing
vector fields to higher-order forms [12]. Conserved cur-
rents that are constructed from KY forms are localized on
p-branes and conserved charges for these branes can be
defined by using the asymptotical symmetries of transverse
directions to the brane. The conservation of the currents
constructed from KY forms are shown in Ref. [11].
Conserved gravitational currents can also consistently

couple with CS gravities. Currents localized on p-branes
affect the local geometry of the brane, and the field equa-
tions of CS gravities coupled with gravitational currents
give this local geometry. CS gravities that have a global
AdS structure induce conserved currents on p-branes from
KY forms of the AdS spacetime. Because CS gravities are
defined in odd dimensions, the KY forms that have odd
form degrees are used in the construction of these currents.
In this work, we generalize the coupling of conserved
currents with CS gravities to the gravitational-currents
case. We find the field equations that define the local
geometry of 2p-branes and give special examples in three
and five dimensions.
The paper is organized as follows. In Sec. II we review

the electromagnetic current couplings of 2p-branes with
CS gravities. The definition of KY forms and the construc-
tion of conserved gravitational currents from KY forms
are included in Sec. III. The couplings of gravitational
currents with CS gravities in arbitrary odd dimensions
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are considered in Sec. IV. Section V presents special
examples for three and five dimensions, and the conclusion
is given in Sec. VI.

II. BRANE COUPLINGS IN CS THEORIES

The coupling of conserved currents with gauge connec-
tions in n dimensions is provided by the minimal coupling
term in the action

IMC ¼
Z
Mn

dnxj�A
�; (1)

where j� is the conserved current generated by a point

source and A� is the vector potential. The generalization of
the minimal coupling procedure to extended sources like
p-branes is possible for Abelian connections in the form
j�1�2...�p

A�1�2...�p . However, for non-Abelian connections

this procedure is not well defined [1,2]. In the general case,
the couplings of extended objects are described gauge-
invariantly by using CS forms. A p-brane is defined as
an object that extends to p space dimensions and has a
(pþ 1) dimensional worldvolume. The currents localized
on p-brane worldvolumes are defined by the transverse
directions to the brane. Hence, in 2nþ 1 dimensions, the
current localized on a 2p-brane is a 2nþ 1� ð2pþ 1Þ ¼
2ðn� pÞ-form.

Let A be a non-Abelian gauge connection that is a Lie
algebra-valued 1-form. The connection transforms under
gauge transformations as follows:

A ! A0 ¼ g�1Agþ g�1dg; (2)

where g is an arbitrary element of the Lie group. In 2nþ 1
dimensions, CS forms are defined from the connection
A as [13]

hC2nþ1ðAÞi ¼ 1

nþ 1
hAðdAÞn

þ c1A
3ðdAÞn�1 þ � � � þ cnA

2nþ1i; (3)

where hi denotes the invariant symmetric trace, namely the
Cartan-Killing form in the Lie algebra that takes traces of
the Lie algebra elements in the adjoint representation and
An ¼ A ^ . . . ^A (n times). c1; . . . ; cn are dimensionless
coefficients determined by the condition

dhC2nþ1ðAÞi ¼ 1

nþ 1
hFnþ1i: (4)

Here d is the exterior derivative operator and F¼dAþA^
A is the curvature of the connectionA. CS forms transform
under gauge transformations as Abelian connections [5],

C2pþ1ðA0Þ ! C2pþ1ðAÞ þ d�ð2pÞ; (5)

where p ¼ 0; . . . ; n and�ð2pÞ is an arbitrary 2p-form. This

property is responsible for the consistent coupling between
conserved currents and CS forms, because the coupling
term in the action is

IC ¼
Z
hjð2n�2pÞ ^ C2pþ1ðAÞi (6)

and remains gauge invariant up to a boundary term. Here
jð2n�2pÞ is a conserved current localized on a 2p-brane.

The action of CS gauge theories in 2nþ 1 dimensions is
defined as follows:

ICS ¼ �
Z
M2nþ1

hC2nþ1ðAÞi; (7)

where � is a dimensionless constant. A CS theory can
couple with a conserved (2n� 2p)-form current localized
on a 2p-brane. The total action for CS theory coupled with
a 2p-brane is

I2nþ1 ¼ �
Z
M2nþ1

hC2nþ1ðAÞ � jð2n�2pÞ ^ C2pþ1ðAÞi: (8)

The field equations

Fn ¼ jð2n�2pÞ ^ Fp (9)

can be found by varying the action with respect toA. Thus,
outside the worldvolume of the brane the field equations
are Fn ¼ 0. However, on the worldvolume, different solu-
tions appear. For example, an electromagnetic current on a
2p-brane can be defined as

jð2n�2pÞ ¼ q2p�ðT2n�2pÞd�2n�2pGJ1...Jn�p ; (10)

where q2p is the electric charge on the brane, �ðT2n�2pÞ
denotes the localization of the current on the transverse
directions T2n�2p to the brane, and d�2n�2p is the volume
form on the transverse directions to the brane. GJ1...Jn�p is
constructed from the Lie algebra generators J1; . . . ; Jn�p.

Hence, the current is written as a Lie algebra-valued
2ðn� pÞ-form [6]. This conserved current defines a non-
trivial curvature on the brane through the field equations.

III. KY FORMS AND GRAVITATIONAL
CURRENTS

Conserved quantities in gravitational theories are
described by the symmetries of the underlying spacetime.
If the spacetime has Killing vector fields, which generate
local isometries of the spacetime, then a conserved current
can be constructed by using them. The well-known gravi-
tational 1-form current is written as jð1Þ ¼ Ka ��1 Ga,

where Ka are the components of a Killing vector field
K, ��1 is the inverse Hodge map on differential forms,
and Ga are the Einstein (n� 1)-forms in n dimensions.
Corresponding conserved charges are defined from the
asymptotical symmetries of the spacetime. The general-
ization of gravitational conserved currents can be obtained
by using KY forms, which generalize the Killing vector
fields to higher-order forms.
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If !ðpÞ is a KY p-form then it satisfies the equation

rX!ðpÞ ¼ 1

pþ 1
iXd!ðpÞ; (11)

for all vector fields X, which is the generalization of
Killing’s equation. Here rX is the covariant derivative
and iX is the interior derivative (contraction) operator
with respect to the vector field X. This equation implies
that all KY forms are co-closed, namely �!ðpÞ ¼ 0, where

� ¼ ð�1Þp ��1 d� is the co-derivative operator and * is the
Hodge map on differential forms. For a class of spherically
symmetric spacetimes, solutions of the KYequation in four
dimensions are found in Ref. [12].

Two basic conserved gravitational currents can be de-
fined from the curvature characteristics and KY forms!ðpÞ
of the underlying spacetime. The first current is defined as

J 1ð!ðpÞÞ ¼ iXa
ðiXb

!ðpÞ ^ RbaÞ
¼ �iXa

iXb
!ðpÞ ^ Rab þ ð�1ÞpiXa

!ðpÞ ^ Pa;

(12)

and the second one is

J 2ð!ðpÞÞ ¼ ð�1ÞpiXa
ð!ðpÞ ^ PaÞ

¼ ð�1ÞpiXa
!ðpÞ ^ Pa þR!ðpÞ; (13)

where Rab are curvature 2-forms, Pa ¼ iXb
Rba are Ricci

1-forms, and R ¼ iXa
Pa is the curvature scalar with Xa

being an arbitrary frame basis. We will use J 1 and J 2

instead of J 1ð!ðpÞÞ and J 2ð!ðpÞÞ for brevity. As was

shown in Ref. [11], both of these currents are co-closed,

�J 1 ¼ 0 ¼ �J 2; (14)

and hence the currents �J 1 and �J 2 are conserved.
The term ‘‘gravitational currents’’ indeed means that

they are defined from curvature characteristics and hidden
symmetries of the background spacetime, and there is no
direct relation between the currents and the Einstein field
equations. Hence, they can be seen as analogous to the
electromagnetic currents in some sense, though they are
different by their way of construction. So, these currents
can be interpreted as they are localized on p-branes and
can define charge densities for p-brane spacetimes. This
opens the possibility of the coupling of gravitational con-
served currents on p-branes with CS gravities.

As a special case, the currents have more simple forms
in constant-curvature spacetimes. The curvature character-
istics of an n-dimensional constant-curvature spacetime
are given by the following equalities:

Rab ¼ cea ^ eb; Pa ¼ cðn� 1Þea; R¼ cnðn� 1Þ;
(15)

where c is a constant. Hence the currents defined in
Eqs. (12) and (13) can be written as constant multiples of
KY p-forms,

J 1 ¼ �cpðn� pÞ!ðpÞ; (16)

J 2 ¼ cðn� 1Þðn� pÞ!ðpÞ: (17)

Thus they are linearly dependent and the conservation
of their Hodge duals is a result of the co-closedness of
KY forms. In an n-dimensional spacetime, the maximal
number of KY p-forms is given by the number

Cðnþ 1; pþ 1Þ ¼ ðnþ 1Þ!
ðpþ 1Þ!ðn� pÞ! ; (18)

and this number is attained in constant-curvature
spacetimes. Hence, the number of KY p-forms in
constant-curvature spacetimes gives the number of
independent gravitational conserved currents constructed
from KY p-forms.

IV. COUPLINGS OF KY CURRENTS
WITH CS GRAVITIES

In the first-order formalism of gravity, the fundamental
fields that describe gravitational interactions are the co-
frame 1-forms ea and the connection 1-forms!ab. In nþ 1
dimensions these two quantities can be combined into a
single Lie algebra-valued gauge connection to construct
the AdS (SOðn� 1; 2Þ) [or dS (SOðn; 1Þ)] gauge theories of
gravity [14],

A ¼ 1

2
!abJab þ 1

l
eaJa; (19)

where a, b ¼ 0; 1; . . . ; n and l is a constant in units of
length. Jab and Ja ¼ Jan are the generators of the AdS
algebra. The associated gauge curvature 2-form is written
in terms of Riemann curvature 2-forms Rab ¼ d!ab þ
!a

c ^!cb and torsion 2-forms Ta ¼ dea þ!a
b ^ eb as

F ¼ dAþA ^A ¼ 1

2

�
Rab þ 1

l2
ea ^ eb

�
Jab þ 1

l
TaJa:

(20)

The flat connection F ¼ 0 corresponds to torsion-free,
constant-curvature AdS spacetime: Rab ¼ � 1

l2
ea ^ eb.

From now on we take the torsion to be zero.
CS gravities are defined from the AdS connection in

2nþ 1 dimensions, and the action that includes a coupling
term with a current localized on a 2p-brane is written as in
Eq. (8),

I2nþ1 ¼ �
Z
M2nþ1

hC2nþ1ðAÞ � jð2n�2pÞ ^ C2pþ1ðAÞi:

From the field equations (9) of this action,

F n ¼ jð2n�2pÞ ^ Fp;

it can be seen that in spacetime regions out of the brane,
the field equations have the form Fn ¼ 0 and the solutions
give the global structure of the spacetime (one solution is
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F ¼ 0, which implies the global AdS structure, and this
equation can also be satisfied by decomposable F’s). This
global structure defines the conserved gravitational cur-
rents localized on 2p-branes. This property resembles
Mach’s principle in gravitation theories [15], which states
that the local motion of a body is determined by the large-
scale distribution of matter. So, the currents defined in
Eqs. (12) and (13) are constructed from curvature charac-
teristics and KY forms of source-free regions of spacetime.

For the current J 1 defined in Eq. (12), the action
becomes

I2nþ1 ¼ �
Z
M2nþ1

hC2nþ1ðAÞ � �J 1 ^ C2pþ1ðAÞi

¼ �
Z
M2nþ1

hC2nþ1ðAÞ � �ðiXa
ðiXb

!ð2pþ1Þ ^ Rba
G ÞÞ

^ C2pþ1ðAÞi; (21)

and the field equations are

Fn ¼ �ðiXa
ðiXb

!ð2pþ1Þ ^ Rba
G ÞÞ ^ Fp; (22)

where the KY forms !ð2pþ1Þ and curvature 2-forms Rab
G in

the current are the characteristics of the global spacetime.
From the definition of the gauge curvature 2-form in
Eq. (20), the wedge product of two curvature forms is

F ^ F ¼ 1

4

�
Rab þ 1

l2
ea ^ eb

�
^
�
Rcd þ 1

l2
ec ^ ed

�

� ½Jab; Jcd�;
and the field equations are written as follows:

1

2n

�
Rab þ 1

l2
ea ^ eb

�
^ . . .^|fflffl{zfflffl}

n�1

�
Rkl þ 1

l2
ek ^ el

�

� ½Jab; . . . ; Jkl�
¼ �ðiXa

ðiXb
!ð2pþ1Þ ^ Rba

G ÞÞJ12 . . . Jðn�p�1Þðn�pÞ

^ 1

2p

�
Rab þ 1

l2
ea ^ eb

�
^ . . .^|fflffl{zfflffl}

p�1

�
Rpq þ 1

l2
ep ^ eq

�

� ½Jab; . . . ; Jpq�;
where ½Jab; . . . ; Jkl� denotes the commutator of Lie algebra
generators, which comes from the wedge product of Lie
algebra-valued forms.

For the current J 2 defined in Eq. (13), the field
equations become

Fn ¼ �ð�iXa
ð!ð2pþ1Þ ^ Pa

GÞÞ ^ Fp; (23)

and the same procedure applies for the multiple wedge
products of gauge curvature 2-forms, as in the first case.

Linear combinations of two currents are also conserved
and they can couple with CS gravity. The field equations
are found from the following action:

I2nþ1 ¼ �
Z
M2nþ1

�
C2nþ1ðAÞ

� Xn�1

p¼0

�ða1J 1 þ a2J 2Þ ^ C2pþ1ðAÞ
�
;

where a1 and a2 are arbitrary constants.
As a special case, in 2nþ 1 dimensions a conserved

current localized on a 2ðn� 1Þ-brane that is a 2-form leads
to the field equations

F n�1 ^ ðF� jÞ ¼ 0: (24)

This implies that two special solutions for this case are
F ¼ 0 and F ¼ j. Hence, 2-form currents may not change
the AdS curvature on the brane, or the current itself can
define the localized curvature on the brane.

V. SPECIAL CASES

We now consider the couplings of gravitational currents
with CS gravities in three and five dimensions and find the
exact field equations for them. These will give the local
curvatures on the branes that are induced by gravitational
currents constructed from the hidden symmetries of the
global spacetime.

A. Brane couplings in three dimensions

In three dimensions the CS gravity action is equivalent
to the three-dimensional Einstein gravity with a cosmo-
logical constant. The CS action with a coupling term is
written in this case as

I3 ¼
Z
M3
hC3ðAÞ � jð2Þ ^ C1ðAÞi; (25)

where C3ðAÞ ¼ 1
2 ðA ^ dAþA ^A ^AÞ and C1ðAÞ ¼ A.

Hence the action is

I3 ¼
Z
M3

�
1

2
ðA ^ dAþA ^A ^AÞ � jð2Þ ^A

�
; (26)

and the corresponding field equations are

F ¼ jð2Þ: (27)

In source-free regions, this equation reduces to F ¼ 0 and
this implies that the spacetime has a global AdS structure,
Rab ¼ � 1

l2
ea ^ eb.

For the first KY current J 1, the use of Eq. (20)
transforms the field equations (27) into�

Rab þ 1

l2
ea ^ eb

�
Jab ¼ �2 � ðiXc

!ð1Þ ^ Pc
AdSÞabJab:

(28)

In three dimensions, curvature 2-forms can be written in
terms of Ricci 1-forms and the curvature scalar [16],
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Rab ¼ 1

2
Reb ^ ea þ Pa ^ eb � Pb ^ ea: (29)

Hence the field equations are written in the form�
Pa ^ eb � Pb ^ ea � 1

2

�
R� 2

l2

�
ea ^ eb

�
Jab

¼ ½ððiXc
!ð1ÞÞiXl

iXk
� Pc

AdSÞekAdS ^ elAdS�abJab;
where the equality in n dimensions ð�1Þn�1ð��Þ ^ ~X ¼
�iX� is used for an arbitrary form � and ~X is the 1-form
that is the metric dual of the vector field X. This can be
written more compactly as�

P½a ^ eb� � 1

2

�
R� 2

l2

�
ea ^ eb

�
Jab

¼ ½ð�cklði ~!ð1ÞP
c
AdSÞÞekAdS ^ elAdS�abJab;

where [] on the indices denotes antisymmetrization and
�ckl is the completely antisymmetric Levi-Civita symbol.

Curvature 2-forms of the global AdS spacetime are
Rab
AdS ¼ � 1

l2
ea ^ eb, and the Ricci 1-forms and the curva-

ture scalar are obtained as

Pa
AdS ¼ � 2

l2
ea; RAdS ¼ � 6

l2
;

and from the relation (16) the Hodge dual of the KY
current J 1 reduces to

�J 1 ¼ 2

l2
�!ð1Þ (30)

in AdS spacetime.
Let us write the KY 1-form !ð1Þ in the co-frame basis

as follows:

!ð1Þ ¼ �e0AdS þ �e1AdS þ �e2AdS; (31)

where �, �, and � are functions determined from the KY
equation (11) for the AdS background. By using this
definition and the curvature characteristics of AdS space-
time in Eq. (28), the field equations in three dimensions are
as follows:

R01 þ 1

l2
e0 ^ e1 ¼ � 2�

l2
e0AdS ^ e1AdS;

R02 þ 1

l2
e0 ^ e2 ¼ 2�

l2
e0AdS ^ e2AdS;

R12 þ 1

l2
e1 ^ e2 ¼ 2�

l2
e1AdS ^ e2AdS: (32)

Hence the local curvature around the brane is determined
from the KY 1-forms of the global AdS spacetime. Curvature
2-forms of the brane that differ from AdS are given as
corrections to the AdS background by KY form components.

KY forms of the three-dimensional AdS spacetime
are given in Appendix. Let us take the KY 1-form !3 in
Eq. (A7) as an example. Then the field equations are
written as

R01þ 1

l2
e0^ e1 ¼ 2�

l2

�
r2

l2
þ 1

�
1=2

cosh ð�tÞ sin�dt^dr;

R02þ 1

l2
e0^ e2 ¼ 2�r

l2

�
r2

l2
þ 1

�
1=2

sinh ð�tÞcos�dt^d�;

R12þ 1

l2
e1^ e2 ¼ 2r2

l4

�
r2

l2
þ 1

��1=2
cosh ð�tÞcos�dr^d�;

(33)

and the solutions of these equations give the local co-frame
on the worldvolume of the brane. In three dimensions, only
0-branes can couple consistently with CS theories, as can
be seen from the action (25). The wordline of the 0-brane is
one dimensional and the solutions of the field equations—
namely Eq. (33)—give the geometric structure of the word-
line originating from the currents on the brane defined from
the symmetries of the global spacetime. All KY 1-forms
define conserved currents on 0-branes, and we have six
different possibilities for constructing a current. Different
currents induce different localized curvatures around the
branes.
For the second current J 2, the field equations are

changed only by a constant factor, the reason being that
the main difference coming from J 2 is the addition of a
scalar curvature term that is constant for the AdS space-
time, as can be seen from Eq. (17).
In fact, there is one more possible way to construct a

conserved current using two different (or identical) KY
forms. From the conservation properties of �J 1 and �J 2,
it can be seen that the following (2n� ðpþ qÞ)-form in n
dimensions is also a conserved current:

Kð2n�ðpþqÞÞ ¼ �J ið!ðpÞÞ ^ �J jð!0
ðqÞÞ; (34)

where !ðpÞ and !0
ðqÞ are two different (or identical) KY

forms and i, j ¼ 1, 2. In three dimensions, this current is
written as follows:

Kð2Þ ¼ �J 1ð!ð2ÞÞ ^ �J 1ð!0
ð2ÞÞ: (35)

Hence, in the construction procedure of gravitational
conserved currents in three dimensions, KY 2-forms can
also be used in addition to KY 1-forms. By taking two KY
2-forms as

!ð2Þ ¼ 	e0AdS ^ e1AdS þ �e0AdS ^ e2AdS þ�e1AdS ^ e2AdS;

!0
ð2Þ ¼ 
e0AdS ^ e1AdS þ �e0AdS ^ e2AdS þ �e1AdS ^ e2AdS;

the field equations resulting from the current (35) are
obtained as follows:

R01 þ 1

l2
e0 ^ e1 ¼ 8

l4
ð��� ��Þe0AdS ^ e1AdS;

R02 þ 1

l2
e0 ^ e2 ¼ 8

l4
ð	���
Þe0AdS ^ e2AdS;

R12 þ 1

l2
e1 ^ e2 ¼ 8

l4
ð	�� �
Þe1AdS ^ e2AdS; (36)
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where 	, �, �, 
, �, and � are functions obtained from the
KY equation, as in Appendix.

Let us take the KY 2-forms as in Eqs. (A13) and (A14),

�1 ¼ k

�
cos�e0 ^ e1 � 1

H1

sin�e0 ^ e2
�
;

�2 ¼ k0
�
sin�e0 ^ e1 þ 1

H1

cos�e0 ^ e2
�
;

where k and k0 are constants. Then the field equations (36)
transform into

R01 þ 1

l2
e0 ^ e1 ¼ 0; R02 þ 1

l2
e0 ^ e2 ¼ 0;

R12 þ 1

l2
e1 ^ e2 ¼ 8kk0

l4
1

H1

e1AdS ^ e2AdS: (37)

By considering the Cartesian coordinates of a four-
dimensional hyperboloid identified with the three-
dimensional AdS spacetime and using x1 ¼ r cos�,
x2 ¼ r sin� with Eq. (A3), the last equation reduces to

R12 þ 1

l2
e1 ^ e2 ¼ 8kk0

l4
dx1 ^ dx2:

Hence, the equations (37) are the same as the equations
for 0-brane worldlines with electromagnetic currents in the
three-dimensional AdS spacetime [17]. In fact, by starting
with purely geometrical quantities when defining gravita-
tional currents, we arrive at an equation that describes the
coupling of electromagnetic currents. This may indicate a
relation between electromagnetic and gravitational cur-
rents a la Rainich-Misner-Wheeler theory, which states
that electromagnetism can be defined in terms of pure
geometry [18,19]. A 0-brane solution in the electromag-
netic case is obtained by defining the 0-brane as a defect
produced by an angular deficit induced by a Killing vector
field of the global spacetime [17]. The solution corre-
sponds to the negative mass Bañados-Teitelboim-Zanelli
(BTZ) solution of three-dimensional gravity with a cos-
mological constant [20]. Hence, if the 0-brane is defined as
a defect in the (x1 � x2) plane produced by an angular

deficit of 2�
 ¼ 8kk0
l4

, then a solution of equations (37) is

found to be the BTZ black hole metric,

ds2 ¼ �
�
ð1� 
Þ2 þ r2

l2

�
dt2 þ

�
ð1� 
Þ2 þ r2

l2

��1
dr2

þ r2d�2; (38)

where M ¼ �ð1� 
Þ2 is the negative mass of the black
hole. However, unlike the electromagnetic case, this solu-
tion is obtained from two of the KY 2-forms of three-
dimensional AdS spacetime. This reveals that, for the
case of gravitational currents, the solutions of the equations
of motion can be obtained from the hidden symmetries of
the global spacetime. By the way, in the electromagnetic
case, the constant 2�
 corresponds to the electric charge

of the brane, but in the gravitational case, the constant 8kk
0

l4

comes from KY 2-forms and curvature characteristics.
There are two new properties for the solutions of

the field equations in the gravitational-currents case.
Firstly, electromagnetic currents are written as Dirac-delta
singularities and solutions are investigated by using this
property; however, gravitational currents can couple with
the global spacetime by using KY forms, and this contains
a larger class of solutions like in Eq. (33). Secondly,
solutions for the electromagnetic case can be constructed
from Killing vector identifications, but in the gravitational
case branes are constructed by using the hidden symme-
tries (KY forms) of the spacetime and need not to be
constructed from Killing vector identifications.

B. Brane couplings in five dimensions

In five dimensions, there are two possible ways of
coupling a conserved current with a CS form. 4-form
currents and 2-form currents can couple consistently with
CS gravity.
For the coupling of a 4-form current on the brane with

CS gravity, the action is written as

I5 ¼
Z
M5
hC5ðAÞ � jð4Þ ^Ai; (39)

and the field equations become

F ^ F ¼ jð4Þ: (40)

In the regions exterior to the brane, the equations can be
solved by F ¼ 0, which gives the AdS spacetime.
However, other solutions that satisfy F ^ F ¼ 0 can also
appear.
The first KY current leads to a 4-form current �J 1 in

terms of KY 1-forms, and the field equations take the form

1

4

�
Rab þ 1

l2
ea ^ eb

�
^
�
Rcd þ 1

l2
ec ^ ed

�
½Jab; Jcd�

¼ ½�ð�iXk
!ð1Þ ^ Pk

GÞ�abcdJabJcd; (41)

and for the KY current J 2 the field equations are

1

4

�
Rab þ 1

l2
ea ^ eb

�
^
�
Rcd þ 1

l2
ec ^ ed

�
½Jab; Jcd�

¼ ½�ð�iXk
!ð1Þ ^ Pk

G þRG!ð1ÞÞ�abcdJabJcd: (42)

In the case of 2-form currents coupled with CS gravity,
the action will be

I5 ¼
Z
M5
hC5ðAÞ � jð2Þ ^ C3ðAÞi; (43)

and the field equations are

F ^ F ¼ jð2Þ ^ F: (44)

Hence the first KY current J 1 leads to the field equations
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1

4

�
Rab þ 1

l2
ea ^ eb

�
^
�
Rcd þ 1

l2
ec ^ ed

�
½Jab; Jcd�

¼ ½�ð�iXk
iXl

!ð3Þ ^ Rkl
G � iXk

!ð3Þ ^ Pk
GÞ�ab

^ 1

2

�
Rcd þ 1

l2
ec ^ ed

�
½Jab; Jcd�; (45)

and the equations obtained from the second current J 2 are

1

4

�
Rab þ 1

l2
ea ^ eb

�
^
�
Rcd þ 1

l2
ec ^ ed

�
½Jab; Jcd�

¼ ½�ð�iXk
!ð3Þ ^ Pk

G þRG!ð3ÞÞ�ab

^ 1

2

�
Rcd þ 1

l2
ec ^ ed

�
½Jab; Jcd�: (46)

KY 2-forms and 4-forms in five dimensions can also be
used instead of KY 1-forms and 3-forms in the construc-
tion of conserved currents; hence, from Eq. (34) we obtain

Kð4Þ ¼ �J ið!ð2ÞÞ ^ �J jð!ð4ÞÞ;
Kð2Þ ¼ �J ið!ð4ÞÞ ^ �J jð!0

ð4ÞÞ:
In five dimensions, 0-branes and 2-branes can couple

consistently with CS theories, as can be seen from the
actions (39) and (43), respectively. Solutions of the field
equations give the local geometries on the worldvolumes
of the branes.

VI. CONCLUSION

The generalization of the minimal coupling procedure
for external sources to p-brane spacetimes cannot be done
by extending the coupling term to multi-index currents and
connections in non-Abelian gauge theories. However, the
coupling can be considered consistently if one uses CS
forms in the coupling term. This can be relevant because of
the Abelian gauge transformation property of the CS
forms. CS theories are defined in odd dimensions, and
because of the metric independence of the action they are
topological theories. By selecting an AdS connection as the
gauge connection—which includes co-frame and spin
connection—CS theories of gravity can be constructed in
odd dimensions. Hence, the coupling of electromagnetic
conserved currents on p-branes and CS gravities can be
consistently considered in this fashion.

For curved backgrounds, one can construct gravitational
conserved currents by using curvature characteristics and
KY forms of spacetime. These currents depend on the
degree of the KY form, and this allows for the interpreta-
tion that they are localized on p-branes. Hence, the cou-
pling of gravitational p-brane currents with CS gravities
can be considered in the same manner as in the electro-
magnetic case. The field equations resulting from the
coupling actions gives that the one solution is an AdS
spacetime for the spacetime regions exterior to the brane.
This means that the gravitational currents are constructed
from the AdS curvature and KY forms. Therefore, the field

equations give the local curvature on p-branes induced by
gravitational currents.
In the three-dimensional case, the field equations tell us

that the localized curvature on branes has correction terms
with respect to the AdS background written in terms of KY
form components. For a special choice of KY 2-forms, the
field equations reduce to the equations relevant for the
electromagnetic coupling case, and a special solution cor-
responding to the negative-mass BTZ black hole can be
found. In the five-dimensional case, there are two different
couplings and they end up with different field equations for
different branes. However, the resulting equations also give
the localized curvature on the branes.
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APPENDIX: KY FORMS OF ADS SPACETIME
IN THREE DIMENSIONS

KY forms of a class of spherically symmetric space-
times in four dimensions were found in Ref. [12] by
solving the KY equation. By direct reduction, KY forms
of three-dimensional spacetimes can also be obtained from
them. The metric tensor field of AdS spacetime in three
dimensions is

ds2AdS ¼ �
�
r2

l2
þ 1

�
dt2 þ

�
r2

l2
þ 1

��1
dr2 þ r2d�2; (A1)

and this can be written in a locally Lorentzian form as
follows:

ds2AdS ¼ �e0 � e0 þ e1 � e1 þ e2 � e2; (A2)

where

e0 ¼ H0dt; e1 ¼ H1dr; e2 ¼ rd�; (A3)

and

H0 ¼
�
r2

l2
þ 1

�
1=2

; H1 ¼
�
r2

l2
þ 1

��1=2
: (A4)

In three dimensions the maximal number of KY 1-forms is
six, which can be seen from Eq. (18). The corresponding
KY 1-forms of AdS spacetime are

!1 ¼ H0e
0; (A5)

!2 ¼ �re2; (A6)

!3 ¼ ðcos�Þc 1 � �

H1

sinh ð�tÞ sin�e2; (A7)

!4 ¼ ðcos�Þc 2 � �

H1

cosh ð�tÞ sin�e2; (A8)
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!5 ¼ �ðsin�Þc 1 � �

H1

sinh ð�tÞ cos�e2; (A9)

!6 ¼ �ðsin�Þc 2 � �

H1

cosh ð�tÞ cos�e2; (A10)

where � is an integration constant and c 1 and c 2 are
defined as follows:

c 1 ¼ cosh ð�tÞH
0
0

H1

e0 þ � sinh ð�tÞe1; (A11)

c 2 ¼ sinh ð�tÞH
0
0

H1

e0 þ � cosh ð�tÞe1; (A12)

and H0
0 ¼ dH0

dr .

There are four KY 2-forms, which are obtained as

�1 ¼ cos�e0 ^ e1 � 1

H1

sin�e0 ^ e2; (A13)

�2 ¼ sin�e0 ^ e1 þ 1

H1

cos�e0 ^ e2; (A14)

�3 ¼ �w0

m1

sinh ðw0tÞe0 ^ e2 þ cosh ðw0tÞe1 ^ e2; (A15)

�4 ¼ �w0

m1

cosh ðw0tÞe0 ^ e2 þ sinh ðw0tÞe1 ^ e2; (A16)

wherem¼H0
0=rH1,m1¼ðr=H0Þ0H2

0=H1, andmm1¼�w2
0.

In all dimensions, the volume form multiplied with a
constant automatically satisfies the KY equation. Hence,
the KY 3-form in three dimensions is

!ð3Þ ¼ ce0 ^ e1 ^ e2; (A17)

where c is a constant.
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