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We present an analysis of the dynamics of the equifacial pentahedron on the Kapovich-Millson phase

space under a volume preserving Hamiltonian. The classical dynamics of polyhedra under such a

Hamiltonian may arise from the classical limit of the node volume operators in loop quantum gravity.

The pentahedron is the simplest nontrivial polyhedron for which the dynamics may be chaotic.

We consider the distribution of polyhedral configurations throughout the space and find indications

that the borders between certain configurations act as separatrices. We examine the local stability of

trajectories within this phase space and find that locally unstable regions dominate although extended

stable regions are present. Canonical and microcanonical estimates of the Kolmogorov-Sinai entropy

suggest that the pentahedron is a strongly chaotic system. The presence of chaos is further suggested by

calculations of intermediate time Lyapunov exponents which saturate to nonzero values.
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I. INTRODUCTION

It has long been known that black holes act as thermo-
dynamic systems whose entropy is proportional to the area
of their horizon [1] with a temperature that is inversely
proportional to their mass [2]. This has raised the question
how quickly and how perfectly a black hole thermalizes
and thereby effectively destroys any injected information.
Sekino and Susskind have argued that black holes are ‘‘fast
scramblers’’ [3,4], i.e., systems that render information
practically unretrievable at the maximal possible rate.

Scrambling information among different degrees of
freedom is one particular form of deterministic chaos.
A well known realization of scrambling is provided by
the Baker’s map. Other examples of dynamical chaos
generated by the nonlinearity of Einstein’s field equations
have been studied in the context of various analytical
solutions of general relativity (see Refs. [5,6] for a review).
The results of these investigations suggest that dynamical
chaos, and thus the tendency to lose initially known infor-
mation effectively irretrievably, is a generic property of
classical gravitation.

These considerations apply to macroscopic gravitational
fields, which can be considered as thermodynamic systems
with a macroscopic number of degrees of freedom. But
what about microscopic black holes with masses near the
Planck mass, which possess only a small number of de-
grees of freedom? Is there a smallest black hole that can be
considered as a thermal system? Which mechanism drives
the apparent thermal equilibration of black holes at the
microscopic level? The pursuit of these questions requires
a quantum theory of gravity. While the true quantum
mechanical foundation of gravity is still unknown, there
are at least two widely explored candidates for such a

theory: superstring theory [7,8] and loop quantum gravity
[9–11]. Here we consider the problem of the microscopic
origin of the thermal properties of space-time in the frame-
work of loop quantum gravity (LQG).
LQG is an attempt to reconcile general relativity and

quantum field theory [10,12–14], the structure of space-
time emerges naturally from the dynamics of a graph of
SUð2Þ spins. Naively the nodes of this graph can be thought
of as representing granules of space-time, the spins con-
necting these nodes can be thought of as the faces of these
granules. The volume of these granules, along with the
areas of the connected faces are naturally quantized [15].
There has recently been a focus on finding a semiclas-

sical description of the spectrum of the volume operator at
one of these nodes. There have been several reasonable
candidates for the quantum volume operator, a semiclassi-
cal limit may serve to pick out a particular one of these
forms. The volume preserving deformation of polyhedra
has recently emerged as a candidate for this semiclassical
limit [16,17]. In this scheme the black hole thermodynam-
ics can be derived [18] in the limit of a large number N of
polyhedral faces. Here the deformation dynamics of the
polyhedron is a secondary contribution after the configu-
ration entropy of the polyhedron, which can be readily
developed from the statistical mechanics of polymers.
The dynamics of the elementary polyhedron, the tetra-

hedron, can be exactly solved and semiclassically quan-
tized through the Bohr-Sommerfeld procedure [19,20].
The volume spectrum arising from quantizing this classical
system has shown remarkable agreement with fully quan-
tum calculations. If the tetrahedron is the ‘‘hydrogen atom’’
of space, the next complex polyhedron, the pentahedron
(N ¼ 5), can be considered as the analogue of the helium
atom. Just as the full range of atomic physics phenomena
occurs first in the helium atom with its two electrons, the
pentahedron represents the first space configuration that
puts the ideas discussed above to a nontrivial test.

*cec24@phy.duke.edu
†muller@phy.duke.edu

PHYSICAL REVIEW D 87, 044047 (2013)

1550-7998=2013=87(4)=044047(15) 044047-1 � 2013 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.87.044047


The dynamical system corresponding to the isochoric
pentahedron with fixed face areas has a four-dimensional
phase space compared with the two-dimensional phase space
of the tetrahedron. The integrability of a Hamiltonian system
in a phase space with more than two dimensions is not
assured. Nonintegrable Hamiltonian systems exhibit a wide
variety of interesting behaviors, including Hamiltonian
chaos. The incompressibility of Hamiltonian flows leads
to a very specific form of chaos [21–23]. A well known
example is the three-body Kepler problem, which is non-
integrable, in contrast to the two-body problem [24] and
exhibits chaos at the classical level. In the analogous
quantum system, the helium atom, the chaotic dynamics
exhibits itself through the mixing of bound and continuum
states.

There are two distinct classes of polyhedra with five
faces, the triangular prism and a pyramid with a quadri-
lateral base. The latter forms a measure zero subset of
allowed configurations as its construction requires reduc-
ing one of the edges of the triangular prism to zero length.
This process imposes an algebraic constraint between
configuration variables making this a co-dimension 1
configuration.

In this article we first briefly review the symplectic
Kapovich-Millson phase space of polyhedral configura-
tions in Sec. II. In Sec. III we outline a method by which
it is possible to uniquely construct a triangular prism
(or quadrilateral pyramid) for each point in the four-
dimensional phase space and review a method due to
Laserre [25] for computing the volume of any polyhedron
from its face areas and their normals. We introduce a
convention for labelling the faces of the pentahedron in
Sec. IV. With these tools in hand we are then able to
compute the trajectory of a pentahedron starting from a
given point in phase space with the volume of the pentahe-
dron serving as its Hamiltonian. This volume preserving
(isochoric) evolution keeps the areas of the faces of the
pentahedron fixed and only allows for changes in their
shape and orientation. In this way the edge lengths and
vertex positions of the pentahedron are free to vary, in
effect the pentahedron is smoothly deformed, keeping its
volume constant. In Sec. V we examine the local dynami-
cal stability of configurations of the pentahedron through-
out the phase space and map the distribution of the local
Lyapunov exponents as function of the volume of the
pentahedron. To explore the stability further we compute
the time evolution of intermediate time Lyapunov expo-
nents which suggest the presence of chaos at small
volumes. We conclude our article with a summary of our
results and a brief analysis of their possible implications
in Sec. VI.

II. POLYHEDRA AND PHASE SPACE

A convex polyhedron is a collection of faces bounded
with any number of vertices. A theorem byMinkowski [26]

states that the areas Al and normals ~nl of each face are
sufficient to uniquely characterize a polyhedron. If we

define ~Al ¼ Al ~nl then the polyhedral closure relationshipX
l

~Al ¼ 0 (1)

is a sufficient condition on ~Al to uniquely define a poly-
hedron with N faces. The space of shapes of polyhedra PN

with N faces was further investigated by Kapovich and
Millson [27]. The shape space is defined as the space of all
polyhedra modulo their orientation in three-dimensional
space:

PN ¼
�
~Al j

X
l

~Al ¼ 0; j ~Alj ¼ Al

��
SOð3Þ: (2)

The shape space of convex polyhedra with N faces is thus
2ðN � 3Þ-dimensional; in particular, the shape space of the
tetrahedron (N ¼ 4) is two-dimensional and that of the
pentahedron (N ¼ 5) is four-dimensional. As Kapovich
and Millson showed, this space admits a symplectic struc-
ture, which can be defined by introducing a Poisson bracket

for any two functions fð ~AlÞ, gð ~AlÞ as

ff; gg ¼ X
l

~Al

�
@f

@ ~Al

� @g

@ ~Al

�
: (3)

Canonical variables with respect to this Poisson bracket
are defined on PN as follows. One first defines the vector

sum ~pk ¼ P
kþ1
l¼1

~Al of the first kþ 1 oriented faces. The

ordering/labeling of these normals is not important for the
physical shape of the polyhedron. Minkowski’s theorem
ensures that any set of vectors which obey (1) will produce
a unique polyhedron.
The canonical momenta in the Kapovich and Millson

(KM) space are defined as pk ¼ j ~pkj and the conjugate

positions are given by the angle between ~pk � ~Akþ1 and

~pk � ~Akþ2. Using (3) one can verify that fqk; p0
kg ¼ �kk0 .

We refer the reader to Refs. [18,27] for detailed explana-
tions and proofs.
These quantities may be visualized by representing the

polyhedron as a polygon with edges given by the vectors

vi ¼
P

i
l¼1

~Al. Note that this generally yields a nonplanar

polygon. Now consider systematically triangulating this
polygon starting from one vertex, which is chosen as the
origin. The inserted edges are the conjugate momenta p
and the angles between each of these edges are the con-
jugate positions. An illustration of the pentagon associated
with a pentahedron in shown in Fig. 1.
The momentum vectors ~pk define axes about which

subsets of the normals rotate as the polyhedron is
deformed; the angles qk measure the rotation about these
axes. The collection of coordinates ðpk; qkÞ thus com-
pletely describes the ‘‘bending flow’’ of the polyhedron.
The momentum vectors ~p1; ~p2; . . . ; ~pN partition the

polygon into a set of coupled subsystems. In Fig. 2 we
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show several pentagons illustrating the variation of the
angles q1 (left) and q2 (right), while holding the remaining
phase space variables fixed.

It is not trivial to calculate the volume of a general
polyhedron directly from the phase space coordinates.
Haggard has computed an analytic formulation for the
pentahedron [28]. Alternatively it is straightforward, if
cumbersome, to compute the volume of a polyhedron
from its normals and face areas. We seek a mapping
F: z ! nðzÞ between a point z in the phase space and the
normals nðzÞ associated with that point.

We now specialize our discussion to the pentahedron,
although it is easily generalized to higher polyhedra. One of
the normals can be completely defined in terms of the four
others by the closure of the pentahedron. Since we require
that the normal vectors be normalized, so that the areas of
the faces are fixed, this leaves two degrees of freedom
per vector. After enforcing closure we thus need seven

equations to completely specify the pentahedron in space.
The definitions of the canonical variables provide four
equations, leaving three free quantities. We fix these three
final components by picking an orientation of the coordi-
nate system. This is sufficient to specify F: z ! nðzÞ.
It is convenient to orient the polyhedron in such a way

that one of the faces lies in the x-y plane and its normal is
oriented in the negative z direction ð0; 0;�1Þ. To fix the
final coordinate direction we require that one of the edges
of this face is parallel to the x direction. This fixing the
normal of the adjacent face to have components ð0; ny; nzÞ.
We are free to label our normals in any order. Let n5 be
the normal fixed by closure, n1 be the normal in the x-y
plane and n2 the normal to the face which has the edge
parallel to x.
It is useful to explicitly derive the inverse mapping

F�1: nðzÞ ! z, i.e., the map between a pentahedron
represented by a set of normals and face areas and the set
of canonical variables z ¼ fq1; q2; p1; p2g. The canonical
variables can be obtained from the normals and areas as

p1 ¼ j ~A1 þ ~A2j ¼ j � ~A5 � ~A4 � ~A3j;
p2 ¼ j ~A1 þ ~A2 þ ~A3j ¼ j � ~A5 � ~A4j;
q1 ¼ anglef ~p1 � ~A2; ~p1 � ~A3g;
q2 ¼ anglef ~p2 � ~A3; ~p2 � ~A4g:

(4)

It is helpful to introduce the following vectors:

~p0 ¼ ~A1;

~p1 ¼ ~A1 þ ~A2 ¼ ~p0 þ ~A2;

~p2 ¼ ~A1 þ ~A2 þ ~A3 ¼ ~p1 þ ~A3;

~p3 ¼ ~A1 þ ~A2 þ ~A3 þ ~A4 ¼ ~p2 þ ~A4;

(5)

the canonical angles can be written as

q1 ¼ anglef ~p0 � ~p1; ~p1 � ~p2g;
q2 ¼ anglef ~p1 � ~p2; ~p2 � ~p3g:

(6)

To ensure that the angles q1, q2 are uniquely defined
over the phase space we take care to compute the signed
angles between the vectors ~p0 � ~p1 and ~p1 � ~p2. We

define the signed angle between two vectors ~a, ~b with a
reference vector ~r in (7). In practice the reference vector is
the appropriate momentum vector ~pk. This is sufficient to
define F�1.

S ¼ j ~a� ~b j
j ~a jj ~b j ; C ¼ ~a � ~b

j ~a jj ~b j ; � ¼ ~r � ð ~a� ~bÞ;

� ¼
�
arctan ðC; SÞ if sgn�> 0;

2�� arctan ðC; SÞ if sgn�< 0:
(7)

Given the choice of orientation of our coordinate system
along with face areas A1;...;5, the polyhedral configuration is

uniquely determined by the following five vectors:

OOO
P1

P2

O

P1

P2

O

P1

P2

O

P1

P2

O

P1

P2

O

P1

P2

O

P1

P2

O

FIG. 2 (color online). A superposition of configurations show-
ing the rotation of q1 (left) and q2 (right) through �=2 and �
radians. The remaining coordinates are held fixed. The normal
vectors are plotted as the red solid arrows and the momentum
vectors are plotted as the dashed blue arrows. All faces have area
fixed to one.

P1

P2

O

FIG. 1 (color online). An example configuration of the system
in the polygon representation (left), the phase space coordinates
plotted here are z ¼ f0:3; 0:4; 0:9; 0:91g. The normal vectors are
plotted as the red solid arrows and the momentum vectors
are plotted as the dashed blue arrows. We also show a rendering
of the associated polyhedron (right). All polyhedral faces have
area fixed to one, so all polygonal edges have unit length.
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~n1 ¼ ð0; 0;�1Þ; ~n2 ¼ ð0; n2y; n2zÞ;
~n3 ¼ ðn3x; n3y; n3zÞ; ~n4 ¼ ðn4x; n4y; n4zÞ;
~n5 ¼ � 1

A5

ðA1 ~n1 þ A2 ~n2 þ A3 ~n3 þ A4 ~n4Þ:
(8)

We use normalization to fix the magnitudes of n2y, n3xn4x,

leaving 5 unknown components. The following set of
equations arise from inserting (8) into the definitions of

j ~p1j, j ~p2j and j ~p2j ¼ j ~p1 þ ~A2j:
p2
1 ¼ A2

1 þ A2
2 þ 2A1A2 ~n1 � ~n2; (9)

p2
2 ¼ A2

5 þ A2
4 þ 2A4A5 ~n4 � ~n5; (10)

p2
2 ¼ p2

1 þ A2
3 þ 2A2A3 ~n2 � ~n3 þ 2A1A3 ~n1 � ~n3: (11)

To close the system we use the definitions of the canonical
angles (6). At this point the system can be inverted
numerically to give solutions for the components of the

normals in terms of the phase space variables. Particular
care needs to be taken to ensure that unique configurations
of normals are obtained for each set of phase space varia-
bles z. Further care needs to be taken in picking a sign for
the components whose magnitudes are fixed by normaliza-
tion. The signs of these components vary across the space
in a nontrivial fashion. We introduced a set of heuristics to
suggest which set of signs might be appropriate, the inverse
map F�1 is vital for testing and rejecting trial solutions.

It is helpful to note that the set f ~A1; ~A2; ~A3;� ~p2g can be
taken as the faces of a tetrahedron with canonical momen-
tum ~p1 and conjugate angle q1. The dynamics of this
tetrahedron are independent of the second bending angle
q2. The set of equations to be inverted can be factored into
a set of 3 equations for n2z, n3y, n3z in p1, p2, q1 and a set

of 2 equations for n4y, n4z which are dependent upon the

full set of canonical variables. The former can be solved
analytically. Fixing all face areas to A and restricting q1 to
the first quadrant gives

n2z ¼ 1� p2
1

2A2
; (12)

n3y ¼
�ð4A2 � p2

1ÞðA2 þ p2
1 � p2

2Þ � j cos ðq1Þj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�4A2 þ p2

1ÞðA4 þ ðp2
1 � p2

2Þ2 � 2A2ðp2
1 þ p2

2ÞÞ
q

4A2p1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4A2 � p2

1

q ; (13)

n3z ¼ 1

4A2p1

�
p1ðA2 þ p2

1 � p2
2Þ � j cos ðq1Þj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�4A2 þ p2

1ÞðA4 þ ðp2
1 � p2

2Þ2 � 2A2ðp2
1 þ p2

2ÞÞ
q �

: (14)

The full solution with different face areas and with q1
taking values in all quadrants is obtained using a computer
algebra system. A Newton based root finder [29] is then
used to find simultaneous solutions to q2 ¼ anglef ~p1 �
~p2; ~p2 � ~p3g and (10).
The numerical integration of the dynamical system,

which is based around gradients of the Hamiltonian,
requires considerable numerical accuracy in F. The choice
of initial guess for the root search when solving for n4y, n4z
is vital for obtaining a solution. To improve this process an
empirical probability density function with density
inversely proportional to the euclidean norm of the residual
vector from the root finding routine was generated by
evaluating trial solutions over a grid in the space. This
probability density function was simultaneously refined
while being used to generate initial guesses for the roots.

The construction method outlined above can be gener-
alized to develop a chain of polynomials for N > 5 allow-
ing at least numerical evaluation of F.

A. The shape of the phase space

The geometric structure of the polyhedron itself, par-
ticularly the fixed face areas, induces certain restrictions

upon the phase space. The position space is 2� periodic by
construction. The momentum space is restricted by the
areas of the faces, from the triangle inequality

p1 ¼ j ~A1 þ ~A2j � j ~A1j þ j ~A2j;
p2 ¼ j ~p1 þ ~A3j � j ~p1j þ j ~A3j:

Heron’s formula for the area of a triangle can be used to
simplify the above inequalities,

Aða; b; cÞ
¼ 1

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðaþ bþ cÞðaþ b� cÞða� bþ cÞðbþ c� aÞp
;

(15)

where a, b, c are the edges of the triangle. Consider the

triangles �1 ¼ f ~A1; ~A2; ~p1g, �2 ¼ f ~p1; ~A3; ~p2g and �3 ¼
f ~p2; ~A4; ~A5g. For the system to be in a reasonable configu-
ration we require that the area of each of these triangles be
non zero, i.e., that the terms under the radical in (15) be
positive. This restriction on �1 and �3 implies
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jA1 � A2j � p1 � jA1 þ A2j;
jA4 � A5j � p2 � jA4 þ A5j:

(16)

Applying this to �2 gives

A3 þ p1 > p2; A3 þ p2 > p1; p1 þ p2 > A3;

A3 þ p1 þ p2 > 0: (17)

The numerical analysis in this article is specialised to the
case where all the areas are fixed equal to one, the allowed
momentum space for this case is shown in Fig. 3.

III. HAMILTONIAN AND POLYHEDRAL
RECONSTRUCTION

Following from Refs. [18–20] we use the volume of the
pentahedron at a given point in the phase space as the
Hamiltonian. This ensures that trajectories generated by
Hamilton’s equations will deform the pentahedron while
maintaining a constant volume. Unlike the case of the
tetrahedron, it is not trivial to compute the volume of the
general pentahedron in terms of the canonical coordinates.
Although elegant direct geometric expressions for the
volume of any polyhedron exist [28], these do not give
particularly tractable expressions in terms of the phase
space variables.

Consider a vector field ~FðxÞ ¼ 1
3
~x, using the divergence

theorem we can find the volume of a polyhedron

V ¼
Z
�

~r � ~Fd� ¼
I
s

~F � ~nds ¼ X 1

3
~xi � ~ni; (18)

where � is the interior of the polyhedron, ~xi is a point on
the ith face and ~ni is the normal to that face.

We can compute the volume of a polyhedron specified as
a set of normals and areas using (18) once we know the
location of a point upon each face. To obtain this we need
the edges, or equivalently vertices, of the polyhedron.
These can be found by reconstructing the polyhedron
from its normals and areas, a process originally due to

Laserre [25] and more recently outlined in Ref. [18]. This
Laserre reconstruction procedure works for any N and
requires only the minimization of a quadratic function, in
some cases algebraic results can be directly obtained.
The reconstruction process works by pushing a set of N

infinite planes, some set of distances ~h ¼ fh1; . . . ; hNg
from the origin along the normals of the system. The areas
of the polyhedral faces formed by the union of the half-
spaces defined by these planes can be computed as a

function of the heights Að ~hÞ. A numerical minimization
routine [29] is then used to extract the set of heights which
minimize the form

j Að ~hÞ �A j2;
where A is the set of desired areas. (In passing we note
that by carrying out this procedure after flipping the sign of
the normals we can obtain the chiral dual of a given
polyhedron). The set of vectors fh1 ~n1; . . . ; hN ~nNg can
then be used in (18) to compute the volume of the system.
As an example we reconstruct the pentahedron corre-

sponding to z1 ¼ f0:3; 0:4; 0:9; 0:91g shown in Fig. 1 with
all the face areas fixed to 1. Applying our mapping to
compute the normals Fðz1Þ gives
~n1 ¼ f0; 0;�1g; ~n2 ¼ f0; 0:803; 0:595g;
~n3 ¼ f0:249;�0:114; 0:961g;
~n4 ¼ f0:301;�0:921; 0:244g;
~n5 ¼ f�0:550; 0:232;�0:801g:

(19)

After applying the reconstruction routine we obtain the
following set of heights:

~h ¼ f0:237; 0:239; 0:236; 0:239; 0:237g (20)

with a corresponding volume of 0.396621. The heights
found are of a similar magnitude because the face areas
are all fixed to the same value, this precludes very aniso-
tropic configurations. A set of renderings of the polyhedron
is shown in Fig. 4.
The numerical results obtained in this article are for the

case where all faces of the polyhedron have the same area.
We can estimate some limiting values of the volume in this
case. A regular equilateral triangular prism should be close
to the maximum volume. If the triangular edges have
length ‘ and the vertical quadrilateral edges have length
h, the volume is Vprism ¼ A‘, where A denotes the common

area of all faces. Using (15) we obtain the triangular edge

length ‘ ¼ 2
ffiffiffi
A

p
31=4

, and the quadrilateral edge length h ¼ A=‘

so Vprism ¼ 31=4

2 A3=2 � 0:658A3=2. The volume of a regular

square pyramid can also be obtained from Vpyr ¼ 1
3Ah

where A is the area of the base and h is the height of the

pyramid. Again using (15) we obtain h ¼ ffiffiffiffiffiffiffiffiffi
15A

p
=2 and so

Vpyr ¼
ffiffiffiffi
15

p
6 A3=2 � 0:645A3=2. It is interesting to note that

the regular square pyramid has a slightly smaller volume
than the regular triangular prism.

0.0 0.5 1.0 1.5 2.0
0.0

0.5

1.0

1.5

2.0

p1

p 2

FIG. 3 (color online). The shaded area shows the allowed
region of momentum space, satisfying (16) and (17), for a
system with A1 ¼ A2 ¼ A3 ¼ A4 ¼ A5 ¼ 1.
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The volume is bounded from below by zero, in the
limit of collinear normals the volume is certain to
vanish. A general feature of this Minkowski polyhedral
reconstruction process is that if the area of one face is
smoothly shrunk to zero the system will smoothly deform
into a polyhedron of a lower order [18].

We can estimate the behavior of the volume as it
approaches zero by considering the extreme cases of
(17). As we shrink the second momentum p2 to zero then
p1 ! A. In this limit the area of the triangle �3 ¼
fA4; A5; p2g goes to zero. Note here and below the triangles
discussed are those formed by the area and momentum
vectors in the polygonal representation of the system as shown
in Fig. 1. We suppose that the volume of the system is then
entirely dominated by the set of vectors fA1; A2; A3; p2g.
The volume of the associated tetrahedron [19,20] is

V2
tet ¼ 8

9

AðA1; A2; p1ÞAðp1; p2; A3Þ
p1

sin ðq1Þ; (21)

for a fixed value of p1 on the boundary of the allowed space
the volume goes smoothly to zero as p2 is taken to its
extreme value. Taking a unit area system for simplicity
with q1 ¼ �=2, p1 ¼ 1, p2 ¼ 1� x and expanding (21)
for small x we obtain

VtetjA¼1 ¼ 1ffiffiffi
6

p � x

3
ffiffiffi
6

p � x2

3
ffiffiffi
6

p þOðx3Þ:

The same construction can be carried out mutatis mutandis
to obtain a limiting a form of the volume as the first
momentum is shrunk to zero. The derivatives of the volume
along the limiting direction are well behaved in this limit.

A section of the polyhedral volume through the q1, q2
plane is shown in Fig. 5, the spots are regions where the
numerical reconstruction routine failed. The contours show
lines of constant volume (isochors), cooler colored regions
correspond to smaller volumes. The volume is visibly 2�
periodic in both position variables. The structure of the
Hamiltonian in this projection suggests that of a compli-
cated coupled harmonic oscillator in a periodic space. In
Fig. 6 we show a projection of the Hamiltonian in the p1,

FIG. 5 (color online). A section in the q1, q2 plane through the
Hamiltonian evaluated at p1 ¼ p2 ¼ 0:94, all face areas are
fixed to 1. The contours are isochors, the color scheme is brighter
at larger volumes.

FIG. 6 (color online). A section in the p1, p2 plane through the
Hamiltonian evaluated at q1 ¼ 0:3, q2 ¼ 0:4, all face areas are
fixed to 1. The contours are isochors, the color scheme is brighter
at larger volumes.

FIG. 4 (color online). A set of renderings of the reconstructed pentahedron corresponding to the point z1 ¼ f0:3; 0:4; 0:9; 0:91g in the
KM space, all face areas set are to 1. Where visible internal edges have been drawn with dashed lines, external edges with solid lines.
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p2 plane at fixed q1, q2. The lowest volume regions in this
plot are found where the momenta take their minimum
allowed values. The dependence of the volume upon the
momenta is not trivial, the Hamiltonian appears to be non
separable in its current form.

In Fig. 14 we show a set of projections in the p1, p2 plane
which together span the angle space from � to 2�. The
behavior in the other quadrants of the q1, q2 range is very
similar to the one shown here, we present this reduced set of
plots to give the reader some intuition of the variation in the
volume over the whole space. The scarring visible in some
of the subplots is a result of the failure of the root finding
heuristic along boundaries where n4x flips sign. The volume
is symmetric about the line q1 ¼ q2 and the maximum
volume ismodulated sinusoidally as the angles pass through
a period. Themaximumvolume is seen to be on thep1 ¼ p2

line for q1 ¼ q2 ’ 3�=2, in the other angular quadrants the
maximal volume is obtained at multiples of �=2.

The plots around maximum volume are symmetric about
the line p1 ¼ p2, here the p1, p2 projection is well
described by the sum of the areas of the triangles �1, �2,
�3 as given by (15)

Hðq1; q2; p1; p2Þ / Aðp1; A1; A2Þ sin ðq1Þffiffiffiffiffiffi
p1

p

þAðp1; p2; A3Þ sin ðq1Þ sin ðq2Þðp1p2Þ1=4

þAðp2; A4; A5Þ sin ðq2Þffiffiffiffiffiffi
p2

p ; (22)

this is a good description across the whole range of
momenta and for small angular deviations around �=2.
This choice of the form of (22) is motivated by the ex-
pression for the squared volume of a tetrahedron obtained
in Ref. [19]. The radicals in the denominator are needed to
fix the dimensions. The canonical momenta have dimen-
sions of area so the Hamiltonian must have dimensions of

A3=2. The full Hamiltonian is deformed in a more complex
way when moving away frommultiples of�=2 in the angle
space. The approximate Hamiltonian (22) may give insight
into the dynamics of the system in the large volume limit;
we shall present an analysis of the trajectories of this and
the full Hamiltonian in a future work.

An extended set of projections in the q1, q2 plane is shown
in Fig. 15, the set of plots shown spans the full range of both
momentum variables. The periodic structure shown in Fig. 5
exists throughout thewhole space, however, the periodicity is
carried by volume maxima at small momenta (bottom left)
and volume minima at large momenta (top right).

The volume of the triangular prism has a very complex
structure over the allowed regions of the KM phase space.
The volume is observed to be smooth and differentiable
across the space. Numerical examination of the volume in
the limit that the system approaches the momentum
boundaries of the phase space indicates a smooth approach
to zero.

IV. CONFIGURATIONS

Due to our particular choice of the orientation of the R3

coordinate axes, we are able to uniquely distinguish the
normals in our implementation of the triangular prism.
Our numerical map from a phase space point z to the
normals nðzÞ makes identification of each of the remaining
normals clear and gives them a natural ordering.
We adopt a similar scheme to Haggard [28] and label the

possible configurations of the pentahedron in terms of
which normals correspond to square or triangular faces.
Note that a full reconstruction of the pentahedron is
required to determine the number of edges (or order)
associated with each face and therefore with each normal.
Fixing all the faces to have the same area, we are no longer
able to uniquely identify a particular square or triangular
face. However, we are still able to distinguish the order of
the faces.
We label the distinct configurations by concatenating the

indices of the triangular faces. A configuration where the
third and fourth faces are triangular would be labeled 34 or
equivalently 43. We label the configurations in lexical
order to remove this ambiguity. The set of available con-
figurations C is

C ¼ f12; 13; 14; 15; 23; 24; 25; 34; 35; 45g:

The triangular prism can be smoothly deformed from
one configuration to several others. These deformations
involve a two step process. First, the smooth shrinking of
one the edges shared by two square faces to zero, creating a
quadrilateral pyramid in the limit that the edge vanishes.
The vertex at the apex of this new pyramid is split into
an edge which now borders two newly square faces.
An example of this process in shown in Fig. 7; here a 13
triangular prism configuration is deformed into a 24.
The undirected graph in Fig. 8 shows the set of allowed

deformations. For example, the transformation 13 ! 24
shown in Fig. 7 would be represented as moving from
the blue vertex to the dark green vertex. The colors of the
vertices in the graph serves as a key to the colors shown in
Figs. 16 and 17. These figures show the configuration of the
system across the phase space in the p1, p2 and q1, q2
planes. The graph can be used to understand which
boundaries in these figures can be smoothly crossed and
which are disallowed.

1

2

3

4

1

2

3

4

1

2

3

4

FIG. 7. Schlegel diagrams showing the transformation of a 13
configuration to a 24 configuration. The 5 face, not shown in
these figures, forms the back face of the graphs.
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The set of momentum-space projections shown in
Fig. 16 shows a complex but smooth distribution of the
interfaces between configurations through the space. Many
of the boundaries represent allowed transitions. Several
disallowed transitions are also observed. The 34 configu-
ration (red) is spatially adjacent to the 45 configurations
(light green) in the first column of figures; in the first row
the 23 configuration (yellow) is adjacent to the 12 (gray).
These unphysical transitions may serve as a kind of sepa-
ratrix in the momentum space. The position-space projec-
tions shown in Fig. 17 exhibit a greater complexity in the
boundaries between the configurations. However, disal-
lowed transitions are not obvious in this projection.

V. STABILITY

The Lyapunov exponents of a dynamical system char-
acterize the rate of separation of pairs of initially adjacent
trajectories [21–23]. Positive Lyapunov exponents provide
a universal signature of Hamiltonian chaos. Their compu-
tation requires a reliable algorithm for the integration of
Hamilton’s equations, which respects their symplectic
nature. Unfortunately, integrating Hamilton’s equations
for the isochoric pentahedron has proven to be rather
challenging, because the Hamiltonian is not analytically
known in terms of the phase space variables. All deriva-
tives of the Hamiltonian with respect to the phase space
variables must be computed numerically. This introduces
numerical errors into the Hamiltonian equations of motion,
which may not be relevant over short segments of the
trajectory, but can introduce large errors in long trajecto-
ries, which are needed for the determination of the global
Lyapunov exponents. To avoid this complication, we here
pursue a simpler method which gives useful insights into
the integrability and stability of the pentahedron as a
dynamical system.

The Kolmogorov-Sinai (KS) entropy gives the rate at
which a dynamical system destroys information (creates
entropy); it is given by the sum over all positive global
Lyapunov exponents of the system. Lacking a reliable

numerical method for calculating the global Lyapunov
exponents (GLE’s), we will estimate the KS entropy in
terms of the local Lyapunov exponents. In doing so, it is
worth noting that local instability does not guarantee the
global instability of a trajectory. For example, the well
known x2y2 system is almost everywhere locally unstable,
but it admits nontrivial periodic trajectories that are globally
stable. In general, the phase space averaged local Lyapunov
exponents (LLE’s) will provide an upper bound for the KS
entropy, because the local divergence between two trajec-
tories can be balanced by local convergence in other places,
leading to a smaller global rate of divergence along the
entire trajectory. On the other hand, while a small number
of globally stable trajectories cannot be excluded in a
dynamical system that is locally unstable in a large fraction
of phase space, most trajectories will be globally unstable.
To calculate the LLE’s of a Hamiltonian system we

consider the small local deviation of a pair of trajectories
�zðtÞ, which can be computed by linearizing Hamilton’s
equations:

� _zðtÞ ¼ H ðt; zÞ�zðtÞ; (23)

where H is the Jacobian matrix of the Hamiltonian eval-
uated at z

H ðt; zÞ ¼ �@pqH �@2qH

@2pH @pqH

 !
: (24)

Solving (23) gives �zðtÞ ¼ exp ð�ztÞu where �z is an
eigenvalue of H ðzÞ and u is the associated eigenvector.
Eigenvalues with positive (negative) real components are
associated with exponentially diverging (converging)
trajectories, purely imaginary eigenvalues represent a
periodic motion. Although the LLE’s of a system typically
do not correspond to the true or global Lyapunov exponents
(GLE’s) they serve as a local measure of the departure of a
pair of trajectories and give a good indication as to the
stability of the system at a particular point. We define a
point to be stable if all the positive real components of the
eigenvalues of H are zero, i.e., if max f<�þ

z g ¼ 0.
Our numerical explorations of the phase space have shown
the Hamiltonian to be relatively smooth and continuous,
computing the local stability over a finite grid should
give a reasonable approximation to the overall stability
of the system.
If the entire phase space was found to be unstable it

would be reasonable to conclude that the system is globally
unstable and that the associated GLE’s would be positive.
However, what can we conclude if we find a finite set of
stable points amongst some set of unstable points?
We compute the local stability over a grid of 220 points

in the phase space, partial projections in the p1, p2 and q1,
q2 planes showing the largest positive eigenvalues are
shown in Figs. 18 and 19. These figures show that most
of the space is locally unstable (hot colors), however,
sizable stable regions (dark blue) do appear. The large

12

34

35

45

13

24

25

14

23

15 2

5 2232

FIG. 8 (color online). Allowed transitions between configura-
tions. The vertex colors correspond to the colors plotted in the
configuration scan Figs. 16 and 17.
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values (light yellow) in the stability distributions shown are
clearly correlated with the boundaries in the configuration
space (see Figs. 16 and 17). Regions close to disallowed
transitions appear very unstable.

The distribution of stable regions is generally correlated
with larger values of p1, p2 suggesting larger volumes. In
Fig. 9 we show the distribution of volumes for stable and
unstable regions, stable regions are much more likely to be
associated with higher volumes. The mode of the stable
curve is at V ¼ 0:645, the mode of the unstable curve is at
V ¼ 0:587. The volume of an equilateral triangular prism

with unit face areas is 31=4

2 ¼ 0:658; stable regions are

associated with more regular polyhedral configurations.
As the figure shows this relationship is not cut and dried
as the high mode of the unstable curve shows there is a
sizable fraction of unstable configurations at relatively
large volumes.

The volume distribution for almost stable regions
0<max f<ð�þ

z Þg< 1 is plotted against their stability in
Fig. 10. There is a clear linear correlation between volume
and stability in the highest density region of the figure. This
correlation explains the relatively high peak of the inclu-
sive and unstable curves in Fig. 9; these are associated with
weakly unstable regions in the phase space. The majority
of stable, or nearly stable, configurations corresponds to
those with a large volume.

Knowing the local stability of a point is most useful if
we have some measure of how likely it is that a trajectory
of the system will actually pass through this point. Ideally
this measure would be computed by dividing the phase
space into small volumes, integrating many trajectories,
and then calculating the probability for a trajectory to reach
each of these points. The Kolmogorov-Sinai entropy arises
directly from this construction [30]. As this is currently

numerically untenable, we seek an alternative measure
for the probability of the system being in a given
configuration.

A. Canonical stability estimates

We consider the system as a member of a canonical
ensemble, i.e., we embed the system into a heat bath at
some fixed temperature T ¼ ��1. This nonisolated limit is
a reasonable choice if our polyhedron is part of some
extended interacting system of polyhedra. In the canonical
ensemble we can assign the following weight to any par-
ticular configuration � of the system:

Pð�Þ ¼
�
exp ð��Hð�ÞÞ if Hð�Þ> 0

0 if Hð�Þ undefined; (25)

where the second case explicitly assigns zero weight to
points where the Hamiltonian cannot be evaluated or where
the numerical routines fail. The Kolmogorov-Sinai (KS)
entropy for a system can be computed from the sum of
positive GLE’s, the largest positive LLE can serve as local
estimate of this. The eigenvalues ofH are opposite signed
pairs, in unstable regions the secondary positive eigenvalue
is usually small so this is a reasonable approximation.
Using the canonical measure (25) we propose the follow-
ing canonical instability measure as an estimate of the KS
entropy:

ĥðTÞ ¼
R
U exp ð��Hð�ÞÞmax f<ð�þ

z Þgd�R
U exp ð��Hð�ÞÞd� ; (26)

where the region U is the set of unstable points in phase
space, i.e., points where max f<ð�þ

z Þg> 0. In Table I we
compare estimates for the KS entropy along with the
fractions of stable and unstable volumes of the phase space
for the unit area triangular prism, the Henon-Heiles (HH)
potential Vðx; yÞ ¼ 1

2 ðx2 þ y2 þ 2x2y� 2=3y3Þ and the
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FIG. 9 (color online). The distribution of volumes (black) as
sampled over a grid of 220 points spanning the phase space. The
volume spectrum of the stable regions is shown as the dashed red
curve; the unstable regions are shown by the dashed green curve.
Note that the area of all curves shown are normalized to one.
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FIG. 10. The density of the positive real components of LLE’s
plotted against the volume of the system, the LLE’s are restricted
to the nearly stable region (0<max f<ð�þ

z Þg< 1).
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two-dimensional classical Yang-Mills (CYM) potential
Vðx; yÞ ¼ 1

2 x
2y2. The latter are both well known nonintegr-

able systems which display aspects of Hamiltonian chaos;
see Refs. [21,22,31] and references therein for more
details. As the Table shows, the triangular prism has the
largest relative volume of local stability, being almost
twice that of the CYM and HH systems. The HH system
is known to be nonintegrable for larger energies; the CYM
system is nonintegrable for all energies. That our estimates
of the KS entropy for the triangular prism is of a similar
magnitude is strongly suggestive that it is also nonintegr-
able and exhibits some degree of mixing.

B. Microcanonical stability estimates

To examine the energy (volume) dependence of the
instability measure we consider the microcanonical en-
semble. Estimates using the microcanonical ensemble are
valid for isolated systems. If the system is ergodic then
microcanonical averages are equivalent to averages over
trajectories in the long time limit. The microcanonical
density �ðEÞ is

�ðEÞ ¼
Z
V
�ðE�Hðp; qÞÞdpdq; (27)

where the integral is computed over the entire phase space.
The total volume distribution, the black curve shown in
Fig. 9 is proportional to the microcanonical density for the
equal-areas triangular prism.

The associated microcanonical proxy for the KS
entropy is

hhkðEÞi ¼ 1

�ðEÞ
Z
V
max f<ð�þ

z Þg�ðE�Hðp; qÞÞdpdq:
(28)

In Fig. 11 we plot the microcanonical instability measure
computed from LLE’s for the unit area triangular prism and
for a free particle in the Henon Heiles potential as function
of the energy E. The instability measure of the triangular
prism is high at small energies (pentahedron volumes) and
decreases rapidly to zero at large energy. Small volume
configurations exhibit a high degree of instability, because
the system flops between the many available equivalent
configurations. At larger volumes the set of possible
volume preserving deformations is reduced and the insta-
bility decreases. As a comparison we have also computed
the microcanonical instability measure for the HH system
using (28). The HH system is stable for E< 0:1, and the
instability rises rapidly for for larger energies. At low
energies the system is known to be integrable [22].

C. Intermediate Lyapunov exponents

Given the promising results of the local Lyapunov analy-
sis we turn to examining intermediate Lyapunov exponents
(ILE’s). The LLE’s suggest the existence of large areas of
local instability, however there may be some complicated
dynamical conspiracy that allows for the existence of
stable periodic trajectories. The ILE’s provide a bridge
between the LLE’s, which are the zero time limit of the
ILE’s, and the global Lyapunov exponents (GLE’s) which
are the infinite time limit of the intermediate Lyapunov
exponents.
We compute the maximum positive ILE by the method

of Benettin et al. [32]. A reference trajectory is numeri-
cally integrated for some period of time zðtÞ. A vector d is
generated by some small deviation d0 from the starting
point of the reference trajectory which is then also
integrated. The largest positive intermediate Lyapunov
exponent after some time tn is

TABLE I. The fraction of stable and unstable regions along with the canonical stability measure (26) for the triangular prism system
(with all faces set to 1), the Henon-Heiles potential and the two-dimensional classical Yang-Mills potential. The temperature is chosen
as T ¼ 1.

Name Momentum range Position range Stable fraction Unstable fraction ĥð1Þ
Henon-Heiles ½�2; 2� � ½�2; 2� ½�2; 2� � ½�2; 2� 0.06 0.94 1.36

Classical Yang Mills ½�2; 2� � ½�2; 2� ½�2; 2� � ½�2; 2� 0.08 0.921 0.548

Triangular prism � ½0; 2� � ½0; 2� ½0; 2�� � ½0; 2�� 0.13 0.86 0.38

FIG. 11 (color online). Microcanonical instability measure hkðEÞ, computed using LLE’s, for the equal area triangular prism (a) and
a particle moving in the HH potential (b).
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�n ¼ 1

tn � t0
log

dðtnÞ
d0

: (29)

In practice the distances between the trajectories dðtÞ grow
rapidly, to improve numerical stability the distances are
periodically rescaled once they exceed some fixed thresh-
old D. We define a rescaling

�1 ¼ dðt1Þ
dðt0Þ ft1jdðt1Þ>Dg;

repeating this process as required the ILE (29) can be
written as

�n ¼ 1

tn � t0

Xn
i¼1

log�i; (30)

where �i ¼ dðtiÞ
dðt0Þ .

The reference and deviation trajectories were integrated
using an implicit symplectic Runge-Kutta (RK) integrator
[33]. A computationally more expensive implicit method
was chosen as the Hamiltonian cannot be readily separated
into momentum and potential components making explicit
RK splitting methods untenable. The implicit equations are
solved iteratively. The iterations are initialized using an
equistage method. Symplectic integrators explicitly pre-
serve the two-form � ¼ d ~q ^ d ~p upon the phase space.
A symplectic integrator generates maps which are them-
selves symplectic; orbits of the system under this map can
be thought of as following a shadow solution to those of the
exact Hamiltonian. Orbits under nonsymplectic maps may
follow the exact Hamiltonian more closely for small times
but in general will diverge from the true dynamics over
long time scales [33,34]. A fourth order Gauss collocation
method was found to provide a satisfactory balance of
accuracy and computational efficiency [33,35]. The
stability properties of these methods ensure that the
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FIG. 12 (color online). The ensemble averaged intermediate
Lyapunov exponents (ILE) computed for ensembles of trajecto-
ries with volume {0.35, 0.45, 0.55, 0.65}, the bars show standard
errors. The dashed horizontal lines show the appropriate micro-
canonical estimates of the LLE’s.
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FIG. 13 (color online). The distribution of intermediate Lyapunov exponents (ILE) for trajectories with V ¼ 0:45 plotted at
increasing times t ¼ f0:1; 5; 10; 20; 40; 100g. The vertical red line shows the mean of the distribution.
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FIG. 14 (color online). Sections through the Hamiltonian in
the p1, p2 space. The plots span a range of zero to � in q1, q2
with q2 increasing along the vertical axis and q1 along the
horizontal axis. Cooler blues correspond to smaller volumes,
brighter yellows correspond to larger volumes.

FIG. 16 (color online). Slices through the phase space in the
p1, p2 plane over q1, q2 in ½0; �� showing the different configu-
rations of the triangular prism. The projection here corresponds
to that shown in Fig. 18.

FIG. 15 (color online). Sections through the Hamiltonian in
the q1, q2 space. The plots span the range ½0; 2� in p1, p2 with p2

increasing along the vertical axis and p1 along the horizontal
axis. Cooler blues correspond to smaller volumes, brighter
yellows correspond to larger volumes.

FIG. 17 (color online). Slices through the phase space in the
q1, q2 plane over the full range of p1, p2, showing the different
configurations of the triangular prism. The projection here
corresponds to that shown in Fig. 19.
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dynamics does not depend upon the choice of time step for
the integrator; the numerical convergence of the iterative
process is slower at larger time steps.
A large set of isochoric points were sampled from the

Hamiltonian and used to generate trajectories and ILE’s,
this process was carried out for a set of volumes {0.35,
0.45, 0.55, 0.65} so that the energy dependence of the ILE’s
could be computed.
The time evolution of the ensemble average of the ILE’s

for each of the volumes is shown in Fig. 12; note that the
y-axis is log scaled. The dashed lines show the micro-
canonical LLE values computed from (28). The ILE’s
rapidly peak and then slowly saturate to stable long time
values. Note that the rise time is different for the different
volumes; the more unstable small volume (V ¼ 0:35)
ILE’s grow faster than the more stable high volume case.
In Fig. 13 the time evolution of the distribution of ILE’s
generated for the V ¼ 0:45 case is shown. The distribution
is centered around zero for small times; the mean con-
verges to 0.2 by t ¼ 40. The small time limit does not
reproduce the microcanonical estimate of the LLE’s. For
very short times the LLE’s have more information about
the local instability of the system than the ILE’s as they are
generated from the full Jacobian of the Hamiltonian
gradient. The LLE’s tend to fluctuate around zero for
small times as they are generated from random initial
displacements which may be initially along a stable direc-
tion. As we observe in Fig. 12 over time the most unstable
direction will dominate and the distributions appear to
converge.
The long time values should be reasonable approxima-

tions to the GLE’s. The ILE’s are larger at low volume and
become very small at V ¼ 0:65; this matches well with the
microcanonical estimates. The unit pentahedron is strongly
chaotic at small volumes and becomes more regular as the
volume approaches it maximum limit.

VI. CONCLUSIONS

In our investigation of the phase space of the unit area
triangular prism we have found a great deal of structure in
the Hamiltonian and in the distribution of configurations.
The phase space contains moderate regions of local stabil-
ity and large regions of local dynamical instability. The
distribution of local Lyapunov exponents appears to be
correlated with the boundaries in the configuration space.
We have calculated the average dynamical instability mea-
sures in the canonical and microcanonical ensembles and
obtained values that are comparable to those found in well-
known chaotic systems. The triangular prism differs from
these and most other dynamical systems in that the stability
increases with energy. Higher energy (high volume) trian-
gular prisms are dynamically more stable than low energy
(low volume) prisms.
The large degree of dynamical instability found in our

investigation of the isochoric pentahedron with unit area

FIG. 19 (color online). The local Lyapunov exponents com-
puted for sections in the q1, q2 over the full p1, p2 range. The
royal blue regions are stable and hot colors (red, orange, yellow)
represent progressively more unstable regions. The code failed to
converge in the light cyan regions. Note that here only LLE’s in
the range � 2 ½0; 1� are plotted here.

FIG. 18 (color online). The local Lyapunov exponents com-
puted for sections in the p1, p2 over q1, q2 in ½0; ��. The royal
blue regions are stable and hot colors (red, orange, yellow)
represent progressively more unstable regions. The code failed
to converge in the light cyan regions. Note that here only LLE’s
in the range � 2 ½0; 1� are plotted here.
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faces provides an encouraging starting point for a bottom-
up investigation of the origin of thermal behavior of
gravitational field configurations in loop quantum gravity.
That the dynamical instability occurs in the simplest
allowed polyhedron suggests that it will be a generic
property of more complex polyhedra. Any coupling to
other polyhedral configurations can be expected to enhance
the degree of instability. We emphasize again the most
interesting result of our investigation, that the rate of
instability does not go to zero at small energy. In other
words, the low energy dynamics of the isochoric pentahe-
dron is not characterized by ballistic trajectories in
phase space, but by rapid and energy independent diffusion
among different degrees of freedom. At low energies,
the pentahedron appears to be a fast scrambler of
information.

It is tempting to speculate whether this unusual property
has implications for the quantum theory of gravity.
Dynamical chaos in classical field theories is related to
the instability of the perturbative effective action of the
quantum field theory [36,37]. Because the full effective
action is known to be convex, and thus dynamically stable,
for any quantum field theory [38], this instability is usually
cured by some dynamical mechanism, such as mass gen-
eration through spontaneous symmetry breaking or con-
finement, or the breaking of translational invariance. None
of these mechanisms are realized in the case of gravity,
which is unique in being characterized by the simultaneous
absence of an infrared mass scale and the existence of a
ultraviolet scale, the Planck mass, which controls the
quantum corrections to its classical limit.

Returning to the dynamics of the pentahedron, we intend
to report on the systematic numerical integration of a
phase-space spanning set of trajectories in a future work.
The preliminary efforts required to compute the ILE’s have
identified small regions of quasi-periodicity. The isochoric
pentahedron thus does not exhibit full ergodicity. The
isochoric pentahedron being a dynamical system with
rich and fascinating dynamics, larger polyhedra with
N > 5 will likely be even more so. Investigation of the
N ¼ 6 system would be particularly interesting, as it
would expose an additional aspect in the structure of the
phase space as the hexahedron passes between the two
dominant classes of six-faced polyhedra.
The nonintegrability of the classical triangular prism

indicated by our analysis rules out a straightforward appli-
cation of Bohr-Sommerfeld quantization, which was suc-
cessfully used to explore the quantum mechanics of the
tetrahedron [19]. Methods from the study of quantum chaos
such as the Gutzwiller trace formula [21]may provide some
insight into the quantum behavior of the pentahedron and
higher polyhedra. Variationalmethods or diagonalization in
some suitable basis may also prove fruitful.
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