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We study the discrete causal set geometry of a small causal diamond in a curved spacetime using the

average abundance hCki of k-element chains or total orders in the underlying causal set C. We begin by

obtaining the first-order curvature corrections to the flat spacetime expression for hCki using Riemann

normal coordinates. For fixed spacetime dimension this allows us to find a new expression for the discrete

scalar curvature of C as well as the time-time component of its Ricci tensor in terms of the hCki. We also

find a new dimension estimator for C which replaces the flat spacetime Myrheim-Meyer estimator in

generic curved spacetimes.
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I. INTRODUCTION

That there is a profound relationship between order and
Lorentzian geometry has been evident ever since the work
of Malament, Hawking, and others [1,2] where they
showed the existence of a bijection between the causal
structure, itself a partially ordered set, and the conformal
class of the spacetime metric. This is one of the main
motivations for the causal set approach to quantum gravity,
which assumes that the primitive structure underlying
spacetime is a locally finite partially ordered set, or causal
set [3]. Instead of considering the spacetime metric as
the fundamental dynamical variable in causal set theory
(CST), it is the causal structure that one wishes to ‘‘quan-
tize.’’ However, to recover the full spacetime geometry
from the causal structure, there must be a way to obtain
the spacetime volume or equivalently, the conformal factor.
This is achieved in CST via the condition of ‘‘local finite-
ness’’ which implies a fundamental spacetime discrete-
ness: underlying every finite volume region of spacetime
is a finite cardinality causal set. Thus, the continuum-
discrete correspondence in CST is not exact but approxi-
mate, with the continuum being the approximation of the
underlying causal set.

In order to maintain the relationship between volume and
cardinality in all coordinate systems, a causal setC approxi-
mated by a spacetime ðM;gÞ is obtained via the following
random, Poisson discretization of ðM;gÞ [3,4]. Given a
fundamental scale ��1 (which could be the Planck volume),
the probability that a spacetime region of volume V contains
N-elements of C is given by the Poisson distribution

PVðNÞ ¼ exp��V ð�VÞN
N!

; (1)

for which

hNi ¼ �V; (2)

thus establishing the required number to volume
correspondence. To give credence to the existence of
a fundamental spacetime discreteness, CST moreover

requires the following conjecture. Namely, if a causal set
C approximates to a spacetime ðM;gÞ, then ðM;gÞ is
unique, up to modifications to it on scales <��1. In other
words, this conjectures that all the meaningful information
about the geometry and topology of ðM;gÞ at scales� ��1

is contained in the causal set; continuum information
below these scales is irrelevant since the discrete substruc-
ture, i.e., the causal set, is fundamental.
Froma purelymathematical point of view, this conjecture1

is very intriguing. While it has been verified in several
different cases, a general proof is still not known, though
considerable progress has been made in this direction
[5–7]. A key question is how to extract continuum topo-
logical and geometric properties fromC using purely order
theoretic information. Uniqueness of the approximating
spacetime with respect to a given geometric or topological
property then follows, i.e., any two spacetimes which are
approximations to C must share this property on scales
���1. For example, for a causal set C that is approxi-
mated by flat spacetime, the Myrheim-Meyer dimension
gives a good estimate of the spacetime dimension [8,9],
while the length of the longest chain or total order between
elements in C gives a good estimate of the timelike dis-
tance [10]. An estimator for spatial distance in this case
has also been obtained [11]. Additionally, the homology of
spatial hypersurfaces can be constructed from the causal
set underlying a globally hyperbolic spacetime [12,13]. A
very important recent result is the construction of the scalar
curvature from which the causal set action is obtained [14].
A natural question to ask of the flat spacetime results of

Refs. [8–10] is how they are modified in the presence of
curvature. While it is true in the continuum that a suffi-
ciently small neighborhood of a point is approximately flat,
the corrections from curvature can in fact be well quanti-
fied using Riemann normal coordinates in a convex normal
neighbourhood of any point. However, we run into the
following issue in the discrete case: there is at present no

1It is also often referred to as a ‘‘fundamental theorem’’ of
CST.
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known purely order theoretic definition of a ‘‘small’’
neighborhood of an element in a causal set which
corresponds to a convex normal neighborhood. At best it
may be possible to find approximately flat subsets in a
causal set but it is still unclear how to do this in a system-
atic way [15].

This issue however will not be the focus of our current
investigation. Instead we consider only those N-element
causal sets C which are approximated by a small causal
diamond or Alexandrov interval I½p; q� in a generic curved
spacetime ðM;gÞ, where the smallness parameter is given
by the proper time T between the events p and q. We
expand the metric in Riemann normal coordinates (RNC)
about an origin r ¼ ð0; . . . ; 0Þ

gabðxÞ ¼ �abð0Þ � 1

3
xcxdRacbdð0Þ þOðx3Þ; (3)

where the OðxÞ correction to the metric vanishes since
�c
abð0Þ ¼ 0. The RNC has been used to calculate the

volume of a small interval I½p; q� [8,16,17] for which
the first-order correction to the volume of I½p; q� due to
the effect of curvature occurs at OðT2þnÞ.

The starting point of our analysis is Meyer’s work [9] in
which a general expression was found for the average
abundance hCki of k-chains or k-element total orders in a
causal set C0 which is approximated by an Alexandroff
interval I0½p; q� in flat spacetime. Following Myrheim,
Meyer used this to find a dimension estimator for the
dimension of I0½p; q� employing only hC1i, the average
abundance of elements in I0½p; q�, and hC2i, the average
abundance of relations. Using the RNC expansion and with
the help of Ref. [17] we extend this analysis to the curved
spacetime case. We find that the hCki in I½p; q� satisfy a
recursion relation and depend on the scalar curvature Rð0Þ
and the time-time component of the Ricci tensor R00ð0Þ.
It is then an easy exercise to invert these relations and find
expressions for Rð0Þ and R00ð0Þ in terms of hC1i, hC2i, hC3i
for fixed spacetime dimension. We construct a new dimen-
sion estimator for generic curved spacetimes using hC1i,
hC2i, hC3i, hC4i and show that it reduces to the Myrheim-
Meyer estimator in flat spacetime.

As mentioned earlier, the scalar curvature of an element
in a causal set was first calculated by Benincasa and
Dowker [14] using a curved spacetime expression for a
nonlocal D’Alembertian on a causal set. They showed that
RðqÞ for an element q in the C can be expressed in terms
of the abundance of k-element ‘‘inclusive intervals’’ which
are order theoretically very distinct from k-chains. Like
k-chains they too have a bottom element e1 and a top
element ek, but unlike k-chains, every element in the
interval I½e1; ek� which is the intersection of the future of
e1 and the past of ek belongs to the inclusive interval, and
has precisely k� 2 elements satisfying e1 � ei � ek. In
contrast, the expression for Rð0Þ that we find depends only
on the abundance of k-chains. This may suggest that for

manifold-like causal sets there are hidden relations be-
tween these seemingly different order theoretic entities.
The plan of our paper is as follows. In Sec. II after first

presenting some basic definitions, we reproduce Meyer’s
results for the hCki thus setting the notation that we will use
in the rest of the paper. In Sec. III we present the main
calculation in the paper, where we use the RNC to obtain
the lowest order curvature correction to hCki. We show that
there is a recursion relation between the coefficients in the
expression for the different hCki, but that the form of the
dependence on the Rð0Þ and R00ð0Þ is the same for all k. In
Sec. IV for a fixed spacetime dimension we find expres-
sions for Rð0Þ and R00ð0Þ which depend only on hC1i, hC2i,
hC3i. The coefficients in these expressions again have a
simple dependence on dimension. In Sec. V we point out
that the Myrheim-Meyer dimension estimator is insuffi-
cient in a generic curved spacetime and find a new dimen-
sion estimator using hC1i, hC2i, hC3i, hC4i. This estimator
reduces to the Myrheim-Meyer dimension estimator in the
case of flat spacetime. An important question in these
calculations is how the error decreases with the sprinkling
density � (i.e., the inverse of the volume cutoff)—the
larger � is the closer one comes to the continuum. In
Sec. VI using the technique developed in Ref. [9] we

show that the error in hCki grows as �
2k�1
2 which means

that the error in Rð0Þ, R00ð0Þ and n goes like ��1=2, thus
going to zero in the continuum limit. We discuss the
implications of our results in Sec. VII and the questions
that need to be addressed in the future. Finally, the
Appendix contains explicit calculations of the results that
appear in the main body of the paper.

II. THE ABUNDANCE OF k-CHAINS
IN FLAT SPACETIME

A k-chain in a causal setC is a k-element total order, i.e.,
a set of elements fe1; e2; . . . ; ekg, ei 2 C such that ei �
eiþ1 for all i. For any finite element C, the number Ck of
k-chains is therefore invariant of the choice of labeling of
C. This makes Ck a good observable. Note that the ei and
eiþ1 need not be ‘‘linked,’’ i.e., there could exist an element
e 2 C such that ei � e � eiþ1. Moreover, e1 � e � ek
does not imply that e belongs to the k-chain. In contrast,
a k-inclusive interval is defined as Ik½e1; ek� ¼
Futureðe1Þ \ PastðekÞ [14]. Along with the elements e1,
ek it also contains precisely k-elements. However, every
e 2 C such that e1 � e � ek belongs to Ik½e1; ek�, which
means that the order theoretic structure of a k-chain is very
different from that of a k-inclusive interval. The fact that
one can express the discrete scalar curvature both in terms
of the abundance of the inclusive intervals as shown by
Benincasa and Dowker [14] and in terms of the abundance
of k-chains as we will show in Sec. IV thus suggests a
hidden connection between the two.
We now reproduce Meyer’s results in n-dimensional

flat spacetime ðM0; �Þ using notation that we will find
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convenient in the curved spacetime generalization. Let
p, q 2 M0 such that p ¼ ð�T=2; 0; . . . ; 0Þ and
q ¼ ðT=2; 0; . . . ; 0Þ. For a causal set C0 which is approxi-
mated by I0½p; q� for a given sprinkling density �, the
average abundance of elements, or 1-chains hC1i� is given by

hC1i� ¼ �V0 ¼ �
Z
I0½p;q�

dx1

¼ 2�
Z T

2

0
dt
Z T

2�t

0
drrn�2

Z
d�n�2

¼ �
2An�2

nðn� 1Þ
�
T

2

�
n ¼ ��0T

n; (4)

where An�2 is the volume of the unit ðn� 2Þ sphere Sn�2.
Next, the average number of 2-chains or relations in
I0½p; q� is given by the probability of there being a pair
of elements x1, x2 2 I0½p; q� such that x1 � x2, or

hC2i� ¼ �2
Z
I0½p;q�

dx1
Z
Jþðx1Þ\I0½p;q�

dx2: (5)

Recognizing that the integral over dx2 is simply the volume
of the smaller interval I0½x1; q� and using Eq. (4)

hC2i� ¼ �2 2An�2

2nnðn� 1Þ
Z
I0½p;q�

dx1T
n
1

¼ �2V0
2
�ðnþ 1Þ�ðn2Þ

4�ð3n2 Þ
; (6)

Meyer was able to similarly use the nested integral
expression for hCki�
hCki� ¼ �k

Z
I0½p;q�

dx1

�
Z
Jþðx1Þ\I0½p;q�

dx2 . . .
Z
Jþðxk�1Þ\I0½p;q�

dxk

¼ �k
Z
I0½p;q�

dx1hCk�1ðx1Þi�; (7)

to find by induction the general form

hCki� ¼ �k�kV0
k ¼ �k�kT

kn; (8)

where

�k � 1

k

�
�ðnþ 1Þ

2

�
k�1 �ðn2Þ�ðnÞ

�ðkn2 Þ�ððkþ1Þn
2 Þ ;

�k �
�

2An�2

2nnðn� 1Þ
�
k
�k ¼ �0

k�k;

(9)

with �0 defined as in Eq. (4). Note, in particular, that
�1 ¼ 1. We will find it useful to express hCki� as

hCki� ¼ �k�k�1

Z
I0½p;q�

dx1T
ðk�1Þn
1 ¼ �k�k�1I1ððk� 1ÞnÞ;

(10)

where I1ðmÞ is evaluated in Eq. (A4) of the Appendix. As
discussed above, the average number of chains in a finite

element causal set C is itself a covariant observable. In
particular, the distribution of the abundance of k-chains as
a function of k in a finite element causal set can be
compared with the distribution of hCki�; if the two distri-

butions agree, it is an indication that the C may be well
approximated by flat spacetime and is therefore manifold-
like. A similar comparison using k-inclusive intervals was
found to be useful in determining flat spacetime behavior
in a model of two-dimensional causal set quantum gravity
[18]. It is therefore important to find a generalization of
hCki� to curved spacetime.

Meyer obtained a dimension estimator from hCki� by

observing that the ratio

f0ðnÞ �
hC2i�
hC1i2�

¼ �ðnþ 1Þ�ðn2Þ
4�ð3n2 Þ

(11)

is only a function of n. Thus, one has an expression for the
dimension which depends only on order-theoretic informa-
tion in the causal set. Indeed, f0ðnÞ is one-half of
Myrheim’s ordering fraction

f ðCÞ � R
N
2

� ��1 � 2R

N2
; (12)

where R ¼ hC2i is the number of relations and N ¼ hC1i.
In two spacetime dimensions, for example, fð2Þ ¼ 1=2,
i.e., the inverse of the spacetime dimension. In Sec. V we
will show that Eq. (11) does not suffice in curved spacetime
and there is need for a new dimension estimator.

III. THE ABUNDANCE OF k-CHAINS IN A SMALL
CAUSAL DIAMOND IN CURVED SPACETIME

The RNC expansion to order T2 gives an expression for
hC1i in I½p; q� [8,16]

hC1i ¼ �V ¼ �
Z
I½p;q�

ffiffiffiffiffiffiffiffiffiffi�g1
p

dx1

¼ �V0ð1þ �1Rð0ÞT2 þ �1R00ð0ÞT2Þ; (13)

where

�1 ¼ � n

24ðnþ 1Þðnþ 2Þ ; �1 ¼ n

24ðnþ 1Þ ; (14)

and uses the RNC expansion

ffiffiffiffiffiffiffiffiffiffi�g1
p ¼ 1� 1

6
x
�
1 x

�
1R��ð0Þ þOðx3Þ: (15)

Now, the average number of 2-chains or relations is given
by the similar generalization

hC2i ¼ �2
Z
I½p;q�

ffiffiffiffiffiffiffiffiffiffi�g1
p

dx1
Z
Jþðx1Þ\I½p;q�

ffiffiffiffiffiffiffiffiffiffi�g2
p

dx2

¼ �2
Z
I½p;q�

ffiffiffiffiffiffiffiffiffiffi�g1
p

dx1V1; (16)

where V1 denotes the volume of the region Jþðx1Þ \
I½p; q�. Using the covariant form of Eq. (13) we see that
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hC2i¼�2�1
Z
I½p;q�

dx1T
n
1

�
1�1

6
x�1 x

�
1R��ð0Þþ�1T

2
1Rðy1Þ

þ�1T
�
1 T

�
1R��ðy1Þ

�
þOðTnþ3Þ

¼�2�1

�Z
I½p;q�

dx1T
n
1 þ

Z
I0½p;q�

dx1T
n
1

�
�1

6
x
�
1 x

�
1R��ð0Þ

þ�1T
2
1Rðy1Þþ�1T

�
1 T

�
1R��ðy1Þ

��
þOðTnþ3Þ;

(17)

where we have split the integral in the manner of Ref. [8]:
the first is a flat spacetime integral over the curved space-
time interval I½p; q�, whereas the second is the contribu-
tion from the curvature terms over the flat spacetime
interval I0½p; q�. y1 is the midpoint of the interval
I½x1; q� as shown in Fig 1. Using the light-cone coordinates
u ¼ t� r, v ¼ tþ r we see from Fig. 1 that

T�
1 ¼ 1

2
T� � x�1 ; T1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
T

2
� u1

��
T

2
� v1

�s
: (18)

Thus,

T�
1 T

�
1R��ðy1Þ ¼ T2

4
R00ðy1Þ � x�1 TR0�ðy1Þ

þ x
�
1 x

�
1R��ðy1Þ: (19)

The first integral was evaluated in Ref. [17] and shown to
be of the form

Z
I½p;q�

dx1T
m
1 ¼

Z
I0½p;q�

dx1T
m
1

�
1þ T2

24
R00ð0Þ

�
(20)

for any non-negative integer m. Moreover, as can be read-
ily seen, to order T2, R��ðy1Þ can be replaced with R��ð0Þ.

We can moreover simplify the expressions in hC2i substan-
tially by using the symmetries of I0½p; q�. Expanding
the term

Z
I0½p;q�

dx1x
�
1 x

�
1R��ð0ÞTm

1

¼
Z
I0½p;q�

dx1t
2
1R00ð0ÞTm

1 þ 2
Z
I0½p;q�

dx1tx
i
1R0ið0ÞTm

1

þ
Z
I0½p;q�

dx1x
i
1x

j
1Rijð0ÞTm

1 ; (21)

for m a positive integer, we see that the cross terms do not
contribute, so that we are left with

Z
I0½p;q�

dx1x
�
1 x

�
1R��ð0ÞTm

1

¼ R00ð0Þ
Z
I0½p;q�

dx1t
2
1T

m
1

þ Xn�1

i¼1

Riið0Þ
Z
I0½p;q�

dx1ðxi1Þ2Tm
1 ; (22)

since the last integral is independent of the spatial direction
i, due to the symmetry of I0½p; q�.
Gathering the coefficients of Rð0Þ and R00ð0Þ

hC2i¼�2�1

�
I1ðnÞþRð0Þ

��
�1�1

6

�
I2ðnÞþ�1I1ðnþ2Þ

�

þR00ð0Þ
"
T2

24
I1ðnÞþ

�
�1�1

6

�
I2ðnÞ

�1

6
I3ðnÞþ�1I4ðnÞ

##
; (23)

where we have used
P

n�1
i¼1 Riið0Þ ¼ R00ð0Þ þ Rð0Þ and we

define the general class of integrals

I1ðmÞ ¼
Z
I0½p;q�

dx1T
m
1 ;

I2ðmÞ ¼
Z
I0½p;q�

dx1T
m
1 r

2
1cos

2	1;

I3ðmÞ ¼
Z
I0½p;q�

dx1t
2
1T

m
1 ;

I4ðmÞ ¼
Z
I0½p;q�

dx1

�
T

2
� t1

�
2
Tm
1

(24)

for non-negative integers m. These integrals have been
evaluated in the Appendix. Using the terminology defined
therein, we find it useful to reexpress the last three integrals
in terms of the first

T/2
1

y
1

T1

.

p

q

x

FIG. 1. An Alexandroff interval I½p; q� in flat spacetime. T1 is
the proper time between the events x1 and q and y1 is the
midpoint of I½x1; q�.
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I2ðmÞ ¼ f2ðmÞI1ðmÞT2;

I3ðmÞ ¼ f3ðmÞI1ðmÞT2;

I4ðmÞ ¼ f4ðmÞI1ðmÞT2;

and

I 1ðmþ 2Þ ¼ g1ðmÞI1ðmÞT2;

where g1ðmÞ, f2ðmÞ, f3ðmÞ, and f4ðmÞ are defined in
Eq. (A16) of the Appendix. Given Eq. (10) we find that

hC2i ¼ hC2i�½1þ T2�2Rð0Þ þ T2�2R00ð0Þ�; (25)

where

�2 ¼
�
�1 � 1

6

�
f2ðnÞ þ �1g1ðnÞ;

�2 ¼ 1

24
þ
�
�1 � 1

6

�
f2ðnÞ � 1

6
f3ðnÞ þ �1f4ðnÞ:

(26)

We find that

�2 ¼ � 4n

24ð2nþ 2Þð3nþ 2Þ ; �2 ¼ 4n

24ð3nþ 2Þ :
(27)

We can go one step further and calculate

hC3i ¼ �
Z

dx1
ffiffiffiffiffiffiffiffiffiffi�g1

p hC2ðx1Þi

¼ �3�2

"
I1ð2nÞ þ Rð0Þ

��
�2 � 1

6

�
I2ð2nÞ

þ �2I1ð2nþ 2Þ
�
þ R00ð0Þ

 
T2

24
I1ð2nÞ

þ
�
�2 � 1

6

�
I2ð2nÞ � 1

6
I3ð2nÞ þ �2I4ð2nÞ

!#

¼ hC3i�
�
1þ T2�3Rð0Þ þ T2�3R00ð0Þ

�
; (28)

where again we have used Eq. (10) and

�3 ¼
�
�2 � 1

6

�
f2ð2nÞ þ �2g1ð2nÞ

¼ � 6n

24ð3nþ 2Þð4nþ 2Þ ;

�3 ¼ 1

24
þ
�
�2 � 1

6

�
f2ð2nÞ � 1

6
f3ð2nÞ þ �2f4ð2nÞ

¼ 6n

24ð4nþ 2Þ : (29)

This suggests an iterative formula

�kþ1 ¼
�
�k � 1

6

�
f2ðknÞ þ �kg1ðknÞ;

�kþ1 ¼ 1

24
þ
�
�k � 1

6

�
f2ðknÞ � 1

6
f3ðknÞ þ �kf4ðknÞ;

(30)

with

�k ¼ � nk

12ðknþ 2Þððkþ 1Þnþ 2Þ ;

�k ¼ nk

12ððkþ 1Þnþ 2Þ :
(31)

Lemma 1. To the lowest order correction in the flat space-
time expression, the average number of k-element chains
in a small causal diamond is

hCki ¼ hCki�½1þ T2�kRð0Þ þ T2�kR00ð0Þ� þOðTknþ3Þ;
(32)

where �k and �k are given by Eq. (31).
Proof: We will prove this inductively. We have already

shown it for k ¼ 2. Now, let us assume hCki is of the form
Eq. (32). Just as in the flat spacetime case, one has nested
integrals so that

hCkþ1i ¼ �
Z
I½p;q�

dx1
ffiffiffiffiffiffiffiffiffiffi�g1

p hCkðx1Þi

¼ �kþ1�k
Z
I0½p;q�

dx1T
kn
1

�
1þ T2

24
R00ð0Þ

� 1

6
x
�
1 x

�
1R��ð0Þ þ �kT

2
1Rð0Þ

þ �kT
�
1 T

�
1R��ð0Þ

�
þOðTknþ3Þ; (33)

where we have used Eq. (20) to reduce the integral
over I½p; q� to one over I0½p; q� to order OðTknþ2Þ.
Using the integrals I1;2;3;4ðmÞ from the Appendix, we can

reduce this to
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hCkþ1i ¼ �kþ1�k

�
I1ðknÞ þ Rð0Þ

��
�k � 1

6

�
I2ðknÞ þ �kI1ðknþ 2Þ

�

þ R00ð0Þ
�
T2

24
I1ðknÞ þ

�
�k � 1

6

�
I2ðknÞ � 1

6
I3ðknÞ þ �kI4ðknÞ

��
;

¼ hCkþ1i�
�
1þ T2Rð0Þ

��
�k � 1

6

�
f2ðknÞ þ �kg1ðknþ 2Þ

�

þ T2R00ð0Þ
�
1

24
þ
�
�k � 1

6

�
f2ðknÞ � 1

6
f3ðknÞ þ �kf4ðknÞ

��
: (34)

Writing it in the form of Eq. (32), with

�kþ1 ¼
�
�k � 1

6

�
f2ðknÞ þ �kg1ðknþ 2Þ;

�kþ1 ¼ 1

24
þ
�
�k � 1

6

�
f2ðknÞ � 1

6
f3ðknÞ þ �kf4ðknÞ;

(35)

we find the desired form for hCkþ1i. It then follows from
the expressions for g1ðmÞ, f2ðmÞ, f3ðmÞ, and f4ðmÞ
[Eqs. (A5), (A7), (A8), and (A15)] that

�kþ1 ¼ � nðkþ 1Þ
12ððkþ 1Þnþ 2Þððkþ 2Þnþ 2Þ ;

�kþ1 ¼ nðkþ 1Þ
12ððkþ 2Þnþ 2Þ :

(36)

h

IV. SCALAR CURVATURE FROM THE
ABUNDANCE OF k-CHAINS

For a fixed n hCki contains three unknowns, T, Rð0Þ,
and R00ð0Þ. Thus, we need at least three values of k in order
to determine Rð0Þ. For each hCki the lowest order correc-
tion due to curvature is OðTknþ2Þ. Hence, as in the flat
spacetime calculation of the Myrheim-Meyer dimension
Eq. (11) we must take appropriate powers of hC1i, hC2i,
and hC3i to be able to compare their lowest order correc-
tions. Defining

Qk �
�hCki
�k�k

�
3=k ¼ 1

�30

� hCki
�k�k

�
3=k

(37)

for k ¼ 1, 2, 3

Q1 ¼ T3nð1þ 3�1Rð0ÞT2 þ 3�1R00ð0ÞT2Þ þOðT3nþ2Þ;
(38)

Q2 ¼ T3n

�
1þ 3

2
�2Rð0ÞT2 þ 3

2
�2R00ð0ÞT2

�
þOðT3nþ2Þ;

(39)

Q3 ¼ T3nð1þ �3Rð0ÞT2 þ �3R00ð0ÞT2Þ þOðT3nþ2Þ:
(40)

Thus, the Qk are independent of the sprinkling density �
and hence can be used to construct continuum geometric
parameters. It is useful to gather a few identities and
definitions before we proceed:

�k�
�1
k ¼ �ðknþ 2Þ;
�k � �k�kþ1 � �kþ1�k ¼ �n�k�kþ1;

�k � k

kþ 1
�kþ1 � �k;

�k ¼ k

kþ 1
�kþ1 � �k;

Kk � ððkþ 1Þnþ 2ÞQk;

Jk � ðknþ 2ÞKk:

(41)

We eliminate the R00ð0Þ term from Eqs. (38) and (39)
and subsequently from Eqs. (39) and (40) to get the pair of
equations�

�2

2
Q1 � �1Q2

�
T�3n ¼ �1 þ 3

2
�1T

2Rð0Þ; (42)

�
2�3

3
Q2 � �2Q3

�
T�3n ¼ �2 þ�2T

2Rð0Þ: (43)

Since both Rð0Þ and T are unknowns, we first eliminate the
Rð0ÞT2 term:�
�2

3
�2Q1 � 2

3
ð�1�2 � �3�1ÞQ2 þ �2�1Q3

�
T�3n

¼ 2

3
�2�1 ��1�2: (44)

We find after some algebraic manipulation that

T3n ¼ 1

2n2
ðJ1 � 2J2 þ J3Þ; (45)

with the Ji’s given by Eq. (41). We thus obtain the
expression for the scalar curvature

Rð0Þ ¼ � 2ðnþ 2Þð2nþ 2Þð3nþ 2Þ
n3T3nþ2

ðK1 � 2K2 þ K3Þ
(46)

or more explicitly
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Rð0Þ ¼ �2ðnþ 2Þð2nþ 2Þð3nþ 2Þ23nþ2
3n n

4
3n�1

� ðK1 � 2K2 þ K3Þ
ðJ1 � 2J2 þ J3Þ3nþ2

3n

: (47)

We may additionally solve for R00ð0Þ by eliminating
Rð0Þ from Eqs. (38)–(40):�

�2

2
Q1 � �1Q2

�
T�3n ¼ �1 � 3

2
�1T

2Rð0Þ; (48)

�
2�3

3
Q2 � �2Q3

�
T�3n ¼ �2 ��2T

2Rð0Þ: (49)

Either equation along with Eq. (45) gives

R00ð0Þ ¼ � 4ð2nþ 2Þð3nþ 2Þ
n3T3nþ2

ððnþ 2ÞQ1 � ð5nþ 4ÞQ2

þ ð4nþ 2ÞQ3Þ: (50)

As a check, let us consider the case R00ð0Þ ¼ 0 so that
from Eqs. (38)–(40) we see that

Rð0Þ> 0 ) Q1 <Q2 <Q3

Rð0Þ< 0 ) Q1 >Q2 >Q3

Rð0Þ ¼ 0 ) Q1 ¼ Q2 ¼ Q3 ¼ T3n:

(51)

Moreover,

K1�2K2þK3 ¼� n3

2ðnþ2Þð2nþ2Þð3nþ2ÞRð0ÞT
3nþ2;

(52)

which therefore has the opposite sign to Rð0Þ and is zero
when Rð0Þ ¼ 0.

As a further check, we note that if both R00ð0Þ ¼ 0
and Rð0Þ ¼ 0, Q1 ¼ Q2 ¼ Q3 ¼ T3n so that not only is
K1�2K2þK3¼ð2nþ2ÞQ1�2ð3nþ2ÞQ2þð4nþ2ÞQ3¼0
but also ðnþ 2ÞQ1 � ð5nþ 4ÞQ2 þ ð4nþ 2ÞQ3 ¼ 0
which appears in Eq. (50).

V. A NEW DIMENSION ESTIMATOR FOR
CURVED SPACETIME

As one can guess by now, the ordering fraction or
equivalently the function fðnÞ in curved spacetime, clearly
involves the curvature contribution nontrivially. Expanding
to order T2 the curved spacetime version of the Myrheim-
Meyer dimension estimator is

fðnÞ¼ hC2i
hC1i2

¼ f0ðnÞð1þT2ð�2�2�1ÞRð0Þ

þT2ð�2�2�1ÞR00ð0ÞÞþOðT3Þ

¼ f0ðnÞ
�
1þ n2T2

12ðnþ1Þð3nþ2Þ
�

2

ðnþ2ÞRð0Þ�R00ð0Þ
��

þOðT3Þ: (53)

In the special case that Rð0Þ ¼ R00ð0Þ ¼ 0, fðnÞ � f0ðnÞ up
to order T2. For a generic spacetime fðnÞ is, however,
insufficient as a dimension estimator and we must find a
replacement. Given that along with n there are 4 unknowns
to be solved in terms of the hCki, the simplest way to do so
is to include hC4i in our analysis.
We define

Sk ¼ ðhCki=�k�kÞ4=k (54)

analogous to the Qi in the previous section, with k ¼ 1, 2,
3, 4 which again is independent of the sprinkling density.
To the lowest order correction we have the four equations

S1 ¼ T4nð1þ 4�1Rð0ÞT2 þ 4�1R00ð0ÞT2Þ;
S2 ¼ T4nð1þ 2�2Rð0ÞT2 þ 2�2R00ð0ÞT2Þ;
S3 ¼ T4n

�
1þ 4

3
�3Rð0ÞT2 þ 4

3
�3R00ð0ÞT2

�
;

S4 ¼ T4nð1þ �4Rð0ÞT2 þ �4R00ð0ÞT2Þ:

(55)

Eliminating Rð0ÞT2 from the above we get�
1

2
�2S1 � �1S2

�
¼ T4nð�1 � 2�1R00T

2Þ;�
2

3
�3S2 � �2S3

�
¼ T4n

�
�2 � 4

3
�2R00T

2

�
;�

3

4
�4S3 � �3S4

�
¼ T4nð�3 ��3R00T

2Þ;

(56)

from which we may eliminate R00ð0ÞT2 to get

4

3

�
1

2
�2S1 � �1S2

�
�2 � 2

�
2

3
�3S2 � �2S3

�
�1

¼ T4n

�
4

3
�1�2 � 2�2�1

�
;

3

4

�
2

3
�3S2 � �2S3

�
�3 �

�
3

4
�4S3 � �3S4

�
�2

¼ T4n

�
3

4
�2�3 ��3�2

�
:

This gives us an expression for T4n [which we check
reduces to Eq. (45)]. After some algebra this gives the
following implicit form for the dimension:

ðnþ 2Þð2nþ 2ÞS1 � 3ð2nþ 2Þð3nþ 2ÞS2 þ 3ð3nþ 2Þ
� ð4nþ 2ÞS3 � ð4nþ 2Þð5nþ 2ÞS4 ¼ 0: (57)

Importantly, in the absence of curvature the Sk are all equal
and the left-hand side is identically zero. We therefore need
to be more careful in order to obtain the Myrheim-Meyer
dimension in the flat spacetime limit. UsingUk ¼ ðkþ 2Þ�
ððkþ 1Þnþ 2ÞSk we may write the expression more
succinctly as
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U1 � 3U2 þ 3U3 �U4 ¼ 0: (58)

It is interesting to note the appearance of the binomial

coefficients ð�1Þk r�1
k

� �
for r ¼ 4 in the above expression

for the dimension estimator, as well as in the expressions
for Rð0Þ and T for r ¼ 3.

Since the Sk themselves explicitly contain dimension
information via the �k, it is more useful to expand the
expression to

ðnþ 2Þð2nþ 2Þ
�hC1i
�1

�
4 � 3ð2nþ 2Þð3nþ 2Þ

�hC2i
�2

�
2

þ 3ð3nþ 2Þð4nþ 2Þ
�hC3i
�3

�
4=3

� ð4nþ 2Þð5nþ 2Þ
�hC4i
�4

�
¼ 0; (59)

or defining

!k � ð�Þk�1
3

k� 1

 ! ðknþ 2Þððkþ 1Þnþ 2Þ
�4=k
k

; (60)

we get our final expression for the dimension estimator in
curved spacetime

X4
k¼1

!kðnÞhCki4=k ¼ 0: (61)

Again, in the flat spacetime limit, the left-hand side of
the equation reduces to zero. However, in order to recover
the Myrheim-Meyer dimension estimator f0ðnÞ, we must
remind ourselves of its definition Eq. (11), which suggests
that we divide Eq. (61) throughout by !2ðnÞhC1i4 to get

f20ðnÞ
�
� 1

3

ðnþ 2Þ
ð3nþ 2Þ �

ð4nþ 2Þ
ð2nþ 2Þ

�hC3i
�3

�4
3 1

hC1i4

þ 1

3

ð4nþ 2Þð5nþ 2Þ
ð2nþ 2Þð3nþ 2Þ

hC4i
�4

1

hC1i4
�
¼ �hC2i2

hC1i4
: (62)

In the flat spacetime case using Eq. (8), the above equation
reduces to

f20ðnÞ
�
� 1

3

ðnþ 2Þ
ð3nþ 2Þ �

ð4nþ 2Þ
ð2nþ 2Þ þ

1

3

ð4nþ 2Þð5nþ 2Þ
ð2nþ 2Þð3nþ 2Þ

�

¼ �hC2i2
hC1i4

) f20ðnÞ ¼
hC2i2
hC1i4

; (63)

which is the Myrheim-Meyer dimension estimator.

VI. CALCULATING THE ERRORS

We expect that as the sprinkling density � increases,
our curvature and dimension estimators should do a better
job of reproducing the continuum results. While the
geometric parameters themselves do not depend on �,
it is clear that the error will. The (rms) error


Ck ¼
ffiffiffiffiffiffiffiffiffiffi
�Ck

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hC2

ki � hCki2
q

, where �Ck is the

variance. We follow the analysis in Ref. [9] to find the
dependence of �Ck on � in the RNC. Unlike the flat
spacetime case, however, it is not the continuum volume
that must be increased to improve accuracy since this
region must still be ‘‘small’’ for the RNC to be valid.
Instead, it is the sprinkling density � that should be in-
creased for reducing the error.
Let us begin with k ¼ 2, so that �C2 ¼ hC2

2i � hC2i2.
Now hC2

2i is the probability of finding two sets of 2-chains
in I½p; q�, with the possibility that some of the elements
can coincide. Let us call the points of these two 2-chains x,
x0 and y, y0, with x � x0 and y � y0. Thus, hC2

2i gets con-
tributions from each type of coincidence. The first is
simply that there are no coincidences, i.e., that all four
points x, x0, y, y0 are distinct, which gives a contribution
hC2i2. Although this term ��4, it cancels out in the ex-
pression for the variance and therefore plays no role. The
next type is the one-coincidence case. For this there are two
types: (i) x ¼ y0 or y ¼ x0, so that the two 2-chains collapse
to a single 3-chain, and (ii) x ¼ y or x0 ¼ y0, corresponding
to the probability for a three element ‘‘V’’ or ‘‘�’’ shaped
causal set. The contribution from (i) is clearly twice that of
hC3i whose � dependence is ��3, while the contribution
from (ii) is

2�3
Z
I½p;q�

dx
ffiffiffiffiffiffiffiffiffiffiffiffiffi
�gðxÞ

q Z
JþðxÞ\I½p;q�

dx0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�gðx0Þ

q Z
JþðxÞ\I½p;q�

� dy0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�gðy0Þ

q
¼ 2�

Z
I½p;q�

dxhC1ðxÞi2 � �3: (64)

Finally, there is a contribution from the two coincidences
x ¼ y, x0 ¼ y0, which is just hC2i which goes as ��2.

Thus, �C2 � �3 or 
C2 � �
3
2, with the dominant contri-

bution coming from the one-coincidence case.
In order to calculate the error for all our geometric

parameters, we need to perform a similar analysis for
k ¼ 3, 4. In each such case, the dominant contribution to
the error comes from the one-coincidence case, since the
no-coincidence contributions simply cancel out.
For k ¼ 3, if x � x0 � x00 and y � y0 � y00, the

no-coincidence case is again simply hC2
3i and again cancels

out. The one-coincidence terms include (i) x ¼ y00 or
y ¼ x00, which is the 5-chain, hC5i � �5, (ii) x ¼ y0 or
y ¼ x0 or x00 ¼ y0 or y00 ¼ x0 which contribute

4�2
Z
I½p;q�

dy
ffiffiffiffiffiffiffiffiffiffiffiffiffi
�gðyÞ

q Z
JþðyÞ\I½p;q�

�dx
ffiffiffiffiffiffiffiffiffiffiffiffiffi
�gðxÞ

q
hC2ðxÞihC1ðxÞi��5; (65)

(iii) x ¼ y or x00 ¼ y00 which contribute

2�
Z
I½p;q�

dx
ffiffiffiffiffiffiffiffiffiffiffiffiffi
�gðxÞ

q
hC2ðxÞi2 � �5; (66)

and finally (iv) x0 ¼ y0 which contribute
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�3
Z
I½p;q�

dx
ffiffiffiffiffiffiffiffiffiffiffiffiffi
�gðxÞ

q Z
I½p;q�

dy
ffiffiffiffiffiffiffiffiffiffiffiffiffi
�gðyÞ

q Z
JþðxÞ\JþðyÞ\I½p;q�

� dx0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�gðx0Þ

q
hC1ðxÞi2 � �5: (67)

Figure 2 shows the contributions to hC2
3i from the case of

no coincidence and the case of one coincidence. Since the

no-coincidence term cancels out, 
C3 � �
5
2.

A similar analysis shows that for hC2
4i the no-

coincidence term cancels out and the one-coincidence

cases lead to a dependence ��7, so that 
C4 � �
7
2 This

generalizes in a straightforward manner to


Ck � �
2k�1
2 : (68)

We are now in a position to calculate the dependence on
� of the errors in the Qk and Sk:


Qk � 3

k�3
hCki3=k�1
Ck � ��1=2; (69)

and


Sk � 4

k�4
hCki4=k�1
Ck � ��1=2: (70)

This immediately means that the errors 
T3n, 
Rð0Þ,

R00ð0Þ go as ��1=2 and hence become smaller as �
increases. The error in the dimension estimator is similarly
given by


nðð4nþ6ÞS1�3ð12nþ10ÞS2
þ3ð24nþ14ÞS3�ð40nþ18ÞS4Þ

¼�ððnþ2Þð2nþ2Þ
S1�3ð2nþ2Þð3nþ2Þ
S2
þ3ð3nþ2Þð4nþ2Þ
S3�ð4nþ2Þð5nþ2Þ
S4Þ

)
n���1=2: (71)

VII. CONCLUSIONS AND REMARKS

In this work we have found expressions for the proper
time T [Eq. (45)], the scalar curvature Rð0Þ [Eq. (47)],
the time-time component of the Ricci tensor R00ð0Þ
[Eq. (50)], and a new dimension estimator [Eq. (61)]
from a causal set underlying a small causal diamond
I½p; q� in a generic spacetime in arbitrary dimensions.

We find that the errors in these estimators goes as ��1=2,
thus becoming smaller as the sprinkling density is

increased, while keeping the volume of I½p; q� fixed.
Our results not only verify the deep relationship between
order and Lorentzian geometry but also provide new
observables that can be used to assess whether a causal
set is manifold-like or not.
Our calculation moreover brings to light an intriguing

connection between two seemingly disparate order theo-
retic structures in a causal set. While our expression for
the scalar curvature is purely in terms of the abundance of
k-chains, the Benincasa-Dowker (BD) scalar curvature
RBD [14] is constructed from the abundance of
k-inclusive intervals. In four dimensions for example, their
expression for the scalar curvature is

RBDð0Þ¼ 2

6
ffiffiffiffi
�

p ð1�ðN2ð0Þ�9N3ð0Þþ16N4ð0Þ�8N5ð0ÞÞÞ;

(72)

where Nkð0Þ are the number of k-inclusive intervals
Ik½x; 0�, where x � 0.2 As noted in Sec. II, k-chains and
k-inclusive intervals are very distinct order theoretic struc-
tures. The continuum geometry, however, seems to link
them via the scalar curvature. If such a relationship exists,
does it, for example, indicate manifold-likeness in a causal
set? This and several related questions remain to be
investigated.
Further comparisons between the two expressions

for Rð0Þ are warranted. Both contain alternating sums,
although the coefficients differ markedly. For one, the
BD expression appears to have a strong dimension depen-
dence in the number of terms required—for n ¼ 2 the sum
is truncated at k ¼ 4, while for n ¼ 4 it is truncated
at k ¼ 5. Our expression for Rð0Þ is in this sense indepen-
dent of n—it requires hC1i, hC2i, hC3i in all dimensions.3

Moreover, the systematic determination of the coefficients
for RBD for arbitrary n is fairly involved, whereas the
coefficients in Eqs. (47) and (58) are simply the binomial
coefficients ð�1Þkð2kÞ and ð�1Þkð3kÞ, respectively, in all

dimensions.

FIG. 2. The contributions to hC2
3i from no coincidences and one coincidence are shown.

2Our notation differs from Ref. [14] where k is replaced by
k� 1, in keeping with our definition of a k-chain.

3As may be already evident to the astute reader, one could
replace these three values k ¼ 1, 2, 3 with any other k1, k2, k3, to
get an expression for Rð0Þ in terms of hCk1 i, hCk2 i, hCk3 i. What is
important is that this choice is not dimension dependent—every
choice works for every n.
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Apart from these, there are deeper differences in the
two expressions for Rð0Þ. RBDð0Þ is constructed from
all inclusive intervals of the form Ik½x; 0� in the causal
set for k ¼ 1; . . . 5. It is therefore an essentially nonlocal
expression since it depends on the structure of the causal
set throughout a past (or future) neighborhood of the
element 0 in the causal set. The expression Eq. (47) on
the other hand is only valid in a small causal diamond
and hence is strictly local and dependent on a proper choice
of neighborhood of the element in the causal set. This
means that the BD form for Rð0Þ, being ‘‘neighborhood
independent,’’ can be readily used to obtain an action
for the entire causal set, which has strong implications
for causal set theory. Unless the definition of a small
neighborhood can be made entirely order theoretically in
the causal set, our expression for Rð0Þ on the other hand
cannot be used to obtain an action in a simple manner.
Of course, in the specific case when the entire causal set
is approximated by a small causal diamond I½p; q�, the
action is simply

S=ℏ ¼ XN
s¼1

RðesÞ ¼ NR; (73)

where es denotes an element in C, since to this approxi-
mation RðxÞ is the same throughout I½p; q�.

Nevertheless, the geometric estimators we have found in
this work take a big step towards the order-Lorentzian
geometry correspondence. We have a new dimension esti-
mator which can determine the manifold dimension for a
curved spacetime with greater accuracy than the currently
available flat spacetime Myrheim-Meyer estimator. The
local nature of the expression for the scalar curvature can
also be seen as an advantage since only a small neighbor-
hood of an element in the causal set is required to determine
the curvature, rather than its entire past. An obvious next
step is to follow up with a numerical analysis of causal sets
which are approximated by different curved spacetimes and
to see how well our estimators work in these cases [19].

These observables can also be used as additional tests of
manifold-likeness of a causal set. In Ref. [18] the expec-
tation values of a range of such observables, including the
abundance Nk of k-element inclusive intervals was found
from Monte Carlo simulations of two-dimensional causal
set quantum gravity. Comparing with the flat spacetime
distribution of the Nk, these observables were used to
demonstrate that the dominant contribution to the causal
set path integral in two dimensions comes from flat space-
time suggesting that manifold-like behavior is emergent.
The estimators we have obtained in this current work could
well be employed to calculate more accurately how close
to flatness one is—is the two-dimensional universe just a
little positively curved, for example?

The extended hope of the current analysis is also that as
more of the order theoretic basis of geometry is uncovered
it may be possible to find a meaningful order theoretic

definition of locality which translates to our commonly
held (albeit Riemannian geometry based) notions of local-
ity in the continuum.

APPENDIX

To evaluate the hCki we find it convenient to transform
from the Cartesian coordinates xi to spherical polar
coordinates xi ¼ rfið�Þ, where

fið	1; 	2 . . .	n�2Þ ¼
8<
:
Q

n�i�1
k¼1 sin 	k cos 	n�i ði > 1Þ;Q
n�2
k¼1 sin 	k ði ¼ 1Þ:

It is also useful to express the radial coordinate for any
x1 2 I½p; q� in light-cone coordinates:

r1 ¼ v1 � u1
2

¼ 1

2

��
T

2
� u1

�
�
�
T

2
� v1

��
) rl1

¼ 1

2l

X
k¼0

ð�1Þk l

k

 !�
T

2
� v1

�
k
�
T

2
� u1

�
l�k

:

Since the metric �ðu; vÞ in I0½p; q� in light-cone
coordinates is

ds2 ¼ �dudvþ
�
v� u

2

�
2
d�2; (A1)

the associated measure of any integral over I0½p; q� is

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
��ðu; vÞ

q
¼ 1

2

�
v� u

2

�
n�2

�Yn�3

i¼1

sin ðn�i�2Þ	i
�

¼ 1

2n�1

�Yn�3

i¼1

sin ðn�i�2Þ	i
� Xn�2

k¼0

ð�1Þk n� 2

k

 !

�
�
T

2
� v

�
k
�
T

2
� u

�
n�2�k

: (A2)

Finally, we will find it useful to define the following pair of
integrals:

Lða; v; TÞ ¼
Z v

�T
2

du

�
T

2
� u

�
a

¼ 1

aþ 1

�
Taþ1 �

�
T

2
� v

�
aþ1

�
;

Lða; b; TÞ ¼
Z T

2

�T
2

dv

�
T

2
� v

�
b
Lða; v; TÞ

¼ Taþbþ2

ðbþ 1Þðaþ bþ 2Þ :

(A3)

The above identities will now be used to evaluate the set
of integrals I1;2;3;4ðmÞ required for the calculation of hCki
[Eqs. (17), (28), and (33)].
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(1) I1ðmÞ¼
Z
dx1T

m
1 ¼

Z T
2

�T
2

dv1

Z v1

�T
2

du1
Z
d�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
��ðu1;v1Þ

q
Tm
1

¼An�2

2n�1

Xn�2

k¼0

n�2

k

 !
L

�
m

2
þn�k�2;

m

2
þk;T

�
¼An�2T

nþm

2n�1

ðn�2Þ!ðm2Þ!
ðnþmÞðnþm

2�1Þ!: (A4)

(2) For mþ 2 the above equation gives us the relation

I1ðmþ 2Þ ¼ I1ðmÞT2
ðnþmÞðm2 þ 1Þ

ðnþmþ 2Þðnþ m
2Þ

¼ I1ðmÞT2g1ðmÞ: (A5)

(3) As noted in Sec. III any integral of the form

I2ðmÞ ¼
Z
I0½p;q�

dx1ðxi1Þ2Tm
1 (A6)

is independent of the spatial direction i because of the spatial symmetry of I0½p; q�. Thus, we can choose xn�1 ¼ r cos 	1 to
simplify our calculation so that

I2ðmÞ ¼
Z

dx1T
m
1 r

2
1cos

2	1 ¼
Z T

2

�T
2

dv1

Z v1

�T
2

du1
Z

d�
cos 2	1
2nþ1

�
T

2
� u1

�m
2

�
T

2
� v1

�m
2 ðv1 � u1Þn

¼ An�2

2nþ1

Tnþmþ2

ðn� 1Þðnþmþ 2Þ
n!ðm2Þ!

ðnþ m
2 þ 1Þ! ¼ I1ðmÞT2 nðnþmÞ

4ðnþmþ 2Þðnþ m
2 þ 1Þðnþ m

2Þ
¼ I1ðmÞT2f2ðmÞ: (A7)

The next integral can be split into three parts

I3ðmÞ ¼
Z

dx1t
2
1T

m
1 ¼ Ia3 þ Ib3 þ Ic3; (A8)

where, using ak ¼ n� 2� kþ m
2 , bk ¼ kþ m

2

Ia3ðmÞ ¼ 1

4

Z
dx1u

2
1T

m
1

¼ An�2

2nþ1

Xn�2

k¼0

ð�1Þk n� 2

k

 !�
T2

4
Lðak; bk; TÞ

� TLðak þ 1; bk; TÞ þ Lðak þ 2; b; TÞ
�
; (A9)

Ib3ðmÞ ¼ 1

4

Z
dx1v

2
1T

m
1

¼ An�2

2nþ1

Xn�2

k¼0

ð�1Þk n� 2

k

 !�
T2

4
Lðak; bk; TÞ

� TLðak; bk þ 1; TÞ þ Lðak; bþ 2; TÞ
�
; (A10)

and

Ic3ðmÞ ¼ 2

4

Z
dx1u1v1T

m
1

¼ An�2

2n
Xn�2

k¼0

ð�1Þk n� 2

k

 !�
T2

4
Lðak; bk; TÞ

� T

2
Lðak þ 1; bk; TÞ � T

2
Lðak; bk þ 1; TÞ

þ Lðak þ 1;bþ 1; TÞ
�
: (A11)

After some algebra, we find that

I3ðmÞ ¼ I1ðmÞT2 8nþmðmþ 2Þðmþ nþ 2Þ
4ð2þmþ nÞð2nþmÞð2nþmþ 2Þ

¼ I1ðmÞT2f3ðmÞ: (A12)

(4) Finally,

I4ðmÞ ¼
Z

dx1

�
T

2
� t1

�
2
Tm
1

¼ T2

4
I1ðmÞ þ I3ðmÞ � T~I4ðmÞ: (A13)

Evaluating
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~I4ðmÞ ¼
Z

dx1t1T
m ¼ I1ðmÞT

2

�
1� mþ n

mþ nþ 1

� ðm2 þ 1Þðmþ nÞ
ðmþ nþ 1Þðm2 þ nÞ

�
¼ I1ðmÞT ~f4ðmÞ;

(A14)

we can then express

I 4ðmÞ ¼ I1ðmÞT2f4ðmÞ; (A15)

where f4ðmÞ ¼ 1
4 þ ~f4ðmÞ þ f3ðmÞ.

Gathering these expressions

g1ðmÞ ¼ ðnþmÞðm2 þ 1Þ
ðnþmþ 2Þðnþ m

2Þ
;

f2ðmÞ ¼ nðnþmÞ
4ðnþmþ 2Þðnþ m

2 þ 1Þðnþ m
2Þ
;

f3ðmÞ ¼ 8nþmðmþ 2Þðmþ nþ 2Þ
4ð2þmþ nÞð2nþmÞð2nþmþ 2Þ ;

f4ðmÞ ¼ 1

4
� ~f4ðmÞ þ f3ðmÞ:

(A16)
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