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We explore the question of what happens with the asymptotically highly damped quasinormal modes

(‘ fixed, j!Ij ! 1) when the underlying spacetime has no event horizons. We consider the characteristic

oscillations of a scalar field in a large class of asymptotically flat, spherically symmetric, static spacetimes

without (absolute) horizons, such that the class accommodates the cases that are known to be of some sort

of physical interest. The question of the asymptotic quasinormal modes in such spacetimes is relevant to

elucidating the connection between the behavior of the asymptotic quasinormal modes and the quantum

properties of event horizons, as put forward in some recent important conjectures. We prove for a large

class of asymptotically flat spacetimes without horizons that the scalar field asymptotically highly damped

modes do not exist. This provides in our view additional evidence that there is indeed a close link between

the asymptotically highly damped modes and the existence of spacetime horizons (and their properties).
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I. INTRODUCTION

It is a known result [1,2] that in generic static spacetimes
(globally hyperbolic, or not) one can always define (for
reasonable enough initial data) a sensible time evolution of
a scalar field represented by a self-adjoint operator on a
suitable Hilbert space. Many important features of a typical
scattering can be described by a set of characteristic com-
plex frequencies (! ¼ !R þ i!I), the quasinormal modes
(QNMs). In spherically symmetric spacetimes, the quasi-
normal modes are labeled by the wave mode number ‘ and
a discrete number n, such that n grows with the decreasing
damping time of the modes. More than a decade ago, it was
conjectured by Hod [3] that, due to Bohr’s correspondence
principle, the asymptotically highly damped modes (with
the wave mode numbers fixed and j!Ij ! 1) might carry
important information about the quantum properties of
the black hole horizon. The original conjecture of Hod
[3] was modified by Maggiore [4], but the essence of the
conjectures remains the same. The conjecture of Maggiore
[4] was successfully used in the case of many black hole
spacetimes. (For the spherically symmetric black hole
spacetimes, see, for example, Ref. [5].)

Furthermore, one can generically observe that in the
case of static, spherically symmetric black hole spacetimes
the asymptotically highly damped modes always exist and
fulfill certain general patterns [6–9]. This fact can be seen
as a strong support for the conjecture of Maggiore. Thus,
one might be interested in the question of what is going to
happen with the asymptotic highly damped modes in static,
spherically symmetric spacetimes in the case in which
there are no (absolute) horizons. It is very intuitive to

expect that from the point of view of the conjectures in
question [3,4], such asymptotically highly modes might
not exist. The nonexistence of such modes was shown in
one particular case of a spacetime without horizons, in the
case of a Reissner-Nordström naked singularity [10]. Thus,
the result of Chirenti et al. [10] can be seen as supporting
the conjectures that the QNMs might generally relate to the
spacetime horizons in an essential way.1 The aim of this
short paper is to generalize this result to large classes of
asymptotically flat, spherically symmetric, static space-
times without horizons, accommodating all the known
interesting cases. As a result of this fact, this paper should
add much more evidence to support the intuition based on
the mentioned conjectures.

II. STATIC, SPHERICALLY SYMMETRIC
SPACETIMES WITHOUT (ABSOLUTE)

HORIZONS

The metric of a general spherically symmetric, static
spacetime can be cast in the form

ds2 ¼ �fðrÞdt2 þ f�1ðrÞdr2 þ h2ðrÞd�2: (1)

We assume fðrÞ, h0ðrÞ being continuous and almost
everywhere 1-differentiable with bounded first derivatives
everywhere outside the infinitesimal neighborhood of zero.
Furthermore, since the spacetime has no event horizon,
fðrÞ is positive on ð0;1Þ. In order to guarantee an asymp-
totically flat spacetime, one needs the further restrictions
fðrÞ ! 1 and hðrÞ � r for r ! 1. Under the geometry of
Eq. (1), the area of the spherical surface with radius r is
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1Another example of a spacetime without horizons is the pure
anti–de Sitter spacetime, where no quasinormal modes exist;
hence, no asymptotic quasinormal modes exist.
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given by 4�h2ðrÞ, and hence it is natural also to assume
hð0Þ ¼ 0 and h0ðrÞ> 0.

The massless Klein-Gordon time-independent equation
for the metric in Eq. (1) can be cast by introducing the
usual tortoise coordinate xðrÞ:

dr

dx
¼ fðrÞ; (2)

as

ð@2x þ!2 � VðrÞÞ�‘ ¼ 0; (3)

where c ‘ðt; rÞ ¼ exp ð�i!tÞ�‘ðrÞ=hðrÞ, with c ‘ standing
for the spherical harmonic component of the scalar field,
and

VðrÞ ¼ fðrÞ
�
‘ð‘þ 1Þ
h2ðrÞ þ 1

hðrÞ
d

dr

�
fðrÞ d

dr
hðrÞ

��
: (4)

On general grounds, one can expect VðrÞ ! 0 for r ! 1
due to the asymptotic flatness, and a diverging VðrÞ for
r ! 0 due to the centrifugal barrier (at least).

Let us explore the poles of the scattering amplitude that
do not belong to the bound states, the (QNMs). Some
superposition of QNMs dominates the time evolution of
an arbitrary perturbation at a given point within some
specific time scale. In the scattering problem in a spacetime
without horizons, the QNMs are determined by the normal-
mode boundary condition at zero, and at the same time by
the purely outgoing radiation condition at infinity �ei!x.
The reason for this is the following: The Green function is
composed of two solutions, such that each of them fulfills
the given boundary condition at one of the ‘‘ends.’’ (This is
because one requires boundedness of the Green function in
the spatial variables.) Then, the poles of the Green function
(QNMs) occur where the two solutions coincide. (For a
more detailed argumentation, see Ref. [10]. Note also that
by considering only scattering that is reflective, one can
immediately see that two such boundary conditions cannot
be fulfilled at the same time for real frequencies !.)

Unfortunately, since the potential is typically noncom-
pact, and the frequencies ! have negative imaginary
parts (unless instabilities occur), one of the solutions is
exponentially suppressed; whereas the other one, corre-
sponding to the ‘‘outgoing’’ wave, is exponentially
growing, and one has to give the ‘‘outgoing radiation
condition’’ a clearer meaning. (If the potential had a com-
pact support, one could claim the solutions to be directly
proportional to the outgoing waves, but since the plane
waves are only approximations to the solutions as one
approaches infinity, one needs exponential precision in
the error to rule out the ‘‘incoming’’ wave solution.) On
the other hand, the outgoing/incoming wave solutions
behave as A�e�i!xð1þOð1=xÞÞ (see Ref. [11]), so let us
follow the suggestion of Motl and Neitzke [12] by analyti-
cally continuing the solutions in the complex plane in x and
picking the purely outgoing radiation condition on the line

Imð!xÞ ¼ 0 as!x ! 1. (This means we pick the solution
in the region where the two solutions are purely oscillatory
and of comparable sizes.)
The asymptotically highly damped quasinormal fre-

quencies are, with our normal mode convention, charac-
terized by �!I ! 1 and ‘ fixed, implying that the highly
damped quasinormal modes should obey the approximate
equation

ð@2x þ!2Þ�‘ ¼ 0; (5)

everywhere apart from a small neighborhood of r ¼ 0. Of
course, the two linearly independent solutions of Eq. (5)
are plane waves:

�‘ ¼ C1e
i!x þ C2e

�i!x: (6)

The pure outgoing mode at infinity then corresponds to

c ‘ðt; rÞ � e�i!ðt�xðrÞÞ=r; hence it is picked by C2 ¼ 0. For
j!j � 1, the potential [Eq. (4)] will effectively affect the
dynamics of the scalar field only in a region near r ¼ 0.
The crucial point in our analysis is that the dynamics near
r ¼ 0 can be solved and will determine the constants C1

and C2 for j!j � 1 in a way that will prevent the appear-
ance of the quasinormal oscillations. (This is because one
can approximate the scalar field equation everywhere by
the form of the equation near zero, since in the region in
which the approximation of the potential near zero ceases
to hold, one can neglect the potential as a whole with
respect to the !2 term.) Relaxing the condition j!j � 1,
the solution in Eq. (6) will be a good approximation for
Eq. (3) only for large r, and the natural boundary condition
selected by the dynamics near r ¼ 0 can be translated in a
!-dependent relation between the coefficients C1 and C2,
giving rise to a characteristic equation C2ð!Þ ¼ 0 for the
quasinormal modes.
We have basically two different kinds of interesting

spacetimes in our analysis: spherically symmetric stellar
spacetimes [with fð0Þ finite and positive] and naked singu-
larities [fðrÞ � r��, � � 0 ^ � >�1, for r ! 0]. We will
consider them separately, although the analyses are similar.
Some of the cases corresponding to fð0Þ ¼ 0 will be also
left for the concluding section.

A. Stellar spacetimes

The choices fðrÞ � Aþ Br� and hðrÞ �Dr� for r ! 0,
with positive A,D, �, and �, seem generic enough to accom-
modate all known stellar spacetimes. In fact, there are further
restrictions among such constants. The divergent terms of the
Ricci scalar for such choices of fðrÞ and hðrÞ read

R� 2

ðDr�Þ2 � 2�ð3�� 2Þ A
r2

; (7)

for r ! 0. The only way to assure that R is finite for r ! 0
is by demanding that � ¼ 1 and A ¼ D�2. (The stellar
spacetimes must also ensure that the other curvature
invariants will be finite, but we will perform a more general
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analysis by applying only the givenRicci curvature finiteness
condition, which automatically contains regular stellar
spacetimes as its subcase.) With these values, the potential
[Eq. (4)] is given by

VðrÞ � ‘ð‘þ 1Þ
D4r2

þ �B

D2r2��
; (8)

for r ! 0. Notice that the condition thatfð0Þ ¼ D�2must be
finite assures from Eq. (2) that x�D2rþ C for r ! 0. Let
us further choose C ¼ 0, hence xð0Þ ¼ 0. Since � > 0, the
dominant term of the potential near the origin is the centrifu-
gal barrier,

VðxÞ ¼ ‘ð‘þ 1Þ
x2

: (9)

The general solution of Eq. (3) with the potential of Eq. (9) is
given in terms of Bessel functions:

�ðxÞ ¼ ffiffiffiffiffiffiffi
!x

p ðC3J�ð!xÞ þ C4J��ð!xÞÞ; (10)

where in this case � ¼ ‘þ 1=2 and is a noninteger. To
impose the boundary condition at Imð!xÞ ¼ 0, we under-
stand the solution [Eq. (10)] to be analytically continued into
the complex plane in ! � x. Since the solutions are multi-
valued functions of the complex variable ! � x around zero,
their analytical extensions require taking a convenient branch
cut. The branch cut can and will be taken along the half
line where ! � x is real and negative.

Notice that the regularity of the scalar field c ‘ at
the origin and the properties of the Bessel functions close
to zero automatically select the reflection condition
�‘ð0Þ ¼ 0, which corresponds to C4 ¼ 0. The solution
picked at the origin then behaves for !x ! 1 as

ffiffiffiffiffiffiffi
!x

p � J‘þ1=2ð!xÞ �
ffiffiffiffiffiffiffiffiffi�
2

�

�s
cos

�
!x� ð‘þ 1Þ � �

2

�

þO

�
1

x

�
: (11)

This means that the reflection condition imposed on Eq. (6)
implies C1 ¼ �C2, leaving no room for the fulfillment of
the highly damped quasinormal mode condition C2 ¼ 0.

B. Naked singularities

In this case, one has fðrÞ ¼ Br�� and hðrÞ ¼ Dr� for
r ! 0 with positive B, D, �, and � >�1, � � 0. (Again,
such conditions should be fulfilled for a fairly generic naked
singularity, and such a metric is of a Szekeres-Iyer form
[13].) The tortoise coordinate in this case is given near the
radial center as x ¼ ½Bð�þ 1Þ��1r�þ1 [again by setting
xð0Þ ¼ 0], and the potential VðxÞ has two terms near zero:

VðxÞ ¼ P1

x�
þ P2

x2
; (12)

where � ¼ 2�þ�
�þ1 , P1 ¼ ‘ð‘�1Þ

D2½Bð�þ1Þ�� , and P2 ¼ � �
�þ1 �

ð� �
�þ1 þ 1Þ. In the case� 	 2, the potential again behaves

close to zero as�x�2. This case corresponds to �=2þ 1 

�. In the case �> 2, the scalar field equation has an
irregular singular point at the radial center, and much less
can be said about the solutions. We will consider only the
case � 	 2, but this case already includes all the well-
known naked singularity solutions. For � 	 2, unless � is
an integer, the solutions are again given by Eq. (10). If � is
an integer, the solutions are given asffiffiffiffiffiffiffi

!x
p ½C3J�ð!xÞ þ C4Y�ð!xÞ�;

where Y� is a Bessel function of the second kind.

The parameter � is given in the naked singularity case for
�< 2 as

� ¼
��������12�

�

�þ 1

��������;
and for � ¼ 2 and P1 þ P2 >�1=4 as

� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=4þ P1 þ P2

q
:

To determine the quasinormal modes, one has to first
select the normal modes at the origin such that c ‘ð0Þ is
finite. This can be uniquely done for � 
 ð�þ 1Þ=2, which
means that in such case the time evolution of the scalar
field is unique. In case the singularity is too strong and � <
ð�þ 1Þ=2, both of the solutions c ‘ are convergent at zero,
and the time evolution is nonunique. (This means the
singularity has ‘‘hair,’’ and the quasinormal modes depend
on the ‘‘hair.’’) In such case, one can still uniquely choose
normal modes such that fulfill c ‘ð0Þ ¼ 0, corresponding to
a reflective boundary condition at the singularity. This rep-
resents a preferred choice for the time evolution, in the
language of operators corresponding to what is called a
Friedrich’s self-adjoint extension of a symmetric operator.
In case the time evolution is nonunique, we will automati-
cally impose this most natural choice of time evolution. So
in each of the cases, let us proceed exactly as before and
impose the c ‘ð0Þ ¼ 0 condition at the radial center, which
leads (whether� is an integer or noninteger) to the condition
C4 ¼ 0. But by using the asymptotic behavior at !x ! 1
given by Eq. (11), the choice of normal modes leads, exactly
as before, to a nontrivial linear combination of outgoing and
incoming waves, such that it is independent of !. This
means that one cannot fulfill at the same time the boundary
conditions at both ‘‘ends.’’ (For the sake of completeness, let
us say that one can repeat the same analysis with the same
results also for subcases of the case � ¼ 0 and � � 1.)
Let us mention three types of naked singularities of

some interest that fall under our analysis: The negative-
mass Schwarzschild singularity, the vacuum solution of the
Einstein equations, has the parameters given as � ¼ � ¼ 1.
This means � ¼ 3=2< 2 and �=ð�þ 1Þ ¼ 1=2, which
means that the time evolution is in this case unique. The
Reissner-Nordström naked singularity, arising from a cou-
pling between gravity and an electromagnetic field, has the
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parameters given as � ¼ 2 and � ¼ 1, which means � ¼
4=3< 2 and �=ð�þ 1Þ ¼ 1=3< 1=2. This means that in
the case of a Reissner-Nordström naked singularity, the time
evolution is nonunique. The Wyman [14] solution, that pro-
vides a naked singularity arising from a minimal coupling of
gravity to a charged massive scalar field, has (0<�< 1),
� ¼ ð1� �Þ=2 and � ¼ ��. Here� is simply related to the
scalar fieldmass and the scalar field charge. Thismeans� ¼
1� �=ð1� �Þ< 2 and�=ð�þ 1Þ ¼ 1=2. Thus, in the case
of the Wyman solution, the time evolution is unique. Let
us mention here that the same results concerning the unique-
ness of the scalar field time evolutionwere obtained for these
three naked singularities via the language and methods of
functional analysis in Ref. [15]. (Reference [15] also pro-
vides more details about the naked singularities in question.)

III. CONCLUSIONS

Note that the case � 	 �1, for fðrÞ � r�� as r ! 0, is
qualitatively different from the cases analyzed before,
since one has xðrÞ ! �1 for r ! 0. In this case, the light
rays reach the radial center in infinite coordinate time. One
cannot explore the asymptotic properties of the solutions of
Eq. (3) to select the natural boundary conditions at r ¼ 0 in
the same way, and we indeed may have room for the
asymptotically highly damped quasinormal modes. An
infinitesimal-mass Schwarzschild black hole belongs to
this class, for instance.

In this paper, we generalized our previous result from
Ref. [10] to (at least) large classes of spherically sym-
metric, asymptotically flat, static spacetimes without
(absolute) horizons. Our results provide evidence that for
the class of spacetimes in question, the asymptotically
highly damped modes (‘ fixed and j!Ij ! 1) do not
exist. This means that the nonexistence of (absolute)
spacetime horizons could be conjectured to mean the
nonexistence of the asymptotic modes. As mentioned in
the Introduction, it is widely observed [6–9] that the

existence of (absolute) spacetime horizons leads to the
existence of the asymptotic quasinormal modes. One can
then conjecture that the equivalence existence of (abso-
lute) spacetime horizons $ existence of asymptotically
highly damped modes might be completely general, con-
firming the intuition one might have from the currently
popular conjectures linking the modes to the horizon
properties. To our knowledge, our result already covers
all the static, spherically symmetric (asymptotically flat)
spacetimes without horizons that are of some sort of
interest: the (regular) stellar spacetimes of the given type
and the most ‘‘famous’’ static naked singularity solutions.
Note that in the case of spacetimes of a static neutron star,
the computed behavior of the imaginary parts of the
(axial) w-modes (for the fixed ‘) already suggests (see
some of the plots of Ref. [16]) that the absolute values of
the imaginary parts might be upper bounded.
Let us also add that models of a theoretical interest from

the point of view of the topic analyzed in this paper are
gravastars. They behave close to the radial center as the de
Sitter spacetime [17], and hence fall in the stellar case of
this paper, and the quasinormal mode spectrum for fixed ‘
has to be bounded in the imaginary part. One might be
interested in what happens if a sequence of static gravastar
solutions approaches the black hole horizon (that is, a
sequence of mass M gravastars with surface radius R !
2Mþ). One of the possibilities is that the upper bound of
the (�) quasinormal frequency imaginary part grows to
infinity as the horizon is approached; the other possibility
is that there will be a sudden discontinuous qualitative
change once the black hole horizon is reached. (Such a
qualitative change might be seen as a form of ‘‘phase
transition.’’)
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