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Pion propagation in a hadronic fluid with a nonhomogeneous relativistic flow is studied in terms of the

linear sigma model. The wave equation turns out to be equivalent to the equation of motion for a massless

scalar field propagating in a curved spacetime geometry. The metric tensor depends locally on the soft

pion dispersion relation and the four-velocity of the fluid. For a relativistic flow in curved spacetime, the

apparent and trapping horizons may be defined in the same way as in general relativity. An expression for

the analog surface gravity is derived.
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I. INTRODUCTION

In current understanding, the matter created in heavy ion
collisions behaves as a nearly perfect expanding fluid [1]
under extreme conditions of very high density and tem-
perature. This hydrodynamic behavior was observed at
Brookhaven’s Relativistic Heavy Ion Collider (RHIC) and
recently confirmed by the ALICE collaboration in Pb-Pb
collisions at the LHC [2,3]. In high energy collisions the
produced particles are predominantly pions. The agreement
between the pion production results reported in [2] and the
theoretical hydrodynamical model predictions [4] is truly
remarkable. A realistic hydrodynamic model may be con-
structed [5] in which a transverse expansion is superim-
posed on a longitudinal boost invariant expansion [6].

It is often stated by particle physicists that heavy ion
collisions create mini big bangs—events in which matter is
created under extreme conditions of high density and high
temperature resembling the conditions in the early Universe
a fraction of a second after the big bang. The expansion of
hadronic matter that takes place immediately after a heavy
ion collision has a certain similarity with the cosmological
expansion. However, the analogy is rather superficial since
in a cosmological expansion of spacetime after the big
bang, gravity plays the essential role, whereas high energy
collisions and subsequent expansion does not involve grav-
ity at all. Although the Minkowski spacetime with expand-
ing hadronic matter can be mapped into an expanding
spacetime, the resulting spacetime is still flat. However,
we will demonstrate here that in high energy collisions a
much closer analogy with cosmology may be drawn owing
to the effective analog gravity with essentially curved ge-
ometry. Various aspects of analog gravity (for a review and
extensive list of references, see [7]) have been studied in
acoustics [8], optics [9], superfluidity [10], black hole
accretion [11,12], and hadronic fluid near the QCD chiral
phase transition [13]. In this paper we study in detail the
framework of analog gravity provided by a hadronic fluid at

nonzero temperature for the whole range of temperatures
below the chiral phase transition. We show that the analog
cosmological spacetime corresponds to a contracting
Friedmann-Robertson-Walker (FRW) universe with a non-
trivial apparent horizon.
Strongly interacting matter is described at the funda-

mental level by a non-Abelian gauge theory called quan-
tum chromodynamics (QCD). At large distances or small
momenta, QCD exhibits the phenomena of quark confine-
ment and chiral symmetry breaking. At low energies, the
QCD vacuum is characterized by a nonvanishing expecta-
tion value [14]: h �c c i � ð235 MeVÞ3, the so-called quark
condensate, which describes the density of quark-antiquark
pairs found in the QCD vacuum, and its nonvanishing
value is the manifestation of chiral symmetry breaking.
The phenomenological importance of the chiral transition
and possible experimental signatures have been discussed
by Harris and Müller [15].
The chiral symmetry breaking and restoration at finite

temperature may be conveniently studied using the linear
sigma model [16,17] originally proposed as a model for
strong nuclear interactions [18]. Today, the linear sigma
model serves as an effective model for the low energy
(low temperature) phase of QCD. The basic model
involves four scalar fields (three pions and a sigma meson)
and two-flavor constituent quarks. In the chirally symmet-
ric phase at temperatures above the chiral transition point,
the mesons are massive with equal masses and quarks
are massless. In the chirally broken phase, the pions are
massless, whereas the quarks and sigma meson acquire a
nonzero mass proportional to the chiral condensate. At
temperatures below the chiral phase transition point, the
pions, although they are massless, propagate slower than
light [19–21] with a velocity approaching zero at the
critical temperature. Hence, it is very likely that there
exists a region where the flow velocity exceeds the pion
velocity and the analog trapped region may form. In our
previous paper [13], we demonstrated that a region
containing analog trapped surfaces forms near the chiral
phase transition. The purpose of this paper is to study
general conditions for the formation of a trapped region,
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with the inner boundary as a marginally trapped surface
which we refer to as the analog apparent horizon. Our
approach is based on the linear sigma model combined
with a boost invariant Bjorken type spherical expansion.
A similar model has been previously studied in the context
of disoriented chiral condensate [22].

The remainder of the paper is organized as follows. In
Sec. II we describe the properties and the dynamics of the
chiral fluid at finite temperature. The analog geometry of
the expanding chiral fluid is studied in Sec. III, in which we
derive the condition for the analog apparent horizon and
study the analog Hawking effect. In the concluding section,
Sec. IV, we summarize our results and discuss physical
consequences. Finally, in the Appendix we outline basic
notions related to trapped surfaces in black hole physics
and cosmology.

II. CHIRAL FLUID

In this section we focus on the physics of hadrons
at finite temperature and study the properties and the
dynamics of an expanding chiral fluid. We base our study
on a linear sigma model with no fermions which we
describe in Sec. II A. In Sec. II B we calculate the effective
velocity of pions propagating in a chiral medium. We
model the fluid expansion on a boost invariant spherical
expansion of the Bjorken type which we describe in
Sec. II C.

A. Linear sigma model

Consider a linear sigma model at finite temperature in a
general curved spacetime background. For our purpose it is
sufficient to study the model with no constituent fermions.
The thermal bath provides a medium which may have an
inhomogeneous velocity field. The dynamics of mesons
in such a medium is described by an effective chirally
symmetric Lagrangian of the form [23]

L ¼ 1

2
ðag�� þ bu�u�Þ@�’@�’�m2

0

2
’2 � �

4
ð’2Þ2;

(1)

where u� is the velocity of the fluid, and g�� is the

background metric. The mesons ’ � ð�;�Þ constitute
the ð12 ; 12Þ representation of the chiral SUð2Þ � SUð2Þ. The
parameters a and b depend on the local temperature T and
on the parameters of the model m0 and � and may be
calculated in perturbation theory. At zero temperature the
medium is absent, in which case a ¼ 1 and b ¼ 0.

If m2
0 < 0 the chiral symmetry will be spontaneously

broken. At the classical level, the � and � fields develop
nonvanishing expectation values such that at zero temperature

h�i2 þ h�i2 ¼ �m2
0

�
� f2�: (2)

It is convenient to choose here

h�ii ¼ 0; h�i ¼ f�: (3)

At nonzero temperature the expectation value h�i is tempera-
ture dependent and vanishes at the chiral transition point.
Redefining the fields

’ ! ’þ ’0ðxÞ ¼ ð�;�Þ þ ð�0ðxÞ;�0ðxÞÞ; (4)

where �0 and �0 are quantum fluctuations around the
constant values � ¼ 0 and � ¼ h�i, respectively, we obtain
the effective Lagrangian in which the chiral symmetry is
explicitly broken:

L0 ¼ 1

2
ðag�� þ bu�u�Þ@�’0@�’0 �m2

�

2
�02

�m2
�

2
�02 � g�0’02 � �

4
ð’02Þ2: (5)

The fields�0 and�0 correspond to the physical sigma meson
and pions, respectively. The effective masses and the trilinear
coupling g are functions of � defined as

m2
� ¼ m2

0 þ 3��2; m2
� ¼ m2

0 þ ��2; g ¼ ��:

(6)

For temperatures below the chiral transition point the meson
masses are given by

m2
� ¼ 0; m2

� ¼ 2��2; (7)

in agreement with the Goldstone theorem. The temperature
dependence of the chiral condensate � is obtained by mini-
mizing the thermodynamical potential � ¼ �ðT=VÞ lnZ
with respect to � at fixed inverse temperature �. At one
loop order, the extremum condition reads [17]

�2 ¼ f2� � 3
Z d3p

ð2�Þ3
1

!�

nBð!�Þ

� 3
Z d3p

ð2�Þ3
1

!�

nBð!�Þ; (8)

where

!� ¼ jpj; !� ¼ ðp2 þm2
�Þ1=2 (9)

are the energies of the � and � particles, respectively, and

nBð!Þ ¼ 1

e�! � 1
(10)

is the Bose-Einstein distribution function. Equation (8) has
been derived from the zero order thermodynamical potential
with meson masses at one loop order [17]. This approxima-
tion corresponds to the leading order in 1=N expansion,
where N is the number of scalar fields [24]. In our case,
N ¼ 4. The right-hand side of (8) depends on � through the
mass m� given by (7). The behavior of � near the critical
temperature should be analyzed with special care. A straight-
forward solution to (8) as a function of temperature exhibits a
weak first order phase transition [17,25]. However, Pisarski
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and Wilczek have shown on general grounds that the phase
transition in SUð2Þ � SUð2Þ chiral models should be of
second order [26]. Hence, it is generally believed that a first
order transition is an artifact of the one loop approximation.
Two loop calculations [27] make an improvement and
confirm the general analysis of [26]. It is possible to mimic
the second order phase transition even with (8) by making the
�-meson mass temperature independent all the way up to the
critical temperature and equal to its zero temperature mean
field value given by

m2
� ¼ 2�f2�; (11)

instead of (7). We fix the coupling � from the values
of m� and f� for which we take m� ¼ 1 GeV and
f� ¼ 92:4 MeV as a phenomenological input. In Fig. 1 we
plot the solutions to (8) for both temperature dependent and
temperature independent m� exhibiting apparent first and
second order phase transitions, respectively. In the rest of
our paper we employ the solution that corresponds to the
second order phase transition. For our choice of parameters
we find numerically Tc ¼ 182:822 MeV.

The propagation of pions is governed by the equation of
motion

1ffiffiffiffiffiffiffi�g
p @�½ ffiffiffiffiffiffiffi�g

p ðag�� þ bu�u�Þ@��� þ Vð�;�Þ� ¼ 0;

(12)

where

Vð�;�Þ ¼ m2
� þ g�þ �ð�2 þ �2Þ (13)

is the interaction potential. In the comoving reference
frame in flat spacetime, Eq. (12) reduces to the wave
equation �

@2t � c2��þ c2�
a
V

�
� ¼ 0; (14)

where the quantity c�, defined by

c2� ¼
�
1þ b

a

��1
; (15)

is the pion velocity. As we shall demonstrate in the next
section, the constants a and bmay be derived from the finite-
temperature perturbation expansion of the pion self-energy.

B. Pion velocity

At temperatures below the chiral transition point, the
pions are massless. However, the velocity of massless
particles in a medium is not necessarily equal to the
velocity of light—in the chiral fluid pions usually propa-
gate slower than light.1 The pion velocity in a sigma model
at finite temperature has been calculated at one loop level

by Pisarski and Tytgat in the low temperature approxima-
tion [19] and by Son and Stephanov for temperatures close
to the chiral transition point [20,21]. It has been found that
the pion velocity vanishes as one approaches the critical
temperature. Here we summarize the calculation of the
parameters a and b in the entire range of temperatures in
the chiral symmetry broken phase [23].
The pion velocity may be derived from the self-energy

�ðq; TÞ in the limit where the external momentum q ap-
proaches 0. For a flat background geometry g�� ¼ ���,

the inverse pion propagator ��1, derived directly from the
effective Lagrangian (5) as

��1 ¼ aq�q� þ bðq�u�Þ2 �m2
�; (16)

may in the limit q ! 0 be expressed in the form

Z��
�1 ¼ q�q�

� 1

2!
q�q�

�
@

@q�
@

@q�
ð�ðq; TÞ � �ðq; 0ÞÞ

�
q¼0

þ � � � ; (17)

where the ellipsis denotes the terms of higher order in q�.
The q� independent term of the self-energy absorbs in the
renormalized pion mass, equal to zero in the chiral sym-
metry broken phase. The subtracted T ¼ 0 term has been
absorbed in the wave function renormalization factor Z�.
By comparing this equation with Eq. (16), written in the
comoving frame as

��1 ¼ ðaþ bÞq20 � aq2 �m2
�; (18)

80
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FIG. 1. Chiral condensate as a function of temperature for a
temperature independent (full line) and temperature dependent
m� (dashed line), representing a second order phase transition
and first order (discontinuous) phase transition, respectively.
The critical temperature of the second order phase transition is
indicated by Tc.

1If the chiral fermions are present, pions become superluminal in
certain range of temperature and baryon chemical potential [23].
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we can express the parameters a and b, and hence the
pion velocity, in terms of second derivatives of �ðq; TÞ
evaluated at q� ¼ 0. At one loop level the only diagram
that gives a nontrivial q dependence of � is the bubble
diagram. Subtracting the T ¼ 0 term, one finds [21]

�ðqÞ � �ðq; TÞ � �ðq; 0Þ

¼ �4g2
Z d3p

ð2�Þ3
1

2!�2!�;q

�
½nBð!�Þ þ nBð!�;qÞ�

�
�

1

!�;q þ!�

þ 1

!�;q þ!� þ q0

�
þ ½nBð!�Þ

� nBð!�;qÞ�
�

1

!�;q �!�

þ 1

!�;q �!� þ q0

��
;

(19)

where !�;q ¼ ½ðp� qÞ2 þm2
��1=2. Here we take m� to be

a function of � through Eq. (7). A straightforward evalu-
ation of the second derivatives of �ðqÞ at q� ¼ 0 yields

a ¼ 1þ 16g2

m4
�

Z d3p

ð2�Þ3
�
nBð!�Þ
4!�

þ nBð!�Þ
4!�

� 1

3

!2
�

m2
�

�
nBð!�Þ
!�

� nBð!�Þ
!�

��
; (20)

b ¼ 16g2

m4
�

Z d3p

ð2�Þ3
�
!�nBð!�Þ

m2
�

�!�nBð!�Þ
m2

�

þ 1

3

!2
�

m2
�

�
nBð!�Þ
!�

� nBð!�Þ
!�

��
: (21)

The pion velocity c� as given by (15) depends on tempera-
ture explicitly through the thermal distribution function nB
and implicitly through the chiral condensate � given by
Eq. (8). In Fig. 2 we plot c� as a function of temperature
corresponding to two solutions depicted in the left panel.

C. Spherical Bjorken expansion

In order to explore the analogy between the chiral fluid
and cosmological expansions, we consider a boost invari-
ant spherically symmetric Bjorken type expansion [6] in
Minkowski background spacetime. In radial coordinates
x� ¼ ðt; r; #; ’Þ, the fluid velocity is given by

u� ¼ ð	; 	v; 0; 0Þ ¼ ðt=
; r=
; 0; 0Þ; (22)

where v ¼ r=t is the radial three-velocity and 
 ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 � r2

p
is the proper time. Using the so-called radial

rapidity

y ¼ 1

2
ln
tþ r

t� r
; (23)

the velocity is expressed as

u� ¼ ðcosh y; sinh y; 0; 0Þ; (24)

and hence, the radial three-velocity is

v ¼ tanh y: (25)

It is convenient to change ðt; r; #; ’Þ to new coordinates
ð
; y; #; ’Þ via the transformation

t ¼ 
 cosh y; r ¼ 
 sinh y: (26)

In these coordinates the background Minkowski metric
takes the form

g�� ¼

1

�
2

�
2sinh 2y

�
2sinh 2ysin 2#

0
BBBBB@

1
CCCCCA

(27)

and the velocity components become u� ¼ ð1; 0; 0; 0Þ.
Hence, the new coordinate frame is comoving. The metric
(27) corresponds to the Milne cosmological model—a
homogeneous, isotropic, expanding universe with the
cosmological scale a ¼ 
 and negative spatial curvature.
The functional dependence of T on 
 follows from the

energy-momentum conservation. For a perfect relativistic
fluid, the energy-momentum tensor is given by

T�� ¼ ðpþ �Þu�u� � pg��; (28)

where p and � denote, respectively, the pressure and the
energy density of the fluid. From the energy-momentum
conservation

T��
;� ¼ 0 (29)

Tc50                        100                       150

1.0

0.6

0.2

T [MeV]

FIG. 2. Pion velocity as a function of temperature for a
temperature independent (full line) and temperature dependent
m� (dashed line). The critical temperature of the second order
phase transition is indicated by Tc.

NEVEN BILIĆ AND DIJANA TOLIĆ PHYSICAL REVIEW D 87, 044033 (2013)

044033-4



applied to (28), we find

u��;� þ ðpþ �Þu�;� ¼ 0; (30)

where the subscript ;� denotes the covariant derivative
associated with the background metric. Since our fluid is
dominated by massless pions at nonzero temperature, it is a
reasonable approximation to assume the equation of state
p ¼ �=3 of an ideal gas of massless bosons. Then, Eq. (30)
in comoving coordinates reads

@�

@

þ 4�



¼ 0 (31)

with the solution

� ¼ �0

�

0



�
4
: (32)

This expression combined with the density of the pion
gas [28]

� ¼ �2

10
T4; (33)

implies the temperature profile

T ¼ T0


0


: (34)

The constants T0 and 
0 may be fixed from the phe-
nomenology of high energy collisions. For example,
if we choose T0 ¼ 1 GeV, then a typical value of
� ¼ 1 GeV=fm3 at 
 � 5 fm [29] is obtained with

0 ¼ 1:5 fm. In our case, with these values the interesting
range of temperatures T between 100 and 200 MeV cor-
responds to 
 between 15 and 30 fm. In the following we
work with T0 ¼ 1 GeV and keep 
0 unspecified so that
physical quantities of dimension of time or length are
expressed in units of 
0.

III. ANALOG COSMOLOGY

In this section we turn to study the analog metric and
formation and properties of the apparent horizon in an
expanding chiral fluid. To this end we outline the formalism
in the first subsection and derive a condition for the appar-
ent horizon for a general hyperbolic spacetime. In Sec. III B
we derive the analog metric for the expanding chiral fluid
and study the properties of the analog apparent horizon.
Then, in Sec. III C we exploit the Kodama-Hayward defi-
nition of surface gravity to derive the Hawking temperature
as a function of the parameters of the chiral fluid, in
particular, as a function of the local fluid temperature.

A. Radial null geodesics

To study the apparent horizon in an expanding chiral
fluid, we need to examine the behavior of radial null geo-
desics of the analog metric which we shall derive in
Sec. III B. With hindsight, we first consider a spacetime
of the form

ds2 ¼ �ð
Þ2d
2 � �ð
Þ2ðdy2 þ sinh 2yd�2Þ; (35)

where � and � are arbitrary functions of 
. The metric
tensor is

G�� ¼

�2

��2

��2sinh 2y

��2sinh 2ysin 2#

0
BBBBB@

1
CCCCCA:

(36)

This metric represents the class of hyperbolic (k ¼ �1)
FRW spacetimes, including the flat spacetime example
(27). We denote by l

�
þ and l�� the vectors tangent to

outgoing and ingoing affinely parametrized radial null
geodesics normal to a spherical two-dimensional surface
S. The tangent vectors are null with respect to the metric
(36), i.e.,

G��l
�
þl�þ ¼ G��l

��l�� ¼ 0: (37)

Using the geodesic equation

l�r�l
� ¼ 0; (38)

where the symbol r� denotes the covariant derivative

associated with the metric (36), one easily finds the tangent
null vectors corresponding to four types of radial null
geodesics,

l
�
� ¼ q���1ð��1;���1; 0; 0Þ; (39)

tangent to future directed and

l
�
� ¼ ~q���1ð���1;���1; 0; 0Þ; (40)

to past directed null geodesics, where qþ, q�, ~qþ, and ~q�
are arbitrary positive constants. The corresponding affine
parameters �þ and �� for the outgoing and ingoing null
geodesics, respectively, are found to satisfy

d��
d


¼ 1

q�
�� (41)

for future directed and

d��
d


¼ � 1

~q�
�� (42)

for past directed null geodesics. For simplicity, from now
on we set qþ ¼ q� ¼ ~qþ ¼ ~q� ¼ 1.
The null vectors l�þ and l�� point towards increasing

and decreasing y, respectively. Hence, we adopt the usual
convention and refer to l�þ (l��) and the corresponding null
geodesics as outgoing (ingoing) although increasing
(decreasing) y does not necessarily imply increasing
(decreasing) of the radial coordinate r. As we move
along a geodesic, the changes of the coordinates 

and y are subject to the condition ds ¼ 0 of radial null
geodesics, i.e.,
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d
 ¼ ��

�
dy (43)

along the geodesic. Here the signs determine whether y is
increasing or decreasing as we move along the geodesic.
For example, for future directed null geodesics, it follows
from (41) and (43) that an outgoing geodesic is directed
along increasing y, i.e., y increases with �þ, whereas an
ingoing geodesic is directed along decreasing y, i.e., y
decreases with ��.

The key roles in the study of trapped surfaces are played
by the expansion parameters "þ and "�,

"� ¼ r�l
�
�; (44)

of outgoing and ingoing null geodesics, respectively.
Particularly important are the values of "þ and "� and
their Lie derivatives,

d"þ
d��

� l��@�"þ;
d"�
d�þ

� l
�
þ@�"�; (45)

in the neighborhood of a marginally trapped surface. As we
shall shortly demonstrate, the relevant marginally trapped
surface in the expanding chiral fluid is future inner
marginally trapped. According to our convention described
in the Appendix, a two-dimensional surface H is said
to be future inner marginally trapped if the future directed
null expansions on H satisfy the following conditions:
"þjH ¼ 0, l��@�"þjH > 0, and "�jH < 0. The future inner

marginally trapped surface is the inner boundary of a
future trapped region consisting of trapped surfaces with
negative ingoing and outgoing null expansions. From now
on we refer to this surface as the apparent horizon.

From (39) and (40) we find

"� ¼ 2

�2

�
_�

�
� 1

tanh y

�
(46)

for future directed and

"� ¼ 2

�2

�
� _�

�
� 1

tanh y

�
(47)

for past directed radial null geodesics, where the overdot
denotes a partial derivative with respect to 
. The respec-
tive Lie derivatives are given by

d"�
d��

� l
�
�@�"�

¼ 2

�2�2

�
€�

�
� _� _�

��
�
�
1� 1

tanh 2y

�
�2

�2

�
� 2 _�

�2�
"�

(48)

for future directed and

d"�
d��

� l��@�"�

¼ 2

�2�2

�
€�

�
� _� _�

��
þ
�
1� 1

tanh 2y

�
�2

�2

�
þ 2 _�

�2�
"�

(49)

for past directed radial null geodesics.
For a spherically symmetric spacetime, the condition

that one of the null expansions vanishes on the apparent
horizon H is equivalent to the condition that the vector n�,

normal to the surface of spherical symmetry, is null on H.
In other words, the condition

r�l
�jH ¼ 0; (50)

where l� denotes either l�þ or l�þ, is equivalent to the
condition

G��n�n�jH ¼ 0: (51)

This may be seen as follows. For the metric (36) the normal
n� is given by

n� ¼ @�ð� sinh yÞ: (52)

The expansion "þ (or "�) defined in (44) may be written as

r�l
� ¼ 1ffiffiffiffiffiffiffiffi�G

p @�ð
ffiffiffiffiffiffiffiffi�G

p
l�Þ

¼ 1ffiffiffiffiffiffiffi�h
p @�ð

ffiffiffiffiffiffiffi�h
p

l�Þ þ 2

� sinh y
l�n�; (53)

where h denotes the determinant of the metric

h�� ¼ �2 0

0 ��2

 !
; (54)

of the two-dimensional space normal to the surface of
spherical symmetry. It may be shown that the first term
on the right-hand side of (53) vanishes identically by the
geodesic equation. Hence, the expansionr�l

� vanishes on

H if and only if

l�n�jH ¼ 0: (55)

Suppose one of the expansions vanishes onH, i.e., Eq. (55)
holds for either l�þ or l��. Since l� is null, and both l�

and n� are normal to H and hence tangent to the two-
dimensional space ð
; yÞ with the metric (54), Eq. (55)
implies h��n

�n�jH ¼ 0. Hence, r�l
�jH ¼ 0 implies

G��n�n�jH ¼ 0.

To prove the reverse it is sufficient to show that

l�þn� � 0 and l��n� � 0 implies h��n
�n� � 0, which

may be easily shown for a general two-dimensional metric
in diagonal gauge. Then, the following statement holds: the

vanishing of h��n
�n� on H implies either l�þn�jH ¼ 0 or

l��n�jH ¼ 0. This, together with (53), implies either

"þjH ¼ 0 or "�jH ¼ 0.
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Either from (50) or (51) one finds the condition for the
apparent horizon

_�

�
� 1

tanh y
¼ 0: (56)

B. Analog horizons

Next we derive the analog metric and define the analog
Hubble and the apparent horizons. Equation (12) may be
written in the form [11,30,31]

1ffiffiffiffiffiffiffiffi�G
p @�ð

ffiffiffiffiffiffiffiffi�G
p

G��Þ@�� þ c2�
a
Vð�;�Þ� ¼ 0; (57)

with the analog metric tensor, its inverse, and its determi-
nant given by

G�� ¼ a

c�
½g�� � ð1� c2�Þu�u��; (58)

G�� ¼ c�
a

�
g�� �

�
1� 1

c2�

�
u�u�

�
; (59)

G ¼ a4

c2�
g: (60)

Hence, the pion field propagates in a (3þ 1)-dimensional
effective geometry described by the metric G��.

In the comoving coordinate frame defined by the coor-
dinate transformation (26), the velocity is u� ¼ ð1; 0; 0; 0Þ
and, as a consequence, the analog metric (58) is diagonal

G�� ¼ a

c�

c2�

�
2

�
2sinh 2y

�
2sinh 2ysin 2#

0
BBBBB@

1
CCCCCA:

(61)

Here, the parameters a and c� are functions of the
temperature T, which in turn is a function of 
. In the
following we assume that these functions are positive.
The metric (61) is precisely of the form (36) with

�ð
Þ ¼ ffiffiffiffiffiffiffiffiffi
ac�

p
; �ð
Þ ¼ 


ffiffiffiffiffiffi
a

c�

s
: (62)

The physical range of 
 is fixed by Eq. (34), since the
available temperature ranges are between T ¼ 0 and
T ¼ Tc. Hence, the proper time range is 
c 	 
 <1,
where the critical value 
c is related to the critical
temperature as 
c=
0 ¼ T0=Tc. The metric is singular at

 ¼ 
c.

In Fig. 3 we plot the expansions "þ and "� of outgoing
and ingoing radial null geodesics, respectively, as functions
of r for an arbitrarily chosen fixed time t ¼ 6t0 and,
similarly, as functions of y for a fixed 
 ¼ 5:77
0. In the

lower two panels we plot the derivative of the outgoing null
expansion "þ along the ingoing null geodesic. The out-
going null expansion decreases with increasing r from
positive to negative values and vanishes at the point
r ¼ rH, whereas the ingoing null expansion remains nega-
tive. At this point the derivative of "þ with respect to �� is
positive. According to the standard convention described in
the Appendix, the region fr > rH; t ¼ 6
0g is future
trapped and the location rH marks its inner boundary.
Thus, the sphere at rH is future inner marginally trapped.
Spacetime diagrams corresponding to the metric (61) are

presented in Fig. 4, showing future directed radial null
geodesics. The origin in the plot corresponds to the critical
value 
c at which c� vanishes. Numerically, with the
chosen T0 ¼ 1 GeV we have 
c=
0 ¼ 5:47. The geodesic
lines are constructed using

y ¼ �
Z 



c

d
0c�ð
0Þ=
0 þ const; (63)

which follows from (43) with (62). As mentioned in
Sec. III A, increasing (decreasing) y does not necessarily
imply increasing (decreasing) of the radial coordinate r.
With the help of the coordinate transformation (26) the
shift dy along a geodesic may be expressed in terms of dr,

dy ¼ c�
ðc� � vÞ
 cosh y dr; (64)

where we have used (25) and (62). We note that if v < c�,
increasing (decreasing) y corresponds to increasing
(decreasing) r for both signs, whereas if v > c� increasing
y corresponds to increasing r for an outgoing and decreas-
ing r for an ingoing geodesic.
Using (63) we introduce null coordinates

w ¼ 1

2

�
yþ

Z 



c

d
0�ð
0Þ=�ð
0Þ
�

(65)

and

u ¼ 1

2

�
�yþ

Z 



c

d
0�ð
0Þ=�ð
0Þ
�
; (66)

ranging in the intervals ½0;þ1Þ and ð�1;þ1Þ, respec-
tively, with a condition 0 	 w� u <1. In these coordi-
nates the metric (35) becomes

ds2 ¼ �2ð4dudw� sinh 2ðw� uÞd�2Þ: (67)

The singularity at 
 ¼ 
c is mapped onto the entire
uþ w ¼ 0 line. Next, we compactify the spacetime using
the coordinate transformation

W ¼ tanhw; U ¼ tanh u: (68)

The coordinates W and U range in the intervals [0, 1] and
[� 1, 1], respectively, with a condition 0 	 W �U 	 2.
Furthermore, the rotation
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T ¼ 1ffiffiffi
2

p ðW þUÞ; R ¼ 1ffiffiffi
2

p ðW �UÞ (69)

brings the metric to a conformally flat form

ds2 ¼ 2�2

ð1�U2Þð1�W2Þ ½dT
2 � dR2 � R2d�2�; (70)

where both coordinates R and T range in the interval

[0,
ffiffiffi
2

p
] with a condition Rþ T 	 ffiffiffi

2
p

. The conformal
diagram representing our analog spacetime is depicted in
Fig. 5. The singularity at 
 ¼ 
c is mapped onto the seg-

ment [0,
ffiffiffi
2

p
] on the horizontal axis.

The coordinate transformation

t0 ¼
Z

�d
 (71)

brings the metric (61) to the standard form of an open
k ¼ �1 FRW spacetime metric with the cosmological time
t0. The time coordinate t0 is related to the original time t via

 and the transformation (26). The analog cosmological
scale is aðt0Þ ¼ �ð
ðt0ÞÞ=r0, where the constant r0 is related
to the spatial Gaussian curvature K ¼ �1=r20. The proper

distance is dp ¼ �y and the analog Hubble constant is

H ¼ _�

��
; (72)

where the overdot denotes a partial derivative with respect
to 
. Then, we define the analog Hubble horizon as a
two-dimensional spherical surface at which the magnitude
of the analog recession velocity

vrec ¼ Hdp ¼ y
_�

�
(73)

equals the velocity of light. Hence, the condition

y ¼ �

j _�j (74)

defines the location of the analog Hubble horizon. Note
that the radial fluid velocity v in (25) and the analog
recession velocity (73) are quite distinct quantities—in
an expanding fluid v is always positive and less than the
velocity of light c ¼ 1, whereas vrec may be positive or
negative depending on the sign of _� and its magnitude may
be arbitrarily large.
A two-dimensional spherical surface on which the radial

velocity v equals the velocity of pions c� defines another
horizon, which we refer to as the naive Hubble horizon.
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FIG. 3. Null expansions "þ and "� as functions of r (top left panel) and y (top right panel) for fixed t ¼ 6
0 and fixed 
 ¼ 5:77
0,
respectively. Similarly, the bottom panels depict the derivative of "þ as functions of r and y for fixed t and 
, respectively.

NEVEN BILIĆ AND DIJANA TOLIĆ PHYSICAL REVIEW D 87, 044033 (2013)

044033-8



This horizon is obviously distinct from the analog Hubble
horizon defined above. The evolution of the naive and the
analog Hubble horizons with 
 are depicted in Fig. 4.

Next we introduce the concept of an analog marginally
trapped surface or analog apparent horizon, following
closely the general considerations of Sec. III A and the
Appendix. The formation of an analog apparent horizon
in an expanding hadronic fluid is similar to the formation
of a black hole in a gravitational collapse, although the

role of an outer trapped surface is exchanged with that
of an inner trapped surface. Unlike a black hole in
general relativity, the formation of which is indicated by
the existence of an outer marginally trapped surface, the
formation of an analog black (or white) hole in an expand-
ing fluid is indicated by the existence of a future or past
inner marginally trapped surface.
Equation (56) with (62) defines a hypersurface which we

refer to as the analog trapping horizon. Any solution to
Eq. (56), e.g., in terms of r for fixed t, gives the location of
the analog apparent horizon rH. For example, the radius
rH ¼ 1:53
0 computed using (56) for fixed t ¼ 6t0 is the
point of vanishing outgoing null expansion which marks the
location of the apparent horizon in the top left panel of Fig. 3.
From (46) it follows that the region of spacetime for which

tanh y 
 j�= _�j (75)

is trapped. It is future trapped if _�< 0 and past trapped if
_�> 0. The condition (75) can be met only if j�= _�j 	 1,
which holds for
 between
c and
max . At
 ¼ 
max wehave
j�= _�j ¼ 1, so the endpoint of the trapping horizon in Fig. 4
is at 
 ¼ 
max , tanh y ¼ 1.
We find that _� is negative for 
 in the entire range


c 	 
 	 
max and, according to (72), the analog Hubble
constant is always negative. Hence, our analog cosmologi-
cal model is a contracting FRW spacetime with a negative
spatial curvature. The shaded area left of the bold line in
Fig. 4 represents the time evolution of the future trapped
region. Note that the analog Hubble horizon is always
behind the apparent horizon, whereas the naive Hubble
horizon may be located ahead of or behind the apparent
horizon, depending on the magnitude of _�. The naive
Hubble and apparent horizons coincide if a and c� are 

independent constants.
The apparent horizon is generally not a Killing horizon

and normally does not coincide with the event horizon
(one exception is de Sitter spacetime). Moreover, the
apparent horizon exists in all FRW universes [32], whereas
the event horizon does not exist in eternally expanding FRW
universes with the equation of state w>�1=3 (see, e.g.,
[33]). For the metric (61), the event horizon is defined by

y ¼
Z 1



d
0

c�ð
0Þ

0

: (76)

In our chiral fluid model, the integral on the right-hand side
diverges at the upper limit because c� ! 1 as 
 ! 1 and
hence, the analog event horizon does not exist. In contrast,
as we have demonstrated, the analog apparent horizon does
exist.

C. Analog Hawking effect

One immediate effect related to the apparent horizon is
the Hawking radiation. Unfortunately, in a nonstationary
spacetime, the surface gravity associated to the apparent
horizon is not uniquely defined [34]. Several ideas have

FIG. 5. Conformal diagram for the analog spacetime described
by the metric (61). The lines parallel to the W and U axes are
future directed outgoing and ingoing null geodesics, respec-
tively. The singularity at 
 ¼ 
c is represented by the wavy
line and the apparent horizon by the full line. The shaded area in
between represents the evolution of the trapped region. The
spacelike and future timelike infinities are denoted by i0 and
iþ, respectively. The future null infinity Iþ is represented by the
line T þ R ¼ ffiffiffi

2
p

.

0.8

0.6

0.4

0.2

0.0

1.0

5.5                                         6.0                                          6.5

ytanh

FIG. 4. Spacetime diagram of outgoing (full line) and ingoing
(dashed line) radial null geodesics in ð
; yÞ coordinates.
The shaded area represents the evolution of the trapped region.
The trapping horizon is represented by the full bold line with the
endpoint at 
 ¼ 
max ¼ 6:0182
0. The dashed and dash-dotted
bold lines represent the evolution of the analog and naive Hubble
horizons, respectively.
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been put forward about how to generalize the definition of
surface gravity for the case when the apparent horizon does
not coincide with the event horizon [35–38]. In this paper
we use the prescription of [38], which we have adapted to
analog gravity in our previous paper [13]. This prescription
involves the so-called Kodama vector K� [39] which
generalizes the concept of the time translation Killing
vector to nonstationary spacetimes. The analog surface
gravity � is defined by

� ¼ 1

2

1ffiffiffiffiffiffiffi�h
p @�ð

ffiffiffiffiffiffiffi�h
p

h��kn�Þ; (77)

where the quantities on the right-hand side should be
evaluated on the trapping horizon. The metric h�� of the

two-dimensional space normal to the surface of spherical
symmetry and the vector n� normal to that surface are
given by (54) and (52), respectively.

The definition (77) differs from the original expression
for the dynamical surface gravity [38,40] by a normaliza-
tion factor k which we have introduced in order to meet the
requirement that K� should coincide with the time trans-
lation Killing vector � for a stationary geometry. For the
metric (61) with (62) we have found [13]

k ¼ �

�
cosh 2y� sinh 2y


 _�

�

�
: (78)

Then, the definition (77) yields

�¼ v

2�	ð��
 _�v2Þ2 ½�ð _�
2þ� €���2Þ

þ2�2ð
 _���Þvþð� _�2�2
 _�3þ�2
 _�Þv2�; (79)

evaluated on the trapping horizon. The above expression
may be somewhat simplified by making use of the horizon
condition (56). We find

� ¼ c�
2


1þ 2c�vð1� vÞ � ð2þ c�Þv3

	vð1þ c�vÞ2

þ €�

2�

v

	ð1þ c�vÞ2
; (80)

evaluated on the trapping horizon.
It is worthwhile to analyze the limiting case

of (79) when the quantities a and c� are constants. Then
_� ¼ �=
, €� ¼ 0, and the apparent horizon is fixed by the

condition v ¼ c�. At any chosen time t ¼ 
ð1� c2�Þ�1=2,
the horizon is located at rH ¼ c�t and the expression
for � reduces to

� ¼ 1

2t
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� c2�

p
2


: (81)

Hence, the analog surface gravity is finite for any physical
value of c� and is maximal when c� ¼ 0. However, with
c� ¼ 0 the horizon degenerates to a point located at the
origin r ¼ 0.
In the left panel of Fig. 6, we plot � as a function of 
 as

given by (80). The corresponding temperature defined as

TH ¼ �

2�
(82)

represents the analog Hawking temperature of thermal
pions emitted at the apparent horizon as measured by an
observer near infinity. Since the background geometry is
flat, this temperature equals the locally measured Hawking
temperature at the horizon. Thus, Eq. (82) with (79)
corresponds to the flat spacetime Unruh effect.
As we move along the trapping horizon, the radius of the

apparent horizon increases and the Hawking temperature
decreases rapidly with 
. Hence, there is a correlation
between TH and the local fluid temperature T which is
related to 
 by (34). In the right panel of Fig. 6, we show
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FIG. 6. Analog surface gravity as a function of the proper time 
 (left panel) and the corresponding Hawking temperature as a
function of the fluid temperature T (right panel).
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the Hawking temperature TH as a function of the fluid
temperature T at the apparent horizon.

In our previous paper [13], we showed that the surface
gravity diverges as

� ¼ ð�þ 1=2Þð
� 
cÞ�1 (83)

at the singular point where � is a constant related to the

scaling of the quantity
ffiffiffiffiffiffiffiffiffiffiffi
a=c�

p
,ffiffiffiffiffiffi

a

c�

s
/ ðTc � TÞ��; (84)

in the neighborhood of the critical point. The constant �
may be roughly estimated as follows. The estimate of
the function �ðqÞ defined in (19) in the neighborhood of
q� ¼ 0 for small � yields [21]

�ð0; q2Þ � T

�
q2; �ðq0; 0Þ � T2

�2
q20: (85)

By comparing this with (18) we deduce the behavior of the
quantities a and b for small �

a� T

�
; aþ b� T2

�2
: (86)

Then, from (15) the pion velocity goes to zero approxi-

mately as c� / �1=2, whereas the ratio a=c� diverges as

a=c� / ��3=2. From Eq. (8) we find � / ðTc � TÞ1=2 near
the critical point which yields � ¼ 3=8.

Numerically, by fitting
ffiffiffiffiffiffiffiffiffiffiffi
a=c�

p
in the close neighborhood

of Tc to the function (84) with the critical temperature
Tc ¼ 182:822 MeV obtained numerically from (8), we
find � ¼ 0:253. A more refined analysis based on scaling
and universality arguments of Son and Stephanov [20]
yields � ¼ 0:1975 [13].

IV. SUMMARYAND DISCUSSION

We have demonstrated that, owing to the analog gravity
effects in high energy collisions, a close analogy may
be drawn between the evolution of a hadronic fluid and
the spacetime expansion. Using the formalism of relativ-
istic acoustic geometry, we have analyzed the expanding
chiral fluid in the regime of broken chiral symmetry. The
expansion which takes place after the collision is modeled
by spherically symmetric Bjorken type expansion. The
propagation of massless pions in the chiral fluid provides
a geometric analog of expanding spacetime equivalent
to an open (k ¼ �1) FRW cosmology. The geometry
depends on the parameters a and b of the effective
Lagrangian defined in Sec. II. The elements of the analog
metric tensor are functions of the spacetime coordinates
via the temperature dependence of a and the pion velocity
c�. The pions propagate slower than light, with a velocity
close to zero in the neighborhood of the critical point of the
chiral phase transition.

A trapped region forms for radial velocities of the
fluid beyond the value defined by Eq. (56). This value

defines a hypersurface shown in Fig. 4 which we refer
to as the analog trapping horizon, at which the outgoing
radial null expansion vanishes. Our trapping horizon is
foliated by future inner marginally trapped surfaces and
is equivalent to the trapping horizon in contracting FRW
spacetime, i.e., in dynamical spacetime with a negative
Hubble constant. The shaded area in Fig. 4 represents the
time evolution of the future trapped region, with the future
inner marginally trapped surface (or the future apparent
horizons) as its inner boundary. This marginally trapped
surface may be regarded as an ‘‘outer’’ white hole: the
ingoing pions (future directed ingoing null geodesics) freely
cross the apparent horizon whereas the outgoing cannot
penetrate the apparent horizon. This is opposite to an ex-
panding FRW universe where the inner marginally trapped
surface acts as a black hole: the future directed ingoing null
geodesics cannot escape the apparent horizon whereas the
outgoing null geodesics freely cross the apparent horizon.
We have studied the Hawking effect associated with the

analog apparent horizon using the Kodama-Hayward defi-
nition of surface gravity adapted to the analog gravity
geometry. The Hawking temperature correlates with the
local temperature of the fluid at the apparent horizon and
diverges at the critical point. In contrast to the usual
general relativistic Hawking effect, where the Hawking
temperature is tiny compared with the temperature of the
background, the analog horizon temperature is of the order
of or even larger than the local temperature of the fluid.
The most important outcome of our analysis relevant for

particle physics phenomenology is thermal radiation of pions
due to the analogHawking effect. In that regard, it is tempting
to speculate about possible signals for the analog Hawking
effect in high energy collisions. In principle, one could mea-
sure the temperature by fitting the pion spectrum to the
thermal Planck distribution. However, one additional signal
should be invented in order to unambiguously distinguish
between the thermal pions produced above the critical tem-
perature from those emitted as an analog Hawking radiation
from the apparent horizon below the critical temperature.
The analog Hawking radiation of pions should not be

confused with the Hawking-Unruh radiation of hadrons of
Castorina et al. [41]. The latter is a usual Unruh effect due
to the acceleration of quark-antiquark pairs produced in
particle collisions, whereas the former is an analog thermal
radiation due to effective geometry of the chiral fluid.
A spherically symmetric Bjorken expansion model con-

sidered here may be phenomenologically viable as a model
of hadron production in eþe�, but it is certainly not the best
model for description of high energy heavy ion collisions. It
would be desirable to apply our formalism to a more
realistic hydrodynamic model that involves a transverse
expansion superimposed on a longitudinal boost invariant
expansion. In this case the calculations become rather
involved, as the formalism for general nonspherical space-
times is not yet fully developed. This work is in progress.
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In conclusion, we believe that the study of analog grav-
ity in high energy collision may in general improve our
understanding of both particle physics phenomenology and
dynamical general relativistic systems.
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APPENDIX: TRAPPED SURFACES IN
GENERAL RELATIVITY

Following Hayward [37], we summarize here the rele-
vant definitions related to trapped surfaces.

(i) Trapped surface. Let � denote a spacelike hypersur-
face, e.g., a hypersurface defined by t ¼ const.
A two-dimensional surface S � � with spherical
topology is called a trapped surface on � if the
families of ingoing and outgoing null geodesics
normal to the surface are both converging or both
diverging. More precisely, the null expansions "þ ¼
l�þ;� and "� ¼ l��;� on a trapped surface S should

satisfy "þ"� > 0. One distinguishes between a past
trapped surface for which both "þ and "� are posi-
tive, and a future trapped surface for which both "þ
and "� are negative.

(ii) Trapped region: A set of future trapped surfaces
(or closed trapped surfaces [32,42]) on � is referred
to as a future trapped region. Similarly, a set of past
trapped surfaces on� is called a past trapped region.

(iii) Marginally trapped surface: A two-dimensional
surface H is said to be marginally trapped if one
of the null expansions vanishes on H, i.e., if either
"þjH ¼ 0 or "�jH ¼ 0. A marginally trapped sur-
face is also referred to as an apparent horizon
although, strictly speaking, the original definition
of Ellis and Hawking [42] involves in addition the
assumption of asymptotic flatness.

(iv) Outer marginally trapped surface: A surface H
is said to be future (past) outer marginally trapped
if on H the future (past) directed outgoing
null expansion vanishes, its derivative along the

ingoing null geodesic is negative, and the ingoing
null expansion is negative, i.e., if "þjH ¼ 0,
l��@�"þjH < 0, and "�jH < 0. Equivalently, the

future (past) outer marginally trapped surface may
be defined as the surface on which the past (future)
directed ingoing null expansion vanishes, its deriva-
tive along the outgoing null geodesic is negative,
and the outgoing null expansion is positive, i.e., if
"�jH ¼ 0, l

�
þ@�"�jH < 0, and "þjH > 0.

(v) Inner marginally trapped surface: A surface H
is said to be future (past) inner marginally trapped
if on H the future (past) directed outgoing null
expansion vanishes, its derivative along the ingoing
null geodesic is positive, and the ingoing null ex-
pansion is negative, i.e., if "þjH ¼ 0, l��@�"þjH>0,

and "�jH < 0. Equivalently, the future (past) inner
marginally trapped surface may be defined as the
surface on which the past (future) directed ingoing
null expansion vanishes, its derivative along the
outgoing null geodesic is positive, and the out-
going null expansion is positive, i.e., ("�jH ¼ 0,
l�þ@�"�jH > 0, and "þjH > 0).

(vi) Trapping horizon: A hypersurface foliated by
inner or outer marginally trapped surfaces is
referred to as an inner or outer trapping horizon,
respectively.

According to this classification we distinguish four physi-
cally relevant classes:
(1) A future outer marginally trapped surface is the

outer boundary of a future trapped region and is
typical of a black hole.

(2) A past outer marginally trapped surface is the outer
boundary of a past trapped region and is typical of a
white hole.

(3) A future inner marginally trapped surface is the
inner boundary of a future trapped region and
represents an ‘‘outer’’ white hole. This situation is
physically relevant in the cosmological context
for a shrinking universe, i.e., for a FRW spacetime
with _a < 0.

(4) A past inner marginally trapped surface is the inner
boundary of a past trapped region and represents
an ‘‘outer’’ black hole. This situation is physically
relevant in the context of an expanding FRW
universe [32,43].
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