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It has been shown that a nearly extremal black hole can be overcharged or overspun by a test particle if

radiative and self-force effects are neglected, indicating that the cosmic censorship might fail. In contrast,

the existing evidence in literature suggests that an extremal black hole cannot be overcharged or overspun

in a similar process. In this paper, we show explicitly that even an exactly extremal black hole can be

destroyed by a test particle, leading to a possible violation of the cosmic censorship. By considering

higher-order terms, which were neglected in previous analysis, we show that the violation is generic for

any extremal Kerr-Newman black hole with nonvanishing charge and angular momentum. We also find

that the allowed parameter range for the particle is very narrow, indicating that radiative and self-force

effects should be considered and may prevent violation of the cosmic censorship.
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I. INTRODUCTION

If a singularity is not covered by a black hole horizon,
it can be seen by distant observers and is called a
naked singularity. The weak ‘‘cosmic censorship’’ conjec-
ture states that naked singularities cannot be formed by
gravitational collapse with physically reasonable matter
[1]. A precise statement of this conjecture was given in
Ref. [2]. Although a general proof of this conjecture has
not been given, evidence in favor of it has been found and
discussed in the past few decades. One way of testing the
cosmic censorship conjecture is to see whether the black
hole horizon can be destroyed by an object falling into the
black hole. In the seminal work, Wald [3] proved that a
test particle cannot destroy the horizon of an extremal
Kerr-Newman black hole. This work has been revisited
and extended by a number of authors in the last decade
[4–13]. It is worth mentioning that gravitational lensing by
naked singularities has been studied in the past decade
[14,15], making observational test of the cosmic censor-
ship possible.

There were two crucial assumptions inWald’s treatment.
First, the existing black hole is extremal. Second, only
linear terms in the particle’s energy, charge, and angular
momentum are kept in the analysis. By releasing the two
assumptions, Hubeny showed that a nearly extremal
Reissner-Nordstrom (RN) black hole can be overcharged
by a test particle. Recently, Jacobson showed that a nearly
extremal Kerr black hole can be overspun. These results
apparently indicate violations of the cosmic censorship—
at least they point out that the test particle assumption may
not be valid and the radiative and self-force effects should
be considered.

Note that the results in Refs. [4,6] agree with Wald’s in
the extremal limit. So it seems that the cosmic censorship

holds anyway when one tries to overcharge or overspin
extremal black holes. However, an overlooked fact is that
the authors of Refs. [4,5] only considered the RN black
hole and Kerr black hole, respectively, while Wald consid-
ered the combination, i.e., the Kerr-Newman (KN) black
hole. To distinguish from RN and Kerr solutions, we
shall refer to KN black holes as those with nonvanishing
charge and angular momentum. By reexamining Wald’s
arguments, we find that counter examples can be found
if higher-order terms are included in the calculation
(high-order terms have been considered in Refs. [4,6] for
RN and Kerr black holes, but caused no violation to the
cosmic censorship in the extremal cases). This tells us that
the cosmic censorship is not safe even for extremal black
holes. We further find that the allowed range of the parti-
cle’s energy is very small, which means that the particle’s
parameters must be finely tuned. This suggests that radia-
tive and self-force effects are necessary for a complete
proof of the cosmic censorship. Although it is difficult to
perform a full analysis on these effects, notable progress
has been made recently. Barausse et al. [16,17] showed
that, for some orbits, the conservative self-force may have
the right sign to prevent the violation of the cosmic censor-
ship. Most recently, Zimmerman et al. [18] incorporated
the particle’s electromagnetic self-force, and their numeri-
cal results have provided strong evidence supporting the
cosmic censorship.

II. REVIEW OF WALD’S PROOF

In this section, we review the gedanken experiment in
extremal charged Kerr black holes proposed by Wald [3].
Consider the charged Kerr solution,

ds2 ¼ gttdt
2 þ grrdr

2 þ g��d�
2 þ g��d�

2 þ 2gt�dtd�:

(1)

Assume the vector potential is in the form,
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Aa ¼ Atdta þ A�d�a: (2)

A charged particle with mass m and charge q moves in the
spacetime with four-velocity,

ua ¼ _t

�
@

@t

�
a þ _r

�
@

@r

�
a þ _�

�
@

@�

�
a þ _�

�
@

@�

�
a
: (3)

The conserved energy and angular momentum are

E ¼ �taðmua þ qAaÞ; (4)

L ¼ �aðmua þ qAaÞ: (5)

Solving Eqs. (4) and (5) for _t and _�, we have

_t ¼ Eg�� þ gt�Lþ Atg��q� A�gt�q

mðg2t� � g��gttÞ
; (6)

_� ¼ �Egt� þ gttLþ Atgt�q� A�gttq

mðg2t� � g��gttÞ
: (7)

Substituting the two formulas into

gabu
aub ¼ �1 (8)

and solving the quadratic equation for E, we find

E¼�gt�L�qAtg��þqA�gt�
g��

� 1

g��

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðg2t��g��gttÞ½L2�2qLA�þq2A2

�þm2g��ð1þgrr _r
2þg�� _�2Þ�

q
: (9)

Note that ua is future pointing, which implies _t > 0.
Therefore, we should take the plus sign in front of the
square root in Eq. (9). Consequently,

E � �gt�L� qAtg�� þ qA�gt�
g��

: (10)

The Kerr-Newmann metric is given by [19],

gtt ¼ ��� a2sin 2�

�
; (11)

gt� ¼ �asin 2�ðr2 þ a2 � �Þ
�

; (12)

g�� ¼ ðr2 þ a2Þ2 � �a2sin 2�

�
sin 2�; (13)

At ¼ �Qr

�
; A� ¼ Qr

�
asin 2�; (14)

grr ¼ �

�
; (15)

g�� ¼ �; (16)

with

� ¼ r2 þ a2cos 2�; (17)

� ¼ r2 þ a2 þQ2 � 2Mr: (18)

Then at the horizon r ¼ rþ, Eq. (9) is written as

E ¼ aLþ qQr

a2 þ r2
þm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða2 þ 2r2þ þ a2cos 2ð2�ÞÞ2

4ða2 þ r2þÞ2
_r2

s
;

(19)

and thus

E � aLþ qQr

a2 þ r2
: (20)

For an extremal black hole rþ ¼ M, we have

E � aLþ qQM

a2 þM2
: (21)

On the other hand, to destroy the black hole horizon with
M2 ¼ Q2 þ a2, the particle must satisfy

ðEþMÞ2 < ðQþ qÞ2 þ
�
aMþ L

Mþ E

�
2
: (22)

Expanding the last term around E ¼ 0, we have

E2 þM2 þ 2ME<Q2 þ q2 þ 2qQ� ðLþ aMÞ2
M2

þ 2ðLþ aMÞ2E
M3

: (23)

UsingM2 ¼ Q2 þ a2 and keeping the terms linear to q, E,
L, we have

E<
aLþMqQ

M2 þ a2
; (24)

which contradicts Eq. (21). Thus, the cosmic censorship is
upheld if higher-order terms are neglected. In the next
section, we shall see that higher-order terms do not change
this result if one attempts to destroy an extremal Kerr or
RN black hole.

III. KERR AND RN CASES

The above result is derived from a Kerr-Newman black
hole. Now let us consider the following two reduced cases:
(1) Pure Kerr (Q ¼ q ¼ 0, M ¼ a).

Equation (21) reduces to
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E � L

2M
; (25)

and Eq. (22) reduces to

EþM<
M2 þ L

EþM
; (26)

i.e.,

E2 þ 2ME< L; (27)

E<
L

2M
� E2

2M
<

L

2M
; (28)

so no solution can be found.
(2) Pure RN (a ¼ L ¼ 0, M ¼ Q).

Equation (21) reduces to

E � q; (29)

and Eq. (22) reduces to

EþM<Qþ q; (30)

i.e.,

E< q: (31)

Obviously, there is no solution.
Thus, there is no violation of cosmic censorship for

either Kerr black hole or RN black hole, agreeing with
the results of Hubeny et al. [4,6]. Differing from the treat-
ment in Sec. II, no linear approximation has been made in
the above proof.

IV. VIOLATION OF THE COSMIC CENSORSHIP
FOR EXTREMAL KN BLACK HOLES

From the last section, we see that the cosmic censorship
conjecture has passed the test of gedanken experiments in
extremal RN or Kerr black holes, even without linear
approximation. However, it is unknown whether higher-
order terms can lead to a different conclusion for extremal
KN black holes (Q � 0 and a � 0). We first show that the
two inequalities (21) and (22) can be simplified and com-
bined into one. Define

W ¼ ðMþ EÞ2; (32)

and rewrite Eq. (22) as

W2 � ðQþ qÞ2W � ðaMþ LÞ2 < 0: (33)

This means

W1 <W <W2 (34)

with

W1;2 ¼ ðQþ qÞ2 � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðQþ qÞ4 þ 4ðaMþ LÞ2p
2

: (35)

From Eq. (21) we have

W >

�
aLþ qQM

a2 þM2
þM

�
2 � W3: (36)

Obviously, W1 < 0 and W2, W3 > 0. Therefore, the neces-
sary and sufficient condition for both inequalities (21) and
(22) being satisfied is

W2 >W3; (37)

i.e.,

s � W2 �W3 (38)

¼ ðQþ qÞ2 þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðQþ qÞ4 þ 4ðaMþ LÞ2p
2

�
�
aLþ qQM

a2 þM2
þM

�
2

(39)

> 0: (40)

Expanding Eq. (39) out to the second order in q and L, we
find

2a2M2ð3M2 � a2Þ
ða2 þM2Þ3 q2 þM2ð�3a2 þM2Þ

ða2 þM2Þ3 L2

� 2aMQð3M2 � a2Þ
ða2 þM2Þ3 qL > 0: (41)

Now we can estimate the allowed range of E. From

W3 <W <W2; (42)

we see the allowed range of E, denoted by �E, satisfies
2M�E�W2 �W3. Then Eq. (41) suggests that �E is of
order q2=M or L2=M3.
Note that the first term in Eq. (41) is always positive

sinceM2 � a2 for a KN black hole. So Eq. (41) shows that
as long as Q � 0, a � 0, and q � 0, there always exist
solutions if L is sufficiently small. To be specific, we
choose the parameter set to be M ¼ 100, a ¼ 90, and

then Q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 � a2

p
¼ 43:6. We further choose q ¼ 0:1

such that the test body condition q � Q is met. Now s in
Eq. (40) can be treated as a function of L. The plot in Fig. 1
confirms that small values of L always lead to positive s.
For illustration, we take L ¼ 5 and find 4:8944�

10�2 <E< 4:8964� 10�2. So �E� 2� 10�5, which is
comparable to q2=M ¼ 10�4 and L2=M3 ¼ 2:5� 10�5, as
expected.
Next, we show that such a particle can be released from

infinity and falls all the way into the black hole. Since the
metric is axisymmetric, there exist orbits lying entirely in
the equatorial plane � ¼ �=2. For such an orbit, one can
solve Eq. (9) for _r2 and obtain

_r 2 ¼ �VðrÞ; (43)

where the effective potential VðrÞ is given by
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VðrÞ¼� 1

m2r4
ða4E2�2a3ELþq2Q2r2�2EqQr3

þE2r4�L2��m2r2�þ2aLðqQrþEð�r2þ�ÞÞ
þa2ðL2þEð�2qQrþ2Er2�E�ÞÞÞ: (44)

We still choose M ¼ 100, a ¼ 90, q ¼ 0:1, L ¼ 5 as
above, and m ¼ E ¼ 0:048955 such that E is in the

allowed range. Numerical calculation shows that VðrÞ is
negative for all r � rþ (see Fig. 2). It is easy to check that
our choice m ¼ E indicates that the particle stays at rest
relative to a stationary observer at infinity, so this initial
condition is realizable in practice.

V. DISCUSSION AND CONCLUSIONS

We have shown that, without taking into account the
radiative and self-force effects, a test particle may destroy
the horizon of an extremal charged Kerr black hole, result-
ing in an apparent violation of the cosmic censorship. The
violation is generic for any extremal KN black hole. As
shown by Wald [3], there would be no violation if higher-
order terms are neglected. We also show that the energy of
the particle must be finely tuned, i.e., the allowed range of
energy �E is of order q2=M or L2=M3. A similar fine
tuning has been pointed out and discussed in Ref. [7] for
nearly extremal Kerr black holes. Smith and Will [20]
show that a charged particle in Schwarzschild spacetime
will feel a repulsive electrostatic self-force induced by
the spacetime curvature. Consequently, the particle has
an additional self-interacting energy with magnitude
Mq2=r2 [21]. If we use this result to estimate the magni-
tude of the self-force correction to the energy of a particle
outside a RN black hole, it becomes q2=M at the extremal
black horizon r ¼ M, which is the same order as �E we
discussed above. This indicates that the self-force effect is
important in testing the cosmic censorship. Despite the
self-force effect, there is another open issue related to
this scenario. A hidden assumption in the above argument
is that once the black hole absorbs the particle, it will settle
down to a new stationary state. However, this result is not
guaranteed by current theories [7]. So far, all results can
only be taken as some indication that cosmic censorship
might fail.
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