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In the absence of symmetry assumptions most numerical relativity simulations adopt Cartesian

coordinates. While Cartesian coordinates have some desirable properties, spherical polar coordinates

appear better suited for certain applications, including gravitational collapse and supernova simulations.

Development of numerical relativity codes in spherical polar coordinates has been hampered by the need

to handle the coordinate singularities at the origin and on the axis, for example by careful regularization of

the appropriate variables. Assuming spherical symmetry and adopting a covariant version of the

Baumgarte-Shapiro-Shibata-Nakamura equations, Montero and Cordero-Carrión recently demonstrated

that such a regularization is not necessary when a partially implicit Runge-Kutta method is used for the

time evolution of the gravitational fields. Here we report on an implementation of the Baumgarte-Shapiro-

Shibata-Nakamura equations in spherical polar coordinates without any symmetry assumptions. Using a

partially implicit Runge-Kutta method we obtain stable simulations in three spatial dimensions without

the need to regularize the origin or the axis. We perform and discuss a number of tests to assess the

stability, accuracy and convergence of the code, namely weak gravitational waves, ‘‘hydro-without-

hydro’’ evolutions of spherical and rotating relativistic stars in equilibrium, and single black holes.
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I. INTRODUCTION

The first announcements of successful binary black hole
simulations [1–3] marked an important breakthrough in
numerical relativity and triggered a burst of activity in the
field. While most current simulations adopt some variation
of the Baumgarte-Shapiro-Shibata-Nakamura (BSSN) for-
mulation [4–6] together with what have become ‘‘standard
coordinates’’ (namely 1þ log slicing [7] and the ‘‘Gamma-
driver’’ condition [8]), different implementations differ in
many details. Most current, three-dimensional numerical
relativity codes share one feature, though, namelyCartesian
coordinates. While Cartesian coordinates have many desir-
able properties, there are applications, for example gravi-
tational collapse and supernova calculations, for which
spherical polar coordinates would be better suited.1

Implementing a numerical relativity code in spherical
polar coordinates poses several challenges. The first
challenge lies in the equations themselves. The original
version of the BSSN formulation, for example, explicitly
assumes Cartesian coordinates (by assuming that the
determinant of the conformally related metric be one).
This issue has been resolved by Brown [10], who intro-
duced a covariant formulation of the BSSN equations
that is well suited for curvilinear coordinate systems
(compare [11]).

Another challenge is introduced by the coordinate
singularities at the origin and the axis, which introduce
singular terms into the equations. Although the regularity
of the metric ensures that, analytically, these terms cancel
exactly, this is not necessarily the case in numerical appli-
cations, and special care has to be taken in order to avoid
numerical instabilities.
Several methods have been proposed to enforce regular-

ity in curvilinear coordinates. One possible approach is to
rely on a specific gauge, e.g., polar-areal gauge [12,13],
together with a suitable choice of the dynamical variables.
Numerous different such methods have been implemented
in spherical symmetry (see, e.g., Ref. [14] for an overview);
examples in axisymmetry include [12,15,16]. This
approach has some clear limitations. It is not obvious how
to generalize these methods to relax the assumption of
axisymmetry; moreover the restriction of the gauge free-
dom prevents adoption of the ‘‘standard gauge’’ that proved
to be successful in evolutions with the BSSN formulation.
An alternative method is to apply a regularization pro-

cedure, by which both the appropriate parity regularity
conditions and local flatness are enforced in order to
achieve the desired regularity of the evolution equations
(see Refs. [17–24] for examples). Typically, these schemes
involve the introduction of auxiliary variables as well as
finding evolution equations for these variables. The result-
ing schemes are quite cumbersome, which may explain
why, to the best of our knowledge, no such scheme has
been implemented without any symmetry assumptions.
In yet an alternative approach, Cordero-Carrión et al.

[25] recently adopted a partially implicit Runge-Kutta

1Cartesian or spherical polar coordinates are not the only two
possibilities, of course. In particular, multipatch applications,
combining some of the advantages of both, may present an
attractive alternative at least for some applications (see, e.g.,
Ref. [9] for an implementation in numerical relativity).
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(PIRK) method (see also Ref. [26]) to evolve the
hyperbolic, wavelike equations in the fully constrained
formulation of the Einstein equations (see Ref. [11]).
Essentially, PIRK methods evolve regular terms in the
evolution equations explicitly, and then use these updated
values in the source terms for the evolution of the singular
terms. Unlike fully implicit schemes, which evaluate
source terms using updated values of all functions, PIRK
methods do not require matrix inversion, so that the com-
putational cost is similar to that of fully explicit schemes
(see Ref. [27] and Sec. III A below for details). Following
this success, Montero and Cordero-Carrión [28], assuming
spherical symmetry, applied a second-order PIRK method
to the full set of the BSSN Einstein equations in curvilinear
coordinates, and produced the first successful numerical
simulations of vacuum and nonvacuum spacetimes using
the covariant BSSN formulation in spherical coordinates
without the need for a regularization algorithm at the
origin (or without performing a spherical reduction of the
equations, compare [29,30]).

In this paper we present a new numerical code that
solves the BSSN equations in three-dimensional spherical
polar coordinates without any symmetry assumptions. The
code uses a second-order PIRK method to integrate the
evolution equations in time. This approach has the addi-
tional advantage that it imposes no restriction on the gauge
choice. We consider a number of test cases to demonstrate
that it is possible to obtain stable and robust evolutions of
axisymmetric and nonaxisymmetric spacetimes without
any special treatment at the origin or the axis.

The paper is organized as follows. In Sec. II we present
the basic equations; we will review the covariant formula-
tion of the BSSN equations, and will then specialize to
spherical polar coordinates. In Sec. III we will briefly
review PIRK methods and will then describe other specif-
ics of our numerical implementation. In Sec. IV we present
numerical examples, namely weak gravitational waves,
‘‘hydro-without-hydro’’ simulations of static and rotating
relativistic stars, and single black holes. Finally we sum-
marize and discuss our findings in Sec. V. We also include
two appendices; in Appendix A we describe an analytical
form of the flat metric in spherical polar coordinates that
provides a useful test of the numerical implementation of
curvature quantities, while in Appendix B we list the
specific source terms for our PIRK method applied to the
BSSN equations.

Throughout this paper we use geometrized units in
which c ¼ G ¼ 1. Indices a; b; . . . , denote spacetime indi-
ces, while i; j; . . . , represent spatial indices.

II. BASIC EQUATIONS

A. The BSSN equations in covariant form

We adopt Brown’s covariant form [10] of the BSSN
formulation [4–6]. In particular, we write the conformally
related spatial metric ��ij as

��ij ¼ e�4��ij; (1)

where �ij is the physical spatial metric, and e� a conformal

factor. In the original BSSN formulation the determinant ��
of the conformally related metric is fixed to unity, which
completely determines the conformal factor. This approach
is suitable when Cartesian coordinates are used, but not in
more general coordinate systems. We will pose a different
condition on �� below, but note already that

e4� ¼ ð�= ��Þ1=3: (2)

The advantage of this approach is that all quantities in this
formalism may be treated as tensors of weight zero (see
also Ref. [11]). We also denote

�Aij ¼ e�4�

�
Kij � 1

3
�ijK

�
(3)

as the conformally rescaled extrinsic curvature. Slightly
departing from Brown’s approach we assume this quantity
to be trace-free, while Brown allows �Aij to have a nonzero

trace. In the above expression Kij is the physical extrinsic

curvature and K ¼ �ijKij its trace.

Introducing a background connection �̂i
jk (compare

[11]) we now define

��i
jk ¼ ��i

jk � �̂i
jk; (4)

which, unlike the two connections themselves, trans-
form as a tensor field. We also define the trace of these
variables as

��i � ��jk��i
jk: (5)

It is not necessary for the background connection to be
associated with any metric. In Sec. II B below we will
specialize to applications in spherical polar coordinates

and hence will assume that the �̂i
jk are associated with

the flat metric in spherical polar coordinates. This assump-
tion affects the equations in the remainder of this section in
only one way, namely, we will assume that the Riemann

tensor associated with the connection �̂i
jk vanishes, as is

appropriate when the background metric is flat.

Finally, we define the connection vector ��i as a new set
of independent variables that are equal to the��i when the
constraint,

Ci � ��i ���i ¼ 0; (6)

holds. The vector ��i plays the role of the ‘‘conformal

connection functions’’ ��i in the original BSSN formula-

tion, but, unlike the ��i, the ��i transform as a rank-1 tensor
of weight zero (compare exercise 11.3 in Ref. [14]). In the

following we will evolve the variables ��i as independent
variables, satisfying their own evolution equation.
In order to determine the conformal factor e� we specify

the time evolution of the determinant of the conformal
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metric. In this paper we adopt Brown’s ‘‘Lagrangian’’
choice

@t �� ¼ 0: (7)

Defining

@? � @t �L�; (8)

where L� denotes the Lie derivative along the shift vector

�i, we then obtain the following set of evolution equations:

@? ��ij ¼ � 2

3
��ij

�Dk�
k � 2� �Aij; (9a)

@? �Aij ¼ � 2

3
�Aij

�Dk�
k � 2� �Aik

�Ak
j þ � �AijK

þ e�4�½�2� �Di
�Dj�þ 4� �Di� �Dj�

þ 4 �Dði� �DjÞ�� �Di
�Dj�þ �ð �Rij � 8�SijÞ�TF;

(9b)

@?� ¼ 1

6
�Di�

i � 1

6
�K; (9c)

@?K ¼ �

3
K2 þ � �Aij

�Aij � e�4�ð �D2�þ 2 �Di� �Di�Þ
þ 4��ð�þ SÞ; (9d)

@? ��i ¼ ��jkD̂jD̂k�
i þ 2

3
��i �Dj�

j þ 1

3
�Di �Dj�

j

� 2 �Ajkð�i
j@k�� 6��i

j@k�� ���i
jkÞ

� 4

3
� ��ij@jK � 16�� ��ijSj: (9e)

[compare equations (21) in Ref. [10]]. In the above equa-

tions, � is the lapse function, D̂i denotes a covariant
derivative that is built from the background connection

�̂i
jk (and hence, in our implementation, associated with

the flat metric �̂ij in spherical polar coordinates) and the

superscript TF denotes the trace-free part. The matter
sources �, Si, Sij and S denote the density, momentum

density, stress, and the trace of the stress as observed by a
normal observer, respectively, and are defined by

� � nanbT
ab; (10a)

Si � ��ianbT
ab; (10b)

Sij � �ia�jbT
ab; (10c)

S � �ijSij: (10d)

Here

na ¼ ð��; 0; 0; 0Þ (11)

is the normal one-form on a spatial slice, and Tab is the
stress-energy tensor.

We compute the Ricci tensor �Rij associated with ��ij

from

�Rij ¼ � 1

2
��klD̂kD̂l ��ij þ ��kðiD̂jÞ ��k þ ��k��ðijÞk

þ ��klð2��m
kði��jÞml þ��m

ik��mjlÞ: (12)

In all of the above expressions we have omitted terms that

include the Riemann tensor R̂ijk
l associated with the con-

nection �̂i
jk, since these terms vanish for our case of a flat

background.
The Hamiltonian constraint takes the form

H � 2

3
K2 � �Aij

�Aij þ e�4�ð �R� 8 �Di� �Di�� 8 �D2�Þ
� 16�� ¼ 0; (13)

while the momentum constraints can be written as

Mi � e�4�

�
1ffiffiffiffi
��

p D̂jð
ffiffiffiffi
��

p
�Aij

�
þ 6 �Aij@j�

� 2

3
��ij@jK þ �Ajk��i

jkÞ � 8�Si ¼ 0: (14)

[see Eqs. (16) and (17) in Ref. [10]].

We note that when �� ¼ 1 and �̂i
jk ¼ 0, which is suitable

for Cartesian coordinates, the above equations reduce
to the traditional BSSN equations. In the following, how-
ever, we will evaluate these equations in spherical polar
coordinates.
Before the above equations can be integrated, we have

to specify coordinate conditions for the lapse � and
the shift �i. Unless noted otherwise we will adopt a
‘‘nonadvective’’ version of what has become the ‘‘standard
gauge’’ in numerical relativity. Specifically, we use the
‘‘1þ log’’ condition for the lapse [7] in the form

@t� ¼ �2�K; (15)

and the Gamma-driver condition for the shift [8] in the
form

@t�
i ¼ Bi; (16a)

@tB
i ¼ 3

4
@t ��

i; (16b)

(compare [28]). These (or similar) conditions play a key
role in the ‘‘moving-puncture’’ approach to handling black
hole singularities in numerical simulations.

B. Implementation in spherical polar coordinates

We now focus on spherical polar coordinates, and will

assume that the �̂i
jk are associated with the flat metric in

spherical polar coordinates r, �, and �,

�̂ij ¼ 	ij ¼
1 0 0

0 r2 0

0 0 r2sin2�

0
BB@

1
CCA: (17)
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Accordingly, the only nonvanishing components of the
background connection are

�̂r
�� ¼ �r; �̂r

�� ¼ �rsin2�;

�̂�
�� ¼ � sin� cos�; �̂�

r� ¼ r�1;

�̂�
r� ¼ r�1; �̂�

�� ¼ cot�:

(18)

When implementing the above equations in spherical
polar coordinates, care has to be taken that coordinate
singularities do not spoil the numerical simulation. These
singularities appear both at the origin, where r ¼ 0, and on
the axis where sin� ¼ 0. Even for a simple scalar wave,
appearances of inverse factors of r and sin� in the Laplace
operator can pose a challenge for a numerical implemen-
tation. In Sec. III below we discuss a PIRK method (see
also Refs. [25,28]) that handles these singularities very
effectively.

An additional challenge in general relativity is that these
inverse factors of r and sin� appear through the dynamical
variables themselves. Components of the spatial metric, for
example, scale with powers of r and sin�; the inverse
metric then scales with inverse powers of these quantities,
and numerical error affecting these terms may easily spoil
the numerical evolution. It is therefore important to treat
these appearances of r and sin� analytically. We therefore
factor out suitable powers of r and sin� from components
of all tensorial objects.2

We start by writing the conformally related metric ��ij as

the sum of the flat background metric �̂ij and a correction


ij (which is not assumed to be small),

��ij ¼ �̂ij þ 
ij: (19)

The flat metric �̂ij is given by Eq. (17), and we write the

correction 
ij in the form


ij ¼
hrr rhr� r sin�hr�

rhr� r2h�� r2 sin�h��

r sin�hr� r2 sin�h�� r2sin2�h��

0
BB@

1
CCA: (20)

We similarly rescale the extrinsic curvature �Aij as

�Aij ¼
arr rar� r sin�ar�

rar� r2a�� r2 sin�a��

r sin�ar� r2 sin�a�� r2sin2�a��

0
BB@

1
CCA; (21)

and the connection vector ��i as

��i ¼
�r

��=r

��=ðr sin�Þ

0
BB@

1
CCA: (22)

We treat the shift �i and Bi similarly, and finally rewrite
the evolution equations (9) for the coefficients hij, aij
and �i etc.
We compute the connection coefficients (4) from

��i
jk ¼

1

2
��ilðD̂j ��kl þ D̂k ��jl � D̂l ��jkÞ: (23)

Since D̂i�̂jk ¼ 0 we can compute the derivatives of the

spatial metric

D̂i ��jk ¼ D̂i
jk (24)

in terms of the coefficients hij. Direct calculation using the

flat connection (18) yields

D̂r ��rr¼hrr;r;

D̂r ��r�¼ rhr�;r;

D̂r ��r�¼ rsin�hr�;r;

D̂r ����¼ r2h��;r;

D̂r ����¼ r2 sin�h��;r

D̂r ����¼ r2sin2�h��;r;

D̂� ��rr¼hrr;��2hr�;

D̂� ��r�¼ rðhr�;�þhrr�h��Þ;
D̂� ��r�¼ rsin�ðhr�;��h��Þ;
D̂� ����¼ r2ðh��;�þ2hr�Þ;
D̂� ����¼ r2 sin�ðh��;�þhr�Þ;
D̂� ����¼ r2sin2�h��;�;

D̂� ��rr¼hrr;��2sin�hr�;

D̂� ��r�¼ rðhr�;��cos�hr��sin�h��Þ;
D̂� ��r�¼ rsin�ðhr�;�þsin�hrrþcos�hr��sin�h��Þ;
D̂� ����¼ r2ðh��;��2cos�h��Þ;
D̂� ����¼ r2 sin�ðh��;�þsin�hr�þcos�h���cos�h��Þ;
D̂� ����¼ r2sin2�ðh��;�þ2sin�hr�þ2cos�h��Þ: (25)

The (flat) covariant derivative of the connection vector ��i

can similarly be expressed in terms of the �i as

2In an alternative approach, one could represent the metric in
an orthonormal frame, so that the correct powers of r and sin�
are absorbed in the unit vectors.
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D̂r
��r ¼ @r�

r;

D̂�
��r ¼ @��

r � ��;

D̂�
��r ¼ @��

r � sin���;

D̂r
��� ¼ 1

r
@r�

�;

D̂�
��� ¼ 1

r
ð@��� þ �rÞ;

D̂�
��� ¼ 1

r
ð@��� � cos���Þ;

D̂r
��� ¼ 1

r sin�
@r�

�;

D̂�
��� ¼ 1

r sin�
@��

�;

D̂�
��� ¼ 1

r sin�
ð@��� þ sin��r þ cos���Þ:

(26)

Using the above expressions, we can compute the Ricci
tensor (12) as follows. In the first term on the right-hand
side of (12) we write the second covariant derivative of ��ij

as a sum of first partial derivatives of the quantities D̂i ��ij

and (flat) connection terms multiplying the D̂i ��ij,

D̂kD̂l ��ij ¼ @kðD̂l ��ijÞ � ðD̂m ��ijÞ�̂m
lk � ðD̂l ��mjÞ�̂m

ik

� ðD̂l ��imÞ�̂m
jk: (27)

We then insert the expressions (25) into the first term on the
right-hand side and evaluate all derivatives explicitly, so
that these terms can be written in terms of second partial
derivatives of the coefficients hij. Once this step has been

completed, we add those remaining terms for which the flat
background connection (18) is nonzero.

The resulting equations are rather cumbersome, and it is
easy to introduce typos in the numerical code. The numeri-
cal examples of Sec. IV are excellent tests of the code. In
Appendix A we describe another analytical test that we
have found very useful to check our implementation of
curvature quantities.

As a final comment we note that the condition (7)
determines the time evolution of the determinant �� of
the conformally related metric, but not its initial value.
The latter can be chosen freely in this scheme, in par-
ticular it does not need to be chosen equal to that of
the background metric �̂ (unlike in the original BSSN
formulation). For some of our numerical simulations,
however, in particular for the rotating star simulations
of Sec. IVB 2, we found that rescaling the conformally
related metric so that its determinant becomes �̂ ¼
r4sin2� improved the stability of the simulation, so that
it required a smaller coefficient 	 in the Kreiss-Oliger
dissipation term (34) below.

III. NUMERICAL IMPLEMENTATION

A. PIRK methods

The origin of the numerical instabilities in curvilinear
coordinate systems are related to the presence of stiff
source terms in the equations, e.g., factors of 1=r2 or
1=sin2ð�Þ that become arbitrarily large close to the origin
or the axis. In the following we will refer to these terms as
‘‘singular terms.’’ PIRK methods evolve all other, i.e.,
regular, terms in the evolution equations explicitly, and
then use these updated values to evolve the singular terms
implicitly. This strategy implies that the computational
costs of PIRK methods are comparable to those of explicit
methods. The resulting numerical scheme does not need
any analytical or numerical inversion, but is able to provide
stable evolutions due to its partially implicit component.
We refer to Ref. [27] for a detailed derivation of PIRK
methods (up to third order), and limit our discussion here to
a simple description of the second-order PIRK method that
is implemented in our code.
Consider a system of partial differential equations

ut ¼ L1ðu; vÞ; vt ¼ L2ðuÞ þL3ðu; vÞ; (28)

where L1, L2 and L3 are general nonlinear differential
operators. We will denote the corresponding discretized
operators by L1, L2 and L3, respectively. We will further
assume that L1 and L3 contain only regular terms, and
hence will update these terms explicitly, whereas the L2

operator contains the singular terms and will therefore be
treated partially implicitly. Note that L2 is assumed to
depend on u only. In the case of the BSSN equations this
holds for almost all variables; the one exception can be
treated as discussed in the paragraph below Eq. (B6) in
Appendix B, where we provide the exact form of the
source terms.
In our second-order PIRK scheme we update the varia-

bles u and v from an old time step n to a new time step
nþ 1 in two stages. In each of these two stages, we first
evolve the variable u explicitly, and then evolve the vari-
able v taking into account the updated values of u for the
evaluation of the singular L2 operator. For the system of
equations (28), the first stage

uð1Þ ¼ un þ�tL1ðun; vnÞ;

vð1Þ ¼ vn þ �t

�
1

2
L2ðunÞ þ 1

2
L2ðuð1ÞÞ þ L3ðun; vnÞ

�
;

(29)

is followed by the second stage

unþ1 ¼ 1

2
½un þ uð1Þ þ �tL1ðuð1Þ; vð1ÞÞ�;

vnþ1 ¼ vn þ�t

2
½L2ðunÞ þ L2ðunþ1Þ þ L3ðun; vnÞ

þ L3ðuð1Þ; vð1ÞÞ�:

(30)
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In the first stage, u is evolved explicitly; the updated

value uð1Þ is used in the evaluation of the L2 operator for the

computation of vð1Þ. In the second stage, u is again evolved
explicitly, and the updated value unþ1 is used in the evalu-
ation of the L2 operator for the computation of the updated
values vnþ1.

Our PIRK method is stable as long as the time step is
limited by a Courant condition; see Eq. (33) below.

We include all singular terms appearing in the sources of
the equations in the L2 operator. First, the conformal metric
components, hij, the conformal factor, �, the lapse func-

tion, �, and the shift vector, �i, are evolved explicitly (as u
is evolved in the previous PIRK scheme); second, the
traceless part of the extrinsic curvature, aij, and the trace

of the extrinsic curvature, K, are evolved partially implic-
itly, using updated values of �, �i, � and hij; then, the �

i

are evolved partially implicitly, using the updated values of
�, �i, �, hij, aij and K. Finally, Bi is evolved partially

implicitly, using the updated values of the previous quan-
tities. Lie derivative terms and matter source terms are
always included in the explicitly treated parts. In
Appendix B, we give the exact form of the source terms
included in each operator.

B. Numerical grid

We adopt a centered, fourth-order finite-differencing
representation of most spatial derivatives. For each grid
point, the finite-differencing stencil therefore involves the
two nearest neighbors in each direction (see Fig. 1). An
exception from our fourth-order differencing are advective
derivatives along the shift, for which we use a second-order
(one-sided) upwind scheme. Because of the second-order
time evolution, and the second-order advective terms, our
scheme is overall second-order accurate, even though for
some cases with vanishing shift we have found that the
error appears to be dominated by the fourth-order terms.

We adopt a cell-centered grid, as shown schematically in
Fig. 1. Specifically, we divide the physical domain covered
by our grid, 0< r < rmax, 0< �< � and 0<�< 2� into
Nr � N� � N� cells with uniform coordinate size

�r ¼ rmax=Nr; �� ¼ �=N�; �� ¼ 2�=N�:

(31)

Because of our fourth-order finite-differencing scheme we
need to pad the interior grid with two layers of ghost zones.
Except at the outer boundary, each ghost zone corresponds
to some other zone in the interior of the grid (with some
other value of � and �), so that these ghosts zones can be
filled by copying the corresponding values from interior
grid points.

As a concrete example, consider a grid point with an-
gular coordinates � and�, say, in the innermost radial zone
[highlighted by a (blue) filled circle in Fig. 1]. Evaluating
the partial derivative with respect to r at this point requires

two grid points that, formally, have negative radii. We can
fill these two required ghost points by finding the corre-
sponding points in the interior of the grid, which have
angular coordinates �� � and �þ �. Similarly, evaluat-
ing a derivative with respect to � for a point with angular
coordinates ð�;�Þ next to the axis [see the (red) filled
square in Fig. 1] requires ghost points that can be filled
by finding the corresponding grid points with azimuthal
angle �þ � in the interior of the grid.
For scalar functions the corresponding function values

can be copied immediately, but for components of vectors
or tensors, expressed in spherical polar coordinates, a
possible relative sign has to be taken into account.
Essentially, this occurs because, in spherical polar coordi-
nates, the unit vectors may point into the opposite physical
direction when we identify a ghost zone with an interior
point, i.e., when we go from ð�;�Þ to (�� �, �þ �) or
(�, �þ �). We list these relative sign changes, as imple-
mented in our coordinate-based code, in Table I.
We also require two sets of two ghost zones for�, which

can be filled directly using periodicity.
At the outer boundary we also require two ghost zones,

as suggested by the (red) squared stencil in Fig. 1.
We impose a Sommerfeld boundary condition, which is
an approximate implementation of an outgoing wave

FIG. 1 (color online). A schematic representation of our cell-
centered grid structure in spherical polar coordinates, for one
fixed value of �. Grid points, marked by the crosses, are placed
at the center of grid cells, so that no grid point ends up at the
center (r ¼ 0) or on the axes ( sin� ¼ 0 or sin� ¼ �). Our
interior grid, bordered by solid lines in the figure, covers the
region 0 � r � rmax and 0 � � � � (as well as 0 � � � 2�).
As suggested by the two highlighted stencils, our fourth-order
differencing scheme requires two levels of ghost zones outside of
the interior grid, indicated by the dotted lines.
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boundary condition, to fill these ghost zones. We imple-
ment this condition by tracing an outgoing radial character-
istic, assumed to travel with a coordinate speed equal to the
speed of light, from each of the outer boundary grid points
back to the previous time level. We then interpolate the
corresponding function to the intersection of that charac-
teristic and the previous time level, and copy that inter-
polated value, multiplied by a suitable falloff in r, into the
boundary grid point. We assume a falloff with r�1 for all
metric variables (i.e., hij, aij, � and K) as well as the lapse

�, but a r�2 falloff for the shift �i as well as �i.
The PIRK method of Sec. III A is stable as long as the

time step �t is limited by a Courant-Friedrichs-Lewy
condition. In order to evaluate this condition we first find
the smallest coordinate distance�min between any two grid
points in our cell-centered, spherical polar grid. This mini-
mum distance is approximately

�min ¼ minð�r; ð�r=2Þ��; ð�r=2Þ sinð��=2Þ��Þ: (32)

We then set

�t ¼ C�min; (33)

where we have chosen a Courant factor C ¼ 0:4 for all
simulations in this paper. It is a well-known disadvantage
of spherical polar coordinates that the accumulation of grid
points in the vicinity of the origin leads to a very severe
limit on the time step. We will discuss this issue in greater
detail in Sec. V.

We use Kreiss-Oliger [31] dissipation to suppress
the appearance of high frequency noise at late times.
Specifically, we add a term of the form

fKO¼ 	

16�t

�
ð�rÞ4@

4f

@r4
þð��Þ4@

4f

@�4
þð��Þ4 @

4f

@�4

�
(34)

to the right-hand side of the evolution equation for
each dynamical variable f. Here 	 is a dimensionless
coefficient which we have chosen between 0 (for some of

our short-time evolutions) and 0.001 for the rotating
neutron star simulation in Sec. IVB 2.

IV. NUMERICAL EXAMPLES

A. Weak gravitational waves

As a first test of our codes we consider small-amplitude
gravitational waves on a flat Minkowski background.
Following Teukolsky [32] we construct an analytical, lin-
ear solution for quadrupolar (‘ ¼ 2) waves from a function

Fðr; tÞ ¼ Aðr� tÞe�ðr�tÞ2=�2
; (35)

where the constant A is related to the amplitude of the wave
and � to its wavelength (see also Sec. 9.1 in Ref. [14]). We
set � ¼ 1, by which all length scales become dimension-
less. We will consider axisymmetric (m ¼ 0) and non-
axisymmetric (m ¼ 2) modes separately.

1. Axisymmetric waves

We first consider axisymmetric m ¼ 0 waves. Since
these solutions are independent of the coordinate �, we
may choose N� as small as possible (which is N� ¼ 2 in

our code) without loss of accuracy. We also choose a small
amplitude of A ¼ 10�7, so that deviations from the ana-
lytic solution, which is accurate only to linear order in A,
are dominated by our finite-difference error, and not by
terms that are higher order in A.
In the following we show results for a numerical grid

with ð40N; 10N; 2Þ grid points, where N ¼ 1, N ¼ 2 or
N ¼ 4, and imposing the outer boundary at r ¼ 8:0. For
these simulations we used the 1þ log lapse condition (15),
but chose a vanishing shift �i ¼ 0 instead of the Gamma-
driver condition (16).
In Fig. 2 we show snapshots of the metric function hrr at

different instances of time for our highest-resolution simu-
lation withN ¼ 4. For each time, we include the numerical
results as crosses, as well as the analytical solution as a
solid line. The differences between the numerical results
and analytical solution are well below the resolution limit
of this graph, so that the two cannot be distinguished in
this figure.
In Fig. 3 we show a convergence test for these waves.

Specifically, we compute the L2 norm of the difference
between the analytical solution hrr and the analytical
solution,

jj�hrrjj ¼ 1

V

�Z
ðhnumrr � hanarr Þ2dV

�
1=2

; (36)

where V is the coordinate volume of the numerical grid. In
Fig. 3 we show these norms as a function of time forN ¼ 1,
N ¼ 2 andN ¼ 4. The norms are rescaled with a factorN4;
the convergence of the resulting error curves indicates that,
at these early times, before the results are affected by the
outer boundaries, the error is dominated by the fourth-order
differencing of the spatial derivatives. In spherical polar

TABLE I. Parity conditions for components of vectors and
tensors as implemented in our coordinate-based code.
Components of vectors and tensors have to be multiplied with
the corresponding sign when they are copied into ghost zones at
the center or the axis.

Center Axis

Vectors

r � þ
� þ �
� � �

Tensors

rr þ þ
r� � �
r� þ �
�� þ þ
�� � þ
�� þ þ
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coordinates, the Courant condition (33) limits the time step
to such small values that the second-order errors associated
with our PIRK method are smaller than the fourth-order
error of our spatial derivatives (for vanishing shift).

2. Nonaxisymmetric waves

Nonaxisymmetric gravitational waves represent a
rare example of an analytical, time-dependent, three-
dimensional, albeit weak-field solution to the Einstein

equations. Clearly, this solution represents a stringent test
for our code.3

In Fig. 4 we show results for an m ¼ 2 wave, again for
an amplitude A ¼ 10�7. As in Fig. 2, we graph solutions
for hrr as functions of r at different instances of time.
Again, our numerical solution (marked by crosses) can
hardly be distinguished from the analytical solution
(shown as solid lines).

B. Hydro-without-hydro

As a test of strong-field, but regular solutions we con-
sider spacetimes containing relativistic stars. In general,
this requires evolving the stellar matter self-consistently
with the gravitational fields, for example by solving the
equations of relativistic hydrodynamics. Since this is
beyond the scope of this paper, we here adopt the hydro-
without-hydro approach suggested by Ref. [33]. In this
approach, which can also be described as an ‘‘inverse-
Cowling approximation,’’ we leave the matter sources
fixed, and evolve only the gravitational fields. In this
way, it is possible to assess the stability of a spacetime
evolution code, and its capability of accurately evolving
strong but regular gravitational fields in spacetimes with
static matter, without having to worry about the hydro-
dynamical evolution. These simulations serve as both a
test bed and a preliminary step towards fully relativistic

FIG. 4 (color online). Snapshots of the metric coefficient hrr
for a nonaxisymmetric m ¼ 2 small-amplitude gravitational
wave at different instances of time. For this simulation we
used a grid of size ð40; 32; 64Þ and imposed the outer boundary
at rmax ¼ 4:0; we show data as a function of r in the direction
� ¼ 1:62 and � ¼ 3:19. Numerical results are marked by the
crosses, while the analytical solution is shown as the solid line.

FIG. 3 (color online). The norm of the error in the quantity hrr
as a function of time for a small-amplitude, axisymmetric
gravitational wave. We show results for simulations with a
grid of size ð40N; 10N; 2Þ, for N ¼ 1, N ¼ 2 and N ¼ 4, with
the outer boundary imposed at r ¼ 8:0. At these early times,
before the results are affected by the outer boundary, the error
appears to be dominated by the fourth-order differencing of the
spatial derivatives.

FIG. 2 (color online). Snapshots of the metric coefficient hrr
for an axisymmetric m ¼ 0 small-amplitude gravitational wave
at different instances of time. For this simulation we used a grid
of size ð160; 40; 2Þ and imposed the outer boundary at rmax ¼
8:0. We show data as a function of r in the (arbitrary) direction
� ¼ 1:61 and � ¼ 4:71. Differences between the numerical
results (marked by crosses) and the analytical solution (solid
lines) are smaller than the width of the lines in this graph.

3For a code in Cartesian coordinates, even a spherically
symmetric solution represents a stringent test, because the sym-
metry is not reflected by the numerical grid. In our code,
however, numerical expressions simplify for spherical or axi-
symmetric solutions, so that they do not test every aspect of the
code.
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hydrodynamical simulations of stars. In this section we
consider static and uniformly rotating stars separately.

1. Spherical neutron stars

We first consider nonrotating relativistic stars, described
by the Tolman-Oppenheimer-Volkoff solution [34,35]. We
focus on a polytropic Tolman-Oppenheimer-Volkof star
with polytropic index � ¼ 2, and with a gravitational
mass of about 85% of the maximum-allowed mass. For
this model, the central density is about 40% of that of
the maximum mass model. We evolved this star with the
1þ log slicing condition for the lapse (15), but kept the
shift fixed to zero. Because the spacetime is spherically
symmetric, we could choose both N� and N� as small as

possible (N� ¼ N� ¼ 2) without loss of accuracy.

Even for very modest grid resolutions in the radial
direction (e.g., Nr ¼ 40, with the outer boundary imposed
at four times the stellar radius), we found that the gravita-
tional fields settle down into an equilibrium that is similar
to the initial data. After this initial transition, which is
caused by the finite-difference error, the stellar surface as
well as the outer boundaries (see Ref. [33]), the solution
remains stable.

2. Rotating neutron stars

The evolution of the spacetime of a rapidly rotating
relativistic star is a more demanding test than the pre-
vious one, as it breaks spherical symmetry and instead
involves axisymmetric nonvacuum initial data in the
strong gravity regime. The initial data used for this test
are the numerical solution of a stationary and axisym-
metric equilibrium model of a rapidly and uniformly

rotating relativistic star [36], which is computed using
the Lorene code [37].
We consider a uniformly rotating star with the same

� ¼ 2 polytropic equation of state as the nonrotating
model of Sec. IVB 1. Our particular model has the same
central rest-mass density as that nonrotating model, but
rotates at 92% of the allowed mass-shedding limit (for a
star of that central density); expressed in terms of the
gravitational mass M, the corresponding spin period is
approximately 157M. The ratio of the polar to equatorial
coordinate radii for this model is 0.7. For this simulation
we adopted both the 1þ log condition for the lapse (15)
and the Gamma-driver condition for the shift (16).
For this test we adopted a grid of size ð48; 32; 2Þ, and

imposed the outer boundary at 25:5M, which equals four
times the equatorial radius. In Fig. 5 we show the initial
and late-time profiles of the conformal exponent � and the
lapse�, both in a direction close to the equator and close to
the axis. Evidently, both functions remain very close to
their initial values throughout the evolution, as they should.

C. Schwarzschild

In this section we present results for two different simu-
lations involving Schwarzschild black holes. In Sec. IVC1
we evolve a Schwarzschild black hole in a ‘‘trumpet’’
geometry [38–40], which, in the limit of infinite resolution,
is a time-independent solution to the Einstein equations
given our slicing conditions (15). In Sec. IVC 2 we adopt
wormhole initial data and follow the coordinate transition
to a trumpet geometry.

1. Trumpet initial data

Maximally sliced trumpet data [39] represent a time-
independent slicing of the Schwarzschild spacetime that
satisfies our slicing condition (15). The solution can be
expressed analytically in isotropic coordinates, albeit only
in parametrized form [41]. In this section we adopt these
trumpet data as initial data, so that, in the continuum limit,
the solution should remain independent of time.
For trumpet data the conformal factor diverges at r ¼ 0.

While, on our cell-centered grid, functions are never eval-
uated directly at the origin, derivatives in the neighborhood
of the singularity at the origin are clearly affected by the
singular behavior of the conformal factor. However, the
great virtue of the moving-puncture gauge conditions (15)
and (16) is that these errors only affect the neighborhood of
the puncture, and do not spoil the evolution globally
[2,3,38,42]. In the following we will demonstrate these
properties in our code using spherical polar coordinates.
For the simulations presented in this section we adopted

a numerical grid of size ð160N; 2; 2Þ for N ¼ 1, 2, 4 and 8,
with the outer boundary imposed at rmax ¼ 16:0M.
In Fig. 6 we show results for the maximum of the radial

component �r of the shift vector as a function of time.
Specifically, we show the difference between these

FIG. 5 (color online). Snapshots of the conformal exponent �
and the lapse � for a rapidly rotating star (see text for details).
We show both functions both at the initial time, and at a late time
t ¼ 318M. We also show both functions along rays in two
different directions, one very close to the equator, the other
pointing close to the pole. Both profiles remain very similar to
their initial data throughout the evolution.
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maximum values �r
max and their initial values �r

maxjt¼0.
Since our trumpet data represent a time-independent solu-
tion to the Einstein equations and our slicing and gauge
conditions (15) and (16), these differences should converge
to zero as the grid resolution is increased. In Fig. 6 we
multiply the differences with N2; the convergence of the
resulting lines therefore demonstrates second-order con-
vergence of the simulation. Apparently the error in these
simulations is dominated by the second-order advective
terms.

We also note that the outer boundary introduces error
terms that depend on both the grid resolution and the
location of the outer boundary. Since the latter does not
decrease when we increase the grid resolution, the code
converges more slowly in regions that have come into
causal contact with the outer boundary. We therefore
include in Fig. 6 only sufficiently early times, before the
location of the shift’s maximum is affected by the outer
boundary.

2. Wormhole initial data

We now turn to evolutions of wormhole initial data,
representing a horizontal slice through the Penrose dia-
gram of a Schwarzschild black hole. For these data, the
conformal factor is given by

c ¼ 1þM

2r
; (37)

the conformally related metric is flat, ��ij ¼ 	ij, and the

extrinsic curvature vanishes, �Aij ¼ 0 ¼ K. Instead of

choosing the Killing lapse and Killing shift, which would
leave these data time independent, we choose, at t ¼ 0, a
‘‘precollapsed’’ lapse [8]

� ¼ c�2 (38)

and a vanishing shift, �i ¼ 0. We then evolve the lapse and
the shift with the 1þ log condition (15) and the Gamma-
driver condition (16).
Since these initial data do not represent a time-

independent solution to the Einstein equations together
with our gauge conditions, we observe a nontrivial time
evolution that represents a coordinate evolution. For the
nonadvective 1þ log condition (15), this coordinate tran-
sition results in the maximally sliced trumpet geometry
of Sec. IVC 2 [40]. In Fig. 7 we show this coordinate
transition for the conformal exponent �, the lapse � and
the shift �r.
We note that some care has to be taken when the

numerical and analytical results are compared. The ana-
lytical solution of Ref. [41] assumes ��ij ¼ 	ij. We also

choose ��ij ¼ 	ij in our initial data, but this relation is not

necessarily maintained during the time evolution, so that
the numerical and analytical solutions may be represented
in different spatial coordinate systems (but on the same
spatial slice). In order to compare the two solutions we
therefore graph all quantities as a function of the gauge-
invariant areal radius R. Since for wormhole data each
value of R> 2M corresponds to two values of the isotropic
radius r, the initial data in Fig. 7 appear double valued. For
these comparisons with the analytical solution we also
graph the orthonormal component of the shift �r̂ rather

FIG. 6 (color online). The difference between the maximum of
the radial component of the shift vector, �r

max, and its initial
value �r

maxjt¼0, as a function of time. For these simulations we
used a grid of size ð160N; 2; 2Þ for N ¼ 1, 2, 4 and 8, and
imposed the outer boundary at rmax ¼ 16:0M. We rescale all
differences with N2, so that the convergence of these lines
demonstrates second-order convergence in our code.

FIG. 7 (color online). Initial data and final profiles of the
conformal exponent �, the lapse function �, and the shift �r̂,
showing the coordinate transition from wormhole initial data to
time-independent trumpet data. The (blue) long-dashed lines
represent the initial data at t ¼ 0, the (red) dashed lines show
our numerical results at time t ¼ 79M, and the (black) solid lines
show the analytical trumpet solution [41]. The initial data appear
double valued because we graph this function as a function of
the areal radius R (see text for details). For these simulations
we adopted a grid size ð10240; 2; 2Þ with the outer boundary
imposed at r ¼ 256M. (In these graphs we did not include the
innermost two grid points, which are affected by the singular
behavior of the puncture.)
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than the coordinate component �r itself. Figure 7 clearly
shows the coordinate transition from wormhole initial data
to the trumpet equilibrium solution.

In Fig. 8 we show the maximum of the radial shift �r as
a function of time. After a brief period of a coordinate
transition the shift settles down into a new equilibrium. We
show results for grid sizes ð1280N; 2; 2Þ forN ¼ 1, 2, 4 and
8, with the outer boundary imposed at 256M. The graph
shows that differences between the different results
decrease rapidly as the grid resolution is increased. For
our coarser grid resolutions the shift still experiences a

slow drift after the initial transition, but this drift decreases
as the grid resolution is increased.
Finally, in Fig. 9, we show profiles of the violations of

the Hamiltonian constraint (13) at time t ¼ 79M. In this
graph all results are rescaled with N2; the convergence of
the resulting lines demonstrates that the numerical error in
these simulations is again dominated by the second-order
implementations of the advective shift terms, and possibly
the time evolution.

V. DISCUSSION

In this paper we demonstrate that a PIRK method can be
used to solve the Einstein equations in spherical polar
coordinates without any need for any regularization at the
origin or on the axis. Specifically, we integrate a covariant
version of the BSSN equations in three spatial dimensions
without any symmetry assumptions. To the best of our
knowledge, these calculations represent the first successful
three-dimensional numerical relativity simulations using
spherical polar coordinates. We consider several test cases
to assess the stability, accuracy and convergence of the
code, namely weak-field ‘‘Teukolsky’’ gravitational waves,
hydro-without-hydro simulations of static and rotating
relativistic stars, and single black holes.
Spherical polar coordinates have several advantages

and disadvantages over Cartesian coordinates. At least in
single-grid calculations, spherical polar coordinates allow
for a more effective allocation of the numerical grid points
for applications that involve one center of mass, for ex-
ample gravitational collapse of single stars or supernovae.
This is true even for uniform grids, which we adopt in this
paper, but curvilinear coordinate systems also facilitate the
use of nonuniform grids (e.g., a logarithmic radial coor-
dinate) to achieve a high resolution near the origin while
keeping the outer boundary sufficiently far.
Spherical polar coordinates have another strong

advantage over Cartesian coordinates. In simulations of
supernovae or gravitational collapse, for example, the
shape of the stellar objects is not well represented by
Cartesian grids. This mismatch between the symmetry of
the object and the grid creates direction-dependent numeri-
cal errors, which are observed to trigger m ¼ 4 modes that
grow in time. Since spherical polar coordinates mimic the
symmetry of collapsing stars more accurately, we expect
that this problem can at least be reduced with these
coordinates.
However, spherical polar coordinates also have disad-

vantages. One of these disadvantages is of practical nature:
the equations in spherical polar coordinates include many
more terms than those in Cartesian coordinates, which
makes the numerical implementation more cumbersome
and error prone. Spherical polar coordinates also introduce
coordinate singularities that traditionally have created
many numerical problems; but these problems can be
avoided when using a PIRK method.

FIG. 8 (color online). The maximum of the radial shift �r as a
function of time. We show results for different grid sizes
ð1280N; 2; 2Þ for N ¼ 1, 2, 4 and 8, with the outer boundary
imposed at 256M. After a brief transition from the initial data
�r ¼ 0, the shift settles down into a new equilibrium. For
relatively coarse grid resolutions the shift experiences a slow
drift, but this drift disappears as the grid resolution is increased.

FIG. 9 (color online). Profiles of violations of the Hamiltonian
constraint (13) at time t ¼ 79M. As in Fig. 8 we show results for
grid sizes ð1280N; 2; 2Þ for N ¼ 1, 2, 4 and 8, with the outer
boundary imposed at 256M. All results are rescaled with N2; the
convergence of the resulting lines demonstrates second-order
convergence of our code.
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Perhaps the most severe disadvantage of spherical polar
coordinates is caused by the Courant limitation on the time
step. As shown in Eq. (33), the close proximity of grid
points close to the origin limits the size of the time steps�t
to increasingly small values as the resolution is increased.
In three-dimensional simulations, �t decreases approxi-
mately with the product �t / �r����. This is a severe
disadvantage compared to Cartesian coordinates where
typically �t / �xi. However, this problem is not unique
to numerical relativity, and instead is well known from
dynamical simulations in spherical polar coordinates in
any field. Accordingly, several different approaches
to either solving or reducing this problem have been
suggested.

One possible approach is to reduce the grid resolution in
the angular directions close to the origin and the axis.
However, for many applications the angular dependence
of the solution may be independent of the radius, so that
this approach might severely limit the accuracy of the
results. It may also be possible to replace the PIRK method
in a sphere around the origin with a completely implicit
scheme, so that the time step there is no longer limited
by the Courant condition (33). Similar implicit/explicit
‘‘split-by-region’’ schemes have been suggested, for ex-
ample, in Ref. [43] in the context of spectral schemes.
Finally, the ‘‘Yin-Yang’’ method [44,45] mitigates the
restrictions imposed by the Courant condition (33) as
follows. Note that the smallest physical distance between
grid points, which in turn limits the time step �t, occurs
next to the axis. In the Yin-Yang method, the unit sphere is
therefore covered by two different grids that are rotated by
an angle of 90 deg with respect to each other. Each one
covers only a region around its equator, thereby avoiding
the most severe limitation on the time step next to the axis,
but combined both grids cover the entire unit sphere.

Despite the small time step, however, we have been able
to complete all simulations presented in this paper even
with a serial code—in fact, some of our simulations were
performed on a laptop computer.

Finally, we briefly point out that Cartesian and spherical
polar coordinates are not the only two possibilities, of
course. In multipatch applications, in particular, it is pos-
sible to use different types of coordinates in different
regions and thereby combine their respective advantages
(see, e.g., Ref. [9] for an application in numerical relativ-
ity.) However, these schemes also have disadvantages, in
that they introduce complicated grid structures and inter-
face boundary conditions.
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APPENDIX A: A NUMERICAL TEST FOR
CURVATURE QUANTITIES IN SPHERICAL

POLAR COORDINATES

In spherical polar coordinates, in particular in the
absence of any symmetry assumptions, the numerical
implementation of curvature quantities involves a signifi-
cant number of terms that can easily introduce mistakes
(see Sec. II B). One way of testing this part of the numeri-
cal code is to compare with known analytical solutions, for
example for the Schwarzschild metric. However, most
analytical solutions feature symmetries (e.g., spherical
symmetry for Schwarzschild) that simplify the problem
in the spherical polar coordinates of our code. As a con-
sequence, many terms vanish identically for these solu-
tions, so that not all terms in the code are tested. In this
Appendix we describe a simple test that is also analytical,
but is neither spherically nor axially symmetric, and hence
a very stringent test.
Starting with the flat metric in Cartesian coordinates we

introduce a coordinate transformation of each coordinate xi

that only depends on that coordinate itself; the resulting
metric then takes the form

��ij ¼
fðxÞ 0 0

0 gðyÞ 0

0 0 hðzÞ

0
BB@

1
CCA; (A1)

where fðxÞ, gðyÞ and hðzÞ are arbitrary functions.
Transforming this metric into spherical polar coordinates
leads to a metric for which, in general, all coefficients are
nonzero and depend on the coordinates in potentially com-
plicated ways.
In Cartesian coordinates, the only nonvanishing

Christoffel symbols are

��x
xx ¼ ��x

xx ¼ f0ðxÞ
2f

; (A2)

��y
yy ¼ ��y

yy ¼ g0ðyÞ
2g

; (A3)

��z
zz ¼ ��z

zz ¼ h0ðzÞ
2h

; (A4)

where the prime denotes a derivative with respect to the
argument. Given that the ��i

jk transform like tensors, we

can obtain the corresponding coefficients in spherical polar
coordinates with a simple coordinate transformation. For
sufficiently general functions fðxÞ, gðyÞ and hðzÞ, all 18
components of ��i

ij in spherical polar coordinates will

be nonzero. This yields analytical expressions for the
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connection coefficients (23) that can then be compared
with numerical results.

Similarly, the connection functions are given by

��i ¼
�
f0ðxÞ
2f2

;
g0ðyÞ
2g2

;
h0ðzÞ
2h2

�
(A5)

in Cartesian coordinates, and can be transformed into
spherical polar coordinates with a simple coordinate
transformation.

Finally, all components of the Ricci tensor in spherical
polar coordinates should converge to zero, since the metric
(A1) is still flat. In Fig. 10 we show numerical examples for

fðxÞ ¼ 1þ 0:1x2;

gðyÞ ¼ 1þ 0:3y2;

hðzÞ ¼ 1þ 0:5z2:

(A6)

All components of �Rij are nonzero, but converge to zero as

the grid resolution is increased. In the graph we rescale all
results with N4, so that the convergence of the resulting
quantities indicates fourth-order convergence of our imple-
mentation of the Ricci tensor, as expected.

APPENDIX B: DETAILED SOURCE TERMS
INCLUDED IN THE PIRK OPERATORS
FOR THE EVOLUTION EQUATIONS

We evolve the evolution equations, (9), (15), and (16)
using a second-order PIRK method. In this appendix we
provide details on how we split the right-hand sides of
these equations into the explicit and partially implicit
operators.

We start each time step by evolving the conformal
metric components, hij, the conformal factor �, the lapse

function, �, and the shift vector, �i, explicitly, i.e., all the
source terms of the evolution equations of these variables
are included in the L1 operator of the second-order PIRK
method.
We then evolve the traceless part of the extrinsic curva-

ture, aij, and the trace of the extrinsic curvature, K, par-

tially implicitly. More specifically, the corresponding L2

and L3 operators associated with the evolution equations
for aij and K in terms of the original BSSN variable �Aij,

related to aij through Eq. (21), are

L2ð �AijÞ ¼ e�4�½�2� �Di
�Dj�þ 4� �Di� �Dj�

þ 4 �Dði� �DjÞ�� �Di
�Dj�þ � �Rij�TF; (B1)

L3ð �AijÞ ¼ � 2

3
�Aij

�Dk�
k � 2� �Aik

�Ak
j þ � �AijK; (B2)

L2ðKÞ ¼ �e�4�ð �D2�þ 2 �Di� �Di�Þ þ � �Aij
�Aij; (B3)

L3ðKÞ ¼ �

3
K2: (B4)

The �i are evolved partially implicitly, using the updated
values of �, �i, �, hij, aij and K. In terms of the original

BSSN variable ��i, related to �i through Eq. (22), the
operators are

L2ð ��iÞ ¼ ��jkD̂jD̂k�
i þ 1

3
�Di �Dj�

j � 4

3
� ��ij@jK

� 2 �Ajkð�i
j@k�� 6��i

j@k�� ���i
jkÞ; (B5)

L3ð ��iÞ ¼
2

3
��i �Dj�

j: (B6)

We note that the evaluation of the Ricci tensor �Rij in

Eq. (B1) requires updated values of�i before they become
available. It is possible to either replace these updated
values with old values, or to update the �i provisionally
in a purely explicit step, use these values in Eq. (B1), but
then overwrite these values after the �i are updated par-
tially implicitly. We have used the latter approach in the
simulations presented in this paper.
Finally, the Bi are evolved partially implicitly, using the

updated values of the previous quantities,

L2ðBiÞ ¼
3

4
@t ��

i; (B7)

L3ðBiÞ ¼ 0: (B8)

Matter source terms and Lie derivative terms are always
included in the explicitly treated parts.

FIG. 10 (color online). Values of the norms of the components
of the Ricci tensor, jjRijjj, for the flat metric (A1) with functions

(A6), evaluated using grid sizes ð16N; 8N; 16NÞ for N ¼ 1, 2, 4
and 8. All values are rescaled with N4, so that the conver-
gence of these results indicates fourth-order convergence of our
implementation.
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