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The Mathisson-Papapetrou equations in Kerr’s background are considered. The region of existence of

highly relativistic planar circular orbits of a spinning particle in this background and dependence of the

particle’s Lorentz � factor on its spin and radial coordinate are investigated. It is shown that in contrast to

the highly relativistic circular orbits of a spinless particle, the corresponding orbits of a spinning particle

are allowed in a much wider space region. Some of these orbits show the significant attractive action of the

spin-gravity coupling on a particle and others are caused by the significant repulsive action. Numerical

estimates for electrons, protons, and neutrinos in the gravitational field of black holes are presented.
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I. INTRODUCTION

Last year, 2012, was the 75th anniversary of the important
equations in gravitational physics. There are different forms
of the name for these equations in the literature:Mathisson-
Papapetrou equations, Papapetrou, Mathisson-Papapetrou-
Dixon, Papapetrou-Dixon, and rarely Mathisson equations.
In any case, these equations first appeared in the paper by
Mathisson [1]. The second paper, where those equations
were derived by the alternative method, was published by
Papapetrou [2]. Another approach to these equations was
developed by Dixon [3–6], and later many authors elabo-
rated on this subject as well [7–19]. Below we shall use the
term Mathisson-Papapetrou (MP) equations.

The MP equations describe motions of a classical
(nonquantum) spinning particle in the pole-dipole approxi-
mation in a gravitational field according to general relativ-
ity. In the aforementioned papers of Dixon and others, the
generalization of these equations for the higher multipoles
were developed, and this generalization is often dubbed the
Mathisson-Papapetrou-Dixon (or simplyDixon) equations.

Note that the equations for a quantum particle with spin
1=2 in the gravitational field are eight years ‘‘older’’ than
the MP equations. Indeed, in Refs. [20–22] the usual Dirac
equation was generalized for curved spacetime. Much
later, the connection between this equation and the MP
equations was investigated in some papers [23–31], and it
was shown that in a certain sense the MP equations follow
from the general relativistic Dirac equation as a classical
approximation.

The MP equations are considered with some supplemen-
tary condition in order to choose an appropriate represen-
tative world line which can be applied to describe the
spinning particle trajectory. Different conditions are used
in the literature, and the Mathisson-Pirani [1], Tulzcyjew-
Dixon [3,7], and Corinaldesi-Papapetrou [32] conditions
are best known. The vast list of publications where differ-
ent variants of the supplementary conditions were taken
into account is presented in Refs. [33,34]. The first effects

of the spin-gravity interaction following from the MP
equations in Schwarzschild’s background were considered
in Ref. [32] at the Corinaldesi-Papapetrou condition.
According to Ref. [32], the influence of spin on the parti-
cle’s trajectory is too small for practical registration.
A similar conclusion was stressed in the known book
[35] where the MP equations under the Mathisson-Pirani
conditions were discussed. Nevertheless, another supposi-
tion can be found in Ref. [36]: ‘‘The simple act of endow-
ing a black hole with angular momentum has led to an
unexpected richness of possible physical phenomena. It
seems appropriate to ask whether endowing the test body
with intrinsic spin might not also lead to surprises.’’ Paper
[36] together with Ref. [37], where the spin-spin and spin-
orbit gravitational interactions were considered, gave the
impulse for realizing a program of more detailed inves-
tigations of physical effects following from the MP equa-
tions without a priori restrictions on the influence of the
particle’s spin on its trajectory. One of the first results of
this program realization was presented in Ref. [38], where
the specific nonequatorial highly relativistic circular orbits
of a spinning particle in the Kerr background were studied.
Different highly relativistic circular orbits are consid-

ered in investigations of possible synchrotron radiation,
both electromagnetic and gravitational, of protons and
electrons in the gravitational field of a black hole [39–44].
In the theoretical plane, it is known that the highly relativ-
istic circular orbits of a spinless particle are important in
the classification of all possible geodesic orbits in a Kerr
spacetime. Similarly, the highly relativistic circular orbits of
a spinning particle are important in the classification of all
possible nongeodesic orbits in this spacetime as well.
The circular orbits of a spinning particle according to

the MP equations in the Schwarzschild, Kerr, and other
backgrounds were considered in many papers [45–58], and
very highly relativistic orbits were studied in Refs. [59,60].
The purpose of this paper is to present the results of
investigations of highly relativistic equatorial circular
orbits in Kerr’s background which follow from the MP
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equations. Note that in Ref. [59] the corresponding orbits

were considered only near rð�Þ
ph , in some narrow space

region [here rð�Þ
ph is the Boyer-Lindquist radial coordinate

of the counter-rotating circular photon orbits]. In Ref. [60]
we dealt with the Schwarzschild background only. That is,
the present paper can be considered as a development and
generalization of Refs. [59,60]. The main features of the
spin-gravity interaction that are revealed on the circular
orbits will be a good reference for further investigations of
most general motions of a highly relativistic spinning
particle in the Kerr background.

The title of Mathisson’s paper [1] in English is ‘‘New
Mechanics of Material Systems.’’ To understand the sense
of these words, it is necessary to know the main features of
a single spinning particle’s motions in the gravitational
field according to the MP equations, first of all at its high
velocity.

In Sec. II, basic information about the MP equations and
their supplementary conditions is presented. The concrete
form of the algebraic equations which follow from the
exact MP equations for the circular motions of a spinning
particle in the Kerr background is written in Sec. III. The
results of solutions of those equations for different cases of
the spin orientation and the direction of the particle’s
orbital motion on the circular orbits are described in
Secs. IV and V. We conclude in Sec. VI.

II. MATHISSON-PAPAPETROU EQUATIONS
AND SUPPLEMENTARY CONDITIONS

The traditional form of MP equations is [1,2]

D

ds

�
mu� þ u�

DS��

ds

�
¼ � 1

2
u�S��R�

���; (1)

DS��

ds
þ u�u�

DS��

ds
� u�u�

DS��

ds
¼ 0; (2)

where u� � dx�=ds is the particle’s 4-velocity; S�� is
the tensor of spin; m and D=ds are, respectively, the
mass and the covariant derivative with respect to the
particle’s proper time s; and R�

��� is the Riemann curva-

ture tensor (units c ¼ G ¼ 1 are used). Here, and in the
following, latin indices run 1, 2, 3 and greek indices 1, 2, 3,
4; the signature of the metric (� , �, �, þ) is chosen.

In order to describe motions of a concrete point which
represents the motions of the spinning particle as a whole,
it is necessary to supplement Eqs. (1) and (2) with an
additional relationship. The natural point is the particle’s
center of mass, and for its determination most often the
Mathisson-Pirani or Tulczyjew-Dixon conditions are used.
The Mathisson-Pirani condition is the relationship between
S�� and u� [1,61]:

S��u� ¼ 0: (3)

In the Tulczyjew-Dixon condition, instead of u�, the
particle’s 4-momentum P� is written [3,7]

S��P� ¼ 0; (4)

where

P� ¼ mu� þ u�
DS��

ds
: (5)

In general, P� is not parallel to u� and conditions
(3) and (4) are different. Correspondingly, in spite of the
fact that in some cases the solutions of the MP equations
under conditions (3) and (4) are close or even coincide, in
general they are different.
Below in our paper we use the the Mathisson-Pirani

condition. This choice is determined by its physicalmeaning.
First, as it is stressed in Ref. [8], the MP condition arises in a
natural fashion in the course of the derivation. Second, we
take into account the well-argued conclusion from Ref. [62]
concerning the clear and correct physical meaning of this
condition, aswell as the statement that ‘‘Many applications in
thiswork are exampleswhere theMathisson-Pirani condition
is the best choice. . .’’ [63]. One can find more detailed
discussion on this condition in the Introduction of paper [60].
Equations (1) and (2) have the constant of motion

S20 ¼
1

2
S��S

��; (6)

where jS0j is the absolute value of spin. While dealing with
the MP equations in the Schwarzschild and Kerr metrics
with the aim to study possible physical effects caused by
spin-gravity interaction, it is necessary to take into account
the condition for a spinning test particle [37]

jS0j
mr

� " � 1; (7)

where r is the radial coordinate. For a macroscopic spin-
ning test particle relationship, (7) is a direct consequence
of the fact that for this particle jS0j is of the order of
mvrotrpart, where vrot is the rotation velocity of a point at

the particle’s surface and rpart is the radius of the particle,

with the clear conditions vrot < 1 and rpart=r � 1.

III. EQUATIONS FOR CIRCULAR ORBITS
IN KERR’S BACKGROUND

For the general type of spinning particle motions in the
Kerr background, the MP equations are a complicated
system of differential equations [64]. In the partial case
of the circular orbits from those equations, some algebraic
relationships follow, which we consider in this section.
Let us use the Kerr metric in the Boyer-Lindquist coor-

dinates x1 ¼ r, x2 ¼ �, x3 ¼ ’, x4 ¼ t with the nonzero
components of the metric tensor g�� as

g11 ¼ ��2

�
; g22 ¼ ��2;

g33 ¼ �
�
r2 þ a2 þ 2Mra2

�2
sin2�

�
sin2�;

g34 ¼ 2Mra

�2
sin2�; g44 ¼ 1� 2Mr

�2
; (8)
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where

�2 ¼ r2 þ a2cos2�; � ¼ r2 � 2Mrþ a2;

0 � � � �:

(In the following, we shall put a � 0, without any loss in
generality.) Note that the corresponding expressions for the
Christoffel symbols and the Riemann tensor components in
metric (8) can be found, for example, in Ref. [33].

Together with the tensor of spin S��, for different
purposes the 4-vector of spin s� and the 3-vector Si are
used as well, where by definition

s� ¼ 1

2

ffiffiffiffiffiffiffi�g
p

"����u
�S�� (9)

and

Si ¼ 1

2u4

ffiffiffiffiffiffiffi�g
p

"iklS
kl; (10)

here g is the determinant of the metric tensor, and "����

and "ikl are the spacetime and spatial Levi-Civita symbols,
respectively. There is a relationship between Si and s�:

Si ¼ �si þ ui
u4

s4: (11)

Let us consider the possible equatorial circular orbits of
a spinning particle in the equatorial plane � ¼ �=2 of the
Kerr source with

u1 ¼ 0; u2 ¼ 0; u3 ¼ const � 0;

u4 ¼ const � 0; (12)

when spin is orthogonal to this plane, with

S1 � Sr ¼ 0; S2 � S� � 0; S3 � S’ ¼ 0: (13)

Then it is not difficult to show that per (8), (12), and (13) at
condition (3), from Eqs. (2) follows the single nontrivial
relationship

S� ¼ u4S0: (14)

As a result, among the four Eqs. (1) only the first of them
is nontrivial if the parametrization condition u�u

� ¼ 1 is

taken into account. (Note that in the general case of any
metric, the MP equations have the constant of motion
u�u

� ¼ const.) We write this equation using, as in

Refs. [59,64], the dimensionless quantities yi connected
with the particle’s coordinates and 4-velocity by definition

y1 ¼ r

M
; y2 ¼ �; y3 ¼ ’; y4 ¼ t

M
;

y5 ¼ u1; y6 ¼ Mu2; y7 ¼ Mu3; y8 ¼ u4:

(15)

Then the mentioned equation from set (1) can be written as

ð	2 � y31Þy27 � 2	y7y8 þ y28 � 3	"0ðy21 þ 	2Þy27y�2
1 þ 3"0ðy21 þ 2	2Þy7y8y�2

1 � 3	"0y
2
8y

�2
1

þ 	"0ð3y21 þ 	2Þðy31 � 	2Þy47y�3
1 � 	"0

�
1� 2

y1

�
y48y

�3
1 þ "0ðy61 � 3y51 � 3	2y31 þ 9	2y21 þ 4	4Þy37y8y�3

1

þ 	"0ð3y31 � 11y21 � 6	2 þ 2	2y�1
1 Þy27y28y�3

1 þ "0ð4	2 � 4	2y�1
1 � y31 þ 3y21Þy7y38y�3

1 ¼ 0; (16)

where

"0 � S0
mM

; 	 � a

M
; (17)

and a is the Kerr parameter from (8). In contrast to the
value " from (7), which depends on the radial coordinate,
the value "0 from (17) is constant, and thus it is more
convenient in our calculations. Below we put j"0j � 1;
then condition (7) is satisfied for any r of the order ofm and
larger. It is easy to check that for "0 ¼ 0, Eq. (16) corre-
sponds to the equation which follows from the geodesic
equations for the circular orbits of a spinless particle in
Kerr’s background in the Boyer-Lindquist coordinates.

Note that among eight values of yi from (15), only three
of them (namely, y1, y7, and y8) are present in Eq. (16),
because per (12) for the circular motions we have y5 ¼ 0
and y6 ¼ 0. In addition to Eq. (16), the values y1, y7, and y8
are connected by the relationship

�
 
y21þ	2þ2	2

y1

!
y27þ

4	y7y8
y1

þ
 
1� 2

y1

!
y28 ¼ 1; (18)

which follows directly from the condition u�u
� ¼ 1 by

using the notation (15).
Therefore, for any fixed value of the radial coordinate,

i.e., y1, we have the two algebraic equations (16) and (18)
which let us find the values of y7 and y8, in particular, the
values of the orbital particle’s velocity, which are neces-
sary for the motions on the possible circular orbits. We
shall solve Eqs. (16) and (18) using computer calculations.
The corresponding results are presented in the next
sections.
It is known that the geodesic equations in Kerr’s back-

ground admit the highly relativistic circular orbits of a
particle with nonzero mass only in the small neighborhood

of the values rðþÞ
ph and rð�Þ

ph that are the radial coordinates of

the co-rotating and counter-rotating circular photon orbits,
and these values are determined by the algebraic equation
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rðr� 3MÞ2 � 4Ma2 ¼ 0: (19)

Similarly to Refs. [59,60], the figures below show the
dependence of the relativistic Lorentz � factor of a moving
particle as calculated by an observer which is at rest
relative to the Kerr mass. In terms of (15) and (17) the
expression for this � factor for any circular motion in
the equatorial plane is

� ¼
 
1� 2

y1

!
1=2�

y8 þ 2	y7
y1 � 2

!
: (20)

That is, Eq. (20) follows from the general expression for
the 3-velocity components vi of a particle moving relative
to an observer which is at rest relative to Kerr’s mass:

vi ¼ dxiffiffiffiffiffiffiffi
g44

p
�
dtþ g4i

g44
dxi

��1
: (21)

Per (21) it is easy to calculate the absolute value of this
velocity jvj using the expression

jvj2 ¼ viv
i ¼ �ijv

ivj; (22)

where �ij is the 3-space metric tensor which is connected

with g�� by the known relationship

�ij ¼ gij þ
g4ig4j
g44

:

In the case of the circular motions in the Kerr background,
when v1 ¼ 0 and v2 ¼ 0, according to (21) we have

v3 ¼ dx3ffiffiffiffiffiffiffi
g44

p
�
dtþ g4i

g44
dxi

��1 ¼ u3ffiffiffiffiffiffiffi
g44

p
�
u4 þ g43

g44
u3
��1

:

(23)

Then Eq. (20) can be obtained directly from the expression

� ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� jvj2p

, where relationships (22) and (23), and
the explicit expressions for g�� from (8) are taken into

account.

IV. CIRCULAR ORBITS WITH a > 0, S� > 0

For an explanation of all the circular motions of a
spinning particle in the Kerr background, which are pre-
sented below in Figs. 1–16, it is necessary to compare these
motions with some corresponding circular orbits of a
spinning particle in Schwarzschild’s background, which
are illustrated in Figs. 1–5 of paper [60]. In addition, we
take into account some features of the circular motions of a
spinless particle in Kerr’s background which are described
by the geodesic equations. In particular, here we keep
the terminology which is used traditionally for the two
cases of the circular orbits: when the signs of a and
d’=ds are the same (co-rotation) and when these signs
are different (counter-rotation). However, for the circular
orbits of a spinning particle, these cases include the two
subcases, with the particle’s spin ‘‘up’’ and ‘‘down.’’

FIG. 1. Dependence of the Lorentz factor on r for the highly
relativistic circular orbits with d’=ds > 0 of the spinning
particle in Kerr’s background at a ¼ 0:0145M, "0 ¼ 0:01
(solid lines). The dotted line corresponds to the geodesic circular
orbits. Here and in other figures below we use the notation rð�Þ
for rð�Þ

ph and rðþÞ for rðþÞ
ph .

FIG. 3. Lorentz factor vs r for the highly relativistic circular
orbits with d’=ds > 0 of the spinning particle in Kerr’s
background at a ¼ 0:7M, "0 ¼ 0:01.

FIG. 2. Dependence of the Lorentz factor on r for the highly
relativistic circular orbits with d’=ds > 0 of the spinning particle
in Kerr’s background at a ¼ 0:015M, "0 ¼ 0:01 (solid lines).
The dotted line corresponds to the geodesic circular orbits.
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FIG. 4. Lorentz factor vs r for the highly relativistic circular
orbits with d’=ds > 0 of the spinning particle in Kerr’s back-
ground at a ¼ 0:1M, "0 ¼ 0:01.

FIG. 7. Dependence of the Lorentz factor on r for the highly
relativistic circular orbits with d’=ds < 0 of the spinning
particle in Kerr’s background at a ¼ 0:0153M, "0 ¼ 0:01.

FIG. 5. Lorentz factor vs r for "0 ¼ 0:01, d’=ds > 0 at
a ¼ 0:1M (dash-dotted line), a ¼ 0:5M (dashed line), and
a ¼ M (solid line).

FIG. 6. Dependence of the Lorentz factor on r for the highly
relativistic circular orbits with d’=ds < 0 of the spinning particle
in Kerr’s background at a ¼ 0:015M, "0 ¼ 0:01 (solid lines).

FIG. 8. Lorentz factor for the highly relativistic circular orbits
with d’=ds < 0 of the spinning particle in Kerr’s background at

a ¼ 0:7M, "0 ¼ 0:01 for r close to rð�Þ
ph .

FIG. 9. Lorentz factor for the highly relativistic circular orbits
with d’=ds < 0 of the spinning particle in Kerr’s background
at a ¼ 0:7M, "0 ¼ 0:01 for values of r less than those in
Fig. 8.
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FIG. 10. Lorentz factor for the highly relativistic circular orbits
with d’=ds > 0 of the spinning particle in Kerr’s background at

a ¼ 0:1M, "0 ¼ �0:01 for r close to rðþÞ
ph .

FIG. 11. Lorentz factor for the highly relativistic circular
orbits with d’=ds > 0 of the spinning particle in Kerr’s back-
ground at a ¼ 0:1M, "0 ¼ �0:01 for values of r less than those
in Fig. 10.

FIG. 12. Dependence of the Lorentz factor on r for the highly
relativistic circular orbits with d’=ds > 0 of the spinning
particle in Kerr’s background at a ¼ 0:5M, "0 ¼ �0:01.

FIG. 13. Dependence of the Lorentz factor on r for the highly
relativistic circular orbits with d’=ds < 0 of the spinning
particle in Kerr’s background at a ¼ 0:15M, "0 ¼ �0:01.

FIG. 14. Dependence of the Lorentz factor on r for the highly
relativistic circular orbits with d’=ds < 0 of the spinning
particle in Kerr’s background at a ¼ M, "0 ¼ �0:01.

FIG. 15. Lorentz factor vs r for "0 ¼ 10�6, d’=ds > 0, a ¼ 0.
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Correspondingly, in our consideration below, it is conve-
nient to present the figures and results as grouped by
the two different orientations of the particle’s spin.
Namely, in this section we consider the case with S� > 0,
whereas in the next section we put S� < 0 [note that
according to (14) and (17) the sign of S� coincides with
the sign of "0]. Because it is pointed out above that we put
a � 0, in these sections the cases of the circular orbits with
d’=ds > 0 and d’=ds < 0 are dubbed co-rotation and
counter-rotation, respectively.

Before beginning the analysis of the graphs for Kerr’s
background which are presented in Figs. 1–16, let us recall
the important features of the circular spinning particle
orbits which were revealed in Ref. [60] for Schwarzschild’s
background. If S� > 0 and d’=ds > 0, at the large values
of the relativistic Lorentz � factor, the spin-gravity cou-
pling causes an attractive action, in addition to the usual
(‘‘geodesic’’) attraction. Therefore, according to Figs. 1
and 2 from Ref. [60], in the space region where the MP
equations admit the circular orbits, the situation is possible
when on the circular orbits with the same r the spinning
particle can move at the two different velocities: the first
of them is close to the velocity of a spinless particle on the
circular orbit with the same r (i.e., at this velocity the role of
the spin-gravity coupling is small); the second value of the
spinning particle velocity is much larger than the first, and in
this case the role of the spin-gravity coupling is important.
We stress that if a spinless particle starts in the tangential
direction with this large velocity at the same initial r, it
begins a quick motion away from the Schwarzschild mass;
i.e., at this velocity the usual gravitation cannot hold this
spinless particle on the circular orbits. However, the spin-
gravity coupling, which in a certain sense is proportional to
�2 [65], is able to perform this action.

If in Schwarzschild’s background S� > 0 and
d’=ds > 0, at the large values of the relativistic Lorentz
� factor, the spin-gravity coupling causes a significant
repulsion action, and according to Figs. 4 and 5 from
Ref. [60], due to this action the highly relativistic circular

orbits of a spinning particle exist even in the space region
where the circular orbits of a spinless particle are absent.
Now we can compare the new results on the highly

relativistic circular orbits of a spinning particle in Kerr’s
background with the corresponding results for the
Schwarzschild background.

A. Case with d’=ds > 0 (co-rotation)

In consideration of the possible highly relativistic
circular orbits of a spinning particle, which follow from
Eqs. (16) and (18), we begin from the co-rotation orbits
with S� > 0, when for the chosen a > 0 according to
notation (15) we put y7 > 0. All cases of the numerical
calculations which are presented in Figs. 1–9 correspond to
the value "0 ¼ 0:01.
Figures 1–5 illustrate both the space domain of the

existence of the circular orbits and the dependence of the
� factor on the radial coordinate for these orbits at different
values of the Kerr parameter a. Figure 1 describes the case

a ¼ 0:0145M, when rðþÞ
ph � 2:983M and rð�Þ

ph � 3:017M.

Note that for r � rðþÞ
ph there is no circular orbit of the

spinning particle; i.e., this situation is the same as for the
spinless particle. In the narrow space region between

r ¼ rðþÞ
ph and r � 3:006M, there are highly relativistic

circular orbits with a much higher Lorentz factor than
necessary for the spinless particle (for comparison, the
dotted line in Fig. 1 shows the curve for the geodesic
motion). We stress that the existence of those orbits is
caused by the interaction of the particle’s spin with the
angular momentum of Kerr’s source: in the Schwarzschild
background the corresponding orbits are absent, according
to Fig. 1 from Ref. [60]. Note that per the solutions of
Eqs. (16) and (18), the necessary value � tends to 1 if a
tends to 0. In the wide space region for r larger than
r � 3:006M, Eqs. (16) and (18) admit the two circular
orbits for any fixed value r and in this sense Fig. 1 below
is similar to Fig. 1 from Ref. [60] for the Schwarzschild
background.
For the values larger than a � 0:0147M, the curves �ðrÞ

significantly differ from the curves in Fig. 1. For example,
as Fig. 2 shows for a ¼ 0:015, the right branch of the curve
in Fig. 1 is changed by the line which in the narrow space
region goes to the corresponding geodesic line. According
to Fig. 3, for larger a, the left-hand curve practically

coincides with the geodesic line for all values of r>rðþÞ
ph ,

where r ¼ rðþÞ
ph is an asymptote. The right-hand curves in

Figs. 2 and 3 are decreasing from the corresponding
asymptotes in some space regions. However, for r greater
than r � 4M these curves begin to grow, as shown in
Figs. 4 and 5 for different values of a. Per Fig. 5, all the
curves for r greater than r � 8M tend to the curve for
Schwarzschild’s case which is presented in Fig. 2 from
Ref. [60]. As pointed out in Ref. [60], in this case the curve
�ðrÞ for the greater r is growing as

ffiffiffi
r

p
.

FIG. 16. Lorentz factor vs r for "0 ¼ �10�6, d’=ds > 0,
a ¼ 0:1M.
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We stress that all the curves �ðrÞ for the spinning
particle lay above the corresponding geodesic lines. This
situation is similar to Schwarzschild’s co-rotation case
considered in Ref. [60], where the spin-gravity interaction
causes an additional attractive action as compared to the
usual geodesic attraction. We also note that in the space
domains where according to Figs. 1–5 there are two
possibilities for a spinning particle’s circular motions
with the same r, the situation is similar to that described
above for Schwarzschild’s background: in the first case, the
necessary velocity is close to the velocity of a spinless
particle on the circular orbit with the same r, and here the
spin-gravity effect is weak, whereas in the second
possibility, with a much larger velocity, the influence of
the spin-gravity coupling is important.

B. Case with d’=ds < 0 (counter-rotation)

Figures 6–9 illustrate the circular orbits of the spinning

particle which exist both for r > rð�Þ
ph and r � rð�Þ

ph , in

contrast to the geodesic circular orbits which exist only

for r > rð�Þ
ph . To describe these figures it is useful to

compare their curves with the curves in Figs. 3–5 for
Schwarzschild’s background fromRef. [60]. Thus, the lower
curve in Fig. 6 for a ¼ 0:015M is close to the corresponding
Schwarzschild’s curve, whereas the upper curve in Fig. 6
only appears due to the nonzero value a. Per the solutions
of Eqs. (16) and (18), the necessary value � tends to 1
if a ! 0, similarly to the case of the upper curve in Fig. 1.
If the value a is greater than 0:015M, both the curves in
Fig. 7 differ from the corresponding curves in Fig. 6.
Figures 8 and 9 describe the situations for a ¼ 0:7M: the
first of them presents the dependence of the Lorentz factor

on r in the narrow space domain near rð�Þ
ph , and the second is

valid for values of r less than those in Fig. 8.

V. CIRCULAR ORBITS WITH a > 0, S� < 0

In this section we continue the presentation of some
typical highly relativistic circular orbits of a spinning
particle in the Kerr background which follow from
Eqs. (16) and (18). In contrast to Figs. 1–9, Figs. 10–14
all describe different cases with the negative value
"0 ¼ �0:01.

A. Case with d’=ds > 0 (co-rotation)

Figures 10 and 11 correspond to the same value
a ¼ 0:1M with the difference that Fig. 10 shows the de-

pendence � on r in the narrow space region near rðþÞ
ph

whereas the graph in Fig. 11 is valid for r beyond this region,

when r < rðþÞ
ph . Figure 12 at a ¼ 0:5M is similar to Fig. 10.

B. Case with d’=ds < 0 (counter-rotation)

Figures 13 and 14 describe the possible highly relativ-

istic circular orbits which exist both for r > rð�Þ
ph and

r < rð�Þ
ph for different values of a: 0:15M and M, respec-

tively. Note that the left-hand curves in these figures are
caused by the nonzero Kerr parameter a only; i.e., similar
orbits are absent in Schwarzschild’s field.

VI. CONCLUSIONS

Let us summarize the data which we obtained from
Eqs. (16) and (18) concerning the possible highly relativ-
istic circular orbits of a spinning particle as described by
the MP Eqs. (1) and (2) in Kerr’s background. First, we

begin with the orbits in the space region far from rð�Þ
ph .

These orbits exist if the signs of "0 and d’=ds are the
same, both positive or negative for the chosen positive a.
According to our Fig. 5 and per Fig. 2 from Ref. [60], the
values of the particle’s � factor which are necessary for the
realization of these orbits at different a for large r are
practically the same as for Schwarzschild’s background.
That is, in this case the role of the parameter a is negligible.

Note that, for any fixed large r [as compared to rð�Þ
ph ], there

are two possibilities for the spinning particle motion on the
circular orbits with this r. (i) If � is close to 1, then the
motion practically coincides with the geodesic nonhighly
relativistic motion; i.e., the spin-gravity effects are very
small. (ii) If � � 1, due to the essential spin-gravity effect
only, the spinning particle feels the great additional attrac-
tive action which preserves the fast motion of this particle
in some direction with growing r, as it takes place for the
fast spinless particle.
Figures 1–3 and 6–9, and others show the situations with

the circular orbits in the space domain between rðþÞ
ph and

rð�Þ
ph when the parameter a plays an important role.

Figures 10–12 describe the orbits with r < rð�Þ
ph which in

a certain sense is similar to the circular orbits in the region
2m< r < 3M of Schwarzschild’s background (see Figs. 4
and 5 in Ref. [60]). In contrast to the orbits in the region

r > rð�Þ
ph which are possible due to the attractive action of

the spin-gravity coupling on the particle, in the region

r < rð�Þ
ph there are circular orbits which are caused by

both the significant attractive and repulsive actions.
Figures 1–14 all correspond to j"0j ¼ 10�2. Naturally,

for other values of j"0j the form of the corresponding
graphs is changed, but many features are similar. Mainly,

the � factor is proportional to 1=
ffiffiffiffiffiffiffiffij"0j

p
; i.e., it is growing

with decreasing j"0j. Figures 15 and 16 give two concrete
examples.
Certainly, the pictures when a spinning particle or a

spinless particle remains indefinitely on the highly relativ-
istic circular orbits in Kerr’s background hold in the ideal
case, when perturbations are neglected, because these
orbits are unstable. In reality, one can deal with fragments
of trajectories close to the corresponding circular orbits
only.

ROMAN PLYATSKO AND MYKOLA FENYK PHYSICAL REVIEW D 87, 044019 (2013)

044019-8



Do some particles in cosmic rays possess a sufficiently
high � factor for motions on the highly relativistic circular
orbits, or on some of their fragments, in the gravitational
field of a Kerr black hole, which are considered above?
Yes, they do. Per the numerical estimates similar to those
from Ref. [59], for an electron in the gravitational field of
a black hole with three times the Sun’s mass, the value j"0j
is equal to 4� 10�17. Then the necessary value of the �
factor for the realization of some highly relativistic circular
orbits by the electron near this black hole is of the order
of 108. This � factor corresponds to the energy of
the electrons free motion of the order the 1014 eV.
Analogously, for a proton in the field of such a black
hole, the corresponding energy is of the order of 1018 eV.
For a massive black hole those values are greater: for
example, if M is equal to 106 times the Sun’s mass, the
corresponding value of the energy for an electron is of the
order of 1017 eV and for a proton it is 1021 eV. Naturally,

far from the black hole, if r � rð�Þ
ph , these values are greater

because the necessary � factor is proportional to
ffiffiffi
r

p
.

Note that for a neutrino near the black hole with three
times the Sun’s mass, the necessary values of its � factor
for motions on the highly relativistic circular orbits corre-
spond to the neutrino’s energy of the free motion of the
order of 105 eV. If the black hole’s mass is of the order of
106 of the Sun’s mass, the corresponding value is of the
order of 108 eV.
Can the highly relativistic spin-gravity effects be

registered by the observation of the electromagnetic
synchrotron radiation from some black holes? It may be
so; however, it is difficult to determine the situation
when the circular orbits of a spinning charged particle
and its synchrotron radiation are caused by the magnetic
field or when they are caused by the spin-gravity cou-
pling. A detailed analysis of the observational data is
necessary.
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