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Instituto de Fı́sica y Matemáticas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio C-3,
Ciudad Universitaria, 58040 Morelia, Michoacán, Mexico
(Received 17 September 2012; published 6 February 2013)

We present a new covariant, gauge-invariant formalism describing linear metric perturbation fields on

any spherically symmetric background in general relativity. The advantage of this formalism relies in the

fact that it does not require a decomposition of the perturbations into spherical tensor harmonics.

Furthermore, it does not assume the background to be vacuum, nor does it require its staticity. In the

particular case of vacuum perturbations, we derive two master equations describing the propagation of

arbitrary linear gravitational waves on a Schwarzschild black hole. When decomposed into spherical

harmonics, they reduce to covariant generalizations of the well-known Regge-Wheeler and Zerilli

equations. Next, we discuss the general case where the metric perturbations are coupled to matter fields

and derive a new constrained wave system describing the propagation of three gauge-invariant scalars

from which the complete metric perturbations can be reconstructed. We apply our formalism to the

Einstein-Euler system, dividing the fluid perturbations into two parts. The first part, which decouples from

the metric perturbations, obeys simple advection equations along the background flow and describes the

propagation of the entropy and the vorticity. The second part describes a perturbed potential flow, and

together with the metric perturbations, it forms a closed wave system.
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I. INTRODUCTION

The purpose of this work is to develop a gauge-invariant
perturbation formalism describing the propagation of line-
arized gravitational and matter fields on an arbitrary spheri-
cally symmetric background configuration. Examples of
suchconfigurations include nonrotating black holes and stars,
spherical matter distributions undergoing complete gravita-
tional collapse, or expanding shells of matter. Therefore, it
is clear that a perturbation formalism for such backgrounds
possesses a wide range of applications, covering the stability
analysis of compact objects, the description of quasinormal
oscillations of these objects, the computation of linearized
gravitational waves produced by a small star moving in the
field of a nonrotating black hole or by another black hole
in the close limit approximation, the stability analysis of
Cauchy horizons in gravitational collapse models, and the
linear evolution of structures in cosmological models.1

Linear gravitational fluctuations on a Schwarzschild
black hole were first studied by Regge and Wheeler [2]
and Zerilli [3], who decomposed the perturbations into
spherical tensor harmonics, analyzed their behavior with
respect to infinitesimal coordinate transformations, and, by
fixing the gauge, obtained a family of master equations
describing odd- and even-parity perturbations with a given
angular momentum number ‘ � 2. These master equations,
known as the Regge-Wheeler and the Zerilli equations,
respectively, describe the propagation of the true dynamical

degrees of freedom of the linear theory, completely eliminat-
ing gauge and constraint modes. Therefore, they are ideally
suited for understanding the behavior of linear perturbations
of the Schwarzschild black hole. From the fact that these
equations can be written as a 1þ 1-dimensional wave equa-
tion with a positive, time-independent potential, the exis-
tence of exponentially growing modes is immediately ruled
out and stability in this sense follows.With a little bitmore of
work, and based on the techniques described in Refs. [4,5],
one can also prove that the solutions to the Regge-Wheeler
and Zerilli equations belonging to sufficiently regular initial
data on a spacelike slice remain uniformly bounded outside
the black hole. For recent results on decay, see Refs. [5–8].
The derivation of the Regge-Wheeler and Zerilli

master equations was later clarified by the work of
Moncrief [9] who analyzed the gravitational perturbations
from a Hamiltonian point of view and cast the Regge-
Wheeler and Zerilli equations into gauge-invariant form.
Moncrief also obtained master equations describing linear
perturbations of spherically symmetric fluid stars [10] and
linear gravitoelectromagnetic perturbations of a Reissner-
Nordström black hole [11–13] and showed that the latter is
linearly stable in Einstein-Maxwell theory.2

Later, Gerlach and Sengupta [15] provided a covariant
description of the gauge-invariant perturbation approach,
where instead of assuming a Schwarzschild background
written in the usual Schwarzschild coordinates ðt; rÞ and
foliated by the static t ¼ const slices, they only assumed

1See Ref. [1] for a review on perturbation theory for
Schwarzschild black holes and references to some of the
applications we mention.

2Interestingly, the magnetically charged Reissner-Nordström
black hole is linearly unstable in Einstein-Yang-Mills-Higgs
theory [14].
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the background to be spherically symmetric. Based on the
natural 2þ 2 form of the background induced by the
metric two-spheres and the two-dimensional orbit mani-
fold ~M ¼ M=SOð3Þ orthogonal to them, and based on the
decomposition into spherical tensor harmonics, Gerlach
and Sengupta introduced a complete set of gauge-invariant
tensor fields on the manifold ~M. This covariant approach
has several advantages. Besides the possibility of
describing perturbations of dynamical spacetimes, such
as collapsing spherical stars, it also allows us to describe
the propagation of linearized gravitational waves on a
Schwarzschild black hole in local coordinates which are
regular at the event horizon, such as Kruskal- or ingoing
Eddington-Finkelstein coordinates. Based on their
approach, Gerlach and Sengupta obtained the covariant
form of the Regge-Wheeler master equation, valid in any
coordinate system compatible with the 2þ 2 form of the
background. The covariant form of the Zerilli master equa-
tion was derived in Ref. [16] (see also Ref. [17]), and a
generalization including source terms with applications to
the problem of calculating gravitational waves produced
by the motion of a small star moving around a black hole
was given in Ref. [18]. The covariant, gauge-invariant
approach has also been applied to the derivation of master
equations describing linear perturbations of black holes in
general relativity coupled to a nonlinear electromagnetic
theory, see Ref. [19] where sufficient conditions for the
linear stability of such holes are also given. Further develop-
ments of the covariant gauge-invariant formalism include
the coupling to a perfect fluid [20] and the generalization to
second- and higher-order perturbation theory [21–24].

In a somewhat different development, linear perturba-
tions of a Schwarzschild black hole were also analyzed
in Ref. [25] based on the 3þ 1 formulation. The main
advantage of this work is that, unlike previous approaches,
the decomposition into spherical tensor harmonics is
not needed, simplifying the derivation of the equations.
Instead, two canonical pairs of gauge-invariant scalars are
constructed, describing axial and polar perturbations in the
‘‘mono-dipole-free’’ sector (i.e., those fields corresponding
to ‘ � 2 in the decompositions into spherical harmonics). In
the polar case, these gauge-invariant scalars involve quasi-
local operators which are local on ~M, but nonlocal on the
two-spheres S2. Based on these quantities, two scalar wave
equations are derived which reduce to the covariant forms
of the Regge-Wheeler and Zerilli master equations when
decomposed into spherical harmonics. While the two scalar
equations are presented in the covariant description, their
derivation is based on the Schwarzschild coordinate patch.

Yet, a different approach to gravitational perturbation
theory which does not require the background to be spheri-
cally symmetric but assumes instead that it is static casts the
perturbation equations into a wave equation for the linear-
ized extrinsic curvature tensor [17,26–28]. This curvature-
based approach has turned out to be useful for establishing

the linear stability of certain Einstein-Yang-Mills black
holes with a negative cosmological constant [29,30].
In this work, we combine the covariant, gauge-invariant

approach of Ref. [15] with the quasilocal method inRef. [25]
and present a covariant, gauge-invariant perturbation
formalism for an arbitrary spherically symmetric back-
ground without performing the expansion into spherical
tensor harmonics. To this purpose, we first review the rele-
vant background equations describing the most general
spherically symmetric spacetime in Sec. II. Then, as a
warmup, we derive in Sec. III master equations describing
the propagation of scalar and electromagnetic test fields on
such spacetimes. These master equations have the form of a
wave equation on ~Mwith an effective potential and act on an
angular-dependent scalar field on ~Mwhich is gauge-invariant
in the electromagnetic case. Next, in Sec. IV, we discuss
linear metric perturbations and first review their behavior
under infinitesimal coordinate transformations. Based on
the quasilocal approach and a decomposition of tensor fields
on the sphere in terms of scalars which is discussed in the
Appendix, we construct a set of gauge-invariant, angular-
dependent tensor fields on ~M which behave as scalars under
rotations of the two-spheres.When performing an expansion
into spherical harmonics, they reduce to the gauge-invariant
tensors introduced byGerlach andSengupta. Then,wederive
the expressions for the linearized Riemann curvature, Ricci
and Einstein tensors, and obtain the perturbed Einstein equa-
tions. Next, in Sec. V, we consider the vacuum case and
derive the gauge-invariant master wave equations which
reduce to the covariant Regge-Wheeler and Zerilli equations
when an expansion in spherical harmonics is performed. We
also show that the Regge-Wheeler equation can naturally be
obtained in both the odd- and the even-parity sectors and
discuss how the metric perturbations can be reconstructed
from the scalar potentials satisfying the master equations.
Next, in Sec. VI, we consider the coupling of the metric

fields to arbitrary matter fields. In the odd-parity sector, we
discuss the generalization of the Regge-Wheeler equation
and state assumptions under which it yields a master
equation. In the even-parity sector, we do not derive master
equations for the metric fields; instead, we derive a con-
strained wave system for two gauge-invariant scalars from
which the metric perturbations can be reconstructed under
certain assumptions on the matter fields which should be
reasonable. In the vacuum case, the two wave equations
decouple from each other and are related to the radial parts
of the Teukolsky equations [31] for the two Weyl scalars
�s with spin weights s ¼ �2 and s ¼ 2, respectively. In
fact, our equations are equivalent to the ones obtained by
Bardeen and Press [32]. Finally, in Sec. VII, we apply our
formalism to the perturbations of self-gravitating spherical
fluid configurations. Focusing on the fluid perturbations
first, we decompose them into two parts, where the first
part determines the perturbed vorticity and entropy, and
the second part describes a perturbed potential flow.
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The propagation of the first part is described by simple
advection equations along the background flow. It decou-
ples completely from the second part and the metric per-
turbations. Therefore, it can be solved separately. The
second part couples to the metric perturbations, and
together they obey an effective wave system on the orbit
manifold ~M. This system should be useful for analytic and
numerical investigations of the aforementioned problems.
A summary and conclusions are given in Sec. VIII.

We use the signature convention ð�;þ;þ;þÞ for the
metric and choose units for which c ¼ 1.

II. BACKGROUND EQUATIONS

A spherically symmetric spacetime ðM;gÞ can be
written as the product of a two-dimensional pseudo-
Riemannian manifold ð ~M; ~gÞ with the two-sphere ðS2; ĝÞ,
M ¼ ~M� S2; g ¼ ~gabdx

adxb þ r2ĝABdx
AdxB; (1)

where r is a strictly positive function on ~M, and xa; xb; . . . and
xA; xB; . . . denote local coordinates on ~M and S2, respec-
tively. The geometric interpretation of the function r is the
following: let p 2 ~M, and consider the two-sphere Sp :¼
fpg � S2 � M. Let AðpÞ ¼ jSpj denote the area of Sp,

computed from the inducedmetric on Sp. Therefore,AðpÞ ¼
4�rðpÞ2 and the function r is defined geometrically as

rðpÞ ¼
ffiffiffiffiffiffiffiffiffiffi
AðpÞ
4�

s

and is called the areal radius. For the following,we assume ~M

to be oriented with volume form ~"ab :¼
ffiffiffiffiffiffij~gjp

�ab, where
j~gj :¼ j detð~gabÞj denotes the absolute value of the determi-
nant of ~gab and �00 ¼ �11 ¼ 0, �01 ¼ ��10 ¼ 1. We also

introduce the differential ra :¼ ~rar and the covariant

Hessian rab :¼¼ ~ra
~rbr of r with respect to the covariant

derivative ~r associated to the two-metric ~g.
The Christoffel symbols corresponding to the metric in

Eq. (1) are

�d
ab ¼ ~�d

ab; �d
aB ¼ 0; �d

AB ¼�rrdĝAB; (2a)

�D
ab ¼ 0; �D

aB ¼ ra
r
�D
B ; �D

AB ¼ �̂D
AB; (2b)

where here and in the following, quantities with a tilde and
a hat refer to the manifolds ð ~M; ~gÞ and ðS; ĝÞ, respectively.
From this, one finds the following expressions for the
curvature tensor:

Rabcd ¼ ~Rabcd ¼ �~k~"ab~"cd ¼ ~kð~gac~gbd � ~gad~gbcÞ; (3a)

RaBcd ¼ 0; (3b)

RaBcD ¼ �rracĝBD; (3c)

RabCD ¼ 0; (3d)

RaBCD ¼ 0; (3e)

RABCD ¼ r2ð1� NÞðĝACĝDB � ĝADĝCBÞ; (3f)

where ~k denotes the Gauss curvature of ð ~M; ~gÞ and where
N :¼ ~gðdr; drÞ ¼ rara. Contracting, one obtains the Ricci
tensor,

Rab ¼ ~k~gab � 2
rab
r

; (4a)

RaB ¼ 0; (4b)

RAB ¼ ð1� N � r~�rÞĝAB; (4c)

where ~�r :¼ ~gabrab ¼ ~ra ~rar. From this, one finally
obtains the Einstein tensor,

Gab ¼ � 2

r
ðrabÞtf � 1

r2
~gabð1� N � r~�rÞ; (5a)

GaB ¼ 0; (5b)

GAB ¼ ðr~�r� ~kr2ÞĝAB; (5c)

where ðrabÞtf :¼ rab � 1
2
~gab~g

cdrcd denotes the trace-free

part of rab. This particular structure of the Einstein tensor
implies that the stress-energy tensor T must satisfy the con-
ditions TaB ¼ 0 and TAB proportional to ĝAB. Summarizing,
Einstein’s field equations in spherical symmetry consist of

� 2

r
ðrabÞtf ¼ �Ttf

ab; (6a)

� 2

r2
ð1� N � r~�rÞ ¼ �~gabTab; (6b)

2ðr~�r� ~kr2Þ ¼ �ĝABTAB; (6c)

where � :¼ 8�GN with Newton’s constant GN .
The Bianchi identities imply that

0 ¼ r�G
�
b ¼

1

r2
~raðr2Ga

bÞ �
rb
r3

ĝABGAB:

If the stress-energy tensor is divergence-free, the same
equation holds for T, and, hence,

rb
r
ĝABðGAB � �TABÞ ¼ ~ra½r2ðGa

b � �Ta
bÞ�:

This shows that Eq. (6c) follows from Eqs. (6a) and (6b),
provided rb � 0 and r�T

�� ¼ 0 hold, and in this case, it

is sufficient to solve Eqs. (6a) and (6b).

III. SCALAR AND ELECTROMAGNETIC FIELDS
PROPAGATING ON A SPHERICALLY

SYMMETRIC BACKGROUND

In this section, we derive the master equations describ-
ing scalar and electromagnetic fields propagating on an
arbitrary spherically symmetric spacetime.

A. Scalar field propagation

The propagation of a scalar field on a fixed spacetime
background ðM;gÞ is described by theKlein-Gordon equation

ðhg þ�2Þ� ¼ 0; (7)

where � is a real scalar field onM with mass � (in units for
which ℏ ¼ c ¼ 1Þ, and hg :¼ �r�r� is the covariant
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d’Alembertian on ðM;gÞ. Assuming that ðM;gÞ is spherically
symmetric and applying the general formula

hg�¼ � 1ffiffiffiffiffiffijgjp @

@x�

� ffiffiffiffiffiffi
jgj

q
g�	

@�

@x	

�
; jgj :¼ jdetðg�	Þj

to a local coordinate patch, we can rewrite Eq. (7) in its 2þ 2
form,

� 1

r2
~raðr2 ~ra�Þ þ

�
� �̂

r2
þ�2

�
� ¼ 0;

where �̂ ¼ ĝABr̂Ar̂B is the Laplacian on the round sphere
ðS2; ĝÞ. Finally, we introduce the rescaled scalar field
c :¼ r� and use the identity

�~raðr2 ~ra�Þ ¼ r ~hc þ ð~�rÞc ;

with ~h :¼ �~� ¼ �~ra ~ra the covariant d’Alembertian on
ð ~M; ~gÞ. This yields

~hc þ
�
� �̂

r2
þ

~�r

r
þ�2

�
c ¼ 0: (8)

This has the form of a wave equation on ð ~M; ~gÞwith effective
potential

V :¼ � �̂

r2
þ

~�r

r
þ�2:

Here, the first term is an operator on the sphere S2. If c is
decomposed into spherical harmonics, it becomes the multi-
plicative operator ‘ð‘þ 1Þ=r2 with ‘ the angular momentum
number, which represents the usual centrifugal term. The
second term is a curvature correction term which can be
further simplified using the Einstein equation (6b). For a
Schwarzschild spacetime of mass m, for instance, for which

N ¼ 1� 2m=r, we have r�1 ~�r ¼ 2m=r3. The third term in
the potential,�2, is just inherited from the corresponding term
of the original Klein-Gordon equation (7).

As we will see below, the effective equations describing
electromagnetic and linearized gravitational fluctuations
on spherically symmetric spacetimes have a form very
similar to Eq. (8).

B. Electromagnetic propagation

Next, we consider Maxwell’s equations

�r�F�� ¼ J�; F�� ¼ r�A� �r�A� (9)

on a spherically symmetric background ðM;gÞ. Here,
A ¼ A�dx

� is the electromagnetic potential one-form,

F :¼ dA ¼ 2�1F��dx
� ^ dx� is the corresponding

Faraday tensor, and J ¼ J�dx
� is the electric four-current

density.
According to the 2þ 2 form of the background, we may

decompose the electromagnetic potential as

A ¼ �adx
a þ 	Bdx

B;

where the quantities �a and 	B both depend on the
coordinates ðxa; xBÞ. Notice that, with respect to a rota-
tion on S2, 	A transforms like the components of a one-
form, while �a transforms as a scalar. With respect to a

gauge-transformation A � Aþ d
 parametrized by a
function 
 on M, we have

�a � �a þ ~ra
; 	B � 	B þ r̂B
: (10)

Quantities which are invariant with respect to these trans-
formations can be constructed based on the following
decomposition for a one-form ! ¼ !Adx

A in terms of
two scalar fields f and g on the two-sphere S2:

!A ¼ r̂Afþ "̂A
Br̂Bg; (11)

where "̂AB denotes the volume form on S2. See the
Appendix for a proof and further discussion on this decom-
position. Here, we note that the two terms on the right-hand
side of Eq. (11) are mutually orthogonal with respect to the
natural L2 scalar product,

h!;�i :¼
Z
S2
ĝAB!A�B

ffiffiffiffiffiffi
jĝj

q
d2x;

for two one-forms ! and � on S2. Therefore, the decom-
position (11) is unique. However, the functions f and g
themselves are only unique up to an additive constant.
In the following, we fix this constant by requiring f and
g to have zero mean values over ðS2; ĝÞ.
The decomposition (11) allows us to represent

	B ¼ r̂B�þ "̂B
Cr̂C�

in terms of two scalar fields� and �. Since	B depends not
only on the angular variables, but also on the radial ones,
the fields � and � depend on both xa and xB. However,
unlike 	B, they transform like scalar fields under rotations
of the two-spheres. Similarly, the one-form �adx

a depends
on the angular coordinates xB, but it transforms as a scalar
field under rotations. As mentioned above, from now on,
we assume that � and � have zero mean values over
ðS2; ĝÞ. This implies that their decompositions into spheri-
cal harmonics have a vanishing monopole term.
Working in the monopole-free space, the gauge trans-

formations (10) imply the following transformations for
�a, � and �:

�a � �a þ ~ra
; � � �þ 
; � � �: (12)

Therefore, the following quantities are gauge-invariant,
i.e., invariant with respect to the transformations (10):

�ðinvÞ
a :¼ �a � ~ra�; �ðinvÞ :¼ �: (13)

The Faraday tensor F is gauge-invariant, and, hence, it

must be possible to express it solely in terms of �ðinvÞ
a and

�ðinvÞ. A short calculation reveals that

Fab ¼ ~ra�
ðinvÞ
b � ~rb�

ðinvÞ
a ;

FaB ¼ �FBa ¼ �r̂B�
ðinvÞ
a þ "̂B

Cr̂C
~ra�

ðinvÞ;

FAB ¼ �"̂AB�̂�
ðinvÞ:

Applying the general formula (F�� ¼ �F��)
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r�F
�� ¼ 1ffiffiffiffiffiffijgjp @

@x�

� ffiffiffiffiffiffi
jgj

q
F��

�

to a coordinate patch, we obtain the following Maxwell
equations in their 2þ 2 form:

�~ra½r2ð~ra�
ðinvÞ
b � ~rb�

ðinvÞ
a Þ� � �̂�ðinvÞ

b ¼ r2Jb; (14a)

~ra�ðinvÞ
a ¼ j; (14b)

~h�ðinvÞ � 1

r2
�̂�ðinvÞ ¼ k; (14c)

where we have decomposed the angular components

of the four-current according to JB ¼ r̂Bjþ "̂B
Cr̂Ck.

Equation (14c) decouples from the remaining two equa-
tions and has the form of an inhomogeneous wave

equation on ð ~M; ~gÞ with effective potential V ¼ �r�2�̂.
This master equation describes the propagation of the
odd-parity (or axial) part of the electromagnetic field.

In order to derive a master equation for the even-parity
(or polar) part of the field, we first introduce the scalar

� :¼ r2~"ab ~ra�
ðinvÞ
b ;

in terms of which Fab ¼ �r�2~"ab� and Eq. (14a) can be
rewritten as

~"ab
~ra�� �̂�ðinvÞ

b ¼ r2Jb: (15)

Applying the two-dimensional curl operator ~"ab ~ra on both
sides of this equation, we obtain

~h�� 1

r2
�̂� ¼ ~"ab ~raðr2JbÞ; (16)

which is an inhomogeneous wave equation on ð ~M; ~gÞ of
exactly the same form as the odd-parity equation (14c). It is
a master equation describing the propagation of the even-
parity part of the field: solving Eq. (16) gives�, from which

the gauge-invariant quantity�ðinvÞ
a can be reconstructed from

Eq. (15) since the Laplacian �̂ is invertible on the
monopole-free space. This quantity automatically satisfies
Eq. (14b) since by Eq. (15) and the continuity equation

r�J
� ¼ 0, we have ��̂ð~rb�ðinvÞ

b Þ ¼ ~rbðr2JbÞ ¼ ��̂j.

Therefore, we can reconstruct the even-parity part of the
Faraday tensor, and all the Maxwell equations are satisfied.

IV. GRAVITATIONAL PERTURBATION
EQUATIONS

In this section, we describe linearized metric perturba-
tions on a spherically symmetric background. We start by
analyzing their behavior under an infinitesimal coordinate
change, and, based on ideas introduced in the previous
section, construct a full set of gauge-invariant, angular-
dependent tensor fields on ~M. Similar invariants are also
constructed from the perturbed stress-energy tensor. Then,
we derive the linearized Einstein equations and write them
in terms of these gauge-invariant quantities.

We consider a smooth perturbation of the spherically
symmetric metric g, that is, a smooth, one-parameter

family3 of metrics, gð�Þ, on M such that gð0Þ ¼ g. To first
order, the deviation from the background metric g is
described by the variation

�g :¼ d

d�
gð�Þ

���������¼0
;

whose geometric interpretation is the tangent vector to the
curvegð�Þ at the pointg ¼ gð0Þ in configuration space.With
respect to a one-parameter family of diffeomorphisms,�ð�Þ:
M ! M, the metrics gð�Þ transform according to

gð�Þ � �ð�Þ�gð�Þ; (17)

the star denoting pull-back. We may split �ð�Þ ¼ c ð�Þ’,
where ’ :¼ �ð0Þ: M ! M is the diffeomorphism to zeroth
order in � and where c ð�Þ:M ! M is such that c ð0Þ is the
identity map. Differentiating Eq. (17) with respect to �, we
then obtain

�g � ’�ð�gþLXgÞ; (18)

where the vector fieldX is defined as the variation of c ,

Xp ¼ d

d�
c ð�ÞðpÞ

���������¼0
:

For the following,wewill restrict ourselves to ‘‘background’’
diffeomorpisms’which leave the structureM ¼ ~M� S2 of
the manifold invariant. The next step in the discussion of our
perturbation formalism is to construct quantities from �g
which are invariant with respect to the infinitesimal coordi-
nate transformations �g � �gþLXg.

A. 2þ 2 split and gauge invariance

For the following, it is convenient to split the metric
perturbations �g in accordance with the 2þ 2 form of the
background metric:

Hab :¼ �gab; QaB :¼ �gaB; KAB :¼ r�2�gAB;

where the quantities Hab, QaB, and KAB depend on the
coordinates ðxa; xBÞ. Similarly, we may split the vector
field X in Eq. (18) according to


a :¼ Xa; �B :¼ XB:

With respect to the infinitesimal coordinate transformation
generated by X, we then have

Hab � Hab þ 2~rða
bÞ; (19a)

QaB � QaB þ r̂B
a þ r2 ~ra�̂B; (19b)

KAB � KAB þ 2

r
ĝABr

a
a þ 2r̂ðA�̂BÞ; (19c)

with �̂A :¼ ĝAB�
B.

3It is also possible to perturb M, considering a one-parameter
family of spacetimes ðMð�Þ;gð�ÞÞ. In this case, the manifolds
Mð�Þ need to be identified with each other by an appropriate
diffeomorphism, which leads to an alternative, but equivalent,
point of view. For a discussion which is based on this approach
and analyzes the behavior of linear and nonlinear perturbations
under diffeomorphisms, see Ref. [33], for instance.
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In order to construct quantities which are invariant with
respect to these transformations, we generalize the ideas
presented in the previous section and decompose any tensor
field on S2 in terms of scalars. For one-forms ! on S2, we
recall the decomposition in Eq. (11) above. For a symmetric,
trace-free tensor field � ¼ 
ABdx

AdxB on S2, we use the
following decomposition proved in the Appendix:


AB ¼ ðr̂Ar̂BFÞTF þ "̂ðA
Cr̂BÞr̂CG; (20)

where F and G are scalar fields on S2, and the superindex
TF denotes the trace-free part with respect to ĝ. This
decomposition is also orthogonal with respect to the natural
L2 scalar product on S2, and, therefore, it is unique.
However, the functions F and G are only unique up to the
addition of a monopole or dipole term [that is, a function L

on S2 satisfying ðr̂Ar̂BLÞTF ¼ 0]. We fix this freedom by
working on the mono-dipole-free space defined as the space
orthogonal to the monopole and dipole terms.

Therefore, we may decompose the perturbations QaB

and KAB according to

QaB ¼ r̂Bqa þ "̂B
Cr̂Cha; (21a)

KAB ¼ 2ðr̂Ar̂BGÞTF þ 1

2
ĝABJ þ 2"̂ðA

Cr̂BÞr̂Ck; (21b)

where q ¼ qadx
a and h ¼ hadx

a are angular-dependent
one-forms on ~M, and G, J, and k are angular-dependent
functions on ~M. The advantage of this decomposition relies
in the fact that it is covariant. In particular, the perturbations
are fully determined by quantities which transform like
scalar fields with respect to diffeomorphisms on the sphere
(i.e., a diffeomorphism ’: M ! M which leaves each point
of ~M invariant). Here, J ¼ ĝABKAB represents the trace of

KAB. Similarly, we decompose �̂B ¼ r̂Bfþ "̂B
Cr̂Cg. In

order to define q, h, G, J, k, f, and g uniquely, we suppose
that these quantities lie in themono-dipole-free space in what
follows.4 As a consequence of our assumptions, the trans-
formations (19) induce the following transformations for the
perturbation amplitudes H :¼ Habdx

adxb, q, h, G, J, k:

Hab � Hab þ ~ra
b þ ~rb
a; (22a)

qa � qa þ 
a þ r2 ~raf; (22b)

ha � ha þ r2 ~rag; (22c)

G � Gþ f; (22d)

J � J þ 4

r
ra
a þ 2�̂f; (22e)

k � kþ g: (22f)

There are two commonly used methods for dealing with
these transformations. The first, which is known as gauge-
fixing, imposes conditions on the perturbation amplitudes
which fix the gauge functions 
a, f, and g. A simple way
of achieving this is to demand k ¼ 0, G ¼ 0, and qa ¼ 0,
which simplifies the perturbations considerably. This gauge is
called the Regge-Wheeler gauge. The second method, called
the gauge-invariant approach, does not impose any condi-
tions on the perturbation amplitudes. Instead, one constructs
linear combinations of the perturbation amplitudes which are
invariant with respect to the transformations above. For
example, we may define the gauge-invariant one-form

hðinvÞa :¼ ha � r2 ~rak; (23)

which transforms trivially, hðinvÞa � hðinvÞa . The remaining

gauge invariants are obtained by first noticing that pa :¼
qa � r2 ~raG transforms like pa � pa þ 
a and then setting

HðinvÞ
ab

:¼ Hab � ~rapb � ~rbpa; (24a)

JðinvÞ :¼ J � 4

r
rapa � 2�̂G: (24b)

The advantage of the gauge-invariant approach is that no
gauge conditions need to be imposed. Therefore, one does
not need to worry about the physical results obtained depend-
ing on a specific coordinate choice. Since the field equations
are gauge-invariant, it is clear that the linearized field equa-
tions can be expressed in terms of such gauge-invariant
quantities only.
The variation of the stress-energy tensor, �T, may be

decomposed similarly to the variation of the metric:

�Tab ¼ 
ab; (25a)

�TaB ¼ r̂B�a þ "̂B
Cr̂C�a; (25b)

�TAB ¼ r2
�
2ðr̂Ar̂B�ÞTF þ 1

2
ĝAB�þ 2"̂ðA

Cr̂BÞr̂C	

�
:

(25c)

With respect to an infinitesimal coordinate transformation
generated by the vector field X, we have �T �
�TþLXT. Explicitly, this gives


ab � 
ab þ ~L
Tab; (26a)

�a � �a þ Tab

b þ r2P~raf; (26b)

�a � �a þ r2P~rag; (26c)

� � �þ Pf; (26d)

� � �þ 2

r2
~raðr2PÞ
a þ 2P�̂f; (26e)

	 � 	þ Pg; (26f)

where we have used TAB ¼ r2PĝAB with P :¼
ĝABTAB=ð2r2Þ. From this, we can construct the following
gauge invariants:

4For a detailed discussion on monopole and dipole perturba-
tions in the vacuum case, see Refs. [16,25], where it is shown
that they correspond to stationary modes, i.e., small changes in
the mass or small rotations. For the Einstein-Euler case, see
Ref. [20].
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ðinvÞab
:¼ 
ab � pc ~rcTab � 2Tcða ~rbÞpc; (27a)

�ðinvÞ
a :¼ �a � Tabp

b � r2P~raG; (27b)

�ðinvÞ
a :¼ �a � r2P~rak; (27c)

�ðinvÞ :¼ �� PG; (27d)

�ðinvÞ :¼ �� 2

r2
~raðr2PÞpa � 2P�̂G; (27e)

	ðinvÞ :¼ 	� Pk: (27f)

For the explicit calculations below, the following trick will
be used: as explained above, in the Regge-Wheeler gauge,
the perturbations simplify considerably since qa ¼ 0 and
G ¼ k ¼ 0. Furthermore, in this particular gauge, we have

hðinvÞa ¼ ha, H
ðinvÞ
ab ¼ Hab, and JðinvÞ ¼ J, and 
ðinvÞab ¼ 
ab,

�ðinvÞ
a ¼ �a, etc. Since the field equations are gauge-

invariant, it is sufficient to perform the calculations in
this special gauge; the results in an arbitrary gauge can

be obtained by simply replacing ha by h
ðinvÞ
a , Hab byH

ðinvÞ
ab ,

J by JðinvÞ, 
ab by 
ðinvÞab , etc., in the final equations.

B. Computation of the linearized Einstein equations

As we have just discussed, it is sufficient to consider the
following form for the variation of the metric:

�gab ¼ Hab; �gaB ¼ "̂B
Cr̂Cha; �gAB ¼ 1

2
r2ĝABJ:

With respect to this 2þ 2 decomposition, the linearized
Christoffel symbols,

��
�
�	¼

1

2
g��ð@��g	�þ@	�g���@��g�	�2��

�	�g��Þ

¼1

2
g��ðr��g	�þr	�g���r��g�	Þ;

are

��c
ab¼

1

2
~gcdð~raHbdþ ~rbHad� ~rdHabÞ; (28a)

��c
aB¼

1

2
~gcd

�
r̂BHadþ "̂B

Cr̂C

�
~rahd� ~rdha�2

ra
r
hd

��
;

(28b)

��c
AB¼ ~gcd

�
ĝABrr

aHad�1

4
ĝAB

~rdðr2JÞþ "̂ðA
Cr̂BÞr̂Chd

�
;

(28c)

��C
ab¼� 1

2r2
ĝCDr̂DHabþ "̂CDr̂D

�
1

r2
~rðahbÞ

�
; (28d)

��C
aB¼

1

4
�C

B
~raJþ 1

2r2
"̂CB�̂ha; (28e)

��C
AB¼

1

4
ð�C

Br̂AJþ�C
Ar̂BJ� ĝABĝ

CDr̂DJÞ

þ ĝAB"̂
CDr̂D

�
ra

r
ha

�
: (28f)

Next, we compute the linearized Riemann curvature
tensor,

�R�
��	 ¼ @���

�
	� þ ��

����
�
	�

þ ��
	���

�
�� � ð� $ 	Þ

¼ r���
�
	� �r	��

�
��:

Using the expressions (28), the fact that �R���	 ¼
�ðg��R

�
��	Þ ¼ g���R

�
��	 þ R�

��	�g��, and the sym-

metries of the curvature tensor, implying

�Rcdab ¼ 1

4
~"cd~"ab~"

ef~"gh�Refgh;

�RcdAB ¼ � 1

4
~"cd"̂AB~"

ab"̂CD�RabCD;

�RcDab ¼ � 1

2
~"ab~"

ef�RcDef;

etc., a lengthy but straightforward calculation yields

�Rabcd ¼ � 1

2
~"ab~"cd½~re ~rfHef þ ~hH þ ~kH�; (29a)

�RaBcd ¼ � 1

2
~"cd

�
r̂B

�
~"efr~re

�
1

r
Haf

��

� "̂B
Cr̂C

�
1

r
~raðrF Þ þ 2

r
~"efraehf

��
; (29b)

�RabCD ¼ � 1

2
~"ab"̂CD�̂F ; (29c)

�RaBcD ¼ � 1

2
r̂Br̂DHac þ 1

2
ĝBD

�
rrbð~raHcb þ ~rcHab

� ~rbHacÞ � r

2
~ra

~rcðrJÞ � r

2
racJ

�

þ "̂ðB
Er̂DÞr̂Eð~rðahcÞÞ � 1

4
~"ac"̂BD�̂F ; (29d)

�RaBCD ¼ 1

2
"̂CD

�
1

2
"̂B

Er̂E½r2 ~raJ � 2rrbHab�

� r̂B½rrb~"abF þ �̂ha þ 2Nha�
�
; (29e)

�RABCD ¼ r2"̂AB"̂CD

�
rarbHab � 1

4
�̂J � 1

2
rra ~raJ

� NJ þ 1

2
J

�
; (29f)

whereH :¼ ~gabHab denotes the trace ofHab and where we
have defined

F :¼ r2~"ab ~ra

�
hb
r2

�
: (30)

The remaining components of the variation of the curva-
ture tensor are obtained from Eqs. (29) using the symmetry
�R�	�� ¼ �R½�	�½��� ¼ �R���	.

The linearized Ricci tensor follows from Eqs. (29) using
the formula

�R�	 ¼ �ðg��R���	Þ
¼ g���R���	 � R���	g

��g�
�g�
:
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Explicitly, this yields

�Rab¼ rc

r
ð~raHbcþ ~rbHac� ~rcHabÞ� 1

2r2
�̂Habþ ~kHab

þ1

2
~gabð~rc ~rdHcdþ ~hH� ~kHÞ� 1

2r2
~rðaðr2 ~rbÞJÞ;

(31a)

�RaB¼1

2
r̂B

�
~rbHab�r~ra

�
H

r

�
�1

2
~raJ

�

�1

2
"̂B

Cr̂C

�
1

r2
~"a

b ~rbðr2F Þþ
~�ðr2Þ
r2

haþ�̂ha
r2

�
;

(31b)

�RAB¼�1

2
ðr̂Ar̂BHÞTFþ ĝAB

�
~raðrrbHabÞ�1

2
rra ~raH

�1

4
�̂ðHþJÞþ1

4
~hðr2JÞ

�
þ "̂ðA

Cr̂BÞr̂Cð~rahaÞ:
(31c)

Finally, we compute the variation of the Einstein tensor
using

�G�	 ¼ �R�	 � 1

2
g�	g

���R�� þ 1

2
g�	G

���g��

þ 1

2
G

�
�g�	 � 1

2
g�	g

���g��

�
;

where, here, G :¼ g��G�� denotes the trace of the

Einstein tensor. From this, we first find

�Gab ¼ ð�RabÞtf þ 1

2
GHtf

ab þ
1

2
~gab

�
� 1

r2
ĝCD�RCD

þGcdHtf
cd þ

1

2
~gcdGcdðH � JÞ

�
;

�GaB ¼ �RaB þ 1

2
G"̂B

Cr̂Cha;

�GAB ¼ ð�RABÞTF þ r2

2
ĝAB

�
�~gcd�Rcd þGcdHtf

cd

� 1

2r2
ĝCDGCDðH� JÞ

�
:

Introducing into this the expressions (31) for the linearized
Ricci tensor and combining the result with the expressions
(25) for the linearized stress-energy tensor and the back-
ground equations (6), the linearized Einstein equations,
�G�� ¼ ��T��, yield the following set of equations on

the two-manifold ~M:

�~"a
b ~rbðr2F Þ � ð�̂þ 2Þha ¼ 2�r2ð�a � PhaÞ; (32a)

~raha ¼ 2�r2	; (32b)

and

�
2r~rðaðrcHtf

bÞcÞ � rrc ~rcH
tf
ab �

1

2
�̂Htf

ab þ rrða ~rbÞH � 1

2
~rðaðr2 ~rbÞJÞ

�
tf ¼ �r2½
ab � Tða

cHtf
bÞc�tf ; (33a)

~rbHtf
ab �

r2

2
~ra

�
H

r2

�
� 1

2
~raJ ¼ 2��a; (33b)

�2~raðrrbHtf
abÞ þ

1

2
ð�̂� 2ÞH þ 1

2
ð�̂þ 2ÞJ þ 1

2r2
~raðr4 ~raJÞ ¼ �r2ð~gab
ab � TabHtf

abÞ; (33c)

2

r
~raðrbHtf

abÞ þ ~ra ~rbHtf
ab þ

1

2
~hH � 1

2r2
�̂H � 1

2r2
~raðr2 ~raJÞ ¼ ��ð�� PJ þ PHÞ; (33d)

H ¼ �4�r2�: (33e)

By replacing ha with h
ðinvÞ
a , �a with �

ðinvÞ
a , etc., we obtain the

corresponding equations in gauge-invariant form, as dis-
cussed at the end of the previous subsection. For notational
simplicity, we omit the superscript ðinvÞ in what follows.

We see that the linearized Einstein equations decouple
into two groups: the first group comprises Eqs. (32) for the
quantities ha, �a, and 	 and describes perturbations with
odd parity, sometimes also called axial perturbations. The
second group comprises Eqs. (33) for the remaining per-
turbations amplitudes and describes even-parity perturba-
tions, sometimes also called polar perturbations.

C. The linearized divergence law

Before we proceed with analyzing the equations, we
work out the variation of the divergence law r�T�� ¼ 0

for the stress-energy tensor. Using

�ðr�T
�
	 Þ ¼ @��T

�
	 þ ��

���T
�
	 � ��

�	�T
�
�

þ T�
	��

�
�� � T�

���
�
�	;

the formula �T�
	¼�ðg��T�	Þ¼g���T�	�g��T�

	�g��,

and the expressions (25), we find the following equations:

1

r2
~ra½r2ð�a � PhaÞ� þ ð�̂þ 2Þ	 ¼ 0 (34)

in the odd-parity sector, and

1

r2
~raðr2�aÞ þ ð�̂þ 2Þ�þ 1

2
ð�� PJ þ PHÞ

� 1

2
TabHab ¼ 0; (35a)
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1

r2
~ra½r2ð
ab �Htf

acTc
bÞ� �

rb
r
ð�� PJ þ PHÞ þ 1

r2
�̂�b

� 1

2
Tcd ~rbHcd þ 1

2
ðTa

b � P�a
bÞ~raJ ¼ 0 (35b)

in the even-parity sector.
As a consequence of the twice-contracted Bianchi iden-

tities, r�G�� ¼ 0, similar equations hold for the linear-

ized Einstein tensor. Therefore, Eqs. (34) and (35) show
that the linearized Einstein equations (32) and (33) are not
independent from each other. For example, Eq. (34) shows
that taking the divergence on both sides of Eq. (32a) gives
an equivalent equation than the one obtained by applying

the operator �̂þ 2 on both sides of Eq. (32b). Since �̂þ 2
is invertible on the space of mono-dipole-free perturba-
tions, we conclude that it is sufficient to impose Eq. (32a)
in the odd-parity sector. Similarly, we see that it is suffi-
cient to impose Eqs. (33a)–(33c) in the even-parity sector;
the remaining Eqs. (33d) and (33e) are consequences of the
former and the linearized divergence law, Eqs. (35) above.

V. VACUUM PERTURBATIONS

In this section, we analyze the linear perturbations in
vacuum. By Birkhoff’s theorem (see, for instance,
Ref. [34]), the background solution must be the
Schwarzschild spacetime. The following derivation of the
Regge-Wheeler and Zerilli equations does not assume
particular coordinates on ~M or S2.

A. Vacuum perturbations with odd parity:
The Regge-Wheeler master equation

Linear perturbations with odd parity in vacuum are
described by Eqs. (32) with �a ¼ 0, 	 ¼ 0 and P ¼ 0.
For the following, it is convenient to introduce the
coordinate-free notation of differential forms. For a one-
form ! ¼ !adx

a on ~M, we have

~�! ¼ �~�a
b!bdx

a;

~�d! ¼ ~�ab ~ra!b;

~dy! ¼ �~ra!a;

where ~� and ~dy ¼ ~�d~� denote, respectively, the Hodge
dual and the codifferential operator on ~M, respectively.
With this notation, Eq. (32a) reads

~�dðr2F Þ � ð�̂þ 2Þh ¼ 0; (36)

where we recall that F :¼ r2~"ab ~raðr�2hbÞ ¼ r2~�dðr�2hÞ
and where h denotes the one-form h :¼ hadx

a. Applying
the operator ~�dr�2 on both sides of this equation gives

~dy
�
1

r2
dðr2F Þ

�
� 1

r2
ð�̂þ 2ÞF ¼ 0:

Setting� :¼ rF and using the background equation ~�r ¼
ð1� NÞ=r ¼ 2m=r2 yields the following scalar equation
on ~M,

~h�þ 1

r2

�
��̂� 6m

r

�
� ¼ 0; (37)

where ~h ¼ ~dyd is the covariant d’Alembertian on
ð ~M; ~gÞ and m the Schwarzschild mass. Equation (37) is
the covariant form of the Regge-Wheeler equation. Once a
solution for � is known, the metric perturbation h may be

reconstructed using Eq. (36) since the operator �̂þ 2 is
invertible on the space of mono-dipole-free perturbations.
The one-form h obtained in this way automatically satis-

fies Eq. (32b), since Eq. (36) implies that ~dyh ¼ 0.

B. Vacuum perturbations with even parity:
The Regge-Wheeler and Zerilli master equations

In the even-parity sector, Eq. (33e) in vacuum implies that
H ¼ 0, and, therefore, Hab ¼ Htf

ab is symmetric and trace-

free. For the following, it is useful to introduce the one-form

C :¼ Habr
adxb: (38)

As long as N ¼ rara � 0, this one-form contains the same
information as Hab since

Hab ¼ 1

N
ðraCb þ rbCa � ~gabr

cCcÞ
if Hab is trace-free. Next, consider Eq. (33b). We may
contract this equation once with ra and once with ~"abrb.
The result is, in coordinate-independent notation,

~dyCþ 1

2
~gðdr; dJÞ ¼ 0; dC� 1

2
dr ^ dJ ¼ 0;

respectively, where we have used the background equation
ðrabÞtf ¼ 0. The second of these equations motivates the
definition of the following one-form:

Z :¼ C� r

2
dJ; (39)

in terms of which the above equations read 2~dyZ� r ~hJ ¼
0 and dZ ¼ 0, respectively. Next, Eq. (33c) gives

4~dyðrZÞ þ r2 ~hJ þ ð�̂þ 2ÞJ ¼ 0: (40)

Finally, we contract Eq. (33a) with ra and use the back-
ground equations 2rrab ¼ ~gabð1� NÞ and Eq. (40) in order
to eliminate ~hJ from the resulting equation. This yields
Eq. (41d) below.
In conclusion, we obtain the following set of equations

governing even-parity linear perturbations of the
Schwarzschild solution:

dZ ¼ 0; (41a)

2~dyZþ r ~hJ ¼ 0; (41b)

4~dyðrZÞ þ r2 ~hJ þ ð�̂þ 2ÞJ ¼ 0; (41c)

d

�
2r~gðdr;ZÞ þ 3mJ � 1

2
ð�̂þ 2ÞðrJÞ

�
� �̂Z ¼ 0: (41d)

These equations can be simplified as follows: first, we

eliminate ~hJ from the second and third equation, giving
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r2 ~dyZ� 2r~gðdr;ZÞ þ 1

2
ð�̂þ 2ÞðrJÞ ¼ 0: (42)

Using this, we may rewrite Eq. (41d) as

d½r2 ~dyZþ 3mJ� � �̂Z ¼ 0: (43)

Now there are two ways to proceed.

(1) We apply the codifferential ~dy to Eq. (43) and use

Eq. (41b) in order to eliminate ~hJ from the resulting
equations. This yields the following equation for

� :¼ r2 ~dyZ:

~h�þ 1

r2

�
��̂� 6m

r

�
� ¼ 0; (44)

which is exactly the covariant form of the Regge-
Wheeler equation found in the odd-parity sector.

(2) The second way uses the equation dZ ¼ 0 in order
to introduce an angular-dependent function � on ~M
such that5 Z ¼ d� . Then, we may integrate Eq. (43)
and obtain

r2 ~h� þ 3mJ � �̂� ¼ 0: (45)

Applying the operator ð�̂þ 2Þ on both sides of this
equation and using Eq. (42) in order to eliminate J
yields �

�̂þ 2� 6m

r

�
~h� þ 12m

r2
~gðdr; d�Þ

� 1

r2
�̂ð�̂þ 2Þ� ¼ 0: (46)

Finally, we define the new scalar � by � ¼
ð�̂þ 2� 6m=rÞ� in order to eliminate the first-
order derivatives in Eq. (46). This yields the
ollowing equation:

~h�þ 1

r2

�
�̂þ 2� 6m

r

��2
�
ð�̂þ 2Þ2

�
��̂þ 6m

r

�

þ 36m2

r2

�
��̂� 2þ 2m

r

��
� ¼ 0: (47)

This is the covariant form of the Zerilli equation.

It involves the inverse of the linear operator AðrÞ :¼
��̂� 2þ 6m=r which is invertible on the mono-
dipole-free space. Integrating Eq. (41d), one finds
the following explicit expression for the scalar � in
terms of the metric perturbations Hab and J:

�¼ �̂�1
��

�̂þ 2� 6m

r

��1ð2rrarbHab

� r2ra ~raJÞ� r

2
J

�
: (48)

This is the covariant generalization of the Zerilli-
Moncrief function; see Ref. [18] and references
therein.

Although the Zerilli equation is more complicated than
the Regge-Wheeler equation, its advantage relies in the
fact that the metric perturbations Hab and J can be recon-
structed from the scalar � without solving additional
differential equations. Indeed, from �, we can compute

� ¼ ð�̂þ 2� 6m=rÞ�, and, knowing � , we obtain the
one-form Z ¼ d� and the scalar J from Eq. (42). From
this, one obtains C ¼ Zþ rdJ=2 and then Hab. Using

Eq. (46) in order to eliminate ~h� , the explicit result of
these operations, first given in Ref. [35], is

J ¼ 2

�
�̂þ 2� 6m

r

��1
�
2~gðdr; d�Þ � 1

r
�̂�

�
;

Hab ¼ 2

�
�̂þ 2� 6m

r

��1ð~ra
~rbÞtfðr�Þ:

In contrast to this, the reconstruction ofHab and J from the

scalar� ¼ r2 ~dyZ introduced inmethod 1 ismore involved:

Integrating Eq. (43) usingZ ¼ d� , one first obtains 3mJ ¼
�̂� ��, from which J can be eliminated in Eq. (42). This
leads to the following differential equation for � :

12m~gðdr; d�Þ � ð�̂þ 2Þ�̂� ¼ 6m

r
�� ð�̂þ 2Þ�;

which could be used to determine the Zerilli potential � and
the function J from�. However, form> 0, the operator on
the left-hand side has a nonvanishing kernel, consisting of
superpositions of functions of the form

�LMðr; #;’Þ ¼ e!L;mr
�
YLMð#;’Þ;

where here!‘;m ¼ ðL� 1ÞLðLþ 1ÞðLþ 2Þ=ð12mÞ are the
algebraic special frequencies [36], r� ¼ rþ
2m logðr=2m� 1Þ the Regge-Wheeler tortoise coordinate,
and YLM denote the standard spherical harmonics on S2.

VI. METRIC PERTURBATIONS COUPLED TO
MATTER FIELDS

Although the Zerilli approach described in the previous
section is well-suited for describing vacuum perturbations
with even parity, it is unclear whether or not it can be
generalized to the coupling of matter fields since it is based
on the integration of Eq. (41a) and the introduction of the
Zerilli potential � . Indeed, when matter fields are present,
it might not always be possible to replace the symmetric
tensor field Hab by a scalar potential � , as is the case in
vacuum.6 Here, we discuss an alternative approach, which
does not rely on the introduction of the Zerilli potential and
might be more amendable to the coupling of matter fields.

5Notice that for the maximal Kruskal extension of the
Schwarzschild solution, ~M is topologically equivalent to R2,
so this function exists according to Poincaré’s lemma.

6Important exceptions to this observation include backgrounds
which are static; see, for example, Refs. [11–13,19] for the
coupling of gravity to linear or nonlinear electromagnetic fields.
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In fact, as we show in Sec. VII below, it naturally leads to a
constrained wave system of equations for the case of the
linearized Einstein-Euler equations.

The method we discuss here is based on the observation
that in Eq. (33a), the gradient of J can be eliminated by
means of Eq. (33b), and the trace of H can be eliminated
taking into account Eq. (33e). This leads to the following

wavelike equation for the trace-free part, H
�
ab :¼ Htf

ab, of

the symmetric tensor field Hab:

Lab½H
� � ¼ 2�

�

ab � 1

2
~gcdTcdH

�
ab � 2

r2
~rðaðr2�bÞÞ

þ 2r2 ~ra
~rb�þ 12rrða ~rbÞ�þ 8rarb�

�
tf
;

(49)

where the linear differential operator L is defined as

Lab½H
� � :¼ �~rc ~rcH

�
ab þ 4

r

�
rc ~rðaH

�
bÞc � rða ~rcH

�
bÞc

� 1

2
rc ~rcH

�
ab

�
þ

�
2~kþ 2

~�r

r
� �̂

r2

�
H
�
ab:

In deriving this equation, we have used the identity

½2~rðað~rcH
�
bÞcÞ�tf ¼ ð~rc ~rc � 2~kÞH� ab;

which is valid for sufficiently smooth symmetric, trace-free

tensor fields H
�
ab.

The operator L has an interesting symmetry. In order to

describe it, we introduce the left dual of H
�
ab, defined as7

ð~�H� Þab :¼ ~"a
cH
�
cb:

This dual operator maps the space of symmetric, traceless
tensor fields onto itself, and it is invertible since

ð~� ~�H� Þab ¼ H
�
ab. Now, coming back to the symmetry of

L, it can be shown that this operator is invariant with

respect to ~�, that is, Lab½~�H
� � ¼ ð~�LÞab½H

� � for all suffi-
ciently smooth, symmetric, traceless tensor fields H

�
ab.

Therefore, it is convenient to expand H
�
ab in a basis which

is invariant with respect to ~�, since then the equations for
the corresponding coefficients decouple from each other.

Such a basismay be constructed from two future-directed
null vectors k and l with the relative normalization kala ¼
�2. With respect to a suitable orientation, the metric tensor
~gab and the volume form ~"ab on ~M have the form

~gab ¼ �kðalbÞ; ~"ab ¼ þk½alb�;

and it follows that ð~�kÞa :¼ kb~"
b
a ¼ ka, ð~�lÞa :¼ lb~"

b
a ¼

�la. Therefore, k and l are eigenvectors of ~� with eigen-
values þ1 and �1, respectively, and we see that kakb and
lalb form a basis for the symmetric, trace-free tensor fields
on ~M which are invariant with respect to the left dual. As a
consequence, we can expand

H
�
ab ¼ Ckakb þDlalb; ð~�H� Þab ¼ �Ckakb þDlalb:

(50)

The null vectors k and l are not unique, since they can be
rescaled by a function � on ~M according to

k � e�k; l � e��l; (51)

corresponding to a local boost with hyperbolic angle �.
Following the Geroch-Held-Penrose formalism [37], we
say that a quantity f has boost-weight q if it transforms
like f � eq�f under Eq. (51). For instance, in Eq. (50), C
and D have boost-weight�2 and 2, respectively.

In order to compute covariant derivatives ofH
�
ab, we first

note that there exists a one-form � ¼ �adx
a such that

~rakb ¼ �akb;
~ralb ¼ ��alb;

due to the fact that k and l are null, and due to their relative
normalization kala ¼ �2 ¼ const. With respect to the
local boosts, Eq. (51), the one-form � transforms like a
gauge potential:� � �þ d�. Its invariant part, d�, deter-

mines the Gauss curvature of ð ~M; ~gÞ: ~k ¼ �~�d� ¼
�~"ab ~ra�b. The ‘‘creation’’ and ‘‘annihilation’’ operators

aþq :¼ kað~ra � q�aÞ; a�q :¼ lað~ra � q�aÞ
map a quantity of boost-weight q to one of boost-weight
qþ 1 and q� 1, respectively. Furthermore, these opera-
tors satisfy the commutation relation

aþq�1a
�
q � a�qþ1a

þ
q ¼ 2q~k: (52)

Now we are ready to compute the covariant derivatives

of Hab. Applying
~rc on both sides of Eq. (50), we find, for

instance,

~rcH
�
ab ¼ � 1

2
½ða��2CÞkckakb þ ðaþ�2CÞlckakb

þ ða�2 DÞkclalb þ ðaþ2 DÞlclalb�:

This immediately yields ~raH
�
ab ¼ ðaþ�2CÞkb þ ða�2 DÞlb,

and, using the commutation relation (52), we also find

ð�~rc ~rc þ 2~kÞH� ab ¼ ða��1a
þ
�2CÞkakb þ ðaþ1 a�2 DÞlalb:

Using this and expanding �2ra ¼ rlka þ rkla, rk :¼
kara, rl :¼ lara, we find the following decomposition of
the operator L:

7One can also consider the right dual of H
�
ab, defined as

ðH� ~�Þab :¼ H
�
ac~"

c
b. However, it is easy to prove that ðH� ~�Þab ¼

�ð~�H� Þab, so one does not obtain a fundamentally new
transformation.
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Lab½H
� � ¼

�
a��1a

þ
�2Cþ 3

rl
r
ðaþ�2CÞ �

rk
r
ða��2CÞ

þ
�
2
~�r

r
� �̂

r2

�
C

�
kakb þ

�
aþ1 a�2 D

þ 3
rk
r
ða�2 DÞ � rl

r
ðaþ2 DÞ þ

�
2
~�r

r
� �̂

r2

�
D

�
lalb:

(53)

Note the symmetry k $ l which implies C $ D,
aþq $ a��q.

A. Evolution equations (even-parity sector)

The perturbation equation (49) and the decomposition
(53) of the operatorL yield two wavelike equations for the
quantities C and D,

a��1a
þ
�2Cþ3

rl
r
ðaþ�2CÞ�

rk
r
ða��2CÞþ

�
2
~�r

r
� �̂

r2

�
C¼��;

(54a)

aþ1 a
�
2 Dþ3

rk
r
ða�2 DÞ� rl

r
ðaþ2 DÞþ

�
2
~�r

r
� �̂

r2

�
D¼��;

(54b)

where

� :¼ lalb
�
1

2

ab� 1

4
~gcdTcdH

�
ab� 1

r2
~raðr2�bÞþ r2 ~ra

~rb�

þ 6rra
~rb�þ 4rarb�

�
; (55a)

� :¼ kakb
�
1

2

ab� 1

4
~gcdTcdH

�
ab� 1

r2
~raðr2�bÞþ r2 ~ra

~rb�

þ 6rra
~rb�þ 4rarb�

�
: (55b)

When formulating Eqs. (54) as a Cauchy problem, one
introduces a foliation of ~M by spacelike hypersurfaces �t.
Let u be the future-directed timelike unit normal to�t, and
let w be a unitary spacelike vector field orthogonal to u,
which is, therefore, tangent to �t. We choose the orienta-
tion of w such that ~"ab ¼ �2u½awb�. Then, we define the

null vectors k and l as

k :¼ uþ w; l :¼ u� w: (56)

Notice that from this moment on, we lose the boost invari-
ance leading to the symmetry described in Eq. (51), since
the foliation singles out a preferred normalization fork and
l. With respect to the 1þ 1 decomposition induced by the
foliation, the perturbation equations (54) can be written
explicitly as

~hC� �̂C

r2
�

�
4
r0

r
� 2

_r

r
� 4�

�
_Cþ

�
4
_r

r
� 2

r0

r
� 4�

�
C0

þ
�
2ð _���0Þ � 4ð�2 � �2Þ þ 8

�
�

_r

r
� �

r0

r

�

þ 4

�
�
_r

r
��

r0

r

�
þ 8m

r3

�
C ¼ �½�þ 2ðP� ~gabTabÞC�;

(57a)

~hD� �̂D

r2
þ

�
4
r0

r
þ 2

_r

r
� 4�

�
_D�

�
4
_r

r
þ 2

r0

r
� 4�

�
D0

þ
�
2ð�0 � _�Þ � 4ð�2 � �2Þ þ 8

�
�

_r

r
� �

r0

r

�

þ 4

�
�
r0

r
� �

_r

r

�
þ 8m

r3

�
D ¼ �½�þ 2ðP� ~gabTabÞD�:

(57b)

Here, a dot and a prime refer to the directional derivatives
along u and w, respectively, and � :¼ wa�a and � :¼
ua�a. In deriving these equations, we have used the

expression ~k ¼ �~"ab ~ra�b ¼ _�� �0 þ�2 � �2 for the
Gauss curvature of ð ~M; ~gÞ, as well as the background

equations ~k ¼ ~�r=r� �P and 2~�r=r ¼ 4m=r3 þ
�~gabTab which follow from Eqs. (6b) and (6c). Finally,
m is the Misner-Sharp mass [38] which is defined by
rara ¼ N ¼ 1� 2m=r. Notice the symmetry

C � D; � � �; � � ��; ð. . .Þ� � ð. . .Þ�;
ð. . .Þ0 � �ð. . .Þ0; � � �; (58)

which transforms Eq. (57a) into Eq. (57b).
Provided that the source terms � and � do not contain

derivatives of C and D of order higher than one, and
provided that the quantity J can be eliminated in these
terms, Eqs. (57) constitute a wave system that, together
with suitable evolution equations for the matter variables,
allows us to determine the evolution of the metric pertur-
bations C and D from initial data for ðC;DÞ and their first
time derivatives on an initial time slice.
Notice that the wave equations (57) decouple from each

other for vacuum perturbations of a Schwarzschild black
hole. In this case, an alternative, coordinate-independent
way of fixing the boost freedom in the null vectors k and l
is by specifying the two quantities rl and rk, which
determine the expansion of the two-spheres along in-
and outgoing radial null geodesics. These two quantities

are constrained by the relation rkrl ¼ kðalbÞrarb ¼
�~gabrarb ¼ �N ¼ 2m=r� 1. Note that rk is positive in
regions I and III of the Kruskal spacetime and negative
in regions II and IV, whereas rl is negative in regions I
and II and positive in the remaining ones.8 Therefore, the
quantities rk and rl cannot be arbitrarily chosen. The

8See, for instance, Fig. 6.9 in Ref. [39] for the Kruskal diagram
and the definitions of regions I–IV.
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connection coefficients �k and �l are obtained from rk
and rl by solving the background equations (6a) and (6b)
which can be rewritten as aþ1 ðrkÞ ¼ a��1ðrlÞ ¼ 0,
a�1 ðrkÞ ¼ aþ�1ðrlÞ ¼ �2m=r2.

We choose rk ¼ N and rl ¼ �1, which is well-behaved
in regions I and II (our Universe and the black hole region)
of the Kruskal diagram. In terms of ingoing Eddington-
Finkelstein coordinates ðv; rÞ, for which ~g ¼ �Ndv2 þ
2dvdr, the corresponding null vectors are

ka
@

@xa
¼ 2

@

@v
þ N

@

@r
; la

@

@xa
¼ � @

@r
;

kadx
a ¼ �Ndvþ 2dr; ladx

a ¼ �dv;

and it follows that �k ¼ 2m=r2 and �l ¼ 0. With this
choice, Eqs. (54) reduce to

~hC� �̂

r2
C� 3

r
Ck � 1

r

�
1� 6m

r

�
Cl ¼ 0;

~hD� �̂

r2
Dþ 1

r
Dk þ 1

r

�
3� 10m

r

�
Dl ¼ 0;

with Ck ¼ ka ~raC and Cl ¼ la ~raC.
A different choice which is valid in regions I and III (our

Universe and the white hole region) of the Kruskal diagram

is rk ¼ ffiffiffi
2

p
, rl ¼ �N=

ffiffiffi
2

p
which, taking into account

changes in the notation and conventions, corresponds to
the one made in Ref. [32], where general retarded solutions
where computed. With this choice, one obtains from
Eqs. (54) their Eqs. (2.21a, 2.21b) with the identifications
C $ r2��2 and D $ r2�2, where �	2 refer to the com-
plex Weyl scalars �2 :¼ R�	��k

�m	k�m� and ��2 :¼
R�	��l

� �m	l� �m� computed from a Newman-Penrose null

tetrad fk; l;m; �mg.9 Assuming that the background tetrad is
adapted to the spherical symmetry in the sense that k and l
are orthogonal to the metric two-spheres, it is relatively
simple to compute the first variation of �	2 in our pertur-
bation formalism, based on the background expressions (3)
and Eq. (29d) for the first variation of the mixed compo-
nents RaBcD of the curvature tensor. The result is

��2 ¼ � 1

r2
m̂Am̂Br̂Ar̂B

�
1

2
kakbH

�
ab þ ikakb ~rahb

�
;

where m̂ :¼ rm, and the expression for ���2 follows
from this after mapping k � l, m � �m. Therefore, the

quantities kakbH
�
ab ¼ 4D and lalbH

�
ab ¼ 4C determine the

even-parity contributions of the variation of the complex
Weyl scalars �2 and ��2, respectively.

B. Constraint equations (even-parity sector)

The evolution equations in the previous subsection were
obtained from the linearized Einstein equation (33a),

combined with Eqs. (33b) and (33e). Therefore, to solve
the whole set of linearized Einstein equations, one has to
ensure that the Eqs. (33b)–(33e) are also satisfied. First of
all, we impose Eq. (33e) in order to determine the trace H
of H. Next, the Bianchi identities and the zero divergence
of the stress-energy tensor imply that Eq. (33d) follows
from Eqs. (33b) and (33e), as discussed in Sec. IVC. As we
now show, the remaining equations, Eqs. (33b) and (33c)
yield a constraint equation for the evolution system (54)
plus an equation which allows us to determine J from the
knowledge of ðC;D; _C; _DÞ and the matter fields on a time
slice �t.
In order to derive the constraint equation, we first project

Eq. (33b) along the null directions k and l, obtaining

aþ�2Cþ 1

4
a�0 J ¼ �laðr2 ~ra���aÞ; (59a)

a�2 Dþ 1

4
aþ0 J ¼ �kaðr2 ~ra���aÞ: (59b)

Applying the operator aþ�1 to both sides of Eq. (59a) and
a�1 to both sides of Eq. (59b), and using the commutation
relation (52) with q ¼ 0, one obtains the relation

aþ�1a
þ
�2C� a�1 a

�
2 D ¼ �2�~"abð~ra�b � 2rra

~rb�Þ
¼: 2�G; (60)

in which J is eliminated. In order to rewrite this equation as
a constraint on the spacelike hypersurfaces �t of ~M, the
second time derivatives ( €C and €D) have to be eliminated in
the terms a��1a

þ
�2C and a�1 a

�
2 D. For this, we note

aþ�1a
þ�2C ¼ ½a��1 þ 2ð~rw þ �wÞ�aþ�2C

¼ a��1a
þ�2Cþ 2ð~rw þ �wÞaþ�2C;

where ~rw :¼ wa ~ra and �w :¼ wa�a, and where we have
used the definition of the null vectors k and l in terms of
the vector fields u and w [see Eq. (56)] in order to write
k ¼ lþ 2w in the definition of aþ�1. The first term on the
right-hand side, a��1a

þ
�2C, can be eliminated using the

evolution equation (54a). This yields

aþ�1a
þ�2C ¼

�
2ð~rw þ �wÞ � 1

r
ð3rl � rkÞ

�
ðaþ�2CÞ

� 2
rk
r
ð~rw þ 2�wÞC�

�
2
~�r

r
� �̂

r2

�
Cþ ��;

(61)

where we have also used a��2C ¼ aþ�2C� 2ð~rw þ 2�wÞC
for later convenience. Similarly, one obtains, using the
evolution equation (54b),

a�1 a
�
2 D ¼ �

�
2ð~rw � �wÞ þ 1

r
ð3rk � rlÞ

�
ða�2 DÞ

þ 2
rl
r
ð~rw � 2�wÞD�

�
2
~�r

r
� �̂

r2

�
Dþ ��:

(62)
9In our convention, they are normalized such that gðk; lÞ ¼

�2 and gðm; �mÞ ¼ 2.
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Therefore, provided that the matter terms �, �, and G do
not contain derivatives of C or D along u of order higher
than one, Eq. (60), with the substitutions for aþ�1a

þ
�2C

and a�1 a�2 D given in Eqs. (61) and (62), yields a constraint
for the data ðC;D; _C; _DÞ and the matter fields on a given
surface �t.

Next, we consider Eq. (33c), where we use the

background equation (6a), the identity ~ra ~rbH
�
ab ¼

aþ�1a
þ�2Cþ a�1 a�2 D, as well as Eq. (33b) in order to

eliminate the first- and second-order derivatives of J.
This yields the following equation:

�ð�̂þ 2ÞJ ¼ 2r2ðaþ�1a
þ�2Cþ a�1 a�2 DÞ

þ 4rðrkaþ�2Cþ rla
�
2 DÞ

� 4ðr2kCþ r2lDÞ � 4r2�F; (63)

with

F :¼ 1

2
~gab
ab � TabH

�
ab þ ~ra�a þ 4

ra

r
�a þ r2 ~h�

þ ð�̂� 2Þ�� 6rra ~ra�: (64)

Provided the derivatives of J can be eliminated in the
matter term F, this equation allows one to determine J as

a function of ðC;DÞ and the matter fields by inverting the

operator �ð�̂þ 2Þ. In fact, using the substitutions for
aþ�1a

þ
�2C and a�1 a

�
2 D given in Eqs. (61) and (62), it is

even possible to compute J from the data ðC;D; _C; _DÞ and
the matter fields on a given time slice �t.

C. Initial data construction (even-parity sector)

Here, we discuss a practical algorithm for constructing
initial data ðC;D; _C; _DÞ for the wave system (54). We
assume for simplicity that the matter terms �, �, F, and
G only depend on ðC;DÞ but not on their derivatives, and
that they are completely determined by these quantities
and the initial data for the matter fields. Furthermore,
we assume that G does not depend on C nor on D. For
instance, these assumptions are satisfied in the perfect fluid
case as will be discussed in the next section.

Our construction specifies J and its time derivative, _J :¼
ua ~raJ, on the initial surface, as well as suitable initial data
for the matter fields. As a consequence, the full gradient
~raJ is known on �0, and we can determine the quantities
aþ�2C and a�2 D from Eqs. (59a) and (59b). Next, we

combine Eqs. (60)–(63) in order to eliminate aþ�1a
þ�2C

and a�1 a
�
2 D, and obtain the two equations

2
rk
r
ð~rw þ 2�wÞCþ

�
2
~�r

r
� �̂

r2

�
Cþ 1

r2
ðr2kCþ r2lDÞ ¼

�
2ð~rw þ �wÞ � 1

r
ð3rl � 2rkÞ

�
ðaþ�2CÞ þ

rl
r
ða�2 DÞ

þ 1

4r2
ð�̂þ 2ÞJ þ �ð�� F�GÞ; (65a)

2
rl
r
ð~rw � 2�wÞD�

�
2
~�r

r
� �̂

r2

�
D� 1

r2
ðr2kCþ r2lDÞ ¼

�
2ð~rw � �wÞ þ 1

r
ð3rk � 2rlÞ

�
ða�2 DÞ � rk

r
ðaþ�2CÞ

þ 1

4r2
ð�̂þ 2ÞJ � �ð�� FþGÞ: (65b)

The first three terms on the right-hand sides of these
equations are known, since aþ�2C, a

�
2 D and J are known

on the initial surface �0. Furthermore, according to our
assumptions, �, F, andG depend on ðC;DÞ but not on their
derivatives. Therefore, Eqs. (65) constitute a system of
ordinary differential equations for C and D. Once this
system has been solved, the initial data for ð _C; _DÞ is
obtained by setting

_C :¼ �C0 � 2�kCþ aþ�2C;

_D :¼ D0 þ 2�lDþ aþ2 D:
(66)

This provides initial data ðC;D; _C; _DÞ on the initial surface
�0. The evolution equations (57), together with suitable
evolution equations for the matter fields, determine ðC;DÞ
on an arbitrary time slice �t. The metric field J is obtained
from this by solving Eq. (63). This determines the metric
perturbations in the even-parity sector.

D. The odd-parity sector

Odd-parity gravitational perturbations are much simpler
to describe than even-parity ones, and gauge-invariant
master equations for them have been already obtained in
the literature; see, for instance, Refs. [15,40]. Since our
approach is more general because it does not require the
decomposition into spherical harmonics, and also for com-
pleteness, we briefly describe the odd-parity sector here.
In this case, the metric perturbations are determined by

the one-form h on ~M whose dynamics is governed by
Eqs. (32). As discussed in Sec. IVC, it is sufficient to
consider the equations of motion for the matter fields and
Eq. (32a), which, in terms of the notation of differential
forms, reads

~�dðr2F Þ � ð�̂þ 2Þh ¼ 2�r2�; (67)

with F ¼ r2~�dðr�2hÞ and � :¼ ð�a � PhaÞdxa. Now, we
can proceed exactly as in Sec. VA to derive a master
equation for the scalar field � :¼ rF . Applying the
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operator r4~�dr�2 on both sides of Eq. (67), we first obtain
the following inhomogeneous wave-type equation for r2F :

r4 ~dy
�
1

r2
dðr2F Þ

�
� ð�̂þ 2Þðr2F Þ ¼ 2�r4~�d�: (68)

Introducing F ¼ �=r and using the background
equation (6b), we then obtain

~h�þ
�
� �̂

r2
� 6m

r3
� �

2
~gabTab

�
� ¼ 2�r~�d�; (69)

which generalizes the Regge-Wheeler equation (37) to the
case of odd-parity linear metric perturbations coupled to
matter fields. Provided the one-form� does not depend on
h, this yields a wave equation for the gauge-invariant
scalar � on ~M. Once � is known, h can be reconstructed
from Eq. (67) on the mono-dipole-free space. In case �
depends on h, the method just described also works pro-
vided Eq. (67) can be solved for h.

VII. FLUID PERTURBATIONS

Here, we apply the ideas described in the previous
section to linear perturbations of spherical, self-gravitating
fluid configurations. We start in Sec. VII A with a short
review of the equations of motion for a relativistic perfect
fluid in local thermodynamic equilibrium and discuss
potential flows. Next, in Sec. VII B, we linearize the
flow, assuming that the background is vorticity-free and
isentropic, and show that the fluid perturbations can be split
into two parts, the first part describing the perturbations of
the vorticity and the entropy and the second part describing
a linearized potential flow. The resulting equations are
specialized to the case of a spherically symmetric back-
ground in Sec. VII C. In Sec. VII D, we linearize the stress-
energy tensor. The propagation and constraint equations in
the odd- and even-parity sectors are derived in Sec. VII E
and Sec. VII F, respectively.

Previous work regarding the linearization of relativistic
perfect fluids include Ref. [41], where the stability of
steady state accretion flows is analyzed and on which
most of the ideas presented in Secs. VII A and VII B are
based; Ref. [42], which analyzes the stability of static stars;
and Ref. [20], which derives a system of propagation

equations based on the covariant gauge-invariant approach.
Besides the avoidance of the spherical harmonic decom-
position, the results presented below differ from the ones
obtained in Ref. [20] in the strategy for deriving the
evolution equations. While in Ref. [20], projections of
the linearized stress-energy tensor which eliminate the
matter variables are considered, here, we exploit the fact
that a spherically symmetric isentropic flow gives rise to a
closed one-form v, which allows it to naturally split the
fluid perturbations into a linearized potential flow and a
complementary part describing the propagation of the
linearized vorticity and entropy. Although the results in
Ref. [20] lead to a free (unconstrained) evolution system
and do not require the background to be isentropic, we
believe that our approach allows for a clearer physical
interpretation of the fluid perturbations.

A. Basic fluid equations and potential flows

We consider a perfect, relativistic fluid with isotropic
pressure. It is described by the energy density �, the
pressure p, and the particle density n, as measured by an
observer comoving with the fluid elements which have
four-velocity u (u is normalized such that g��u

�u� ¼
�1). The equations of motion for the fluid are

r�J
� ¼ 0; r�T

�� ¼ 0; (70)

where J� ¼ nu� is the particle current density and
T�� ¼ �u�u� þ p���, ��� :¼ g�� þ u�u�, denotes the
stress-energy tensor. We require local thermodynamic
equilibrium; that is, each fluid element is in thermody-
namic equilibrium. Therefore, we assume the existence
of an equation of state � ¼ �ðs; nÞ which satisfies the first
law of thermodynamics,

d

�
�

n

�
¼ Tds� pd

�
1

n

�
;

with T the temperature and s the entropy per particle.
For the following, it is convenient to replace the energy
density � by the enthalpy h :¼ ð�þ pÞ=n per particle,
which satisfies dh ¼ Tdsþ dp=n. With this notation and
under these assumptions, the fluid equations (70) yield
(assuming T > 0)

rus ¼ 0 ðentropy conservation along the fluid linesÞ; (71a)

runþ �n ¼ 0 ðparticle conservation lawÞ; (71b)

ha� þD�h� TD�s ¼ 0 ðrelativistic Eulere quationsÞ; (71c)

where � :¼ r�u
� and a� :¼ ruu� denote the expansion

and acceleration of the fluid, respectively, and where
D�h :¼ ��

�r�h denotes the differential ofh projected onto
the space orthogonal to u. Equations (71), together with the
equation of state form a closed evolution system for the
quantities s, n, and u. Equation (71a) implies, in particular,

that there is no heat transfer between the different fluid
elements since Tds ¼ 0 along the fluid lines. (However,
the entropy s may vary from one fluid trajectory to another.)
In terms of the one-form v :¼ hu�dx

� and the vorticity

��� :¼ ��
���

	r½�u	� of the fluid, the Euler equations

(71c) are equivalent to
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F�� :¼ r�v� �r�v� ¼ 2ðh��� � Tu½�D��sÞ: (72)

Therefore, the one-form v is closed if and only if the flow is
irrotational (��� ¼ 0) and isentropic (s ¼ const). In this

case, there exists (at least locally) a potential c such that
v ¼ dc . Then, the particle conservation law, Eq. (71b),
yields

r�

�
n

h
r�c

�
¼ 0: (73)

Here, n is regarded as a function of h obtained by inverting
the relation h ¼ hðnÞ, and h is obtained from the condition
v�v� ¼ h2u�u� ¼ �h2, which yields

h ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�r�c � r�c

q
: (74)

For the case of a stiff equation of state, for which h is
proportional to n, Eq. (73) reduces to the standard
wave equation hgc ¼ 0 on ðM;gÞ for the potential c .

However, in general, Eq. (73) is a nonlinear wave equation
whose characteristics depend on the gradient of c .
Equation (73) and the associated stress-energy tensor
T��¼nh�1ðr�c Þðr�c ÞþpðhÞg�� can also be obtained
from the simple action functional

S½c ;g� :¼
Z

pðhÞ
ffiffiffiffiffiffi
jgj

q
d4x; (75)

where h is given by Eq. (74) and pðhÞ obeys the first law
dp ¼ ndh.

The linearization of Eq. (73) yields the remarkably
elegant equation [41]

hG�c ¼ 0 (76)

for the perturbed potential �c , where hG is the wave
operator belonging to the sound metric G defined by

G�� :¼ n

h

1

vs

½g�� þ ð1� v2
sÞu�u��;

v2
s :¼ @p

@�
¼ @ logðhÞ

@ logðnÞ ;
(77)

vs denoting the sound speed (in units for which c ¼ 1).10

For the following, we assume that the sound speed satisfies
0< vs 
 1. By employing an orthonormal tetrad
fe0; e1; e2; e3g with respect to g which is adapted to the
fluid flow, i.e., such that e0 ¼ u, it is not difficult to see that
G is Lorentzian and that its cone (the sound cone) lies

inside or (if vs ¼ 1) coincides with the light cone of g.
Notice also that u is timelike with respect to both g andG.

B. The linearized fluid equations

Linearizing Eq. (72) about an isentropic, irrotational
fluid configuration, one obtains

r�ð�v�Þ � r�ð�v�Þ ¼ 2ðh���� � Tu½�D���sÞ: (78)

For the following, it is convenient to decompose �v
into two terms, the first one being the differential of a
function � and the second one a one-form W which is
orthogonal to u:

�v ¼ d�þW; u�W� ¼ 0: (79)

This decomposition always exists. Indeed, if �v is given,
we may integrate the equation Lu� ¼ u��v� along the

flow lines to obtain � and set W :¼ �v� d�. By con-
struction, u�W� ¼ 0, and �v ¼ d�þW. The quantities

� and W are unique up to transformations of the form

� � �þ f; W� � W� �D�f; (80)

where f is a function satisfying Luf ¼ 0. This freedom
can be fixed by restricting the initial data to � ¼ 0, or by
imposing suitable initial conditions on W.
Introducing the decomposition (79) into Eq. (78) and

projecting the result orthogonal to u gives

2h���� ¼ D�W� �D�W�; (81)

which shows that the one-form W describes the vorticity
part of the perturbations. The remaining information
in Eq. (78) is obtained by contracting with u�. Using
u�W� ¼ 0, this yields

LuW� ¼ TD�ð�sÞ; (82)

which, together with the linearization of Eq. (71a),

Luð�sÞ ¼ 0; (83)

describes the evolution of the variation of the entropy
and the one-form W along the flow. As a consequence of
Eqs. (81) and (82), one also finds

Luðh����Þ ¼ hD½�
�
T

h

�
D���s; (84)

which shows that, in general, a spatial gradient of �s
generates vorticity along the flow. Equations (82) and
(83) describe the evolution of the variations of the entropy
and the one-form W which describes the variation of the
vorticity through the relation (81). These equations form a
system of advection equations along the fluid lines, and
since they do not depend on � nor on the variation of the
metric fields, they decouple from the remaining perturba-
tion equations and can be solved separately.
It remains to linearize Eq. (71b), which is equivalent to

the continuity equation r�ðnh�1g��v�Þ ¼ 0. The varia-

tion can be written in the form

10The following expressions for the inverse sound metric and its
determinant are useful:

G�� ¼ h

n
vs

�
g�� þ

�
1� 1

v2
s

�
u�u�

�
;

ffiffiffiffiffiffiffiffi
jGj

p
¼

ffiffiffiffiffiffi
jgj

q �
n

h

�
2 1

vs

:
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r�J
� ¼ 0;

where the vector field J� is given by

J� ¼ n

h

�
h

n
�

�
n

h

�
v� þ g��ð�v� � v	�g�	Þ

þ 1

2
v�g�	�g�	

�
: (85)

In order to evaluate the variation of n=h, we regard n ¼
nðh; sÞ as a function of the enthalpy h and the entropy s per
particle, which is obtained by formally inverting the rela-
tion h ¼ hðn; sÞ. Using the definition of the sound speed vs

and the first law, we find the thermodynamic relations

v2
s :¼ @p

@�

��������s
¼ @ logh

@ logn

��������s
;

@h

@s

��������n
¼ T þ 1

n

@p

@s

��������n
:

Using the identities

@p

@s

��������v

@s

@v

��������p

@v

@p

��������s
¼ �1;

@v

@s

��������p
¼ @v

@T

��������p

@T

@s

��������p
;

v :¼ 1

n
;

and the definitions of the heat capacity per particle at
constant pressure cp, the coefficient of thermal expansion

�p and the compressibility at constant entropy �s, defined

as (see, for instance, Ref. [43])

cp :¼ T
@s

@T

��������p
; �p :¼ 1

v

@v

@T

��������p
; �s :¼� 1

v

@v

@p

��������s
;

the term involving the partial derivative of the pressure can
be rewritten as

@p

@s

��������n
¼ T

�p

cp�s

:

Gathering the results, we obtain

@n

@h

��������s
¼ n

h

1

v2
s

;
@n

@s

��������h
¼ � n

h

1

v2
s

@h

@s

��������n
¼ �n

h

T

v2
s

�;

� :¼ 1þ 1

n

�p

cp�s

; (86)

from which we can finally compute

�

�
n

h

�
¼ n

h2

��
1

v2
s

� 1

�
�h��T

v2
s

�s

�
: (87)

Next, we compute the variation of the identity h2 ¼
�g�	v�v	 which follows from the definition of v� ¼
hu� and the normalization of u. Taking into account the

decomposition (79), this gives

2h�h ¼ �2v��v� þ v�v	�g�	

¼ �2v�r��þ v�v	�g�	: (88)

Combining Eqs. (85), (87), and (88) and recalling the
definition of the sound metric, Eq. (77), we finally arrive
at the following expression:

ffiffiffiffiffiffi
jgj

q
J� ¼

ffiffiffiffiffiffiffiffi
jGj

p �
G��ðr��þW� � �g�	v

	Þ

þ 1

2
v�G�	�g�	 � v�

nvs

�T�s

�
:

Therefore, the linearized continuity equation yields the
inhomogeneous wave equation

hG� ¼ divGðXÞ; (89)

where divG refers to the divergence of a vector field with
respect to the Levi-Civita connection associated to the
sound metric, and X is the vector field defined as

X� ¼G��ðW� ��g�	v
	Þ þ 1

2
v�G�	�g�	 � v�

nvs

�T�s:

Notice that X vanishes when W, �s, and �g are zero, and
in this case, Eq. (89) reduces to the homogeneous wave
equation (76) describing a linearized potential flow. In the
general case, the one-form W and the variation of the
entropy, �s, are obtained by integrating the advection
equations (82) and (83), and, therefore, they can be con-
sidered to be known quantities in the expression for the
vector field X. However, the variation of the metric fields,
�g, are coupled to the potential� through the lower-order
terms on the right-hand side of Eq. (89) and through the
linearized Einstein field equations.

C. Fluid perturbations on a spherically
symmetric background

So far, we have only assumed the background to be
vorticity-free and isentropic. From now on, we assume in
addition the background to be spherically symmetric. In
particular, this implies that the four-velocity vector u has
no angular components; hence, it can be regarded as a
vector field on the two-dimensional manifold ~M and our
zero vorticity assumption follows from the spherical sym-
metry. Defining [20] the additional vector field w whose
components are wa ¼ �~"abu

b, we obtain an orthonormal

basis of vector fields satisfying ~gab ¼ �uaub þ wawb and
~"ab ¼ �2u½awb�. The connection coefficients with respect

to this basis are entirely determined by the two quantities

� :¼ ~raua and � :¼ ~rawa.
Since the one-formW is orthogonal to u, we can expand

it according to

Wa ¼ Uwa; WA ¼ r̂AV þ "̂A
Br̂B!;

whereU, V, and! are angular-dependent scalars on ~M, and
where we have used the decomposition described in
Eq. (11). Performing the calculations in the Regge-

Wheeler gauge, for which �gab ¼ Hab, �gaB¼ "̂B
Cr̂Cha,
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�gAB ¼ r2ĝABJ=2, we first obtain from Eqs. (85), (87),
and (88),

3

�h

h
¼ � 1

h
Lu�þ 1

2
Habu

aub;

Ja ¼ n

h

�
gabð~rb�þUwb �Hbcv

cÞ

þ 1

2
ð�cdHcd þ JÞva � ua

�

v2
s

T�s

�
;

JA ¼ 1

r2
n

h
½r̂Að�þ VÞ þ "̂ABr̂Bð!� hav

aÞ�;

where we have defined the sonic two-metric

gab :¼ ~gab þ
�
1� 1

v2
s

�
uaub: (90)

Therefore, the linearized continuity equation gives

� ~ra

�
r2
n

h
gab ~rb�

�
� n

h
�̂�

¼ ~ra

�
r2
n

h

�
Uwa � gabHbcv

c þ 1

2
vað�bcHbc þ JÞ

� ua
�

v2
s

T�s

��
þ n

h
�̂V: (91)

The right-hand side of this equation could be
further simplified by using the background equation
~raðr2nuaÞ ¼ ~raðr2nh�1vaÞ ¼ 0. For a spherically
symmetric background, Eqs. (82) and (83) imply the
ordinary differential equation

Lu! ¼ 0 (92)

in the odd-parity sector, and in the even-parity sector, the
system of differential equations,

ðLu þ�ÞU ¼ Tð�sÞ0; LuV ¼ T�s;

Luð�sÞ ¼ 0; (93)

with ð�sÞ0 ¼ wa ~rað�sÞ.
In the next three subsections, we combine the above

results with the equations describing gravitational pertur-
bations derived in Sec. VI, obtaining effective equations
describing the linear fluctuations of a spherically symmet-
ric self-gravitating fluid.

D. The linearized stress-energy tensor

The variation of the stress-energy tensor T�� ¼
nh�1v�v� þ pg�� yields the general expression

�T�� ¼ n

�
g�� þ

�
1

v2
s

� 1

�
u�u�

��
1

2
u�v	�g�	 �Lu�

�

� n

�
g�� þ �

v2
s

u�u�

�
T�s

þ 2nuð�½r�Þ�þW�Þ� þ p�g��;

where we have used Eqs. (87), (88), and (79) and the first
law of thermodynamics dp ¼ ndh� nTds. For a spheri-
cally symmetric background, the corresponding quantities

ab, �a, �a, �, �, and 	 defined in Eqs. (25) are

�a ¼ pha þ nua!; 	 ¼ 0; (94)

in the odd-parity sector, and


ab ¼ n

�
~gab þ

�
1

v2
s

� 1

�
uaub

��
1

2
ucvdHcd � uc ~rc�

�

� n

�
~gab þ �

v2
s

uaub

�
T�s

þ 2nuða½~rbÞ�þUwbÞ� þ pHab; (95a)

�a ¼ nuað�þ VÞ; (95b)

� ¼ 0; (95c)

� ¼ n½uavbHab � 2ðua ~ra�þ T�sÞ� þ pJ; (95d)

in the even-parity sector.

E. The linearized Einstein-Euler equations:
odd-parity sector

The odd-parity perturbations of a spherically symmetric
fluid configuration are described by the linearized Euler
equation (92) and the linearized Einstein equations (32),
with the coefficients �a and 	 given in Eq. (94), which
yield

~�dðr2F Þ � ð�̂þ 2Þh ¼ 2�r2nu!; (96a)

~dyh ¼ 0; (96b)

where F ¼ r2~�dðr�2hÞ and u :¼ uadx
a is the one-form

on ~M corresponding to the four-velocity of the background
flow. We have already noticed in Sec. IVC that Eq. (96b)
follows from Eq. (96a) and the divergence law for the
stress-energy tensor. In the present case, this can also be
verified explicitly by applying the codifferential on both
sides of Eq. (96a), using Lu! ¼ 0 and the background

equation ~dyðr2nuÞ ¼ 0.
A wave equation for the scalar field � :¼ rF follows

from the method described in Sec. VID. For this, we use
the background equation dv ¼ 0 and first note that

~�d� ¼ ~�dðnu!Þ ¼ ~�d
�
n

h
!v

�

¼ ~�
�
h

�
n

h
!

�0
w ^ u

�
¼ �h

�
n

h
!

�0
;

where the prime refers to the directional derivative along
w. With this observation, Eq. (68) yields (cf. Appendix B in
Ref. [42]):

r4 ~dy
�
1

r2
dðr2F Þ

�
� ð�̂þ 2Þðr2F Þ ¼ �2�r4h

�
n

h
!

�0
:

Introducing F ¼ �=r and using the background equation
(6b), we can rewrite this equation in the form
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~h�þ
�
� �̂

r2
� 6m

r3
þ �

2
ð�� pÞ

�
� ¼ �2�rh

�
n

h
!

�0
;

(97)

which generalizes the Regge-Wheeler equation (37) to the
case of odd-parity linear fluctuations of self-gravitating
spherical fluid configurations. Once� is known, the metric
perturbation h can be reconstructed from Eq. (96a) on the
mono-dipole-free space.

F. The linearized Einstein-Euler equations:
even-parity sector

The even-parity perturbations are described by the line-
arized fluid equations (91) and (93) and the linearized
Einstein field equations (33), where the coefficients 
ab
and �a, � and � are given in Eqs. (95) above. First of all,
we recall that the Eqs. (93) are simple advection equations
along the flow lines, which are decoupled from the remain-
ing perturbation equations. Therefore, specifying initial
data for ðU;V; �sÞ on an initial hypersurface �0 com-
pletely determines the evolution of these quantities. Next,
as discussed in Sec. VIA, the linearized Einstein equations
give rise to a system of two wave equations for the metric
fields ðC;DÞ [see Eqs. (57)], where the source terms � and
� are determined by the linearized stress-energy tensor.
Here, the vector fields u and w which were introduced in
Sec. VIA to determine the null vectors k :¼ uþ w and
l :¼ u� w are oriented such that u coincides with the
four-velocity of the background fluid flow. Using the defi-
nitions in Eqs. (55) and the expressions (95), we find

�¼ n

2

�
1

v2
s

� 1

��
h

2
ðCþDÞ � _�

�
� n

2

�

v2
s

T�sþ nhC

þ
�
1

r2
~rlðr2nÞ � ð�� �Þn

�
ð�þVÞ þ nð~rlVþUÞ;

�¼ n

2

�
1

v2
s

� 1

��
h

2
ðCþDÞ � _�

�
� n

2

�

v2
s

T�sþ nhD

þ
�
1

r2
~rkðr2nÞ � ð�þ �Þn

�
ð�þVÞ þ nð~rkV�UÞ;

where � is defined in Eq. (86). Notice that Eq. (57a) is
transformed into Eq. (57b) under the symmetry (58) aug-
mented by U � �U.

Together with the evolution equation for�, Eq. (91), we
obtain a closed wave system for the three quantities
ðC;D;�Þ. In order to write down the evolution equation
for �, we notice that J can be eliminated from the right-
hand side of Eq. (91) by virtue of Eq. (33b) and the

satisfaction of the background equation ~raðr2nuaÞ ¼ 0.
This yields the equation

� ~raðgab ~rb�Þ �
�
~ra log

�
r2n

h

��
gab ~rb�

� �̂

r2
ð�þVÞ � 2�nhð�þVÞ

¼ h

2
ua ~ra

��
1

v2
s

� 1

�
ðCþDÞ � 2�

hv2
s

T�s

�

þ h

�~rkðr2nÞ
r2n

� ð�þ �Þ
�
Cþ h

�~rlðr2nÞ
r2n

� ð�� �Þ
�
D

þU0 þ �Uþ
�
log

�
r2n

h

��0
U; (98)

describing the evolution of the fluid field �. Here,
gab refers to the two-dimensional sonic metric on ~M; see
Eq. (90).
The evolution system (57) and (98) for ðC;D;�Þ is

subject to the restriction in Eq. (60), where the quantity
G is

G ¼ ½nð�þ VÞ�0 þ n�ð�þ VÞ;
for the fluid case. Notice that G does not depend on J;
hence, Eq. (60) gives a relation between ðC;DÞ and the
matter fields ð�; VÞ. The quantity J can be reconstructed
from the variables ðC;D;�; U; V; �sÞ using Eq. (63) where

F ¼ � n

2

�
1

v2
s

þ 1

��
h

2
ðCþDÞ � _�

�
� n

2

�
2� �

v2
s

�
T�s

þ
�
1

r4
~ruðr4nÞ þ�n

�
ð�þ VÞ þ n _V:

Initial data for the evolution system (57) and (98) can be

constructed by specifying ðJ; _J;�; _�; U; V; �sÞ on an ini-
tial hypersurface �0, and by following the algorithm
described in Sec. VI C. Namely, we first set

aþ�2C :¼ � 1

4
a�0 J þ �nð�þ VÞ;

a�2 D :¼ � 1

4
aþ0 J þ �nð�þ VÞ:

Next, we solve the ordinary differential equations (65) for
ðC;DÞ, where the matter source terms are given by the
expressions �� F�G ¼ X� Y þ nhC, �� FþG ¼
Xþ Y þ nhD with

X :¼ n

v2
s

�
h

2
ðCþDÞ � _�

�
þ n

�
1� �

v2
s

�
T�s

� 2n

�
_r

r
þ�

�
ð�þ VÞ;

Y :¼ nð�0 þ 2V0 �UÞ þ 2

r
ðrnÞ0ð�þ VÞ:

Finally, ð _C; _DÞ are determined by Eq. (66). This provides
initial data for the wave system (57) and (98). At this point,
we recall the freedom described in Eq. (80) that allows us
to set the initial value for � to zero. Therefore, our initial
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data contains six degrees of freedom, in accordance with
the results in Ref. [20].

VIII. SUMMARYAND CONCLUSIONS

In this paper, we have presented a gauge-invariant
perturbation formalism for spherically symmetric back-
ground configurations in general relativity, without assum-
ing the background to be static or vacuum. The new feature
of this formalism is that it combines the covariant, gauge-
invariant method in Ref. [15] with the quasilocal approach
in Ref. [25], so that it does not require a decomposition of
the perturbations into tensor spherical harmonics.

As a pedagogical first step, we have derived effective
wave equations on the two-dimensional orbit manifold
~M ¼ M=SOð3Þ orthogonal to the two-spheres, describing
the propagation of scalar and electromagnetic test fields on
an arbitrary spherically symmetric background. Then, we
have further developed our formalism to describe linear
metric fluctuations. Our approach is based on the 2þ 2
form of the background geometry and the construction of a
full set of gauge-invariant amplitudes. These amplitudes
are angular-dependent tensor fields on ~M, which behave as
scalars under rotations of the metric two-spheres. We have
expressed the linearized Einstein equations in terms of
these gauge-invariant quantities which decouple into two

groups, describing perturbations with odd and even parity,
respectively.
Next, we have applied our formalism to the vacuum

case and have derived the covariant generalizations of
the Regge-Wheeler and Zerilli master equations, which
describe the propagation of arbitrary linearized gravita-
tional waves on a Schwarzschild black hole. In particular,
we have shown that the Regge-Wheeler equation can easily
be obtained in both, the odd- and the even-parity sectors,
although in the even-parity sector, it does not represent a
master equation in the strict sense, since in this case, an
additional differential equation needs to be solved in order
to reconstruct the metric perturbations.
For a Schwarzschild background, the master equations

describing the propagation of scalar, electromagnetic, and
linearized gravitational perturbations have the form of an
effective wave equation on ð ~M; ~gÞ,

~h�þ VðrÞ� ¼ S; VðrÞ :¼ 1

r2
ð��̂þ BðrÞÞ; (99)

where ~h is the covariant d’Alambertian on the radial part

ð ~M; ~gÞ of the Schwarzschild-Kruskal manifold, �̂ denotes
the Laplacian on the sphere S2, r is the areal radius, and the
operator BðrÞ is defined as

BðrÞ :¼

8>>>>>><
>>>>>>:

2m
r þ�2r2; for a Klein-Gordon field of mass�

0; for odd-and even-parity electromagnetic fields

� 6m
r ; for odd-parity gravitational perturbations

� 6m
r � 24m

r ð1� 3m
r ÞAðrÞ�1 þ 72m2

r2
ð1� 2m

r ÞAðrÞ�2; for even-parity gravitational perturbations

with AðrÞ :¼ ��̂� 2þ 6m=r. Here, the source term S is
zero for the Klein-Gordon field, and in the electromagnetic
case, it is determined by the four-current charge density;
see Eqs. (14c) and (16). In the gravitational case, S is zero
for vacuum perturbations. For gravitational perturbations
generated by an infinitesimal stress-energy tensor, the ex-
pressions for S are given in Ref. [18]. Recall that in the
electromagnetic and gravitational cases, � is restricted to
the monopole-free and the mono-dipole-free spaces, re-
spectively. This means that the expansion of� in spherical
harmonics only contains terms with angular momentum
number ‘ � L with L ¼ 0 in the scalar, L ¼ 1 in the
electromagnetic, and L ¼ 2 in the gravitational cases.
Based on the energy-type estimates described in Ref. [5],
one can prove that the solutions of Eq. (99) belonging to
sufficiently regular initial data on a spacelike slice remain
uniformly bounded outside the black hole.

Next, we considered metric perturbations coupled to
arbitrary matter fields. While in the odd-parity sector the
generalization to matter is rather straightforward in most
cases, in the even-parity sector, it is unclear whether or not
the Zerilli approach works. Recall that, in vacuum, Zerilli’s

method in the covariant approach is based on the observa-
tion that one of the linearized Einstein equations implies
the zero exterior derivative of the Zerilli one-form Z
[see Eq. (41a)], which means that Z can be written as the
differential of a scalar potential. However, with the excep-
tion of particular matter models, obtaining a closed one-
form does not seem possible in the general case. Therefore,
we proposed an alternative approach which naturally leads
to a constrained wave system for two gauge-invariant
metric perturbation amplitudes. In vacuum, this wave
system decouples into two wavelike equations which are
related to the Teukolsky equations [31,32] for the Weyl
scalars �2 and ��2. In the presence of matter fields, the
two equations are coupled to each other through the line-
arized stress-energy tensor and, together with suitable
evolution equations for the matter fields, describe the
propagation of the linearized gravitational and matter field
perturbations.
As an application, we considered linear perturbations

of a spherically symmetric perfect fluid configuration.
Assuming local thermodynamic equilibrium, and assum-
ing that the background is isentropic, we decomposed the

ELIANA CHAVERRA, NÉSTOR ORTIZ, AND OLIVIER SARBACH PHYSICAL REVIEW D 87, 044015 (2013)

044015-20



fluid perturbations into two parts. One part describes a
linearized potential flow and is entirely determined by a
scalar quantity�. The complementary part is described by
a vector fieldW which is orthogonal to the four-velocity of
the background flow and generates a nontrivial vorticity
field at the linearized level. The evolution of W couples
only to the evolution of the perturbed entropy, and the
corresponding equations are simple advection equations
along the background flow. Then, we combined these
equations with those describing gravitational perturbations
and obtained effective equations on ~M describing linear
fluctuations of a spherically symmetric self-gravitating
fluid. In the odd-parity sector, we obtained an inhomoge-
neous master equation generalizing the Regge-Wheeler
equation to the fluid case where the source term is deter-
mined by the fluid field W. In the even-parity sector,
we obtained a constrained, coupled wave system for two
gauge-invariant metric perturbation amplitudes and the
fluid potential �. This evolution system may be solved
using numerical methods, regarded as a Cauchy problem
with initial data constructed according to the algorithm
given in Sec. VI C.

The covariant propagation equations found in this article
should have many applications in astrophysics. One
example is a detailed investigation of radial accretion
flows (for models on fixed backgrounds, see, for instance,
Refs. [44,45]) concerning their stability and their quasi-
normal oscillations. Another important application is the
stability analysis of Cauchy horizons found in some spheri-
cally symmetric models, like a Reissner-Nordström black
hole or a spherical dust cloud undergoing complete gravi-
tational collapse. The latter is particularly interesting, since
it it known to lead to the formation of globally naked
shell-focusing singularities which are stable with respect
to spherical perturbations [46,47].

The fact that our formalism eliminates the need of
decomposing the perturbations into spherical tensor har-
monics represents a simplification with respect to previous
approaches, which could be useful for a generalization to
second- or higher-order perturbations. For example, the
equations governing the second-order perturbations con-
tain source terms which depend quadratically on the first-
order ones, and when expanded into spherical harmonics,
this leads to the computation of Clebsch-Gordan coeffi-
cients. In our approach, this computation is unnecessary.
Instead, the source terms need to be decomposed according
to Eqs. (A2) and (A3) which can be performed by solving
the elliptic equations (A4) and (A5) on the two-spheres.

Another potential advantage of the results derived in this
article is related to the constrained wave system describing
the gravitational perturbations in the even-parity sector.
Since one of the scalars involved in this system is closely
related to the Weyl scalar ��2, describing the outgoing
gravitational radiation at future null infinity, the computa-
tion of the gravitational waves emitted by an isolated

system consisting of a known spherically symmetric space-
time plus a linear perturbation should be rather direct.
Potentially, this system could also be used as a wave
extraction algorithm in the far field of a more complicated
isolated system, like the coalescence of black holes or
neutron stars. However, a persistent challenge in this case
is an adequate identification of the spherically symmetric
background. In fact, the gauge-invariant formalism is
based on the knowledge of the background including its
2þ 2 splitting M ¼ ~M� S2, which requires the correct
identification of the invariant two-spheres S2.
Finally, it should also be possible to generalize our

formalism to higher-dimensional, SOðqþ 1Þ-symmetric
spacetimes of the form M ¼ ~M� Sq, where the dimen-
sions of ~M and the invariant spheres, q ¼ 2; 3; . . . , are
arbitrary. As long as q ¼ 2, we can base the construction
of gauge-invariant tensor fields on ~M on the same decom-
position as in Eqs. (A2) and (A3), although the effective
equations obtained on ~M are now more complicated when
~M has dimension greater than two. When q > 2, one has to
consider the decompositions (A6) and (A7) instead, and in
this case, the equations decouple into scalar, vector, and
tensor perturbations. See Refs. [48,49] for applications to
the stability of higher-dimensional static black holes.
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APPENDIX: COVARIANT, ORTHONORMAL
DECOMPOSITION OF ONE-FORMS AND

TRACE-FREE SYMMETRIC TENSOR FIELDS
ON COMPACT TWO-SURFACES

Let ðS; gÞ be a compact, oriented, two-dimensional
Riemannian manifold without boundary which has positive
Gauss curvature (by the Gauss-Bonnet theorem, this
implies that S is topologically equivalent to the two-sphere
S2.) Let " be the associated volume form on ðS; gÞ, and
introduce the following scalar products:

hf; gi :¼
Z
S
f � g"; h!;�i :¼

Z
S
gAB!A � �B";

hX;Yi :¼
Z
S
gABgCDXAC � YBD"; (A1)

for smooth functions f, g, smooth one-forms !, �, and
smooth tensor fieldsX, Y on S. In this Appendix, we show:
Proposition 1 Let ! and X denote a C1 one-form and

symmetric, traceless tensor field, respectively, on ðS;gÞ.
Then, there exist C1 functions f, g, h, k on S such that

!A ¼ rAfþ "A
BrBg; (A2)
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XAB ¼ ðrArBhÞTF þ "ðA
CrBÞrCk; (A3)

where YTF
AB

:¼ YAB � 1
2gABg

CDYCD refers to the trace-free

part of the tensor field Y on S.
Furthermore, the decompositions (A2) and (A3) are

unique and orthogonal with respect to the scalar products
defined in Eq. (A1). The functions f and g are unique up to
an additive constant and the constants h and k unique up to
the addition of an element in the kernel of the operator
ðrArBÞTF.

Remarks:
(1) The functions ðf; gÞ in Eq. (A2) can be found by

solving the elliptic equations

�f ¼ rA!A; �g ¼ �"ABrA!B; (A4)

and the functions ðh; kÞ in Eq. (A3) by solving

�ð�þ 2k̂Þh ¼ 2rArBXAB;

�ð�þ 2k̂Þk ¼ �2rArB"A
CXBC;

(A5)

with � ¼ rArA the Laplacian and k̂ the Gauss
curvature with respect to ðM;gÞ.

(2) For the case of the unit two-sphere, S ¼ S2, the
kernel of ðrArBÞTF consists of the functions of
the form f¼f00Y

00þf11Y
10þf11Y

11þ �f11Y
1�1

with f00; f10 2 R, f11 2 C, and Y‘m denoting the
standard spherical harmonics. In the context of the
perturbation theory described in this article, we call
the constant part f00Y

00 of f ¼ P
f‘mY

‘m the
monopole part, the part of f which is equal to
f10Y

10 þ f11Y
11 þ �f11Y

1�1 the dipole part, and
the remaining part f ¼ P

‘�2f‘mY
‘m the mono-

dipole-free part. In this case, it is not difficult to
prove the proposition by decomposing the elliptic
equations (A4) and (A5) into spherical harmonics.

(3) The decomposition (A2) also follows from the
Hodge decomposition theorem (see, for instance,
Proposition V.8.2 in Ref. [50]) and the fact that
all harmonic one-forms vanish on ðS;gÞ with our
assumptions, see Lemma 1 below.

Proof of proposition 1. We split the proof in two parts.
In the first part, we show there exist C1 functions f and h
and a divergence-freeC1 one-form� and a C1 symmetric,
trace-free tensor field Y satisfyingrArBYAB ¼ 0 such that

!A ¼ rAfþ �A; (A6)

XAB ¼ ðrArBhÞTF þ YAB: (A7)

These decompositions are orthogonal with respect to the
scalar products defined in Eq. (A1); hence, they are unique
(if they exist). The first equation implies that f must be
such that the one-form !�rf is divergence-free, which
is equivalent to the statement

h!�rf;rui ¼ 0 (A8)

for all C1 functions u on S. Similarly, the function h must
satisfy the problem

hX� ðrrhÞTF;rrvi ¼ 0 (A9)

for all C1 functions v on S. In order to show that the
problems (A8) and (A9) possess a solution, we use stan-
dard tools from the theory of Fredholm operators; see,
for instance, Ref. [51], or Theorem 4 in Appendix A of
Ref. [52] for a summary of the relevant results.
Denote byHmðSÞ the Sobolev space consisting of the set

of square-integrable functions on S with square-integrable
weak derivatives of order smaller than or equal to m (see,
for instance, Ref. [50] for more details). We define for each
� � 0 the following bounded, symmetric quadratic forms:

P�: H
1ðSÞ �H1ðSÞ ! R;

ðf; uÞ � P�ðf; uÞ :¼ hrf;rui þ �hf; ui;
Q�: H

2ðSÞ �H2ðSÞ ! R;

ðh; vÞ � Q�ðh; vÞ :¼ hðrrhÞTF; ðrrvÞTFi
þ �hrh;rvi þ �hh; vi;

and the bounded linear functionals

J!: H
1ðSÞ ! R; u � J!ðuÞ :¼ h!;rui;

KX: H
2ðSÞ ! R; v � KXðuÞ :¼ hX; ðrrvÞTFi:

With these notations, we reformulate the problems
described in Eqs. (A8) and (A9) as finding f 2 H1ðSÞ
and h 2 H2ðSÞ such that

P0ðf; uÞ ¼ J!ðuÞ for all u 2 H1ðSÞ;
Q0ðh; vÞ ¼ KXðvÞ for all v 2 H2ðSÞ:

Notice that for � ¼ 1, P1 is the standard scalar product
on H1ðSÞ. Therefore, it follows by the Riesz representation
lemma that the map L�: H

1ðSÞ ! ðH1ðSÞÞ�, f � P�ðf; �Þ
is invertible for � ¼ 1. In particular, it is a Fredholm
operator of index zero. On the other hand, by compact
embedding, the difference operator L1 � L0 is compact,
which implies that also the map L0 is Fredholm with index
zero. Therefore, the equation L0f ¼ J! has a solution if
and only if J!ðuÞ ¼ 0 for all u 2 H1ðSÞ such that ru ¼ 0.
Since this is always the case by the definition of J!, the
existence of a solution f 2 H1ðSÞ satisfying Eq. (A8)
follows. By elliptic regularity theory (see, for instance,
Ref. [50]), f is C1 smooth, and �A :¼ !A �rAf is
divergence-free.
Similarly, Q� is a scalar product on H2ðSÞ for suffi-

ciently large � > 0. In order to see this, we apply the
integral identity (A10) below to 	A ¼ rAh, obtaining

ELIANA CHAVERRA, NÉSTOR ORTIZ, AND OLIVIER SARBACH PHYSICAL REVIEW D 87, 044015 (2013)

044015-22



Q�ðh; hÞ ¼ 1

2

Z
S
ðrArBhÞðrArBhÞ"

þ
Z
S

�
�� k̂

2

�
ðrAhÞðrAhÞ"þ �

Z
S
h2";

which shows positivity for � > k̂=2 and also proves that,
in this case, the norm induced by Q� is equivalent to the

standard norm on H2ðSÞ. Therefore, for � > k̂=2, the maps
M�: H2ðSÞ ! ðH2ðSÞÞ�, h � Q�ðh; �Þ are invertible and
Fredholm of index zero. Since M� �M0 is compact,
it follows that also M0 is Fredholm with index zero.
Therefore, the equation M0h ¼ KX has a solution if and
only if KXðvÞ ¼ 0 for all v 2 H2ðSÞ such that ðrrvÞTF ¼
0, which is always the case by the definition of KX. The
existence of a solution h 2 H2ðSÞ satisfying Eq. (A9)
follows, and by elliptic regularity, it is C1 smooth. Then,
YAB :¼ XAB � ðrArBhÞTF satisfies the required property
rArBYAB ¼ 0.

This concludes the first part of the proof and shows
existence and uniqueness of the decompositions (A6) and
(A7). Notice that, so far, no topological restrictions on S
have been used.

In the second part of the proof, we show the existence of
C1 functions g and k on S satisfying �A ¼ "A

BrBg and
YAB ¼ "ðA

CrBÞrCk. In order to prove this, we apply the

decomposition (A6) to the one-form �A :¼ �"A
B�A.

Therefore, �A ¼ rAgþ 	A with rA	A ¼ 0. Since 0 ¼
rA�A ¼ rA"A

BðrBgþ 	BÞ ¼ "ABrA	B, the one-form
	B on S is both divergence- and curl-free. By the integral
identity (A10) below, this implies � ¼ 0 since S has
positive Gauss curvature, and it follows that �A ¼
"A

B�B ¼ "A
BrBg. By a similar argument, we use the

decomposition (A7) and write YAB ¼ "ðA
CðrBÞrCkþ

ZBÞCÞ where the C1 symmetric, trace-free tensor field Z
satisfies rArBZAB¼0 and 0¼rArBYAB¼rArB"A

CZBC.
Therefore, the one-form �A :¼ rBZAB is both divergence-
and curl-free which implies � ¼ 0. According to the

second integral identity (A11) below, this implies Z ¼ 0
which concludes the second part of the proof.
Lemma 1 Let � and Z denote a C1 one-form and

symmetric, trace-free tensor field, respectively, on ðS;gÞ.
Then, the following integral identities hold:

Z
S
½ðrA	BÞðrA	BÞþ k̂	A	A�"

¼
Z
S

�
1

2
ðrA	B�rB	AÞðrA	B�rB	AÞþðrA	AÞ2

�
";

(A10)

Z
S
½ðrAZBCÞðrAZBCÞ þ 2k̂ZABZAB�"

¼ 2
Z
S
gABðrCZCAÞðrDZDBÞ"; (A11)

where k̂ denotes the Gauss curvature of ðS;gÞ. In particular,
if k̂ > 0, it follows that there are no nontrivial divergence-
and curl-free one-forms on ðS;gÞ, nor are there nontrivial
symmetric, trace- and divergence-free tensor fields on
ðS;gÞ.
Proof. For the first identity, we integrate

ðrA	BÞðrA	BÞ ¼ ðrA	B �rB	AÞðrA	BÞ
þ ðrB	AÞðrA	BÞ

over S and use Gauss’ theorem twice to bring the second
term on the right-hand side in the form of the square of the
divergence of �. For the second identity, we integrate

ðrAZBCÞðrAZBCÞ ¼ ð"ABrAZBCÞð"EFrEZFCÞ
þ ðrBZACÞðrAZBCÞ

over S, use Gauss’ theorem twice to rewrite the second
term on the right-hand side as the square of the divergence
of Z, and use the fact that "A

CZCB ¼ �ZAD"
D
B.
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