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Roma, Italy and Instituto de Ciencias Nucleares, UNAM, AP 70543, México DF 04510, Mexico

Salvatore Capozziello‡
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We address the issue of constraining the class of fðRÞ gravity able to reproduce the observed

cosmological acceleration, by using the so-called cosmography of the Universe. We consider a model

independent procedure to build up a fðzÞ series in terms of the measurable cosmographic coefficients; we

therefore derive cosmological late time bounds on fðzÞ and its derivatives up to the fourth order, by fitting
the luminosity distance directly in terms of such coefficients. We perform a Monte Carlo analysis, by

using three different statistical sets of cosmographic coefficients, in which the only assumptions are the

validity of the cosmological principle and that the class of fðRÞ gravity reduces to �CDM when z � 1.

We use the updated union 2.1 for supernovae Ia, the constraint on the H0 value imposed by the

measurements of the Hubble space telescope and the Hubble data set, with measures of H at different

z. We find a statistically good agreement of the fðRÞ class under examination with the cosmological data;

we thus propose a candidate for fðRÞ gravity, which is able to pass our cosmological test, reproducing the

late time acceleration in agreement with observations.
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I. INTRODUCTION

The recent observational evidence of the late time ac-
celeration of the Universe [1,2] opened new challenges in
the framework of theoretical cosmology. To explain the
origin of such a cosmic speed-up, cosmologists usually
assume the existence of an exotic fluid called dark energy
(DE) [3]. Even though its physical nature is still unclear,
several attempts have been made in order to resolve the
problem of its existence [4]. In general relativity (GR), the
simplest possibility is the introduction of a vacuum energy
cosmological constant, � [5,6]. The resulting model is
usually referred to as �CDM [7]. However, alternative
approaches have followed one another without being con-
clusive [8–11]. In this regard, another appealing possibility
is to consider GR as a limiting theory of a more general
paradigm [12]; in the last decades, particular attention has

been devoted to solving the problem of the accelerated
Universe in the framework of extended theories of gravity
[13]. Generally, extending GR means reviewing the DE
effects as due to possible corrections of the Einstein-
Hilbert action [14].
In this paper, we focus our attention on the case of the

so-called fðRÞ theories, in which the Ricci scalarR in the
Einstein-Hilbert action is replaced by a more general
analytic function, namely, fðRÞ. The corresponding action
readsA ¼ R

d4x
ffiffiffiffiffiffiffi�g

p ½fðRÞ þLm� [15], whereLm is the

standard matter term. By varying the action with respect to
the metric g��, we obtain the field equations [16]

R��f
0ðRÞ � 1

2
fðRÞg��

� ðr�r� � g��r�r�Þf0ðRÞ ¼ 8�T��; (1)

in the case of the metric approach where the connection is
the Christoffel one. Here T�� is the standard energy

momentum tensor and G ¼ c ¼ 1.
The problem of determining the nature of DE is there-

fore shifted to understanding which fðRÞ is the correct
candidate to explain the dynamics of the Universe. The
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correct class of fðRÞ should be compatible with modern
observations [17]. Therefore, we propose to limit our
attention only to the class of fðRÞ reducing to �CDM at
the low redshift regime [18–22].

In order to check the viability of fðRÞ models, it has
been proposed in Ref. [23] to study the so-called cosmog-
raphy of fðRÞ. Cosmography represents a part of cosmol-
ogy which does not postulate any cosmological model
a priori. Thus, it can be thought of as a model independent
way to fix constraints on the Universe’s dynamics at late
times through the use of a set of parameters, namely, the
cosmographic set (CS). The aim of this work is to relate the
fðRÞ Taylor expansion around z� 0 to the luminosity
distance, determining the Taylor coefficients as functions
of the CS. Afterwards, we fit the coefficients by directly
using the luminosity distance; this allows us to overcome
the problem of the error propagation, since the fðRÞ
coefficients are measured directly from data. In particular,
once we have obtained the expression of the luminosity
distance in terms of fðzÞ and its derivatives, we perform a
Monte Carlo fitting procedure. We obtain at our time strin-
gent numerical intervals for fðzÞ and its derivatives up to the
fourth order and then the corresponding constraints on fðRÞ
and its derivatives. The set of cosmographic fðzÞ parameters
is measured directly from supernovae Ia (SNeIa) data and
H ðzÞ observations under the bound provided by the Hubble
space telescope for H0. Finally, we get a viable candidate
for fðRÞ, reconstructing it from the cosmographic test.
Such a candidate seems to pass the cosmographic and
cosmological tests, extending the �CDM paradigm as a
limiting case of a more general theory.

The paper is structured as follows: in Sec. II we develop
the main features of cosmography and we define the so-
called fðzÞ cosmographic set, which is the set of fðzÞ and
its derivatives to be fitted with the data. In Sec. III we
perform a Monte Carlo analysis, based on three statistical
models, while in Sec. IV we propose a viable candidate for
fðRÞ, compatible with the bounds inferred from our tests.
Finally, in Sec. V we develop conclusions and perspectives
of our work.

II. COSMOGRAPHIC fðzÞ PARAMETERS

In this section, we relate the fðRÞ coefficients (eval-
uated in terms of the redshift z) to the cosmographic set
(CS). Afterwards, we use these relations to write the lumi-
nosity distance in terms of fðzÞ and its derivatives at
z ¼ 0. To this end, let us review briefly the theoretical
features of cosmography. Cosmography, or alternatively
cosmokinetics, is a tool to investigate the dynamics of
the Universe, regardless of the particular cosmological
model. Cosmography indeed simply postulates the validity
of the cosmological principle. Thus, it follows the use of
the Friedmann-Robertson-Walker (FRW) metric, i.e.,

ds2 ¼ dt2 � aðtÞ2ðdr2 þ r2d�2Þ; (2)

where we assume hereafter a spatially flat Universe (k ¼ 0)
and we use the notation d�2 � d�2 þ sin2�d�2.
The paradigm of cosmography is to expand the scale

factor aðtÞ in a Taylor series around the present time t0
[24]. We give here the expressions for the first six coef-
ficients in the expansion,

H � 1

a

da

dt
; q � � 1

aH 2

d2a

dt2
;

j � 1

aH 3

d3a

dt3
; s � 1

aH 4

d4a

dt4
;

l � 1

aH 5

d5a

dt5
; m � 1

aH 6

d6a

dt6
:

(3)

The coefficients in Eqs. (3) are, by construction, model
independent quantities, which are called the cosmographic
set. They are known in the literature as the Hubble rate
(H ), the acceleration parameter (q), the jerk parameter
(j), the snap parameter (s), the lerk parameter (l) [21], and
the m parameter introduced in Ref. [22]. The set of such
parameters is known in the literature as the CS.

A. Degeneracy and cosmography

The definitions given above lead to the most relevant
property of cosmography, that is, overcoming the so-called
degeneracy problem among different cosmological mod-
els. In fact, no cosmological model is assumed a priori in
the expression of the luminosity distance. Furthermore,
another significant aspect of cosmography is to relate the
series expansion of the luminosity distance to the CS. In
this regard, it was pointed out [24–26] that direct measure-
ments of such quantities are permitted, overcoming the
problem of the statistical error propagations. Hence, it is
possible to compare theoretical predictions with the
observed values, without passing through a cyclic scheme
which postulates a priori the form of H and fðRÞ [17].
One of the most important observational quantities to

be expanded in series is the luminosity distance dL.
Considering the scale factor definition in terms of z, i.e.,
a � ð1þ zÞ�1, the luminosity distance reads

dL ¼
ffiffiffiffiffiffiffiffiffiffiffi
L

4�F

s
¼ r0

aðtÞ ; (4)

where we define L and F as the luminosity and the flux
respectively, while

r0 ¼
Z t0

t

d�

að�Þ ; (5)

whose physical meaning is related to the distance r that a
photon travels from a light source at r ¼ r0 to our position
at r ¼ 0. Equation (4) can be expanded in powers of z
around z ¼ 0; the expansion up to the sixth order in z is
given in the Appendix, both in terms of the CS and in
terms of the derivatives of fðzÞ. Now we want to write
fðRÞ ¼ fðRðzÞÞ ¼ fðzÞ and use the definitions in (3)
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to express fðzÞ in terms of the CS, i.e., fðzÞ ¼
fðH ðzÞ; qðzÞ; jðzÞ; sðzÞ; lðzÞ; mðzÞÞ.

To do so, let us start from the definition ofR in terms of
t and H , i.e.,

R ¼ �6ð _H þ 2H 2Þ: (6)

Using the redshift definition in terms of the cosmic time

d logð1þ zÞ
dt

¼ �H ðzÞ; (7)

we rewrite R in terms of z, obtaining

R ¼ 6½ð1þ zÞHH z � 2H 2�: (8)

Hence, we can calculateR and its derivatives in terms of z
and evaluate them in z ¼ 0. The result, up to the fifth
derivative, is

R0

6
¼H 0½H z0� 2H 0�;

Rz0

6
¼H 2

z0þH 0ð�3H z0þH 2z0Þ;
R2z0

6
¼�2H 2

z0þ 3H z0H 2z0þH 0ð�2H 2z0þH 3z0Þ;
R3z0

6
¼ 3H 2

2z0þH z0ð�3H 2z0þ 4H 3z0Þ
þH 0ð�H 3z0þH 4z0Þ;

R4z0

6
¼ 10H 2z0H 3z0þ 5H z0H 4z0þH 0H 5z0;

R5z0

6
¼ 10H 3z0ðH 2z0þH 3z0Þþ 15H 2z0H 4z0

þH z0ð5H 4z0þ 6H 5z0ÞþH 0ðH 5z0þH 6z0Þ;
(9)

where, hereafter, we adopt the convention dnX
dzn j0 � Xnz0

for X, a generic function of z.
Therefore, in order to evaluate R ¼

RðH 0; q0; j0; s0; l0; m0Þ, we need to express H and
its derivatives in terms of the CS. To this regard,
after some cumbersome algebra, we infer from Eqs. (3)

q ¼ �
_H

H 2
� 1;

j ¼
€H

H 3
� 3q� 2;

s ¼ H ð3Þ

H 4
þ 4jþ 3qðqþ 4Þ þ 6;

l ¼ H ð4Þ

H 5
� 24� 60q� 30q2 � 10jðqþ 2Þ þ 5s;

m ¼ H ð5Þ

H 6
þ 10j2 þ 120jðqþ 1Þ

þ 3½2lþ 5ð24qþ 18q2 þ 2q3 � 2s� qsþ 8Þ�;
(10)

and then the corresponding derivatives of H in terms of
the cosmic time read

dH
dt

¼ �H 2ð1þ qÞ;
d2H
dt2

¼ H 3ðjþ 3qþ 2Þ;
d3H
dt3

¼ H 4½s� 4j� 3qðqþ 4Þ � 6�;
d4H
dt4

¼ H 5½l� 5sþ 10ðqþ 2Þjþ 30ðqþ 2Þqþ 24�;
d5H
dt5

¼ H 6fm� 4lþ 12sþ 7sq� 24j� 32jq� 4j2

� 24q� 36q2 � 6q3 � 6ðjþ 3qþ 2Þ2
þ 8ð1þ qÞðs� 4j� 3qðqþ 4Þ � 6Þ
� 2½l� 5sþ ð10jþ 30qÞðqþ 2Þ þ 24�g: (11)

Thus, using Eq. (7), we can rewrite Eqs. (11) in terms of
the CS only, obtaining

H z0=H 0 ¼ 1þq0;

H 2z0=H 0 ¼ j0�q20;

H 3z0=H 0 ¼�3j0�4j0q0þq20þ3q30� s0;

H 4z0=H 0 ¼ 12j0�4j20þ l0þ32j0q0�12q20

þ25j0q
2
0�24q30�15q40þ8s0þ7q0s0;

H 5z0=H 0 ¼ 32j0q0�15l0�11l0q0þ60q20þ180q30

þ225q40þ105q50þ10j20ð6þ7q0Þ�m0

� j0ð60þ272q0þ375q20þ210q30�15s0Þ
�60s0�98q0s0�60q20s0�7q0s0: (12)

Then, using Eqs. (9) and (12), we are able to evaluate
the expressions ofR and its derivatives as functions of the
CS only.

B. The use of the modified Friedmann equations

In this subsection, we want to show the procedure to
fix constraints on fðRÞ and its derivatives. We therefore
use Eqs. (9) and (12) and we consider the modified
Friedmann equations, derived by assuming the FRW met-
ric and Eq. (1).
In the case of the standard matter term, (�m / a�3 and

Pm ¼ 0), one gets the modified Friedmann equations

H 2 ¼ 1

3

�
�curv þ �m

f0ðRÞ
�
; (13)

and

2 _H þ 3H 2 ¼ �Pcurv: (14)

Equations (13) and (14) determine the definition of the DE
fluid in terms of the curvature as
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�curv ¼ 1

f0ðRÞ
�
1

2
½fðRÞ �Rf0ðRÞ� � 3H _Rf00ðRÞ

�
:

(15)

The corresponding barotropic pressure reads

Pcurv ¼ !curv�curv; (16)

with the definition of the effective curvature barotropic
factor given by

!curv ¼ �1þ
€Rf00ðRÞ þ _R½ _Rf000ðRÞ �H f00ðRÞ�
½fðRÞ �Rf0ðRÞ�=2� 3H _Rf00ðRÞ :

(17)

Assuming the functional dependence R ¼ RðzÞ, we
rewrite each term of Eq. (17) in terms of z. We get

f0ðRÞ ¼ R�1
z fz;

f00ðRÞ ¼ ðf2zRz � fzR2zÞR�3
z ;

f000ðRÞ ¼ f3z
R3

z

� fzR3z þ 3f2zR2z

R4
z

þ 3fzR2
2z

R5
z

;

(18)

and, using Eq. (7),

_R ¼ �ð1þ zÞHRz;

€R ¼ ð1þ zÞH ½HRz þ ð1þ zÞðH zRz þHR2zÞ�:
(19)

Furthermore, following [23], we know that any fðRÞ
theory requires

f00ðR0Þ ¼ 0 (20)

in order to be compatible with Solar System tests and

f0ðR0Þ ¼ 1 (21)

to predict the correct value for the gravitational constantG.
Therefore, combining Eq. (18) with (9) and (12),

we have

f0
6H 2

0

¼ ��m þ q0;

fz0
6H 2

0

¼ Rz0

6H 2
0

¼ �2� q0 þ j0;

f2z0
6H 2

0

¼ R2z0

6H 2
0

¼ �2� 4q0 � ð2þ q0Þj0 � s0;

(22)

where we used the condition that �curv0 ¼ fðR0Þ�R0

2 and

that f0 ¼ 6H 2
0ð1��mÞ þR0.

Now, using Eqs. (18) and (19) in (17), we can write!curv

as a function of z only. Then we expand this expression as a
Taylor series around z ¼ 0, obtaining

!curv ¼
X1
j¼0

1

j!

dj!curv

dzj

��������z¼0
zj: (23)

The first term in this expansion, which we call !0,
depends only on f and its derivatives up to the third order
(evaluated at z ¼ 0), while the second term !1 depends on
f and its derivatives up to the fourth order, and so forth for
the higher terms.
Keeping in mind that the class of fðRÞ should reduce to

�CDM at the low redshift regime, we compare our results
with�CDM; thus, by fixing in Eq. (23) the�CDM bounds

�m¼ 2

3
ð1þq0Þ; !�CDM

0 ¼�1

3
ð1�2q0Þ; !�CDM

1 ¼ 0;

(24)

we get f0, fz0, f2z0, f3z0, and f4z0 in terms of the CS
only:

f0
2H 2

0

¼�2þq0;

fz0
6H 2

0

¼�2�q0þ j0;

f2z0
6H 2

0

¼�2�4q0�ð2þq0Þj0� s0;

f3z0
2H 2

0

¼�4�3j20þ3l0þ j0½2þq0ð13þ5q0Þ�

þ15s0þq0½2þ2q0ð5þ2q0Þþ9s0�;
f4z0
2H 2

0

¼ 8þ30j20ð1þq0Þ�6l0ð5þ3q0Þ�3m0�66s0

� j0½22þq0ð46þq0ð38þ29q0ÞÞ�15s0�
�q0½18þ84s0þq0ð4þ2q0ð�9þ2q0Þþ33s0Þ�:

(25)

We refer to Eqs. (25) as the definition of the fðzÞ cosmo-
graphic set (fCS). Now our intent is to constrain the values
of f0, fz0, f2z0, f3z0, and f4z0. To do so, we write the
luminosity distance dL in terms of the fCS by using
Eqs. (25). This is performed in two steps; first we invert
the algebraic system (25) to find the CS in terms of the fCS.
Then we insert these expressions in Eq. (A1). The result is
dL as a power series of z, whose coefficients are now in
terms of the fCS instead of the CS. The explicit expression
of dL in terms of the fCS is given in Eq. (A2).
In addition, in order to measure the fCS using dL and the

cosmological data, we need to define viable priors, com-
patible with the observed Universe. To infer our priors we
assume that the class of fðRÞ reduces to �CDM at late
times, as already stressed above. We write such priors in
Table I.
We can now perform a best fit for the values of the fCS

and obtain constraints on the values of fðzÞ and its deriva-
tives at present time. This will be the content of the
following section.
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III. MONTE CARLO ANALYSIS AND
CONSTRAINTS ON FCS

In this section we evaluate the cosmological constraints
on the fCS by fitting the luminosity distance (A2) with the
cosmological data. We analyze three statistical models
with different maximum orders of parameters; this proce-
dure, widely adopted in the literature, corresponds to
assuming a hierarchy among parameters. The sets that
we are going to analyze are summarized as

A ¼ fH 0; f0; fz0; f2z0g; (26)

B ¼ fH 0; f0; fz0; f2z0; f3z0g; (27)

C ¼ fH 0; f0; fz0; f2z0; f3z0; f4z0g: (28)

In particular, the reason for studying the fCS in such a
hierarchical way is that a broadening of the sampled dis-
tributions by adding more parameters is naively expected.
The corresponding numerical effects to the measured
quantities lead to strong error propagations; this is due to
the higher orders of the Taylor expansion. We are inter-
ested both in quantifying these effects and in fixing con-
straints on the fCS. Our numerical study is based on a
Monte Carlo simulation, in which the chosen observational
data sets for our fits can be summarized as follows:

(i) The union 2.1 SNeIa compilation of the supernova
cosmology project [27]. This sample is an updated
data set of the previous compilations union 2 [28]
and union 1 [29]. Union 2.1 includes measurements
in the plane �� z of 580 supernovae over the red-
shift range 0:015< z < 1:414. In the following nu-
merical analyses, we take into account systematic
errors in the covariance matrix.

(ii) Observations of the Hubble factor [observational
HðzÞ data (OHD)] as a function of redshift. We
take the compilation of Ref. [30] which encom-
passes 18 measurements between the redshift range
0:09< z < 1:75 (see Table I of Ref. [30]). The data

are extracted from previous works (see, for ex-
ample, Refs. [31–33]).

(iii) A Gaussian prior on the Hubble constant ofH 0 ¼
74:2� 3:6 km=s=Mpc [34], as measured by the
Hubble Space Telescope (HST).

To constrain the parameters, we use a Bayesian method
in which the best fits of the parameters are those which
maximize the likelihood function

L / expð�	2=2Þ; (29)

where 	2 is the (pseudo) chi-squared function [35]. Since
the different sets of observations are not correlated, the
function 	2 is simply given by the sum

TABLE I. Priors imposed on the parameters in the
Monte Carlo analysis.

Flat priors

0:5< h< 0:9
0:001<�bh

2 < 0:09
�5< 10�4f0 < 5

�10< 10�5fz0 < 10
�15< 10�5f2z0 < 15
�20< 10�5f3z0 < 20
�50< 10�6f4z0 < 50

Additional constraints

�k ¼ 0
�m ¼ 0:274

wj ¼ 0

TABLE II. Best fits of the parameters for the three considered
models. The quoted errors show the 0.68 C.L. The observations
used to constrain the parameters are the union 2.1 data set
compilation, observational determination of the Hubble factor
(OHD), and the measured value of H 0 by the HST.a

Model A Model B Model C

Parameter 	2
min ¼ 529:0 	2

min ¼ 540:0 	2
min ¼ 552:6

H 0 77:23þ0:84
�1:82 75:69þ2:03

�1:99 71:30þ1:92
�1:91

10�4f0 �3:324þ0:227
�0:230 �3:144þ0:320

�0:332 �2:669þ0:287
�0:284

10�4fz0 3:636þ1:751
�1:735 �1:510þ5:694

�5:656 �1:794þ4:834
�4:200

10�5f2z0 �2:202þ0:965
�0:973 2:276þ2:339

�2:032 0:499þ2:192
�2:049

10�5f3z0 � � � �8:264þ5:064
�5:256 �0:399þ4:424

�4:628

10�6f4z0 � � � � � � �1:027þ2:430
�3:132

aH 0 is given in Km=s=Mpc.

f 0

72 76 80

−4

−3.5

−3

x 10
4

fz
0

72 76 80
−5

0

5

x 10
4

H
0

fz
z 0

72 76 80

−4

−2

0

x 10
5

−4 −3.5 −3

x 10
4

−5

0

5

x 10
4

f
0

−4 −3.5 −3

x 10
4

−4

−2

0

x 10
5

fz
0

−5 0 5

x 10
4

−4

−2

0

x 10
5

FIG. 1 (color online). Two-dimensional marginalized proba-
bility for the parameters of model A. The dashing denotes the
likelihood of the samples.
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	2 ¼ 	2
Union2:1 þ 	2

HST þ 	2
OHD: (30)

We perform a Markov chain Monte Carlo (MCMC)
analysis by modifying the publicly available code
CosmoMC [36] (see also Ref. [37]). To obtain the posterior
distributions, we assume uniform priors over the intervals
given in Table I. In Table II, we show the summary of the
constraints. We report the best fits given by the maximum
of the likelihood function of the samples; the quoted errors
show the 68% confidence limits (C.L.). In Fig. 4 we plot
the corresponding posterior distributions. The vertical lines
denote the upper and lower limits for the �CDM case;
these are obtained by using the best fit parameters reported
in Table I, compatible with those of Ref. [38]. In Figs. 1–3,
we show all the two-dimensional marginalized posterior
confidence intervals for the three analyzed models.

As it can be noticed from Figs. 1–4, the marginalized
posteriors lose Gaussianity when we add further parame-
ters to model A. We conclude that considering model C
over model B has the advantage of giving more informa-
tion on the cosmographic fðRÞ parameters without enlarg-
ing the dispersions; however, model C is less suitable for a
posterior statistical treatment.

We note that the dispersions of the samples are consid-
erably enlarged when the third derivative f3z0 is included
within model A. In other words, the corresponding model
B suffers from a deep dispersion problem due to the
considered data set of 580 SNeIa. Nonetheless, the intro-
duction of f4z0 in model C does not substantially broaden
the distributions. To quantify such an effect, the standard
deviations of the distributions are in the proportions given
in Table III. An additional comment comes from the strong
tension between model A and the �CDM model; such a
tension could be substantially alleviated by considering
models B and C.

IV. EXAMPLES OF fðRÞ GRAVITY

In this section, we provide a new explicit example of
an fðRÞ model that reduces to �CDM when z� 0 and
satisfies the theoretical constraints (20) and (21). In
doing so, we combine recent theoretical results with
our cosmographic constraints [39]. Particularly, several
authors recently suggested that viable forms for fðRÞ
gravity may be represented by polynomial or exponential
functions [40]. Additional approaches have been
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FIG. 2 (color online). Two-dimensional marginalized probability for the parameters of model B. The dashing denotes the likelihood
of the samples.
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proposed in the literature, showing that it is possible to
better constrain the cosmological data with further as-
sumptions [41]. Thus, we set the free parameters of our
model according to the new constraints on higher order
derivatives that we found in Sec. III from cosmography.
In other words, our reconstruction of the fðRÞ function
is based on modeling the discrepancies with the data
by smoothing different functions, through the use of a

Bayesian inverse analysis. The expression for our fðRÞ
candidate is therefore derived in accordance with the
above results, through the inverse procedure of determin-
ing from data the correct fðRÞ [42]. Thus, we consider
a combination of viable fðRÞ functions, showing that,
in the redshift range z � 1:41, our fðRÞ is able to better
fit the cosmographic results than previous approaches.
We get

fðRÞ ¼ 1

2ðaþ bþ cÞe�R2
0

�
�R2

0

�
2a�eR=R0 þ e

�
6bþ ðaþ 2cÞ�þ 8b arctan

�
R
R0

���

þ eR
�
2R0ððaþ bþ cÞ�R0 � 4b�Þ þ ð2b� a�Þ�R

�
� 2ce��ðR�R0Þ2 sin

�
2�R
R0

��
; (31)

with a, b, and c as free parameters of the model. Clearly,
with this choice for fðRÞ we obtain fðR0Þ ¼ R0 þ�,
f0ðR0Þ ¼ 1, and f00ðR0Þ ¼ 0, independently of the pa-
rameters. Next, we calculate the third and fourth deriva-
tives in R ¼ R0, i.e.,

f000ðR0Þ ¼ �
2bþ �ða� 12c�Þ
ðaþ bþ cÞ�R3

0

; (32)

and

fivðR0Þ ¼ a�

ðaþ bþ cÞR4
0

: (33)

Again, we use Eqs. (9) and (12) to writeR0 in terms of the
CS and set the value of � ¼ 2ð1� 2q0ÞH 2

0 (according to
�CDM). Using the numerical values in Table IV, we get
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FIG. 3 (color online). Two-dimensional marginalized probability for the parameters of model C. The dashing denotes the likelihood
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the numerical results for the higher order derivatives of our
model, i.e.,

f000ðR0Þ ¼ �5:98	 10�11 2bþ �ða� 12c�Þ
aþ bþ c

; (34)

and

TABLE III. Standard proportions of fðzÞ derivatives.
Parameter Standard deviations proportions

Model A: Model B: Model C

H 0 1: 1.51: 1.44

f0 1: 1.43: 1.25

fz0 1: 3.26: 2.59

f2z0 1: 2.26: 2.19

 64  66  68  70  72  74  76  78  80  82  84
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FIG. 4 (color online). One-dimensional marginalized probability for the parameters explored with MCMC. Solid lines (red) are for
model A, dotted lines (blue) for model B, and dashed (black) for model C. The vertical dashed lines are the lower and upper limits
allowed for the �CDM model by using the WMAP7yþ BAOþH 0 observations, as inferred in Ref. [38]. Note that for the cases
f2z0, f3z0, and f4z0 these are very close and cannot be distinguished.

TABLE IV. Values of the cosmographic set.a

Parameter Model A Model B Model C

q0 �0:786þ0:251
�0:324 �0:744þ0:426

�0:434 �0:625þ0:424
�0:420

j0 2:229þ0:718
�0:761 0:817þ2:106

�2:102 0:787þ2:04
�1:83

s0 �7:713þ4:997
�5:372 �6:671þ11:15

�10:295 �2:217þ11:93
�11:15

l0 � � � 21:003þ61:257
�59:593 9:416þ60:72

�58:31

m0 � � � � � � �41:781þ422:23
�432:73

aTable of numerical results for the CS; the numerical values are
given at z ¼ 0, while the error propagations have been found
using the standard differential rule.
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fivðR0Þ ¼ 3:79	 10�15a

aþ bþ c
: (35)

We can compare the results to those in Table V (model C)
to obtain the following constraints on our model:

a� 145:5; b��148; c� 1: (36)

Equation (31) represents a first example of fðRÞ, satisfy-
ing the cosmographic constraints of fCS. We evaluated
Eq. (31) by using the bounds of Tables IV and V. We
hope that such a choice could represent a viable candidate
to extend the �CDM model as a limiting case.

V. FINAL FORECASTS

In this paper, we addressed the problem of reconstruct-
ing the correct form of fðRÞ, through the use of the so-
called cosmography of the Universe. In particular, we
considered cosmography as a tool to infer cosmological
bounds on fðzÞ and its derivatives up to the fourth order and
consequently on fðRÞ and its derivatives, at our time. In
addition, by considering the class of fðRÞ which reduces
to �CDM at z � 1, we got numerical constraints on fðRÞ
and its derivatives by relating such quantities to the CS.

Once we rewrite the luminosity distance in terms of the
fðRÞ coefficients, we can directly measure them, alleviat-
ing the problems of error propagation. In particular, we
defined such a set of quantities as the fCS, which can be

expressed in terms of the well-known CS. We found the
numerical constraints through the use of Monte Carlo sta-
tistical analyses, by adopting the updated union 2.1 data
set, the HST bound for H0, and the OHD measurements.
In this coarse grained picture, we were able to get strin-

gent limits for the fCS, and we propose a candidate for fðRÞ
that is able to reproduce the dynamics of the Universe in
accordance with the cosmographic results. We hope that the
reconstruction of fðRÞ by using the cosmographic approach
can be extended in future works in order to get more relevant
constraints on different classes of fðRÞ.
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APPENDIX: LUMINOSITY DISTANCE
IN TERMS OF THE CS AND FCS

In this Appendix, we write the formulas for the expan-
sion of the luminosity distance dLðzÞ in terms of the CS and
fCS around z ¼ 0. More details can be found in Ref. [22].
The expansion in terms of the CS of the luminosity dis-
tance reads

dLðzÞ ¼ 1

H 0

�
zþ 1

2

�
1� q0

�
z2 � 1

6

�
1� q0 þ j0 � 3q20

�
z3 þ 1

24

�
2þ 5j0 � 2q0 þ 10j0q0 � 15q20ð1þ q0Þ þ s0

�
z4

þ
�
� 1

20
� 9j0

40
þ j20

12
� l0

120
þ q0

20
� 11j0q0

12
þ 27q20

40
� 7j0q

2
0

8
þ 11q30

8
þ 7q40

8
� 11s0

120
� q0s0

8

�
z5

þ
�
1

30
þ 7j0

30
� 19j20

72
þ 19l0

720
þ m0

720
� q0

30
þ 13j0q0

9
� 7j20q0

18
þ 7l0q0

240
� 7q20

10
þ 133j0q

2
0

48
� 13q30

6

þ 7j0q
3
0

4
� 133q40

48
� 21q50

16
þ 13s0

90
� 7j0s0

144
þ 19q0s0

48
þ 7q20s0

24

�
z6 þOðz7Þ

�
; (A1)

which is a result evaluated at k ¼ 0; for extensions see Ref. [21]. Inverting the system of Eqs. (25) to obtain the CS in terms
of the fCS, we can rewrite Eq. (A1) in terms of the fCS only. We have

TABLE V. Values of fðRÞ and its derivatives.a

Parameter Model A Model B Model C

fðR0Þ �3:324þ0:227
�0:230 �3:144þ0:320

�0:332 �2:669þ0:287
�0:284

f0ðR0Þ 1þ2:6�10�2:7	10�16�16
1þ1:8	10�15

�1:8	10�15 1þ5:8	10�16

�5:3	10�16

f00ðR0Þ 5:9 � 10�20þ7:3	10�20

�7:8	10�20 �4:1 � 10�19þ4:8	10�18

�4:7	10�18 �1:2 � 10�19þ7:8	10�19

�6:8	10�19

f000ðR0Þ � � � 1:8 � 10�9þ1:6	10�8

�1:6	10�8 1:8 � 10�9þ1:1	10�8

�9:5	10�9

fivðR0Þ � � � � � � �3:87 � 10�13þ9:1	10�12

�8:2	10�12

aTable of numerical references for fðRÞ and its derivatives, evaluated at z ¼ 0, i.e., R ¼ R0;
the error propagations have been evaluated through the standard differential rule.
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dLðzÞ ¼ 1

H 0

�
z� f0 þ 2H 2

0

4H 2
0

z2 þ 9f20 þ 2ð36f0 � fz0ÞH 2
0 þ 108H 4

0

72H 4
0

z3

þ�45f30 þ 18f0ð�32f0 þ fz0ÞH 2
0 � 4ð567f0 � 21fz0 þ f2z0ÞH 4

0 � 2592H 6
0

576H 6
0

z4

þ 1

17280H 8
0

�
945f40 þ 2f20ð8235f0 � 274fz0ÞH 2

0 þ 36ð2853f20 � 141f0fz0 þ f2z0 þ 4f0f2z0ÞH 4
0

þ 24ð11151f0 � 459fz0 þ 30f2z0 � f3z0ÞH 6
0 þ 241056H 8

0

�
z5

þ 1

207360H 10
0

�
�8505f50 þ 2f30ð�93555f0 þ 3214fz0ÞH 2

0 � 4f0ð398115f20 � 22252f0fz0 þ 225f2z0

þ 462f0f2z0ÞH 4
0 � 24ð271161f20 þ fz0ð187fz0 � 10f2z0Þ � 3f0ð5480fz0 � 247f2z0 þ 5f3z0ÞÞH 6

0

þ�48ð263844f0 � 11478fz0 þ 843f2z0 � 39f3z0 þ f4z0ÞH 8
0 � 9315648H 10

0

�
z6
�
: (A2)
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