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Matched filtering for the identification of compact object mergers in gravitational wave antenna data

involves the comparison of the data stream to a bank of template gravitational waveforms. Typically the

template bank is constructed from phenomenological waveformmodels, since these can be evaluated for an

arbitrary choice of physical parameters. Recently it has been proposed that singular value decomposition

(SVD) can be used to reduce the number of templates required for detection. As we show here, another

benefit of SVD is its removal of biases from the phenomenological templates along with a corresponding

improvement in their ability to represent waveform signals obtained from numerical relativity (NR)

simulations. Using these ideas, we present a method that calibrates a reduced SVD basis of phenomeno-

logical waveforms against NR waveforms in order to construct a new waveform approximant with

improved accuracy and faithfulness compared to the original phenomenological model. The newwaveform

family is given numerically through the interpolation of the projection coefficients of NR waveforms

expanded onto the reduced basis and provides a generalized scheme for enhancing phenomenological

models.
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I. INTRODUCTION

Developments are currently underway to promote the
sensitivity of LIGO and to improve its prospect for detect-
ing gravitational waves emitted by compact object binaries
[1,2]. Of particular interest is the detection of gravitational
waves released during the inspiral and merger of binary
black hole (BBH) systems. Detection rates for BBH events
are expected to be within 0.4–1000 per year with Advanced
LIGO [3]. It is important that rigorous detection algorithms
be in place in order to maximize the number of detections
of gravitational wave signals.

The detection pipeline currently employed by LIGO
involves a matched filtering process whereby signals are
compared to a preconstructed template bank of gravita-
tional waveforms. The templates are chosen to cover
some interesting region of mass-spin parameter space and
are placed throughout it in such a way that guarantees some
minimal match between any arbitrary point in parameter
space and its closest neighboring template. Unfortunately,
the template placement strategy generally requires many
thousands of templates (e.g., Ref. [4]) evaluated at arbitrary
mass and spin; something that cannot be achieved using the
current set of numerical relativity (NR) waveforms.

To circumvent this issue, LIGO exploits the use of
analytical waveform families like phenomenological
models [5,6] or effective-one-body models [7,8]. We shall
focus here on the Phenomenological B (PhenomB) wave-
forms developed by Ref. [6]. This waveform family
describes BBH systems with varying masses and aligned
spin vectors (i.e., nonprecessing binaries). The family was
constructed by fitting a parameterized model to existing
NR waveforms in order to generate a full inspiral merger
ringdown (IMR) description as a function of mass and spin.
The obvious appeal of the PhenomB family is that it allows
for the inexpensive construction of gravitational wave-
forms at arbitrary points in parameter space and can thus
be used to create arbitrarily dense template banks.
To optimize computational efficiency of the detection

process, it is desirable to reduce the number of templates
under consideration. A variety of reduced-basis techniques
have been developed, either through singular value decom-
position (SVD) [9,10], or via a greedy algorithm [11]. SVD
is an algebraic manipulation that transforms template
waveforms into an orthonormal basis with a prescription
that simultaneously filters out any redundancies existing
within the original bank. As a result, the number of tem-
plates required for matched filtering can be significantly
reduced. In addition, it has been shown in Ref. [12] that,
upon projecting template waveforms onto the orthonormal
basis produced by the SVD, interpolating the projection
coefficients provides accurate approximations of other
IMRwaveforms not included in the original template bank.
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In this paper, we continue to explore the use of the
interpolation of projection coefficients. We take a novel
approach that utilizes both the analytic PhenomBwaveform
family [6] and NR hybrid waveforms [13–15]. We apply
SVD to a template bank constructed from an analytical
waveform family to construct an orthonormal basis span-
ning the waveforms, then project the NR waveforms onto
this basis and interpolate the projection coefficients to allow
arbitrary waveforms to be constructed, thereby obtaining
a new waveform approximant. We show here that this
approach improves upon the accuracy of the original ana-
lytical waveform family. The original waveform family
shows mismatches with the NR waveforms as high as 0.1
when no extremization over physical parameters is applied
(i.e., a measure of the ‘‘faithfulness’’ of the waveform
approximant), and mismatches of 0.02 when maximized
over total mass (i.e., a measure of the ‘‘effectualness’’ of
the waveform approximant). With our SVD accuracy boos-
ter, we are able to construct a new waveform family (given
numerically) with mismatches <0:005 even without
extremization over physical parameters.

This paper is organized as follows: We begin in Sec. II,
where we provide definitions to important terminology
used in our paper. We then compare our NR hybrid wave-
forms to the PhenomB family and show that a mass bias
exists between the two. In Sec. III, we present our SVD
accuracy booster applied to the case study of equal-mass,
zero-spin binaries. In Sec. IV, we investigate the feasibility
of extending this approach to include unequal-mass
binaries. We finish with concluding remarks in Sec. V.

II. GRAVITATIONALWAVEFORMS

A. Terminology

A gravitational waveform is described through a com-
plex function, hðtÞ, where the real and imaginary parts
store the sine and cosine components of the wave. The
specific form of hðtÞ depends on the parameters of the
system—in our case, the total mass M ¼ m1 þm2 and
the mass ratio q ¼ m1=m2. While hðtÞ is a continuous
function of time, we discretize by sampling hðtiÞ, where
the sampling times ti have uniform spacing �t ¼ 2�15 s.

We shall also whiten any gravitational waveform hðtÞ.
This processes is carried out in frequency space via

~h wðfÞ ¼
~hðfÞffiffiffiffiffiffiffiffiffiffiffiffi
SnðfÞ

p ; (1)

where SnðfÞ is the LIGO noise curve and ~hðfÞ is the
Fourier transform of hðtÞ. The whitened time-domain
waveform, hwðtÞ, is obtained by taking the inverse
Fourier transform of Eq. (1). In the remainder of the paper,
we shall always refer to whitened waveforms, dropping the
subscript ‘‘w.’’ For our purposes it suffices to take SnðfÞ to
be the Initial LIGO noise curve. Using the Advanced LIGO
noise curve would only serve to needlessly complicate our

approach by making waveforms longer in the low-
frequency domain.
As a measure of the level of agreement between two

waveforms, hðtÞ and gðtÞ, we will use their match, or
overlap, Oðh;gÞ [16–18]. We define

O ðh;gÞ � max
�T

��������
hh;gi

khk � kgk
��������; (2)

where hh;gi is the standard complex inner product, and the

norm khk � ffiffiffiffiffiffiffiffiffiffiffiffihh;hip
. We always consider the overlap

maximized over time and phase shifts between the two
waveforms. The time maximization is indicated in Eq. (2),
and the phase maximization is an automatic consequence
of the modulus. Note that 0 � Oðh;gÞ � 1. For discrete
sampling at points ti ¼ t0 þ i�t, we have that

hh;gi ¼ X
i

hðtiÞ � g�ðtiÞ; (3)

where g�ðtÞ is the complex conjugate of gðtÞ. Without
whitening, Eq. (3) would need to be evaluated in the
frequency domain with a weighting factor 1=SnðfÞ. The
primary advantage of Eq. (3) is its compatibility with
formal results for the SVD, which will allow us to make
more precise statements below. When maximizing over
time shifts �T, we ordinarily consider discrete time shifts
in integer multiples of �t, as this avoids interpolation.
After the overlap has been maximized, it is useful to speak
in terms of the mismatch, Mðh;gÞ, defined as

M ðh;gÞ � 1�Oðh;gÞ: (4)

We use this quantity throughout the paper to measure the
level of disagreement between waveforms.

B. NR hybrid waveforms

We use numerical waveforms computed with the
Spectral Einstein Code [19]. Primarily, we use the 15-orbit
equal-mass (mass ratio q ¼ 1), zero-spin (effective spin
� ¼ 0) waveform described in Refs. [13,20]. In Sec. IV, we
also use unequal mass waveforms computed by Ref. [14].
The waveforms are hybridized with a TaylorT3 post-
Newtonian (PN) waveform as described in Refs. [15,21]
at matching frequenciesM! ¼ 0:038, 0.038, 0.042, 0.044,
and 0.042 for mass ratios q ¼ 1, 2, 3, 4, and 6, respectively.
TaylorT4 at the 3.5 PN order is known to match NR

simulations exceedingly well for equal-mass, zero-spin
BBH systems [20] (see also Fig. 9 of Ref. [15]). For
q ¼ 1, a TaylorT3 hybrid is very similar to a TaylorT4
hybrid, cf. Fig. 12 of Ref. [15]. The mismatch between
TaylorT3 and TaylorT4 hybrids is below 10�3 at M ¼
10 M�, dropping to below 10�4 for 15 M� � M �
20 M�, and 10�5 for 20 M� � M � 100 M�. These mis-
matches are significantly smaller than the mismatches
arising in the study presented here, so we conclude that
our results are not influenced by the accuracy of the
utilized q ¼ 1 PN-NR hybrid waveform. For higher mass
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ratios, the PN-NR hybrids have a larger error due to the
post-Newtonian waveform [21]. The error bound on the
hybrids increases with the mass ratio; however, this is
mitigated in our study here, because we use the q � 2
hybrids only for a total mass of 50 M� or greater, where
less of the post-Newtonian waveform is in band.

Because NR simulations are not available for arbitrary
mass ratios, we will primarily concentrate our investigation
on the equal-mass and zero-spin NR hybrid waveforms
described above. The full IMR waveform can be generated
at any point along the q ¼ 1 line through a simple rescal-
ing of amplitude and phase with the total mass M of the
system. Despite such a simple rescaling, the q ¼ 1 line lies
orthogonal to lines of constant chirp mass [22], therefore
tracing a steep gradient in terms of waveform overlap, and
encompassing a large degree of waveform structure.

C. PhenomB waveforms

Since our procedure for constructing an orthonormal
basis begins with PhenomB waveforms, let us now inves-
tigate how well these waveforms model the NR wave-
forms to be interpolated. For this purpose, we adopt the
notation hNRðMÞ and hPBðMÞ to represent NR and
PhenomB waveforms of total mass M, respectively. We
quantify the faithfulness of the PhenomB family by com-
puting the mismatch M½hNRðMÞ;hPBðMÞ� as a function
of mass. The result of this calculation for 10 M� � M �
100 M� is shown as the dashed curve in the top panel of
Fig. 1. The mismatch starts off rather high with M 	 0:1
at 10 M� and then slowly decreases as the mass is
increased, until eventually flattening to M 	 0:005 at
high mass.

The mismatch between NR and PhenomB waveforms
can be reduced by optimizing over a mass bias. This is
accomplished by searching for the mass M0 for which the
mismatch M½hNRðMÞ;hPBðM0Þ� is a minimum. The result
of this process is shown by the solid line in the top panel of
Fig. 1. Allowing for a mass bias significantly reduces the
mismatch for M & 50 M�. The mass M0 that minimizes
mismatch is generally smaller than the mass M of our NR
‘‘signal’’ waveform, M0 <M, over almost all of the mass
range considered. Apparently, PhenomB waveforms are
systematically underestimating the mass of the ‘‘true’’
NR waveforms, at least along the portion of parameter
space considered here. The solid line in the bottom panel
of Fig. 1 plots the relative mass bias, ðM�M0Þ=M. At
10 M�, this value is 0.3%, and it rises to just above 1%
for 30 M�.

1

It is useful to consider how this mass bias compares to
the potential parameter estimation accuracy in an early
detection. For a signal with a matched-filter signal-to-noise

ratio of 8—characteristic of early detection scenarios—
template/waveform mismatches will influence parameter
estimation when the mismatch is M � 8�2=2 [23].
Placing a horizontal cut on the top panel of Fig. 1 atM ¼
8�2=2
 0:01, we see that for M * 40 M�, PhenomB
waveform errors have no observational consequence; for
15 M� & M & 40 M�, a PhenomB waveform with the
wrong mass will be the best match for the signal. ForM &
15 M�, the mismatch between equal-mass PhenomB
waveforms and NR (when optimizing over mass) grows
to 
0:02. Optimization over mass ratio will reduce this
mismatch, but we have not investigated to what degree.

III. INTERPOLATED WAVEFORM FAMILY

A. PhenomB template bank

We aim to construct an orthonormal basis via the SVD of
a bank of PhenomB template waveforms, and then inter-
polate the coefficients of NR waveforms projected onto
this basis to generate a waveform family with improved
NR faithfulness. The first step is to construct a template
bank of PhenomB waveforms, with attention restricted to
equal-mass, zero-spin binaries. An advantage of focusing
on the q ¼ 1 line is that template bank construction can
be simplified by systematically arranging templates in
ascending order by total mass.
With this arrangement we define a template bank to

consist of N PhenomB waveforms, labeled gi � hPBðMiÞ
(i ¼ 1; 2; . . . ; N), with Miþ1 >Mi and with adjacent tem-
plates satisfying the relation

jO0 �Oðgi;giþ1Þj � "; (5)

FIG. 1. The dashed line in the top panel traces the mismatch
between the equal-mass, zero-spin NR and PhenomB wave-
forms of the same total mass M. The mismatch is reduced
(solid line) by searching to find the mass M0 for which
M½hNRðMÞ;hPBðM0Þ� is a minimum. We generally find that
M0 <M, as shown in the bottom panel where the solid line
traces the mass bias ðM�M0Þ=M. For comparison, the dot-
dashed curve in the bottom panel traces the mass spacing
ðMk �Mk�1Þ=Mk for a template bank of PhenomB waveforms
satisfying M½hPBðMk�1Þ;hPBðMkÞ� ¼ 8�2=2.

1In our calculation we have fixed q ¼ 1 and � ¼ 0. A more
comprehensive minimization over mass, mass ratio, and effec-
tive spin might change this result.
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whereO0 is the desired overlap between templates and " is
some accepted tolerance in this value. The template bank is
initiated by choosing a lower mass bound M1 ¼ Mmin and
assigning g1 ¼ hPBðM1Þ. Successive templates are found
by sequentially moving toward higher mass in order to find
waveforms satisfying Eq. (5) until some maximum mass
Mmax is reached. Throughout each trial, overlap between
waveforms is maximized continuously over phase shifts
and discretely over time shifts. For template bank construc-
tion, we choose to refine the optimization over time by
considering shifts in integer multiples of �t=100.

We henceforth refer to our fiducial template bank, which
employs the parametersMmin ¼ 15 M�,Mmax ¼ 100 M�,
O0 ¼ 0:97, and " ¼ 10�12. The lower mass bound was
chosen in order to obtain a reasonably sized template
bank containing N ¼ 127 waveforms; pushing downward
to 10 M� results in more than double the number of
templates. Template waveforms each have a duration of
8 s and are uniformly sampled at �t ¼ 2�15 s (a sample
frequency of 32 768 Hz). Storing this template bank using
double-precision waveforms requires 508 MiB of memory.

B. Representation of waveforms in a reduced SVD basis

The next step is to transform the template waveforms
into an orthonormal basis. Following the presentation in
Ref. [9], this is achieved by arranging the templates into the
rows of a matrix G and factoring through SVD to obtain

G ¼ V�UT; (6)

where U and V are orthogonal matrices, and � is a diago-
nal matrix whose nonzero elements along the main diago-
nal are referred to as singular values. The SVD for G is
uniquely defined as long as the singular values are arranged
in descending order along the main diagonal of �.

The end result of Eq. (6) is to convert the N complex-
valued templates into 2N real-valued orthonormal basis
waveforms. The kth basis waveform, uk, is stored in the
kth row of U, and associated with this mode is the singular
value, �k, taken from the kth element along the main
diagonal of �. One of the appeals of SVD is that the
singular values rank the basis waveforms with respect to
their ability to represent the original templates. This can
be exploited in order to construct a reduced basis that
spans the space of template waveforms to some tolerated
mismatch.

For instance, suppose we choose to reduce the basis by
considering only the first N0 < 2N basis modes while
discarding the rest. Template waveforms can be repre-
sented in this reduced basis by expanding them as the sum

g 0 ¼ XN0

k¼1

�kuk; (7)

where �k are the complex-valued projection coefficients,

�k � hg;uki: (8)

The prime in Eq. (7) is used to stress that the reduced basis
is generally unable to fully represent the original template.2

It was shown in Ref. [9] that the mismatch expected from
reducing the basis in this way is

hMi � hMðg0;gÞi ¼ 1

4N

X2N
k¼N0þ1

�2
k: (9)

Given �, Eq. (9) can be inverted to determine the number
of basis waveforms, N0, required to represent the original
templates for some expected mismatch hMi.
Equation (9) provides a useful estimate to the mismatch

in representing templates from a reduced SVD basis. In
order to investigate its accuracy, however, we should com-
pute the mismatch explicitly for each template waveform.
Using the orthonormality condition huj;uki ¼ �jk, it is

easy to show from Eq. (7) that the mismatch between the
template and its projection can be expressed in terms of the
projection coefficients:

M ðg0;gÞ ¼ 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN0

k¼1

�k�
�
k

vuut : (10)

This quantity is minimized continuously over phase and
discretely over time shifts in integer multiples of �t.
Choosing hMi ¼ 10�6, Eq. (9) predicts that N0 ¼ 123

of the 2N ¼ 254 basis waveforms from our fiducial tem-
plate bank are required to represent the templates to the
desired accuracy. In Fig. 2, we compare the expected
mismatch of 10�6 to the actual mismatches computed
from Eq. (10) for each PhenomB waveform in the template
bank. The open squares in this plot show that the actual
template mismatch has a significant amount of scatter
about hMi, but averaged over a whole remains well
bounded to the expected result. The PhenomB template
waveforms can thus be represented to a high degree from a
reasonably reduced SVD basis.
We are, of course, more interested in determining how

well NRwaveforms can be represented by the same reduced
basis of PhenomB waveforms. Since NR and PhenomB
waveforms are not equivalent, Eq. (9) cannot be used to
estimate the mismatch obtained when projecting NR wave-
forms onto the reduced basis. We must therefore compute
their representation mismatch explicitly. A general wave-
form, h, can be represented by the reduced basis in analogy
to Eq. (7) by expressing it as the sum

h 0 ¼ XN0

k¼1

�kuk; (11)

where �k ¼ hh;uki. As before, the represented waveform
h0 will in general be neither normalized nor equivalent to
the original waveform h. The mismatch between them is

2In the case where N0 ¼ 2N, we are guaranteed from Eq. (6) to
completely represent the template.
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M ðh0;hÞ ¼ 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN0

k¼1

�k�
�
k

vuut ; (12)

where we remind the reader that we always minimize over
continuous phase shifts and discrete time shifts of the two
waveforms.

In Fig. 2, we use open circles to plot the representation
mismatch of NR waveforms evaluated at the same set of
masses Mi from which the PhenomB template bank was
constructed. We see that NR waveforms can be represented
in the reduced basis with a mismatch less than 10�3 over
most of the template bank boundary. This is about a factor
of 5 improvement in what can be achieved by using
PhenomB waveforms optimized over mass. Since NR
waveforms were not originally included in the template
bank, and because a mass bias exists between the PhenomB
waveforms which were included, we can expect that the
template locations have no special meaning to NR wave-
forms. This is evident from the thin dashed line which
traces the NR representation mismatch for masses eval-
uated between the discrete templates. This line varies
smoothly across the considered mass range and exhibits
no special features at the template locations. This is in
contrast to the thin solid line which traces the PhenomB
representation mismatch evaluated between templates. In
this case, the mismatch rises as we move away from one
template and subsequently falls back down as the next
template is approached.

The representation tolerance hMi of the SVD is a
free parameter, which so far, we have constrained to be

hMi ¼ 10�6. When this tolerance is varied, we observe
the following trends: (i) PhenomB representation mis-
match generally follows hMi; (ii) NR representation
mismatch follows hMi at first and then saturates to a
minimum as the representation tolerance is continually
reduced. These trends are observed in Fig. 3, where we
plot the NR and PhenomB representation mismatch aver-
aged over the mass boundary of the template bank eval-
uated both at and between templates. The saturation in NR
representation mismatch occurs when the reduced basis
captures all of the NR waveform structure contained within
the PhenomB basis. Reducing the basis mismatch further
hits a point of diminishing returns as the increased compu-
tational cost associated with a larger basis outweighs the
benefit of marginally improving the NR match.

C. Interpolation of NR projection coefficients

We now wish to examine the possibility of using the
reduced SVD basis of PhenomB template waveforms to
construct a new waveform family with improved NR rep-
resentation. The new waveform family would be given by a
numerical interpolation of the projection coefficients of
NR waveforms expanded onto the reduced basis. Here
we test this using the fiducial template bank and reduced
basis described above.
The approach is to sample NR projection coefficients,

�kðxiÞ, at some set of locations, xi, and then perform an
interpolation to obtain the continuous function �0

kðxÞ that
can be evaluated for arbitrary x. The accuracy of the
interpolation scheme is maximized by finding the space
for which�kðxiÞ are smooth functions of x. It is reasonable

FIG. 2. Representation mismatch for the reduced SVD basis
with expected tolerance hMi ¼ 10�6 (traced by dotted line).
Open squares (open circles) show the representation mismatch
for PhenomB (NR) waveforms evaluated at the PhenomB tem-
plate locations, while the thin solid line (thin dashed line) traces
the representation mismatch of PhenomB (NR) waveforms eval-
uated between templates. The NR waveforms cannot be repre-
sented as well as their PhenomB counterparts, although their
total match is improved over using PhenomB waveforms alone.
This is evidenced by the thick solid line tracing the mass-
optimized mismatch between NR and PhenomB waveforms
(i.e., the solid line in the top panel of Fig. 1).

FIG. 3. Convergence of representation mismatch with tighten-
ing tolerance hMi. As a function of hMi, we plot the averages
of the four data sets shown in Fig. 2. The representation mis-
match of the PhenomB waveforms for masses in the template
bank used to construct the SVD basis decays roughly with hMi.
The representation mismatch of PhenomB waveforms for masses
between the masses in the template bank reaches a plateau of

10�5 [the precise value depends on O0, cf. Eq. (5)]. The
representation mismatch of NR waveforms is yet larger with a
plateau of 
10�3 that flattens for larger hMi (this flattening
depends only mildly on O0).

INTERPOLATION IN WAVEFORM SPACE: ENHANCING . . . PHYSICAL REVIEW D 87, 044008 (2013)

044008-5



to suppose that the projection coefficients will vary on a
scale similar to that over which the waveforms themselves
vary. Hence, a suitable space to sample along is the space
of constant waveform overlap. We define this to be the
space x ¼ ½�1; 1� for which the physical template masses
are mapped according to

Mi ! xi ¼ �1þ 2
i� 1

N � 1
: (13)

Moving a distance �x ¼ 2=ðN � 1Þ in this space is thus
equivalent to moving a distance equal to the overlap
between adjacent templates.

In this space, we find the real and imaginary components
R�kðxÞ and I�kðxÞ of the complex projection coefficients
to be oscillatory functions that can roughly be described by
a single frequency. This behavior is plotted for the basis
modes k ¼ 1, 50, and 123 in Fig. 4. Another trend observed
in this plot is that the projection coefficients become
increasingly complex (i.e., show less structure) for
higher-order modes. This is a direct result of the increasing
complexity of higher-order basis waveforms themselves.

We find that the low-order waveforms are smoothest, while
the high-order modes feature many of the irregularities
associated with the multiple frequency components and
merger features of the templates. Though they are more
complex, higher-order modes have smaller singular values
and are therefore less important in representing wave-
forms. This is evident from the steady decline in amplitude
of the projection coefficients when moving down the dif-
ferent panels of Fig. 4.
We shall use Chebyshev polynomials to interpolate the

projection coefficients. These are a set of orthogonal func-
tions where the jth Chebyshev polynomial is defined as

TjðxÞ � cosðj arccosxÞ; x 2 ½�1; 1�: (14)

The orthogonality of Chebyshev polynomials can be
exploited to perform an nth-order Chebyshev interpolation
by sampling�kðxÞ at the nþ 1 so-called collocation points
given by the Gauss-Lobatto Chebyshev nodes [24]

xi ¼ � cos

�
i�

n

�
; (15)

for i ¼ 0; 1; . . . ; n.
In general, the interpolation will not be exact, and some

residual, rkðMÞ, will be introduced:
rkðMÞ � �0

kðMÞ ��kðMÞ: (16)

Here �kðMÞ is the actual coefficient of hNRðMÞ projected
onto the basis waveform uk,

�kðMÞ � hhNRðMÞ;uki; (17)

and �0
kðMÞ is the coefficient obtained after interpolation.

The new waveform family is expressed numerically as a
function of mass through the relation

hintpðMÞ¼XN0

k¼1

�0
kðMÞuk¼

XN0

k¼1

½�kðMÞþrkðMÞ�uk; (18)

where the subscript ‘‘intp’’ reminds the reader that this is
computed from an interpolation over �k. An interpolated
waveform of total massM can be compared to the original
NR waveform (which we consider to be the ‘‘true’’ signal),
where the latter is expressed as

h NRðMÞ ¼ X2N
k¼1

�kðMÞuk þ h?ðMÞ; (19)

with h?ðMÞ denoting the component of hNRðMÞ that is
orthogonal to the SVD basis (i.e., orthogonal to all
PhenomB waveforms in the template bank). The waveform
hNRðMÞ differs from hintpðMÞ by an amount

�h � hintpðMÞ � hNRðMÞ

¼ XN0

k¼1

rkðMÞuk �
X2N

k¼N0þ1

�kðMÞuk � h?ðMÞ: (20)

To compute the impact of the various approximations
influencing Eq. (20), we calculate the overlap between

FIG. 4. Plotted are the real parts of the complex coefficients
obtained from projecting NR waveforms onto the PhenomB
SVD basis waveforms u1 (top panel), u50 (third panel), and
u123 (fifth panel). The x axis has been constructed according to
Eq. (13) and is ideal for performing a Chebyshev interpolation.
Open circles show the projection coefficients sampled at the
collocation points in Eq. (15) for an n ¼ 175 Chebyshev inter-
polation; solid lines trace the resultant interpolation for each
basis mode. Interpolation is performed separately on the real
and imaginary parts of �kðxÞ and combined afterward to
obtain the complex function �0

kðxÞ. The small panels below

each large panel show the absolute value of the interpolation
residual jrkj defined in Eq. (16).
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the interpolated waveform and the exact waveform,
O½hintpðMÞ;hNRðMÞ�. To begin this calculation, it is useful
to consider the square of the overlap,

Oðhþ �h;hÞ2 ¼ hh;hþ �hihhþ �h;hi
hh;hihhþ �h;hþ �hi ; (21)

where we have dropped the explicit mass dependence and
subscripts for convenience. Using hh;hi ¼ 1 and Taylor-
expanding the right-hand side of Eq. (21) to second order
in �h, we find

Oðhþ �h;hÞ2 ¼ 1� h�h; �hi þ h�h;hihh; �hi: (22)

To second order in �h, the mismatch is therefore

Mðhþ �h;hÞ ¼ 1

2
h�h; �hi � 1

2
h�h;hihh; �hi: (23)

We note that the right-hand side of Eq. (23) can bewritten as
1
2 h�h?; �h?i, where �h? is the part of �h orthogonal to h:

�h? ¼ �h� h�h;hih: (24)

However, for simplicity, we proceed by dropping the last
term in Eq. (23):

M ðhþ �h;hÞ � 1

2
h�h; �hi: (25)

Using Eq. (20), this gives

M½hintpðMÞ;hNRðMÞ� � 1

2

XN0

k¼1

jrkðMÞj2

þ 1

2

X2N
k¼N0þ1

j�kðMÞj2 þ 1

2
jh?j2:

(26)

We thus see three contributions to the total mismatch: (i) the

interpolation error,
P

N0
k¼1 jrkðMÞj2; (ii) the truncation error

from the discarded waveforms of the reduced basis,P
2N
k¼N0þ1

j�kðMÞj2; (iii) the failure of the SVD basis to

represent the NR waveform, jh?j. The sum of the last two
terms, which together make up the representation error, is
traced by the dashed line in Fig. 2. The goal for our new
waveform family is to have an interpolation error that is
negligible compared to the representation error.

To remove the mass dependence of the interpolation
error in Eq. (26), we introduce the maximum interpolation
error of each mode,

Rk � max
M

jrkðMÞj: (27)

This allows the bound

1

2

XN0

k¼1

R2
k �

1

2

XN0

k¼1

jrkðMÞj2 (28)

to place an upper limit on the error introduced by inter-
polation. Figure 5 plots R2

k as a function of the mode

number k as well as the cumulative sum
P

N0
k¼1 R

2
k=2. The

data pertain to an interpolation performed using n ¼ 175
Chebyshev polynomials on the reduced SVD basis con-
taining the first N0 ¼ 123 of 2N ¼ 254 waveforms. In this
case, we find the interpolation error to be largely domi-
nated by the lowest-order modes, and also partially by the
highest-order modes. Interpolated coefficients for various
modes are plotted in Fig. 4 and help to explain the features
seen in Fig. 5. In the first place, interpolation becomes
increasingly more difficult for higher-order modes due to
their increasing complexity. This problem is mitigated by
the fact that high-order modes are less important for rep-
resenting waveforms, as evidenced by the diminishing
amplitude of projection coefficients. Although low-order
modes are much smoother and thus easier to interpolate,
their amplitudes are considerably larger, meaning that
interpolation errors are amplified with respect to high-
order modes.
Equation (26) summarizes the three components adding

to the final mismatch of our interpolated waveform family.
Their total contribution can be computed directly from the
interpolated coefficients in a manner similar to Eq. (12):

M½hintpðMÞ;hNRðMÞ� ¼ 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN0

k¼1

�0
kðMÞ�0�

k ðMÞ
vuut : (29)

In the case of perfect interpolation, for which �0
kðMÞ ¼

�kðMÞ, Eqs. (18) and (29) reduce to Eqs. (11) and (12),
respectively, and the total mismatch is simply the repre-
sentation error of the reduced basis.
In Fig. 6, open circles show the total mismatch [Eq. (29)]

between our interpolated waveform family and the true
NR waveforms for various masses. Also plotted is the
NR representation error without interpolation and the mis-
match between NR and PhenomB waveforms minimized

FIG. 5. The solid line traces the interpolation error R2
k in

Eq. (27) maximized over mass for each mode k. This is used
in Eq. (28) to define an upper bound to the interpolation error
arising in Eq. (26). The cumulative sum in the latter expression is
traced by the dashed curve and shows that the interpolation error
is dominated by the lowest-order basis waveforms.

INTERPOLATION IN WAVEFORM SPACE: ENHANCING . . . PHYSICAL REVIEW D 87, 044008 (2013)

044008-7



over mass. We see that interpolation introduces only a
small additional mismatch to the interpolated waveform
family, and remains well below the optimized NR-
PhenomB mismatch. This demonstrates the efficacy of
using SVD coupled to NR waveforms to generate a faithful
waveform family with improved accuracy over the effec-
tual PhenomB family that was originally used to create
templates. This represents a general scheme for improving
phenomenological models and presents an interesting new
opportunity to enhance the matched filtering process
employed by LIGO.

IV. HIGHER DIMENSIONS

So far we have focused on the total mass axis of
parameter space. As already discussed, this served as a
convenient model problem because the q ¼ 1 NR wave-
form can be rescaled to any total mass so that we are able to
compare against the ‘‘correct’’ answer. The natural exten-
sion of this work is to expand into higher dimensions where
NR waveforms are available only at certain, discrete mass
ratios q. In this section, we consider expanding our
approach of interpolating NR projection coefficients from
a two-dimensional template bank containing unequal-mass
waveforms.

We compute a template bank of PhenomB waveforms
covering mass ratios q from 1 to 6 and total masses
50 M� � M � 70 M�. This mass range is chosen to fa-
cilitate comparison with previous work done by Ref. [12].
For the two-dimensional case the construction of a tem-
plate bank is no longer as straightforward as before due to

the additional degree of freedom associated with varying q.
One method that has been advanced for this purpose is to
place templates hexagonally on the waveform manifold
[25]. Using this procedure we find that N ¼ 16 templates
are required to satisfy a minimal match of 0.97.
Following the waveform preparation of Ref. [12],

templates are placed in the rows of a matrix G with real
and imaginary components filled in alternating fashion,
and with the whitened waveforms arranged in such a way
that their peak amplitudes are aligned. The waveforms
are sampled for a total duration of 2 s with uniform
spacing �t ¼ 2�15 s so that 16 MiB of memory is
required to store the contents of G if double precision is
desired. Application of Eq. (6) transforms the 16 complex-
valued waveforms into 32 real-valued orthonormal basis
waveforms.
The aim is to sample the coefficients of NR waveforms

projected onto the SVD basis of PhenomB waveforms
using mass ratios for which NR data exists, and then
interpolate amongst these to construct a numerical wave-
form family that can be evaluated for arbitrary parameters.
This provides a method for evaluating full IMR waveforms
for mass ratios that have presently not been simulated. To
summarize, we take some NR waveform, hNRðM;qÞ, of
some total massM and mass ratio q, and project it onto the
basis waveform uk in order to obtain

�kðM;qÞ ¼ hhNRðM;qÞ;uki: (30)

Next, we apply some two-dimensional interpolation
scheme on Eq. (30) to construct continuous functions
�0

kðM;qÞ that can be evaluated for arbitrary values of M
and q bounded by the regions of the template bank. The
interpolated waveform family is given numerically by the
form

h intpðM;qÞ ¼ XN0

k¼1

�0
kðM;qÞuk: (31)

As before, the interpolation process works best if we can
develop a scheme for which the projection coefficients are
smoothly varying functions of M and q. Following the
procedure described in Ref. [12], the complex phase of
the first mode is subtracted from all modes:

~� kðM;qÞ � e�i arg½�1ðM;qÞ��kðM;qÞ: (32)

To motivate why Eq. (32) might be useful, let us consider
modifying the PhenomB waveform family with a
parameter-dependent complex phase �ðM;qÞ:

h PBðM;qÞ ! ei�ðM;qÞhPBðM;qÞ: (33)

When constructing a template bank, or when using a
template bank, such a complex phase�ðM;qÞ is irrelevant
because the waveforms are always optimized over a phase
shift. However, �ðM;qÞ will appear in the projection
coefficients [Eq. (30)]:

FIG. 6. Open circles show the total mismatch of our new
waveform family obtained by interpolating the coefficients of
NR waveforms projected onto a reduced SVD basis of PhenomB
waveforms. To highlight the error introduced by interpolation,
the solid curve traces only the mismatch of NR waveforms
represented by the reduced basis (i.e., the dashed curve in
Fig. 2). The total interpolation mismatch is lower than the dotted
line tracing the mass-optimized mismatch between NR and
PhenomB waveforms (i.e., the solid line in the top panel of
Fig. 1) and demonstrates the ability of SVD to boost the accuracy
of the PhenomB family.
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�kðM;qÞ ! ei�ðM;qÞ�kðM;qÞ: (34)

Therefore, if one had chosen a function�ðM;qÞ with fine-
scale structure, this structure would be inherited by the
projection coefficients �kðM;qÞ. For traditional uses of
waveform families the overall complex phase �ðM;qÞ is
irrelevant and therefore little attention may have been paid
to how it varies with the parameters ðM;qÞ. The trans-
formation of Eq. (32) removes the ambiguity inherent in
�ðM;qÞ by choosing it such that arg ~�1ðM;qÞ ¼ 0. This
choice ties the complex phase to the physical variations of
the �1 coefficient and therefore eliminates all unphysical
phase variations on finer scales.

In the leftmost panels of Fig. 7 we plot the real part of
the smoothed coefficients ~�kðM;qÞ for PhenomB wave-
forms projected onto the basis modes k ¼ 3 and k ¼ 16.
The middle panels show the same thing except using the
NR waveforms evaluated at the set of mass ratios q ¼
f1; 2; 3; 4; 6g for which we have simulated waveforms.
Obviously, the refinement along the q axis is much finer
for the PhenomB waveforms since they can be evaluated
for arbitrary mass ratio, whereas we are limited to sam-
pling at only five discrete mass ratios for NR waveforms.
For comparison purposes, the rightmost panels of Fig. 7
show the PhenomB projection coefficients coarsened to the
same set of mass ratios to which the NR waveforms are
restricted.

We find the same general behavior as before: low-order
modes display the smoothest structure, while high-order
modes exhibit increasing complexity. A plausible interpo-
lation scheme would be to sample ~�k for NR waveforms of
varying mass for constant mass ratio (i.e., as we have done
previously) and then stitch these together across the q axis.
Since the projection coefficients in Fig. 7 show sinusoidal

structure, they must be sampled with at least the Nyquist
frequency along both axes. However, looking at the middle
and rightmost panels, it appears as though this is not yet
possible given the present set of limited NR waveforms. At
best, the five available mass ratios are just able to sample at
the Nyquist frequency along the q axis for high-order
modes. In order to achieve a reasonable interpolation
from these projection coefficients, the current NR data
thus needs to be appended with more mass ratios. Based
on the left panels of Fig. 7, a suitable choice would be
to about double the current number of mass ratios to
include q ¼ f1:5; 2:5; 3:5; 4:5; 5; 5:5g. Hence, though it is
not yet practical to generate an interpolated waveform
family using the SVD boosting scheme applied to NR
waveforms, the possibility remains open as more NR
waveforms are generated.

V. DISCUSSION

We have shown that SVD can be used to improve the
representation of NR waveforms from a PhenomB tem-
plate bank. A reasonably reduced SVD basis was able to
reduce mismatch by a factor of 5 compared to PhenomB
waveforms optimized over mass. There was also no mass
bias associated with the SVD basis and therefore no opti-
mization over physical parameters was required. This
occurs because SVD unifies a range of waveform structure
over an extended region of parameter space so that any
biases become blended into its basis. SVD therefore rep-
resents a generalized scheme through which phenomeno-
logical or other approximate waveform families can be
debiased and enhanced for use as matched-filter templates.
We were able to calibrate an SVD basis of PhenomB

templates against NR waveforms in order to construct a

FIG. 7. Left panels: Real components of the smoothed PhenomB projection coefficients ~�3ðM;qÞ (top) and ~�16ðM; qÞ (bottom) for
mass ratios 1 � q � 6 and total masses 50 M� � M � 70 M�. Middle panels: Real components of the smoothed NR projection
coefficients ~�3ðM;qÞ (top) and ~�16ðM; qÞ (bottom) for mass ratios q ¼ f1; 2; 3; 4; 6g and total mass 50 M� � M � 70 M�. Right
panels: Real components of the smoothed PhenomB projection coefficients ~�3ðM;qÞ (top) and ~�16ðM;qÞ (bottom) coarsened to the
same set of mass ratios as the middle panels. For both the middle and rightmost panels, an artificial row of white space has been plotted
for q ¼ 5 in order to ease comparison with the leftmost panels.
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new waveform family with improved accuracy. This was
accomplished by interpolating the coefficients of NR
waveforms projected onto the PhenomB basis. Only mar-
ginal error was introduced by the interpolation scheme and
the new waveform family provided a more faithful repre-
sentation of the ‘‘true’’ NR signal compared to the original
PhenomB model. This was shown explicitly for the case of
equal-mass, zero-spin binaries. We proceeded to investi-
gate the possibility of extending this approach to PhenomB
template banks containing unequal-mass waveforms.
At present, however, this method is not yet feasible since
the current number of mass-ratios covered by NR simula-
tions are unable to sample the projection coefficients
with the Nyquist frequency. This method will improve as
more NR waveforms are simulated and should be sufficient
if the current sampling rate of mass-ratios were to about
double. Based on the investigation in Ref. [26], it is our
expectation that interpolation of NR waveforms using the

technique described here will provide the foundation for
computationally efficient and highly accurate parameter
estimation for future gravitational wave observations.
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