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In this paper we investigate a steady accretion within the Einstein-Straus vacuole, in the presence of the

cosmological constant. The dark energy damps the mass accretion rate and—above a certain limit—

completely stops the steady accretion onto black holes, which, in particular, is prohibited in the inflation

era and after (roughly) 1012 years from the big bang (assuming the presently known value of the

cosmological constant). Steady accretion would not exist in the late phases of the Penrose’s scenario—

known as the Weyl curvature hypothesis—of the evolution of the Universe.
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I. INTRODUCTION

The classical Bondi accretion model [1] describes, in
the test gas and stationarity approximations, the spherical
accretion/wind of a barotropic fluid onto a Newtonian
gravity center. That description has been extended to
general-relativistic spacetimes. The steady accretion in
the Schwarzschildean geometry has been investigated by
Michel [2] and Shapiro and Teukolsky [3], and in a spheri-
cal symmetric spacetime with backreaction by Malec [4].
A remarkable universal behavior has been discovered for
self-gravitating transonic flows, under suitable boundary
conditions: the ratio of respective mass accretion rates
_MGR= _MN appears independent of the fractional mass of
the gas and depends only on the asymptotic temperature. It
is close to 1 in the regime of low asymptotic temperatures
and can grow by 1 order of magnitude at high temperatures
[5,6]. Here _MGR and _MN are the general-relativistic and the
Newtonian mass accretion rates, respectively. The stability
of steady accretion has been established by Mach and his
coworkers [7–9].

In this paper we consider the accretion onto a black
hole that is immersed in a cosmological universe. We adopt
the Einstein-Straus ‘‘Swiss cheese’’ model [10]. A spheri-
cally symmetric black hole surrounded with accreting
gas sits inside a vacuole that is matched—through the
Darmois-Israel junction conditions [11,12] to an external
Friedmann-Lemaı̂tre-Robertson-Walker (FLRW) space-
time. We calculate how the presence of a cosmological
constant � would affect the most important system
characteristic—the mass accretion rate _M of a fluid onto
the center. We found that the mass accretion rate is damped
by the presence of the cosmological constant. This effect is
stronger for negative values than for positive values of the
cosmological constant and it depends on the ratio of the
dark energy density to the fluid density.

In the next two sections we remind readers of the Kottler
solutions and draw the general picture of the steady accre-
tion, together with suitable equations. Sections IV and V
present three analytic sets of results. These show that the
matter distribution can be affected by the cosmological

system. More importantly, we prove that if the cosmo-
logical constant exceeds a certain limit, then the steady
accretion ceases to exist. Section VI presents results of
numerical integrations. It appears that the presence of dark
energy, either negative (attractive) or positive (repulsive),
damps the mass accretion rate. It appears—in accordance
with analytic predictions—that the steady accretion does
not exist above certain values of the cosmological constant.
The last section summarizes the main results and applies
them to two cosmological epochs when the dark energy is
dominant. It is pointed out that our results do not agreewith
the Penrose’s ‘‘Weyl curvature hypothesis.’’

II. ACCRETION IN AN
EINSTEIN-STRAUS VACUOLE

We assume relativistic units with G ¼ c ¼ 1. Let a
FLRW spacetime be filled with dust and dark energy. Its
line element reads

ds2 ¼ �d�2 þ a2ð�Þ
�

dr2

1� kr2
þ r2d�2

�
; (1)

where the variables have obvious meaning [13] and
k ¼ 0;þ� 1. We do not need to analyze the FLRWequations,
for a reason explained below.
We cut off, following Einstein and Straus [10], a ball

from this FLRW spacetime and insert instead a spherical
symmetric inhomogeneity—a black hole surrounded by a
spherical cloud of gas—satisfying Einstein’s equation. It is
known that the boundary of the ball must be comoving
if the FLRW geometry contains only dust and the dark
energy represented by�, assuming the absence of a bound-
ary layer and continuity of pressure [14–16]. Crenon and
Lake show that the no-boundary layer assumption is
necessary for having a comoving boundary [14].
Inside the excision ball itself we can distinguish an inner

accretion region such that the areal radius R does not
exceed a limiting radius R1 (that in turn should be smaller,
or perhaps much smaller, than the areal radius of the
boundary of the ball), and the asymptotic vacuum region
outside R1. In the asymptotic region the metric is given by
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the Kottler [Schwarzschild—de Sitter (SdS, �> 0) and
Schwarzschild—anti—de Sitter (SAdS,�< 0)] spacetime
line element [17]

ds2 ¼ �
�
1� 2m

R
��

3
R2

�
dt2 þ dR2

1� 2m
R � �

3 R
2
þ R2d�2:

(2)

The Darmois-Israel gluing conditions [11,12] demand that
along the comoving boundary the first and second funda-
mental forms are continuous. In the spherically symmetric
case the radius R has to be continuous and in addition
(i) the excess mass m should be exactly equal to the mass
of dust in the excised ball and (ii) the boundary should
be comoving with the Hubble velocity H. This guarantees
that the stress-energy tensor T�� does not form the surface

layer at the junction surface. Balbinot et al. have found
an explicit solution that describes the corresponding
matching between the Schwarzschild—de Sitter and
FLRW (dustþ�) spacetimes [18]. Therefore we stop
discussion on FLRW and SdS (SAdS) solutions at this
point and focus on the description of the accretion zone.

We assume that in the accretion region the Einstein
equations can be approximated by a set of stationary
equations in time intervals that are much smaller than a
characteristic time T that is defined in the next section. Let
R1 be the size of the cloud of gas and a1 the asymptotic
speed of sound. Outside R1 the geometry can be connected
smoothly to the SdS or SAdS spacetime geometry by a
transient zone of a negligible mass. Let us remark that
the assumption of the approximate stationarity can be
checked a posteriori, after finding appropriate solutions.
Approximately stationary accretion equations have been
derived in Ref. [4]. A quasistationary solution, of a similar
accretion problem in the asymptotically flat spacetime with
a spherical black hole, appears to be stable under axially
symmetric perturbations [8].

III. EQUATIONS OF STEADYACCRETION

The metric in the accretion zone is spherically symmet-
ric and has the form

ds2¼�N2dt2þ âdr2þR2ðd�2þsin2ð�Þd�2Þ; (3)

where we use comoving coordinates t, r, 0 � � � �,
0 � �< 2�—time, coordinate radius, and two angle var-
iables, respectively. R denotes the areal radius and N is the
lapse. â is the radial-radial metric component. The radial
velocity of gas is given by U ¼ 1

N
dR
dt .

The energy-momentum tensor reads TB
�� ¼

ð�þ pÞU�U� þ pg�� with the timelike normalized four-

velocity U�, U�U
� ¼ �1. A comoving observer would

measure local mass density � ¼ T��U�U�. Let n� be the

unit normal to a coordinate sphere lying in the hypersur-
face t ¼ const and let k be the related mean curvature

scalar, k ¼ R
2 rin

i ¼ 1ffiffî
a

p @rR. We assume the perfect gas

equation of state p ¼ ð�� 1Þ�0�, where � is the specific
internal energy and � is a constant. Assuming that the
accretion is isentropic, one can derive the polytropic equa-
tion of state p ¼ K��

0 , with a constant K. The internal

energy E ¼ �0� and the rest � and baryonic �0 mass
densities are related by � ¼ �0 þ E ¼ �0 þ p=ð�� 1Þ.
The matter-related and geometric quantities satisfy

Einstein equations and the baryonic mass conservation.
(But let us point out that for isentropic flows the conser-
vation of baryonic mass also follows from Einstein
equations [4].) One can find the mean curvature k from
the Einstein constraint equations G�0 ¼ 8�T�0 [4],

k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2mðRÞ

R
��

3
R2 þU2

s
; (4)

where mðRÞ is the quasilocal mass,

mðRÞ ¼ m� 4�
Z R1

R
drr2�: (5)

In the line element (3) we have the comoving time. In
the polar gauge foliation one has a new time tSðt; rÞ with
@tS ¼ @t � NU@R. The field @tS is tangent to the cylinder

of constant areal radius, @tSR ¼ 0.

One can show that

_M� � @tSmðRÞ ¼ 4�NUR2ð�þ pÞ: (6)

The mass contained in an annulus (R, R1) changes if the
fluxes on the right-hand side, one directed outward and the
other inward, do not cancel. The baryonic current density
reads j� � �0U

�. Its continuity equation reads

r�j
� ¼ 0: (7)

For stationary flows the local baryonic flux

_M ¼ �4�UR2�0 (8)

is time-independent at a fixed R.
We say that the accretion process is stationary (or quasi-

stationary) if all physically relevant observables, which are
measured at a fixed areal radius R, remain approximately
constant during time intervals much smaller than the run-
away instability time scale T ¼ M= _M. That means that
@tSX � ð@t � NU@RÞX ¼ 0 for X ¼ �0; �; j; U; . . . ; _M.

For quasistationary flows we have @R _M� ¼ 0 and

@R _M ¼ 0 [4]. Therefore both _M� and _M are equal, modulo

a constant factor; they can be identified. The quantity _M
will be called the mass accretion rate. One obtains from (8)
an expression

@RU
2 ¼ � 4U2

R
� 2U2@R lnð�0Þ: (9)

The speed of sound is defined as a ¼ ffiffiffiffiffiffiffiffiffi
@�p

p
. It is a useful

and straightforward exercise to express the hydrodynamic
quantities in terms of a:
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p ¼ �0

�� 1

�

a2

�� 1� a2
;

� ¼ �0

�� 1

�� 1� a2
� p;

�0 ¼ �01
�
a

a1

� 2
	�1

0
@1� a21

��1

1� a2

��1

1
A 1

��1

:

(10)

Here (and below) quantities with the suffix 1 do refer
to their asymptotic values (i.e., at R1). Notice that
p, �0 and a2 show the same monotonicity behavior:
@R�0 ¼ C1@Rp ¼ C2@Ra

2, where C1, C2 are strictly posi-
tive functions.

There are two conservation equations that originate from
the contracted Bianchi identities r�T

�
� ¼ 0. One of them

can be eliminated, if we choose instead the baryonic mass
conservation. The case when � ¼ 0 is the relativistic ver-
sion of the Euler equation,

N
d

dR
pþ ðpþ �Þ d

dR
N ¼ 0: (11)

One can solve Eq. (11), using Eq. (10):

N ¼ ~Cð�� 1� a2Þ; (12)

where ~C is a constant. The whole system of algebraic
equations (4)–(12) closes with the imposition of the
Einstein equation, Grr ¼ 8�Trr, which is the only
integro-differential equation. It can be put in the
following form:

d

dR
lnða2Þ¼���1�a2

a2�U2

k2

� 1

k2R

�
mðRÞ
R

�2U2þ4�R2p��R2

3

�
: (13)

Finally the line element, in (t, R) coordinates, is given by

ds2 ¼ �ðN2 �U2Þdt2 � 2
N

k
dtdRþ dR2

k2
þ R2d�2:

(14)

We shall study transonic accretion flows. For them the
principal object of interest is a sonic point, where both

the denominator a2 � U2

k2
and the numerator mðRÞ

R � 2U2 þ
4�R2p� �R2

3 of Eq. (13) vanish. The corresponding value

of the areal radius is called the sonic radius, denoted as R�.
A closer inspection of the sonic point shows that it is a
critical point, with branching pairs of solutions describing
accretion or wind. In the accretion branch, below the sonic
point the infall velocity jUj=k is bigger than a, while
outside the sonic sphere the converse is true. This analysis
is very much standard, replicating the work done in the
Newtonian case by Bondi [1] and in the general-relativistic
case by Malec [4].

IV. QUALITATIVE ANALYSIS OF SOLUTIONS:
SDS BLACK HOLES

In this section we shall investigate some properties of
transonic solutions for positive values of �. The speed of
sound a (and thus also �0 and p) decreases as a function
of R—for accreting solutions—when the cosmological
constant is absent. We shall show, in Lemma 2, that for
large values of �R2 the converse is possible.
Lemma 1: Assume �< 3m

2R31
. Then the speed of sound,

the pressure, and the mass density �0 are decreasing out-
side the sonic sphere, d

dR X < 0 for X ¼ a2, p, and �0.

Proof of Lemma 1: Let us define CðRÞ � mðRÞ
R �

2U2ðRÞ þ 4�R2p� �R2

3 and let C1 � CðR1Þ. One easily

obtains from this definition, using Eq. (9) in order to
eliminate @RU

2, that

d

dR
CðRÞ ¼ �4C

R
þ 4�R

�
�þ 6p� �

2�

�
þ 3m

R2

þ 4U2
d
dR �0

�0

þ 4�R2 d

dR
p: (15)

The condition �< 3m
R31

guarantees that C1 > 0 and—using

the argument of continuity—the positivity of the function
CðRÞ in an open interval (Rs, R1). We show that Rs ¼ R�.
Notice that while at the sonic point CðR�Þ ¼ 0, the

function @RC must be strictly positive. Indeed, assume
the opposite; from continuity, C would have to be negative
just above R�. Then from Eq. (15) it would follow that both
terms with derivatives must be negative, that is—see
the remark below (10)—@Ra

2 < 0. But Eq. (13) gives
@Ra

2 > 0, if C< 0 and R> R�. This contradiction
proves our statement and implies the positivity of C in an
interval (R�, Rb).
Now, assume that C changes sign at Rb, that is, CðRbÞ ¼

0 and d
dR CðRÞR¼Rb

< 0. But if CðRbÞ ¼ 0 then—from

Eq. (13)—the derivative @Ra
2 would have to vanish. From

(10) it would then follow @R�0 ¼ @Rp ¼ 0. Thus Eq. (15)
yields at Rb

d

dR
C ¼ 4�Rb

�
�ðRbÞ þ 6pðRbÞ � �

2�

�
þ 3m

R2
b

; (16)

but this implies d
dR C > 0 at Rb, due to the condition

�< 3m
R3
b

. This contradiction proves that CðRÞ is strictly

positive outside the sonic sphere.
The positivity of C allows one to conclude—from

Eq. (13)—that @Ra
2 is strictly decreasing outside the sonic

sphere. This in turn implies the decrease of the pressure
p and the baryonic mass density �0 [see the remark under
Eq. (10)].

Lemma 2: Assume �R21 > 18
a21
��1�a21

and define R0 ¼
ð6m� Þ13. The necessary condition for the existence of solu-

tions is 
 � 1. If 
> 1=3 then R0 � R1 and the speed of
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sound, the pressure, and the mass densities are increasing
in the interval (R0, R1): d

dR X > 0 for X ¼ a2, p, and �0.

Proof of Lemma 2: The estimate R0 � R1 follows
immediately from the boundary condition a21 � m=R1
and the assumed value of �. In the asymptotic end
(R0, R1) the function �CðRÞ can be bounded from below
as follows,

�CðRÞ ¼ �mðRÞ
R

þ 2U2ðRÞ � 4�R2pþ�R2

3

� �2m

R
þ�R2

3
: (17)

The second line follows from U2 � 0 and from the obser-

vation that p � �—thus 4�R2p � 4�
RR1
R drr�—and

4�
RR1
R drr� � m

R .

Taking into account the last estimate, we can estimate
from below the right-hand side of Eq. (13) by

DðRÞ � �� 1� a21
a2

�
� 2m

R2
þ�R

3

�
: (18)

We obtain from Eqs. (13) and (18) the inequality

d

dR
a2 � ð�� 1� a21Þ

�
� 2m

R2
þ�R

3

�
: (19)

It is clear that (i) R0 is the null point of DðRÞ and (ii) the
function DðRÞ is strictly positive for R 2 ðR0; R1Þ.
Therefore a2 (and consequently the remaining gas charac-
teristics p and �0) does increase in this interval, provided
that a solution does exist.

The necessary condition for the existence of a solution
is that aðR0Þ should be strictly positive. Integration of
Eq. (19), between R0 and R1, yields

a21 � a2ðR0Þ � ð�� 1� a21Þ

�
�
� 2m

R0

��R2
0

6
þ 2m

R1
þ�R21

6

�
: (20)

We can replace 2m
R0

by
�R2

0

3 , using the definition of R0, and

get the following:

a2ðR0Þ � ð�� 1� a21Þ�R21
18

�
6R2

0

R21
� 1

�

þ a21 � ð�� 1� a21Þ 2mR1

� a21 þ ð�� 1� a21Þ�R21
18

 
6� 36

1
3ð mR1

Þ23
ð�R21Þ23

� 1

!
:

(21)

In the second inequality we dropped the positive term
with m=R1 and used the definition of R0. We already
assumed that m=R1 � a21 which ensures that the first
term within the second bracket is small and the right-
hand side of the last inequality in (21) is approximated

by EðRÞ � a21 � �R21
18 ð�� 1� a21Þ. Therefore if the cos-

mological constant is given by �R21 ¼ 18
 a21
��1�a21

, with


 larger than 1, then EðRÞ must be negative and the square
of the speed of sound at R0 must be nonpositive, which
means that solutions are absent. On the other hand solu-
tions can exist for 0:01<
< 1; in this case CðRÞ< 0
between (R0, R1), which implies that d

dR X < 0 for X ¼ a2,

p, �0, and �.
The two lemmas proven in this section have a transpar-

ent physical interpretation. Lemma 1 assumes that the dark
energy density �=4� is smaller than one half of the
averaged matter density 3m=4�R31. The presence of � is
expected to have some quantitative impact onto accretion
mass rate _M, but qualitative features of the flow are not
influenced—in particular, the gas characteristics a, jUj, �0,
and � are all decreasing functions.
Lemma 2 assumes the opposite—that the dark energy

density �=4� is much larger than the average matter
density 3m=4�R31. Above a particular value—that
depends on the boundary characteristics of the flow, its
volume, and the black hole mass—steadily accreting solu-
tions do not exist. This is intuitively understandable—large
� implies a large Hubble expansion velocity which can
obstruct or even prohibit accretion, through the junction
condition on the boundary of the vacuole. Therefore one
can expect a significantly smaller mass accretion rate _M
and even its absence.

V. QUALITATIVE ANALYSIS OF SOLUTIONS:
SADS BLACK HOLES

Lemma 3: Assume �< 0. Then,
(i) For R> R� the speed of sound, the pressure, and the

mass densities �0 and � are decreasing, d
dR X < 0 for

X ¼ a2, p, and �0.

(ii) Solutions are absent if �R21 � �6 ��1�a21
��1�a2�

.

Proof of Lemma 3:
Part (i). The key observation is that the function C is

strictly positive, if �< 0. Indeed, let Rb > R� be a small-
est radius at which CðRbÞ vanishes, and assume C< 0 in
the open interval (R�, Rb) [notice that CðR�Þ vanishes]. But
Eq. (15) would imply in such a case that both terms with
derivatives become negative in a subinterval (R�, R1) of
(R�, Rb), that is—see the remark below (10)—@Ra

2 < 0.
But this in turn would contradict Eq. (13)—if C< 0 then
@Ra

2 > 0 outside the sonic sphere. Thus we arrive at the
contradiction in this subinterval (R�, R1) and the argument
of continuity and the definition of Rb imply the positivity
of C in the open interval (R�, Rb).
In the next step we show thatC cannot vanish outside the

sonic sphere. Indeed, (13) and (15) imply that dCdR is strictly

positive whenever C ¼ 0 for R> R�; that in turn yields
(by the argument of continuity) the strict positivity of C
outside the sonic sphere. Equation (13) allows one
to conclude that the speed of sound is monotonically
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decreasing, and that implies also decrease of the mass
density �0 and the pressure.

Part (ii). In order to prove the necessary existence
condition, notice that Eq. (13) gives, after integration,

ja21 � a2ðRÞj �
Z R1

R
dr

��������ð�� 1� a2Þ 1
r

�
�2U2 ��r2

3

���������:
(22)

Notice that a2 < �� 1; thus ja21 � a2ðRÞj � �� 1� a21.
The conservation of the mass accretion rate _M and
d
dR �0 � 0 lead to the estimate d

dR ðU2R4Þ � 0, and this in

turn implies inequality

U2 � U21
R41
R4

: (23)

Collecting this information, one finally obtains

��1�a21�ð��1�a2ðRÞÞ
�
�U21

2
��R21

6

�
1� R2

R21

��
:

(24)

Let R ¼ R� and �R21
6 <� ��1�a21

��1�a2�
; then—taking into

account that R2

R21
is negligibly small, and the same is true

for the velocity term U2—we conclude that the right-hand
side of Eq. (22) exceeds its left-hand side. This contra-
diction proves the necessary condition of Lemma 3.

VI. DESCRIPTION OF NUMERICS

Our aim is to find transonic accretion flows. We assume
the total massm ¼ 1, � ¼ 4=3, andR1 ¼ 106. The bound-

ary values at R1 are k ¼ N ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2m

R1
�U21 � �

3 R
21

q
and

a21 ¼ 2� 10�4. There are three remaining parameters that
are free: the cosmological constant �, the mass accretion
rate _M, and the asymptotic density �01—after specifying
them, equations are integrated inward, starting from R1.
These quantities should be such as to ensure the asymptotic

conditions: jU1j �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m=R1

p � a1.
A numerical run, with the above boundary data, has been

regarded as successful, if
(i) the integration started from R1 and reached the

outermost apparent horizon, that the point Ri such

that 2mðRiÞ
Ri

þ �R2
i

3 ¼ 1, along the accretion branch

(with the increasing—in the direction to the
center—infall velocity jUj);

(ii) there appears a sonic point at a radius R� � Ri.
More specifically, in order to find a single transonic flow,

we fix � and the mass accretion rate _M, and treat the
asymptotic value of the baryonic mass density as a free
parameter. For a random choice of �01 there are three
possibilities, one exceptional and two generic:

(a) an almost unlikely event, that the numerical run is
successful in the sense defined above and we find the
sought accretion flow;

(b) the solution numerically fails—a singularity appears
during integration;

(c) there exists a numerical solution without a sonic
point—a piece of the solution describes accelerating
accreting flow, while the other corresponds to a
decelerating accreting gas.

In the case (a) the job is done. If one of the remaining
generic alternatives occurs—say (b), with the asymptotic
density �bÞ01—we change �01 until we get the situation

described in (c) with the asymptotic density �cÞ01. Now we

use the bisection method in order to find an intermediate
value �i01 between the two values �bÞ01 and �cÞ01, for
which the numerical run is successful and the transonic
flow exists.
The numerics itself is standard—we use commonly

known algorithms of the 8th order.
The calculations have been performed for a few dozen

values—negative and positive—of the cosmological con-
stant�. In the sector of negative cosmological constant we
take � 2 ð�5� 10�13;�10�19Þ; the absolute value over
the bound is larger by 1 order of magnitude than the value
found in Lemma 3 as a necessary existence condition.
In the positive part of the spectrum we choose � 2
ð10�19; 7:2� 10�15Þ; this is quite close to the value estab-
lished as the necessary condition in Lemma 2. For each
fixed value of�we find about 100 solutions corresponding
to different values of _M.
The obtained information is summarized in Figs. 1 and 2.

The abscissa shows the ratio x ¼ Mg=m of the massMg ¼
4�

RR1
Ri

drr2� of gas to the total massm. The total mass has

been normalized to 1. We obtain, although in a less trans-
parent form, the same result as in Ref. [5]—the maximum

-40

-39

-38

-37

-36

-35

-34

-33

-32

-31

-30

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

1
5
6
7

7.15

FIG. 1. The ordinate shows the mass accretion rate _M and the
abscissa shows 1� x, where x is the relative mass of gas in the
system. The various lines correspond to �R21=10�3 ¼ 1, 5, 6, 7,
7.15 in the order from the top.
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of the mass accretion rate corresponds to x 	 1=3. For a
fixed value of _M there exist two flows, one with heavier
center and lighter gas, and the other with opposite charac-
teristics. Just around the maximum of _M there are blank
points—we find that in this region it is difficult to find a
numerical solution. We think that this is a purely numerical
artifact. There is a slight shift of this maximum towards
smaller values of xwith the increase of the absolute value of
the cosmological constant.

The only new physically relevant information is that
concerning the mass accretion rate _M. It appears that the
presence of the cosmological constant manifests only when
the dark energy density �=ð4�Þ exceeds the averaged
matter density 3m=ð4�R31Þ 	 4� 10�19 by at least 3
orders of magnitude. The mass accretion rate _M is decreas-
ing with the increase of the absolute value of the cosmo-
logical constant. It is clear that the rate of the falloff
depends on the sign of �—it is faster for positive
values—but the falloff itself occurs for both positive and
negative cosmological constant.

VII. COSMOLOGICAL IMPLICATIONS

Results that are reported in the preceding section dem-
onstrate that while the mass accretion rate depends on the
cosmological constant, this effect becomes significant only
when the dark energy fraction �� is much larger than the
material fraction�m. On the other hand, this impact can be
dramatic, a sevenfold increase of �—starting from its
value corresponding to ��=�m 	 103—leads to the
diminishing of _M by 7 orders in magnitude, as seen in

Fig. 1. This is so for the accretion onto the SdS black hole,
but the phenomenon is strong also in the case of SAdS
(Fig. 2). When applying these results to our Universe, we
have to take into account that �� � �m in two epochs—
during inflation and after 1011 years from the big bang.
Inflation strictly excludes steady accretion onto primor-

dial black holes, due to Lemmas 2 and 3, because during the
inflation era�� exceeds�m by something like 50 orders of
magnitude. This fact is concordant with the well known
freezing of structures that are bigger than a particle horizon
[19], but the difference is that now it applies to small
accretion systems that are located well within the horizon.
In the present Universe the dark energy and material

densities are roughly the same, which suggests that the
effect of dark energy is negligible. The mass density of
largest bound structures—galactic superclusters—exceeds
the cosmological mass density by 1 order of magnitude.
Notice, however, that the tenfold ageing of the Universe
would increase the ratio ��=�m by a factor of 100. That
means that in the Universe older than 1011 years the steady
accretion would become less efficient and at the time
t ! 1012 years its efficiency goes to zero.
Penrose conjectured the so-called Weyl curvature

hypothesis [20]. It asserts, in its informal version, that a
Friedmann-Lemaı̂tre-Robertson-Walker spacetime, where
the Ricci curvature is nonzero but the Weyl curvature
vanishes, evolves towards a vacuum spacetime filled with
black holes and gravitational radiation—with nonvanish-
ing Weyl curvature and negligible Ricci tensor. (A more
formal scenario has been worked out by Tod [21].) This
picture assumes that initially small inhomogeneities of the
FLRW universe accrete matter and transform themselves
into black holes, which gradually merge, leaving at the end
a net of huge black holes and a lot of gravitational radia-
tion. A cautious interpretation of our findings would be to
say that the role of steady accretion in the realization of this
scenario, in the presence of dark energy, is insignificant. It
might well happen, however, that this property of dark
energy of diminishing the steady spherical accretion sig-
nals a more general feature—that dark energy damps any
accreting process. In such a case there arises another
fundamental question: how does dark energy impact this
scenario outlined in the Weyl curvature hypothesis?
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FIG. 2. The ordinate shows the mass accretion rate _M and the
abscissa shows 1� x, where x is the relative mass of gas in the
system. The various lines correspond to �R21=10�3 ¼ �1,�25,
�50, �100, �250, �500 in the decreasing order from the top.
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