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We derive the equations of motion of an electrically neutral test particle for modified gravity theories

for which the covariant divergence of the ordinary matter energy-momentum tensor does not vanish (i.e.,

r�T
�� � 0). In fact, we generalize the Mathisson-Papapetrou equations by deriving a general form for

the equations of motion of a test particle. Furthermore, using the generalized Mathisson-Papapetrou

equations, we investigate the equations of motion of a pole-dipole (spinning) particle in the context of

modified gravity.
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I. INTRODUCTION

Deriving the equations of motion of a test particle from
the field equations of general relativity has a long history;
see, for example, the account in Ref. [1]. It is now well
established in the literature that the equations of motion
need not be postulated separately, but can be derived from
the field equations of general relativity. More precisely, the
conservation of the ordinary matter energy-momentum
tensor, i.e., r�T

�� ¼ 0, is enough to find the geodesic

equation and also the equations of motion of a spinning test
particle (pole-dipole particle). In general relativity, a pole-
dipole particle is described by the four-momentum and
the tensor of spin, and the dynamics is governed by the
Mathisson-Papapetrou equations [2,3]. Combining these
equations with a proper supplementary condition, one
gets a self-consistent set of equations for describing the
motion of a pole-dipole particle in a given space-time; for
example, see Refs. [4–8]. The case in which both gravita-
tional and electromagnetic fields are present and the parti-
cle is charged was studied by Dixon and Souriau [9,10].
The equations of motion of a charged spinning test particle
are known as Dixon-Souriau equations. For some solutions
of the Dixon-Souriau equations in specific backgrounds,
see Refs. [11–13].

The multipole approximation method of Refs. [2,3] has
been used to investigate the motion of a test particle in the
context of somemodified gravity theories; for example, see
Refs. [14–16]. In this paper, using the multipole method,
we derive the equations of motion of a pole-dipole test
particle in modified gravity theories in which the covariant
divergence of the ordinary matter energy-momentum ten-
sor is given by r�T

�� ¼ A�, where the nonminimal cou-

pling term A� is an arbitrary covariant vector, and in each
modified gravity theory this vector can be determined
exactly when the particular way by which the gravitational
fields of the theory couple with the ordinary matter is
specified. It is obvious that A� leads to a modification of
the equation of motion of the test particle. In fact, we
generalize the Mathisson-Papapetrou equations in such a
way that they can be used in any torsionless nonmetric

theory of gravity. By metric theories of gravity, we mean
theories which postulate that (i) space-time is endowed
with a metric g��, (ii) the world lines of single-pole

particles are geodesics of that metric, and (iii) in the freely
falling frames, the nongravitational laws of physics are
those of special relativity [17]. It should be noted that, in
metric theories of gravity, the ordinary matter energy-
momentum tensor is conserved; the nonmetricity Q��� ¼
�r�g�� is zero; and consequently the single-pole parti-

cles’ motion is described by the geodesic equation, and
the pole-dipole particles’ motion is governed by the
Mathisson-Papapetrou equations. Furthermore, we make
use of the generalized Mathisson-Papapetrou equations in
order to investigate the test particle equations of motion in
modified gravity (MOG) [18]. In addition, we derive some
conserved quantities for the test particle motion.

II. ENERGY-MOMENTUM CONSERVATION

Let us study the test particle motion in a modified
gravity theory without torsion in which the usual conser-
vation law of the ordinary matter energy-momentum tensor
is replaced by

r�T
�� ¼ A�: (1)

We know that modified gravity theories which yield to such
an identity for the energy-momentum tensor would violate
the Einstein equivalence principle. In fact, one can show
that the covariant divergence of the energy-momentum
tensor is zero if the gravitational fields (such as scalar
fields or vector fields) of the theory do not interact directly
with the matter. In the presence of the test particle, the
components of the metric tensor are ĝ�� ¼ g�� þ �g��,

where g�� is the background metric and �g�� is the metric

perturbation caused by the test particle, and it is supposed
to be small. Also, let the energy-momentum tensor be

T̂�� ¼ T�� þ �T�� and the nonminimal coupling term

be Â� ¼ A� þ �A�, where the tensor �T�� describes the
material distribution inside the test particle and �A� stands
for the test particle’s contribution to the coupling term. If
we assume that the test particle’s trajectory is outside the
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massive bodies, then the background energy-momentum
tensor T�� vanishes inside as well as near the test particle.
Thus, using the identity in Eq. (1), we get

r��
�� ¼ �f�; (2)

where ��� ¼ ffiffiffiffiffiffiffi�g
p

�T�� and �f� ¼ ffiffiffiffiffiffiffi�g
p

�A�. As we

mentioned before, the use of Eq. (2) alone is sufficient to
derive the equations of motion of the test particle, and we
do not need the field equations of the theory. In the follow-
ing sections, by using this equation, we derive the gener-
alized version of the geodesic equation. Furthermore, we
find the generalized Mathisson-Papapetrou equations for
describing a spinning test particle.

III. THE SINGLE-POLE PARTICLE

In this section, we derive the equations of motion for a
single-pole test body. Our analysis is based on the integra-
tion of the conservation law [Eq. (2)] over the world tube of
the test body. This procedure is independent of a specific
choice of energy-momentum tensor for the test particle. In
fact, in the four-dimensional diagram, the interior of the
particle can be considered as a tubelike region (world tube)
contained in the three-dimensional timelike hypersurface
�ðtÞ. A representative continuous curve through the tube is
parametrized by X�ðtÞ. Coordinates within the world tube
with respect to a coordinate system centered on X�ðtÞ are
labeled by x�; see Ref. [3] for details.

Equation (2) can be rewritten as

@��
��ðxÞ þ ��

��ðxÞ���ðxÞ ¼ �f�ðxÞ; (3)

where ��
��ðxÞ are the Christoffel symbols corresponding to

the background metric g��. Since g�� changes very little

inside the test particle, the Christoffel symbols can be
developed in Taylor series around the point X�ðtÞ:

��
��ðxÞ ¼ ��

��ðXÞ þ �x�@��
�
��ðXÞ þ � � � ; (4)

where �x� ¼ x� � X�. The single-pole particle has the
simplest internal structure, and its dipole, as well as higher
multipole moments, are zero:

Z
�
�x����d3x ¼ 0;

Z
�
�x��x����d3x ¼ 0; . . . :

(5)

Note that the integrals are taken over the three-dimensional
hyperspace �ðtÞ, which denotes the interior of the test
particle at time t. Substituting Eq. (4) into Eq. (3) and
taking into account that we are considering a single-pole
particle, we get

@��
��ðxÞ þ ��

��ðXÞ���ðxÞ ¼ �f�ðxÞ: (6)

Integrating this equation over the hypersurface � and
taking into account that ��� are zero outside �, we find

d

dt

Z
��0d3xþ ��

��ðXÞ
Z

���d3x ¼
Z

�f�d3x: (7)

On the other hand, multiplication of Eq. (6) by x� yields

��� ¼ @�ðx����Þ þ x���
��ðXÞ��� � x��f�: (8)

Integrating this equation over �, we derive

Z
���d3x ¼ d

dt

Z
x���0d3xþ ��

��ðXÞ
Z

x����d3x

�
Z

x��f�d3x: (9)

Furthermore, using the requirements of Eq. (5), we can
write

Z
x���0d3x ¼ X�ðtÞ

Z
��0d3x;

Z
x����d3x ¼ X�ðtÞ

Z
���d3x;

Z
x��f�d3x ¼ X�ðtÞ

Z
�f�d3x:

(10)

Substituting these equations into Eq. (10) and using Eq. (7),
one gets

Z
���d3x ¼ dX�

dt

Z
��0d3x: (11)

With the help of the � ¼ 0 component, we rewrite Eq. (11)
as follows:

Z
���d3x ¼ dX�

dt

dX�

dt

Z
�00d3x: (12)

Combining Eqs. (7) and (12), we find

d

dt

�
dX�

dt

Z
�00d3x

�
þ ��

��ðXÞdX
�

dt

dX�

dt

Z
�00d3x

¼
Z

�f�d3x: (13)

On the other hand, the line element of the curve X�ðtÞ is
given by ds2 ¼ g��dX

�dX�. Also, the corresponding four-

velocity is u� ¼ dX�

ds . Thus, Eq. (13) becomes

d

ds
ðmu�Þ þm��

��u
�u� ¼ u0

Z
�f�d3x; (14)

where m is defined as follows:

m ¼ 1

u0

Z
�00d3x: (15)

Multiplying Eq. (14) by u� and taking into account that
u�r�u� ¼ 0, we find

dm

ds
¼ u0u�

Z
�f�d3x: (16)

In general relativity, the right-hand side of this equation is
zero, and so m is a constant of the motion. In this case,m is
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interpreted as the rest mass of the particle [3]. Substituting
Eq. (16) into Eq. (14), we find

m

�
du�

ds
þ ��

��u
�u�

�
¼ ð��

� � u�u�Þ��; (17)

here we introduced �� as

�� ¼ u0
Z

�f�d3x: (18)

Finally, Eq. (17) can be brought into a more compact form,
namely

m
Du�

ds
¼ ð��

� � u�u�Þ��; (19)

where D
ds ¼ u�r� is the directional covariant derivative.

Equation (19) is the generalization of the geodesic equa-
tion. As we expect, orbits of single-pole particles are not
the geodesics of the background metric. From Eq. (19),
one can immediately read off the additional contribution
to the equations of motion due to the nonzero covariant
divergence of the matter energy-momentum tensor. One
can interpret the left-hand side of Eq. (19) as an extra
force—‘‘extra’’ in comparison to the case �� ¼ 0—influ-
encing the test particle motion. Such an extra force, due
to the nonminimal coupling term on the right-hand side
of Eq. (19), may provide an interpretation for the
observed mass discrepancy in spiral galaxies and clusters
of galaxies [19,20], or in the context of the so-called
Pioneer anomaly [21]. For some attempts to
construct consistent modified gravity theories that might
yield to an appropriate extra force for explaining the
aforementioned problems, see Refs. [18,22] and referen-
ces therein.

IV. THE POLE-DIPOLE PARTICLE

In this section, we derive the equations of motion of a
pole-dipole particle. The pole-dipole particle is a particle
for which all integrals

R
�x�1�x�2 . . .�x�n���d3x with

more than one factor �x� vanish. Remembering that the
test particle is a pole-dipole particle, we substitute Eq. (4)
into Eq. (3) and then integrate over the hypersurface �.
The result is

d

dt

Z
��0d3xþ ��

��ðXÞ
Z

���d3xþ @��
�
��ðXÞ

�
Z

�x����d3x ¼
Z

�f�d3x: (20)

Also, multiplying Eq. (3) by x� and integrating over �, it
follows that

Z
���d3x ¼ d

dt

Z
�x���0d3xþ dX�

dt

Z
��0d3x

þ ��
��ðXÞ

Z
�x����d3x�

Z
�x��f�d3x:

(21)

Here we have used Eq. (20) to simplify Eq. (21). Another
useful equation can be obtained by multiplying Eq. (6) by
x�x	 and integrating over �. The result is

dX�

dt

Z
�x	��0d3xþ dX	

dt

Z
�x���0d3x

¼
Z

�x��	�d3xþ
Z

�x	���d3x: (22)

Equations (20)–(22) contain enough information to
describe the motion of pole-dipole particles. In the follow-
ing, we will bring these equations into a more familiar
form. To do so, analogously to Ref. [3], we introduce the
quantities M��	, S�	, and M�	 as follows:

M��	 ¼ �u0
Z

�x���	d3x; (23)

M�	 ¼ u0
Z

��	d3x; (24)

S�	 ¼ � 1

u0
ðM�	0 �M	�0Þ; (25)

where S�	 is the total angular momentum or macroscopic
spin of the test particle. Furthermore, one should note that
M0�	 ¼ 0 (because �x0 is zero) and M�00 ¼ �u0S�0.
Also, we define the new quantity ��	 as follows:

��	 ¼ u0
Z

�x��f�d3x: (26)

With these definitions, Eqs. (20)–(22) become

d

ds

�
M�0

u0

�
þ ��

��M
�� � @��

�
��M

��� ¼ ��; (27)

M�� ¼ u�

u0
M�0 � d

ds

�
M��0

u0

�
� ��

��M
��� � ���; (28)

u0ðM�	� þM	��Þ ¼ u�M	�0 þ u	M��0: (29)

Cyclic permutation of the indices in Eq. (29) and subtrac-
tion of the second from the combination of the first and the
third of the permutations yields

M�	
 ¼ � 1

2
ðS�	u
 þ S�
u	Þ þ 1

2

u�

u0
ðS0	u
 þ S0
u	Þ:

(30)

By setting � ¼ 0 in Eq. (28), we find

M�0 ¼ u�

u0
M00 �DS�0

ds
� �0

��M
��� ���0: (31)
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If we contract Eq. (31) with u� and use the same choice for
the mass as in Ref. [3], namely

m ¼ 1

u0
ðM�0 þ ��


�u

S�0Þu�; (32)

we obtain

m ¼ 1

ðu0Þ2 ðM
00 þ �0

��S
�0u�Þ þ u�

u0
DS�0

ds
� u�

u0
��0:

(33)

This mass parameter is sometimes called the ‘‘kinemati-
cal’’ or ‘‘monopole’’ rest mass of the particle [6]. Using
Eqs. (30), (31), and (33), the equation (28) takes the
following form:

M�� ¼ mu�u� þ u�

u0

�
DS�0

ds
� u�u�

DS�0

ds

�
þ ��

��S
��u�

þ 1

2

DS��

ds
þ d

ds

�
Sð�0u�Þ

u0

�

�
�
��� þ u�

u0
��0 þ u�u�

u0
u��

�0

�
; (34)

where the round brackets in Sð�0u�Þ denote symmetriza-
tion. SinceM�� is symmetric, the antisymmetric part of the
right-hand side of Eq. (28) vanishes. Hence, one can
immediately verify

u�

u0
DS�0

ds
� u�

u0
DS�0

ds
þDS�0

ds

¼ ��� ���� þ 1

u0
ðu���0 � u���0Þ: (35)

After some elementary calculations, this equation can be
rewritten as

DS��

ds
þ u�u�

DS��

ds
� u�u�

DS��

ds

¼ ð��� � ���Þ þ u�u�ð��� � ���Þ
� u�u�ð��� � ���Þ: (36)

This equation should be compared to Eq. (5.3) in Ref. [3].
With the help of Eqs. (34)–(36), we derive the following
equations, which are useful in simplifying Eq. (27):

M�0¼u0
�
mu�þu�

DS��

ds
���


�

u


u0
S�0�u�ð�������Þ

�
;

(37)

��
��M

�� ¼ ��
��

�
mu�u� þ u�u�

DS��

ds

�

þ ��
���

�
��S

��u� þ ��
��

d

ds

�
S�0u�

u0

�

� ��
��ð��� þ u�u�ð��� ����ÞÞ: (38)

By using Eqs. (37) and (38), we can bring Eq. (27) into its
final covariant form:

D

ds

�
mu� þ u�

DS��

ds

�
þ 1

2
S��u�R�

���

¼ D

ds
ðu�ð��� ����ÞÞ þ�� þ u0

Z
r�ð�x��f�Þd3x;

(39)

where R�
��� is the curvature tensor. Also, note that it is

straightforward to show

u0
Z

r�ð�x��f�Þd3x ’ ��
�	ðXÞ��	: (40)

Equation (39) should be compared to Eq. (5.7) in Ref. [3].
In general relativity, the right-hand side of Eq. (39) is
zero [3].
It is important to note that the mass parameter m is not

necessarily a constant of motion. To show this in more
detail, let us define the ‘‘generalized momentum’’ p� as
follows:

p� ¼ mu� þDS��

ds
u� þ 2u��

½���; (41)

where the square brackets denote antisymmetrization.
Using this equation and taking into account that m ¼
u�p

�, it is straightforward to rewrite Eqs. (36) and (39)
as follows:

_S �� ¼ 2ðp½�u�� þ�½���Þ; (42)

_p � ¼ � 1

2
S��u�R�

��� þ ð�� þ ��
�	�

�	Þ; (43)

where the dot denotes the covariant derivative with respect
to the proper time, D=ds. The main result of this section is
embodied in the Eqs. (42) and (43). These equations should
be compared to the well-known Mathisson-Papapetrou
equations for pole-dipole test particles in general relativity.
It is obvious that if we assume that there is no coupling
between matter and the gravitational fields, then �� and
��	 are zero, and Eqs. (42) and (43) recover the
Mathisson-Papapetrou equations.
Using Eq. (43), one can easily show

_m ¼
�
D

ds
ðS��u�Þ þ 2u��

½���
�
_u� þ u�ð�� þ ��

�	�
�	Þ:
(44)

We can also define another mass parameter by M2 ¼
p�p

�, which in general is different from m. The mass
parameter M is sometimes called the ‘‘dynamical,’’
‘‘total,’’ or ‘‘effective’’ rest mass of the test particle [6].
If we contract Eq. (42) with p� _p�, we get
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_M ¼ � _p�

Mm

D

ds
ðS��p�Þ þM

m
ð�� þ ��

�	�
�	Þu�: (45)

Thus, M is not also necessarily a constant of motion.
It is also necessary to mention that, just as in general

relativity, Eqs. (42) and (43) are insufficient to describe
the motion of the pole-dipole particle. In fact, we have 14
unknown variables (x�, u�, and S�	) and only 11 equa-
tions; i.e., Eqs. (43) and (42), and u�u� ¼ 1. Note that
u�u� ¼ 1 is the mere constraint due to the choice of
parametrization of the trajectories. Thus, we need three
more equations to make the model self-consistent.

Let us recall the origin of this apparent inconsistency.
The above procedure for determining the motion of test
particles consists of choosing a representative point [or a
representative world line X�ðtÞ] in the particle and taking
the moments of Eq. (1) about that point. However, we
have not specified how to choose this representative point
in the test particle. In other words, there is an arbitrary
step in the above method, and it is the choosing of a
representative point in the body. Thus, one can expect that
if such a point is not uniquely specified, the motion of the
representative point will not be fully determined. In gen-
eral relativity, the proper specification of such a represen-
tative world line yields to a supplementary condition to
Mathisson-Papapetrou equations which determines the
particle’s motion [23]. The two most widely used supple-
mentary conditions are the Frenkel condition [24] (for
massless particles)

S�	u	 ¼ 0 (46)

and the Tulczyjew condition [25] (for massive particles)

S�	p	 ¼ 0: (47)

In general relativity, with the help of Eqs. (44) and (45),
one can immediately verify that m is constant when the
Frenkel condition [Eq. (46)] is assumed and the mass
parameter M is constant for the Tulczyjew condition
[Eq. (47)]. We do not want to derive the corresponding
supplementary equations which may yield to constant
parameters m and M in the context of modified gravity
theories here, because this may require the exact form of
the nonminimal coupling term �f�. However, we shall go
into this issue for MOG in the next sections.

V. TEST PARTICLE MOTION IN MOG

In this section, we consider the test particle motion in
MOG, and we make some comments about this theory.
MOG is an alternative theory of gravity, and it is claimed in
the literature that this theory can address the dark matter
problem in spiral galaxies and clusters of galaxies
[18,26,27]. More specifically, MOG is a scalar-tensor-
vector gravity theory which postulates, in addition to the
metric tensor, three dynamical scalar gravitational fieldsG,
�, and !, and also a dynamical massive four-vector

gravitational field ��. (See the Appendix for more detail.)
The vector field�� is coupled universally to matter. As we
mentioned before, such a coupling between matter and the
vector field yields to a nonzero covariant divergence of
the ordinary matter energy-momentum tensor, and conse-
quently this coupling leads to a modification of the law of
gravitation. Here, by the law of gravitation, we mean the
gravitational force law between two point particles in the
weak-field approximation of the given modified gravity
theory. We know that general relativity in the Newtonian
limit coincides with Newtonian gravity, but this is not the
case for other gravity theories. It should be emphasized
that, for a modification to the law of gravitation, it is not
necessary to construct a theory with nonminimal coupling
terms between matter and gravitational fields. In fact, it is
well known that modified gravity theories which yield to a
conserved energy-momentum tensor can also provide a
modification to the law of gravitation. For example, see
metric fðRÞ theory [28,29].
In order to investigate the test particle equations of

motion, we need the exact form of the conservation law
[Eq. (1)]. We have found the conservation law in the
Appendix. The result, from Eq. (A31), is

r�T
�� ¼ B�

�J� þr�

�
g��!�� @Wð�Þ

@��

� 2!g��
@Wð�Þ
@g��

�
; (48)

where B�� ¼ r��� �r���, the term J� is a ‘‘fifth

force’’ matter current defined by Eq. (A20), and the self-
interaction potential Wð�Þ is given by Eq. (A30). As we
have discussed, the right-hand side of this equation pro-
vides the modification of the law of gravitation. It seems
that this theory can provide a wide range of modifications
to the law of gravitation. In other words, by choosing
different self-interaction potentials Wð�Þ, one can intro-
duce different modifications. In Ref. [18], a special modi-
fication has been postulated [see Eq. (32) in Ref. [18]].
This postulation can be considered as a special choice for
Wð�Þ. However, we show that there is no potential Wð�Þ
corresponding to the extra force postulated in Ref. [18]. In
other words, we show that the test particle equation of
motion postulated in Ref. [18] is not compatible with the
field equations of MOG. Albeit, as we shall discuss, this
issue may not change the main results of MOG.
In this theory, the covariant derivatives of the vector field

�� do not appear inWð�Þ. Thus, the most general form for
Wð�Þ can be given as

Wð�Þ ¼ X
n

cnð����Þn; (49)

where cn are constant coefficients. For such a potential, it is
straightforward to show that the second term on the right-
hand side of Eq. (48) vanishes. Finally, the conservation
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law of the ordinary matter energy-momentum tensor in
MOG reads

r�T
�� ¼ B�

�J�: (50)

Comparing this equation to Eq. (1), we get �f� ¼ffiffiffiffiffiffiffi�g
p

B�
��J�. In the presence of the test particle, the matter

current density is given by Ĵ� ¼ J� þ �J�. On the other
hand, since the particle is moving outside of the massive
bodies, J� is zero near and inside the test particle.
Furthermore, since it is assumed that the matter current
density is conserved (i.e.,r�J

� ¼ 0), one can immediately
infer that r��J

� ¼ 0. Consequently, it is straightforward
to show that Q ¼ R ffiffiffiffiffiffiffi�g

p
�J0d3x is a time-independent

quantity. Hence, we may introduce the matter current
density �J� as follows (see Ref. [30]):

�J� ¼ Qffiffiffiffiffiffiffi�g
p

Z
�4ðx� XÞdx�: (51)

Therefore, it is easy to show that �� is given by

�� ¼ q5B
�
�u

�; (52)

where q5 ¼ �Q is the test particle’s fifth force charge. In
this theory, the fifth force charge is assumed to be propor-
tional to the particle’s mass m, such that q5 ¼ �m. Finally,
using Eq. (19), the equation of motion of the single-pole
particle is given by

m _u� ¼ q5B
�
�u

�: (53)

Taking into account Eq. (16), it is clear that, as in general
relativity, m is a constant of motion, and can be considered
as the rest mass of the test particle. This equation of motion
[Eq. (53)] is different from that postulated in Eq. (31) of
Ref. [18]. In fact, as is obvious fromEq. (53), the scalar field
!ðxÞ and its derivatives do not appear in the equation of
motion. As we mentioned before, the vector field �� is
coupled to ordinary matter; thus, we expect that the vector
field or its derivatives will exist in the equation of motion.
On the other hand, there is a coupling between�� and!ðxÞ
[see Eq. (A3)], and consequently one may expect that the
scalar field !ðxÞ should appear in the equation of motion.
However, as is clear fromEq. (53), that is not the case in this
theory. Furthermore, one can easily show that the test
particle action governing the equation of motion [Eq. (53)
] is given by

STP ¼ �
Z
ðmþ q5��u

�Þds; (54)

where s is the proper time along the world line of the test
particle. This action is also different fromwhat is postulated
in Eq. (30) of Ref. [18].

In Ref. [18], it has been assumed that, for the vacuum
solution around a spherically symmetric pointlike mass,

!ðxÞ is nearly constant. This assumption is also consistent
with the numerical solution of the vacuum field equations
[31]. With this unnecessary assumption, the postulated
equation of motion can be written as

m _u� ¼ �!B�
�u

�; (55)

where � denotes a coupling constant, and its magnitude
can be fixed using the experimental observations. Equation
(55) may still seem different from Eq. (53) because of
the presence of constant !. However, since � has been
assumed to be an arbitrary constant, one can choose it to be

� ¼ � Q
! . Consequently, in this case Eq. (55) coincides

with Eq. (53), and the main result of this theory related to
the dark matter problem will not change.
Now let us consider the spinning particle equations of

motion in MOG. It is straightforward to verify that ��	 is
zero in MOG. Therefore, the equations of motion
[Eqs. (42) and (43)] can be simplified as follows:

_S �� ¼ 2p½�u��; (56)

_p � ¼ � 1

2
S��u�R�

��� þ q5B
�
�u

�; (57)

where p� ¼ mu� þ _S��u�. Equation (56) is the same as in
general relativity, but the extra term q5B

�
�u

� exists on the
right-hand side of Eq. (57) relative to the Mathisson-
Papapetrou equations. It is obvious from Eqs. (56) and
(57), which describe the motion of electrically neutral
pole-dipole particles in MOG, that there is a similarity
between these equations and the Dixon-Souriau equations
which determine the motion of charged pole-dipole parti-
cles in the presence of electromagnetic fields in the context
of general relativity. Mathematically, the origin of this
similarity lies in Eq. (50). In fact, using Einstein-
Maxwell equations, one can easily show that the covariant
divergence of the ordinary matter energy-momentum
tensor is given by

r�T
�� ¼ F�

�J�; (58)

where F�� is the field strength tensor, J� ¼ ð�; Jx; Jy; JzÞ
is the current four-vector, and � is the electric charge
density. The close similarity between Eqs. (50) and (58)
yields to a similarity between the equations of motion of
test particles in MOG and Dixon-Souriau equations.
However, one should note that Eqs. (56) and (57) are not
exactly similar to the Dixon-Souriau equations. In fact,
mathematically, they are similar to the equations of motion
of a charged spinning particle without magnetic moment;
see Eq. (9) in Ref. [13].

VI. CONSERVED QUANTITIES

It is well known that the symmetries of the background
space-time may yield to the existence of conserved quan-
tities. For example, in general relativity, for a charged test
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particle moving under the influence of an electromagnetic
field, if the electromagnetic field satisfies some consistency
conditions, then the space-time symmetries guarantee the
existence of some conserved quantities. In this section, we
consider the conserved quantities related to the existence
of the Killing vectors and the Killing tensors. We recall that
a Killing vector 
� and a totally symmetric rank-n Killing
tensor K	1...	n

satisfy

r�r	
� ¼ R	��
�
�; rð�
	Þ ¼ 0; (59)

and

rð�K	1...	nÞ ¼ 0: (60)

Let us first consider the conserved quantities for the motion
of a single-pole particle. The equation of motion is given
by Eq. (53). If we assume that the background geometry
possesses a Killing vector 
�, then one can straightfor-

wardly show

D

ds
ð
�p

� þ q5
��
�Þ ¼ q5u

�L
��; (61)

where L
�� is the Lie derivative of the vector field ��

with respect to 
. Thus, the quantity

Q
 ¼ 
�p
� þ q5
��

� (62)

is conserved if the vector field �� is Lie conserved along


; i.e., L
�� ¼ 0. Similarly, one can verify that the com-

ponent of the velocity along 
,

u
 ¼ 
�u
�; (63)

is conserved if


�B
�
	 ¼ 0: (64)

This condition can be generalized to quantities nonlinear in
velocities if the space-time has appropriate Killing tensors.
Let K	1...	n

be a rank-n Killing tensor satisfying Eq. (60).

Then, it is straightforward to show

_QK ¼ �q5
m

K�
ð	1...	n�1

B	nÞ�u
	1 . . .u	n: (65)

Thus, QK is conserved if

K�
ð	1...	n�1

B	nÞ� ¼ 0: (66)

Since the metric g�� is a rank-two Killing tensor satisfying

trivially the condition in Eq. (66), we find conservation of
the norm of the test particle’s velocity; i.e., g��u

�u�.

Now let us consider the conserved quantities for the
motion of a spinning test particle in MOG. Using
Eqs. (44), (45), and (56), we find

_m ¼ D

ds
ðS�	u	Þ _u�; mM _M ¼ D

ds
ðS�	p	Þ _p�;

S _S ¼ p½�u	�S�	;
(67)

where S is the magnitude of the spin, defined by S2 ¼
1
2S�	S

�	. Thus, m is a constant of the motion when the

Frenkel condition [Eq. (46)] is assumed, and accordingly
M is constant when the Tulczyjew condition [Eq. (47)]
is assumed. Also, the magnitude S of the spin is a constant
of the motion for both supplementary conditions.
Furthermore, if we assume that the background geometry
possesses a Killing vector 
, then using Eqs. (56) and (57),
we get

D

ds

�

�p

� þ q5
��
� þ 1

2
S�	r�
	

�
¼ q5u

�L
��:

(68)

Thus, for a spinning test particle, the quantity

Q
 ¼ 
�p
� þ q5
��

� þ 1

2
S�	r�
	 (69)

is conserved if the vector field�� is Lie conserved along 
.

VII. CONCLUSIONS

In this paper, we derived the generalized Mathisson-
Papapetrou equations in the realm of modified gravity
theories allowing a nonminimal coupling between matter
and geometry. In other words, we derived the equations of
motion of the single-pole and the pole-dipole (spinning)
test particles using the multipole approximation method.
Our results are consistent with the results already found in
the literature. In the second part of the paper, using the
generalized Mathisson-Papapetrou equations, we analyzed
the equations of motion of a pole-dipole particle in the
context of MOG. Furthermore, we found some conserved
quantities for the motion of a test particle in MOG.
In the context of MOG, our results are different from the

results already found in the literature. In fact, the equations
of motion for the test particle postulated in MOG [18] are
not true, and they should be replaced by Eq. (53). However,
as we discussed in Sec. V, this point does not change the
main features of this theory considering the dark matter
problem.
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APPENDIX: COVARIANT DIVERGENCE
OF T�� IN MOG

The action of the theory is given by

S ¼ SGrav þ S� þ S� þ Sc þ S! þ SM; (A1)

where SM is the action for ordinary matter, and

SGrav ¼ 1

16�

Z ffiffiffiffiffiffiffi�g
p

d4xfð�ÞR; (A2)
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S� ¼ �
Z ffiffiffiffiffiffiffi�g

p
d4x!

�
1

4
B��B�� þ V�ð�; g��; c Þ

�
;

(A3)

S� ¼
Z ffiffiffiffiffiffiffi�g

p
d4x

�
1

2
g��r��r��� V�ð�Þ

�
; (A4)

Sc ¼
Z ffiffiffiffiffiffiffi�g

p
d4xfð�Þ

�
1

2
g��r�cr�c � Vc ðc Þ

�
;

(A5)

S! ¼
Z ffiffiffiffiffiffiffi�g

p
d4xfð�Þ

�
1

2
g��r�!r�!� V!ð!Þ

�
; (A6)

where R is the Ricci scalar, B�� ¼ r��� �r���, and

the scalar fields � and c are related to the scalar fields G
and � of the original paper [18] by

fð�Þ ¼ �2

2
¼ 1

G
; c ¼ ln�; (A7)

also, V� and Vc are related to VG and V� by

V� ¼ VG

G3
; Vc ¼ V�

�2
: (A8)

In this theory, it has been assumed that
@V�

@r
��
¼ 0. In other

words, the covariant derivatives of�� do not appear in V�.

The total energy-momentum tensor is given by

Ttotal
�� ¼ T�� þ T�

�� þ T
�
�� þ Tc

�� þ T!
��; (A9)

where

T�� ¼ �2ffiffiffiffiffiffiffi�g
p �SM

�g�� ; TQ
�� ¼ �2ffiffiffiffiffiffiffi�g

p �SQ
�g�� ; (A10)

and Q can be �, �, c , or !. Using Eqs. (A2)–(A6) and
(A10), one can easily verify

T�
�� ¼ !

�
B�

�B�� � g��

�
1

4
B��B�� þ V�

�
þ 2

@V�

@g��

�
;

(A11)

T
�
�� ¼ �

�
r��r��� g��

�
1

2
r��r��� V�

��
; (A12)

Tc
�� ¼ �fð�Þ

�
r�cr�c � g��

�
1

2
r�cr�c � Vc

��
;

(A13)

T!
�� ¼ �fð�Þ

�
r�!r�!� g��

�
1

2
r�!r�!� V!

��
:

(A14)

Furthermore, variation of Eq. (A1) with respect to g��,��,
�, c , and ! yields the following field equations,
respectively:

fð�ÞR�� � 1

2
fð�ÞRg�� ¼ ðr�r� � g��hÞfð�Þ

þ 8�Ttotal
�� ; (A15)

!r�B
�� þr�!B�� þ!

@V�

@��

¼ �J�; (A16)

h�þ V0
� ¼ f0ð�Þ

16�
þ f0ð�Þ

�
1

2
g��ðr�cr�c

þr�!r�!Þ � ðVc þ V!Þ
�
; (A17)

fð�Þðhc þ V 0
c Þ ¼ �f0ð�Þr
�r
c �!

@V�

@c
; (A18)

fð�Þðh!þ V0
!Þ ¼ �f0ð�Þr
�r
!� 1

4
B��B�� � V�;

(A19)

where the prime stands for H0ðxÞ ¼ dH
dx , and J� is a ‘‘fifth

force’’ matter current defined as

J� ¼ � 1ffiffiffiffiffiffiffi�g
p �SM

���

: (A20)

Taking the covariant divergence on both sides of Eq. (A15)
yields

r�T�� ¼ � f0ð�Þ
16�

Rr��� ðr�T�
�� þr�T

�
��

þr�Tc
�� þr�T!

��Þ: (A21)

Note that on purely geometrical grounds, ðhr��
r�hÞf¼R��r�f and r�G�� ¼ 0, where f is an

arbitrary scalar function and G�� is the Einstein tensor.

On the other hand, taking the covariant divergence of
Eqs. (A11)–(A14) and using the field equations
(A16)–(A19), we find

r�T�
�� ¼ B��J

� �r�!

�
1

4
B��B�� þ V�

�

þ 2r�

�
!

@V�

@g��

�
�!r�V� þ!B��

@V�

@��

;

(A22)

r�T
�
�� ¼ � f0ð�Þ

16�
Rr��� f0ð�Þr��

�
1

2
g�	ðr�cr	c

þr�!r	!Þ � ðVc þ V!Þ
�
; (A23)

r�Tc
�� ¼ f0ð�Þ

�
1

2
r�cr�c � Vc

�
r��þ!

@V�

@c
r�c ;

(A24)

MAHMOOD ROSHAN PHYSICAL REVIEW D 87, 044005 (2013)

044005-8



r�T!
�� ¼ f0ð�Þ

�
1

2
r�!r�!� V!

�
r��

þ
�
1

4
B��B�� þ V�

�
r�!: (A25)

In Eq. (A22), we used the following equation:

B�
�r�B�� � 1

4
r�ðB��B��Þ ¼ 0: (A26)

Equation (A26) can be easily verified by using the defini-
tion of B��. Now, substituting Eqs. (A22)–(A25) into

Eq. (A21), we obtain

r�T�� ¼ B��J
� þ

�
!r���

@V�

@��

� 2r�

�
!

@V�

@g��

��
:

(A27)

On the other hand, taking the covariant divergence of
Eq. (A16) and assuming r�J

� ¼ 0, one gets

r�

�
!
@V�

@��

�
¼ 0: (A28)

With the help of this equation, we can rewrite Eq. (A27) as

r�T�� ¼ B��J
� þr�

�
g��!��

@V�

@��

� 2!
@V�

@g��

�
:

(A29)

Finally, we choose the following form for the potential V�

(see Eq. (20) in Ref. [18]):

V� ¼ � 1

2
e2c���� þWð�Þ; (A30)

where Wð�Þ is the vector field �� self-interaction contri-
bution. Substituting this potential into Eq. (A30), we get

r�T�� ¼ B��J
� þr�

�
g��!��

@Wð�Þ
@��

� 2!
@Wð�Þ
@g��

�
:

(A31)
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