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The approximate homogeneity of spatial sections of the Universe is well supported observationally, but

the inhomogeneity of the spatial sections is even better supported. Here, we consider the implications of

inhomogeneity in dust models for the connectedness of spatial sections at early times. We consider a

nonglobal Lemaı̂tre-Tolman-Bondi (LTB) model designed to match observations, a more general,

heuristic model motivated by the former, and two specific, global LTB models. We propose that the

generic class of solutions of the Einstein equations projected back in time from the spatial section at the

present epoch includes subclasses in which the spatial section evolves (with increasing time) smoothly

(i) from being disconnected to being connected, or (ii) from being simply connected to being multiply

connected, where the coordinate system is comoving and synchronous. We show that (i) and (ii) each

contain at least one exact solution. These subclasses exist because the Einstein equations allow non-

simultaneous big bang times. The two types of topology evolution occur over time slices that include

significantly postquantum epochs if the bang time varies by much more than a Planck time. In this sense, it

is possible for cosmic topology evolution to be ‘‘mostly’’ classical.

DOI: 10.1103/PhysRevD.87.043521 PACS numbers: 98.80.Jk, 04.20.Gz, 02.40.�k

I. INTRODUCTION

The approximate homogeneity of spatial sections
(hypersurfaces) of the Universe is well supported observa-
tionally. Both the assumption of homogeneity and fact of
inhomogeneity play an important role in relativistic cos-
mological models. The Friedmann-Lemaı̂tre-Robertson-
Walker (FLRW) models [1–5] are solutions of the
Einstein equations in which the density is constant in any
comoving spatial section. With the concordance model
parameters of the metric [6], the FLRW models provide
reasonably good fits to observational data [faint galaxy
number counts (e.g., Refs. [7,8]), gravitational lensing
(e.g., Ref. [9]), supernovae type Ia magnitude-redshift
relations (e.g., Refs. [10,11])]. However, there is no serious
question of whether the Universe is inhomogeneous: the
Earth, galaxies, and galaxy clusters exist. The real question
is whether the homogeneous, heuristic approach gives a
sufficiently accurate approximation. The forcing of an
FLRW model onto late-epoch observations requires a non-
zero ‘‘dark energy’’ parameter ��, suggesting that the
latter is most simply interpreted as an artefact of forcing
an oversimplified model onto the data (e.g., Refs. [12–14]).

The near homogeneity is also a key element of the

‘‘horizon problem’’ for noninflationary FLRW models:

how was it possible for causally disconnected (but spatially

connected) regions of the spatial section of the Universe to

homogenize? In the context of dust models with comoving

spatial sections, this question implicitly assumes that uni-

verse models with initially inhomogeneous spatial sections

are relativistically valid and only have a problem with

causal disconnectedness, not with comoving spatial dis-

connectedness. Is this assumption correct?

Although many families of inhomogeneous, exact, cos-

mological solutions of the Einstein equations are known

(see the extensive compilation in Ref. [15] and a recent

review in Ref. [16]), no generic model of exact solutions is

known. The Lemaı̂tre-Tolman-Bondi (LTB) family of

exact solutions [17–19] is one well-known family of exact

solutions. These solutions consist of exact solutions to the

Einstein equations that are radially inhomogeneous and

spherically symmetric with respect to an origin. In analogy

with the way that the FLRW model is interpreted to apply

to a three-dimensionally averaged spatial section, an LTB

solution can be interpreted to apply to a spatial section that

has been averaged over every infinitesimally thin spherical

shell, i.e., two-dimensionally, prior to solving the Einstein*During visiting lectureship.
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equations. However, the Einstein equations do not imply
their averaged equivalent: GðgÞ ¼ 8�Tð�Þ⇏GðhgiÞ ¼
8�Tðh�iÞ [20] (e.g., Ref. [21]). That is, although homoge-
neity is often described in terms of the cosmological
‘‘principle,’’ the application of either an FLRW or an
LTB solution to the real Universe sis better seen as a
heuristic calculational strategy rather than a physical prin-
ciple, with the risk of averaging-related artefacts occurring
in both cases. LTB solutions provide an intermediate step
between the FLRW solutions that force full homogeneity
and a more realistic, unknown family of generic solutions.

Thus, here we primarily consider LTB solutions. We first
examine an LTB fit to recent observational data to see what
it implies for the connectedness of spatial sections at early
times (Sec. II). In Sec. III, a less restricted situation is
discussed by supposing that a solution with a Gaussian
bang time function (11) exists and considering its topology
evolution. In Sec. IV, we formally generalize to a wider
class of inhomogeneous solutions that contains two
subclasses of distinct types of topology evolution
(Definition 1) and present a conjecture and a corollary
regarding one of the subclasses. We give case examples
in Secs. IVA and IVB, using an LTB solution found
previously [22], to show that the two subclasses given in
Definition 1 are nonempty (Theorem 1). Interpretations are
discussed in Sec. V and the second subclass is considered
further in Sec. VB. Conclusions are given in Sec. VI.
Unless otherwise stated, we only consider relativistic (non-
quantum), comoving, dust solutions with a zero cosmo-
logical constant (the first fit of inhomogeneous exact
cosmological solutions to supernovae type Ia data used
radially inhomogeneous pressure solutions [23]).

II. OBSERVATIONAL ESTIMATE

There are many different fits of LTB models to
observations—see Ref. [16] for a list of direct and inverse
fits. Here, we consider a recent paper [12] that phenomeno-
logically used the inverse method to find an LTB model.
That is, the authors started with functions implied by the
FLRWmodel with concordance model values of the metric
parameters [6] and inferred LTB functions. A similar
method and result are given in Ref. [24]. By construction,
the two fits found in Ref. [12] provide good fits to the
observed supernovae type Ia angular-diameter-distance—
redshift relation and to an observational estimate of Hubble
parameter evolution with redshift, based on differential
stellar ages of the oldest passively evolving galaxies at
different redshifts [25].

The LTB models are comoving, synchronous, dust mod-
els with a metric that is normally written [26]

ds2 ¼ �dt2 þ lim
r̂!r

R2
;rðt; r̂Þ

1þ 2Eðr̂Þ dr
2

þ R2ðt; rÞðd�2 þ cos2�d�2Þ; (1)

where c ¼ 1, the gravitational constantG is written explic-
itly, and EðrÞ is a curvature-related function, e.g., (1), (21),
(23) of Ref. [19]; (2.1) of Ref. [27]; (1) of Ref. [12]; (1) of
Ref. [28]. A solution to the Einstein equations exists if

R2
;t ¼ 2Eþ 2GM

R
; (2)

� ¼ M;r

4�R2R;r

; (3)

for which

Rðt; rÞ ¼ �GMðrÞ
�ðrÞ fðt; rÞ; (4)

t� tBðrÞ ¼ GMðrÞ
½�ðrÞ�3=2 �ðt; rÞ; (5)

and

�ðrÞ ¼ �2E; fðt; rÞ ¼ 1� cos�;

�ðt; rÞ ¼ �� sin� if EðrÞ< 0; �ðrÞ ¼ 1;

fðt; rÞ ¼ �2=2; �ðt; rÞ ¼ �3=6 if EðrÞ ¼ 0;

�ðrÞ ¼ 2E; fðt; rÞ ¼ cosh�� 1;

�ðt; rÞ ¼ sinh�� � if EðrÞ> 0;

(6)

where Mðr0Þ is a weighted integral [via (3)] of the density
over 0 � r � r0, tBðrÞ is called the ‘‘bang time,’’ and
� ¼ �ðt; rÞ and � ¼ �ðt; rÞ are auxiliary functions.
Equations (5), (3), (6), and (4), imply that [29]

as t� tBðrÞ ! 0þ at fixed r; Rðt; rÞ ! 0þ: (7)

Thus, as t� tBðrÞ ! 0þ at some given r, the surface area
of a spherical (S2) shell at r approaches zero.
In other words, the LTB family allows the age of the

universe in a given universe model in a comoving spatial
section to be a function t� tBðrÞ that varies with the radial
coordinate r. Thus, since the authors deliberately aimed to
avoid making arbitrary assumptions, Figs. 3 and 12 of
Ref. [12] show, unsurprisingly, that the tBðrÞ solutions
are not constant. In a comoving section at the present epoch
t0, the age of the universe increases from t0 at the observer
to�t0 þ 2 Gyr on shells at an areal distance [30] of about
3.7 Gpc.
What are the topological properties of this solution? At

times t > 0, let us assume that (i) the spatial section of the
solution is simply connected. The spatial curvature is nega-
tive, since EðrÞ> 0 over the region of r > 0 studied (Figs. 2
and 11 of Ref. [12]). Let us extend the solution by assuming
that (ii) EðrÞ> 08 r > 0. Thus, spatial sections at t > 0 are
the 3-manifold H3, with nonconstant curvature.
Figures 3 and 12 of Ref. [12] show that when�2 Gyr &

t < 0, a spatial section of the universe has a hole in the
center, where space has not yet emerged from the initial
singularity. For example, consider a spatial section at
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t ¼ �1 Gyr in Fig. 3 of Ref. [12]. In comoving coordi-
nates, the closed three-dimensional ball

V ¼ fðr; �; �Þ: r � rinfðt ¼ �1 GyrÞg; (8)

where

rinfðtÞ :¼ inffr: t� tBðrÞ> 0g (9)

and rinfðt ¼ �1 GyrÞ � 1:7 Gpc consists of the initial
singularity @V and a region of coordinate space beyond
(earlier than) the singularity. The metric is only Lorentzian
for t > tBðrÞ, i.e., r > rinfðtÞ, so the universe at t ¼ �1 Gyr
is H3nV , i.e., a 3-manifold with a hole created by remov-
ing V from H3 (Fig. 1).

Thus, this universe model evolves from H3nV to H3 at
early times. What is the areal radius Rðt; rÞ on the boundary
@V ? This is given by (4), (7), and (2) [and (6) for r ¼ 0] of
Ref. [12]. As �ðt; rÞ ! 0þ, we have �ðt; rÞ ! 0þ and
�ðt; rÞ ! 0þ, and thus Rðt; rÞ ! 0þ, and t� tBðrÞ ! 0þ,
since EðrÞ> 0 and MðrÞ in Figs. 2 and 4–6, are nonzero
(for r > 0) functions of r only. Thus, the spatial volume of
a shell at r shrinks to zero as t ! tBðrÞþ for fixed r, or as
r ! rinfðtÞþ at a fixed t. Within the spatial section H3nV
at t, the boundary @V appears metrically as a single
missing point. In coordinate space imagined intuitively
(Fig. 1) with, for example, a Euclidean metric, @V would

have an area of 4�r2, but this is not physical; the metrical
area of @V is 4�R2 ¼ 0.
Relativistically, there is no problem with this solution.

The high-r universe is born first, with the coordinate-space
shell at rinfðtÞ, i.e., the 3-manifold boundary point at rinfðtÞ,
representing the unfinished early big bang process. The
flexibility of the areal radius Rðt; rÞ in LTB solutions allows
comoving space to continuously be born from this singu-
larity, which moves to successively lower values of rinfðtÞ
as t increases up to t ¼ 0. At t ¼ 0, we have rinfð0Þ ¼ 0
and the singularity is replaced by ordinary spacetime
points at (t > 0, r ¼ 0). We can summarize these proper-
ties of the authors’ solution in Ref. [12] as follows:

rinfðtÞ> 0; 8 t < 0; drinfðtÞ=dt < 0; 8 t < 0;

V ðtÞ :¼ V ½r � rinfðtÞ�; 8 t � 0;Z
@V ðtÞ

d� ¼ lim
r̂!rinf

4�R2ðt; r̂Þ ¼ 0; 8 t � 0; (10)

where the pre-big-bang universe Vn@V is considered to
be nonphysical, the metric is given in (1) of Ref. [12], and
d� is the metric area element. Comoving space is contin-
uously born from the singularity @V until t ¼ 0 when the
singularity disappears in the same way that it disappeared
in parts of comoving space that were born earlier. Thus,
this universe model evolves from H3nf0g ¼ S2 � Rþ [31]
at t � 0 to H3 at t > 0. This is a topology change, i.e., a
change in �2 homotopy classes for this comoving, syn-
chronous spacetime foliation. Some 2-spheres cannot be
continuously shrunk to a point at t � 0, but all 2-spheres
can be continuously shrunk to a point at t > 0. Dropping
the simplifying assumptions (i) and (ii) above does not

FIG. 1. Coordinate-space illustration of the spatial, comoving
section H3nV in the empirical solution in Ref. [12] at
t ¼ �1 Gyr, discussed in Sec. II. The closed three-dimensional
ball V (8) consists of coordinate space that is not part of the
physically defined, spatial 3-manifold. The boundary @V has
zero metrical area 4�R2 and corresponds to a spatial section
through the initial singularity, i.e., @V � V ) @V � H3nV .
The r ¼ 3:7 Gpc 2-sphere shows the limit of the authors’ fit to
observations. We extrapolate this to arbitrarily large r. The
physically defined spatial section H3nV is shaded in grey up
to an arbitrary cutoff radius.

FIG. 2. Coordinate-space illustration of part of the spatial,
comoving section at t ¼ �3� of the spacetime solution sug-
gested in Sec. III to be more general than the empirical solution
in Ref. [12]. The physical (metrical) spatial section at coordinate
time t ¼ �3� is the spatially disconnected space [fW ig, shown
here for 1 � i � 3. The boundary [f@W ig has zero metrical
area and corresponds to a spatial section through the initial
singularity.
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make it possible to avoid the topology change in this
interpretation of the authors’ solution in Ref. [12], since
it just replaces H3 by a more generic 3-manifold M.

III. GAUSSIAN tBðr; �;�Þ DISTRIBUTION

The LTB solution presented in Refs. [12,24]) is intended
to demonstrate an example solution that fits key cosmo-
logical observations but is not intended as a definitive
replacement for the FLRWmodel with concordance model
metric parameter values. Moreover, the LTB model is not a
generic inhomogeneous model. An LTB solution con-
strained by more observational data could be expected to
have a more complicated nonconstant tB function (unless
this is imposed by assumption). A more realistic solution
using the inverse method would result from using the
observational data to infer a more generic, inhomogeneous,
dust solution. This could also reasonably be expected to
have a nonconstant tB function, as a function of three
spatial variables rather than just one, i.e.,

tB ¼ tBðr; �;�Þ: (11)

The solution [12] has only one (continuous) comoving
spatial region where tB <maxtB. This simplicity is
unlikely to be a requirement either of LTB models or of
more general cosmological (comoving dust) solutions of
the Einstein equations expressed in comoving, synchro-
nous coordinate systems.

In solution [12], lower density � tends to correlate with
older regions of the universe, i.e., more negative tB
(cf. Fig. 3 of Ref. [12] and the solid curves in Fig. 10 of
Ref. [12]). A qualitative way to interpret this in terms of
FLRW models is that for a fixed Hubble constant H0, a
lower matter density �m universe is older than a higher
matter density universe [32]. This is only a qualitative
guide to the LTB case, since both density and any typically
defined equivalent of the Hubble parameter vary with t and
r differently to the FLRW case. The same Figs. 3 and 10 in
Ref. [12] show that this qualitative inference does not
always hold: lower � does not always correlate with
more negative tB.

In order to consider a more general solution than that of
Ref. [12], let us suppose that a comoving dust solution to
the Einstein equations expressed in synchronous, comov-
ing, spherically symmetric coordinates has tBðr; �; �Þ
drawn from a Gaussian distribution Gð0; �Þ, i.e., of mean
zero and standard deviation � when smoothed on a length
scale �x. Gaussian density fluctuations on an FLRW back-
ground are a standard ingredient of modern cosmology, so
even if it is unlikely that a given solution has a tB–�
relation that is a function tBð�Þ (let alone a monotonic
function), a Gaussian tB distribution is a heuristically
reasonable hypothesis. Now consider an approximately
flat, cubical, small region of side length 3�x of which
the central ð�xÞ3 small cube contains a region with
tB <�3�, i.e., born unusually early. The probability that

this small cube is connected—in coordinate space—to
another small cube with tB <�3�, i.e., that it is not
isolated by iso-bang (constant tB) contours, is the comple-
ment of the probability that the 26 small cubes around it all

have tB � �3�, i.e., P ¼ 1� ð12 ½1þ erfð3= ffiffiffi
2

p Þ�Þ26 � 3%

[33]. The chances that the second tB <�3� cube touches
a third cube outside of the original ð3�xÞ3 region, and that
the (n > 2)th cube touches another small cube yet further
away for n � 3, rapidly decrease with increasing n.
Thus, tB ¼ �3� iso-bang contours in coordinate space

will tend to form isolated 2-surfaces. That is, with a fixed
smoothing scale �x and in a large enough region of
comoving coordinate space, a Gaussian distribution in tB
implies that there will tend to (statistically) exist a set of
many regions (3-volumes) fW ig with tB <�3� that are
spatially isolated from one another in coordinate space, and
thus also consist of isolated regions of the (metrically
defined) 3-manifold. At t 	 0, we label the latter M.
Let us assume that M is connected and that its volume
is 	 ð�xÞ3.
Now consider the coordinate-space spatial section at

t ¼ �3�. The boundaries of the regions fW ig defined
by tB <�3�, i.e., f@W ig, are 2-spatial iso-bang contours.
The regions fW ig have already emerged from the initial
singularity, with t� tB ¼ �3�� tB > 0. Since the fW ig
are isolated from one another, they constitute a set of
disconnected 3-manifolds. Hence, the universe at
t ¼ �3� consists of the spatially disconnected 3-manifold
[fW ig, shown in Fig. 2.
The choice of �3� is for illustration only. Any reason-

ably high x * 3 will (statistically) give a spatially discon-
nected universe at t ¼ �x�, given a large enough spatial
volume and a Gaussian distribution of tB as stated above.
At the same time t, the parts of ‘‘future’’ comoving space
Mn [ fW ig have not yet emerged from the initial singu-
larity and only exist in coordinate space. If we follow the
spatial section back in time from t ¼ �3�, then the
boundaries @W i correspond to t ¼ �x� for increasing
x, i.e., they shrink smoothly, possibly subdividing
further, eventually vanishing into the singularity. For t �
mintBðr; �;�Þ, the global bang time, no more W i exist.
Moving forward in time, how do the W i merge

together? The boundary @W i for the ith disconnected
region has zero 2-surface area, as in the case of Rðt; rinfÞ ¼
0 in the solution [12]. That is, the boundary ofW i is S

2 in
coordinate space with zero 2-surface area, i.e., metrically it
is a pointlike singularity. Thus, W i can be thought of
metrically as a 3-manifold with one point excluded. For
intuitive purposes, it can be useful to think of an azimuthal
equidistant projection of the Earth’s surface, centred at an
arbitrary geographical location, with the antipode corre-
sponding to the big bang initial singularity. The antipode
can be thought of either as a large, coordinate-space,
zero-circumference circle that bounds the 2-manifold
from the ‘‘outside’’ in the projected map, or metrically as
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a single missing point ‘‘on’’ our usual intuition of the
Earth’s surface.

Again, as in the solution [12], comoving space is born
from this singularity, so that there is comoving growth of
the spatial region W i. As t increases, the tB threshold for
the iso-bang contours increases (dt > 0), so that the W i

eventually touch and pairs (or n-tuples) of W i merge
together. Again writing t ¼ �x�, as �x becomes more
positive, t reaches a high enough �x� 	 0 such that the
probability for an isolated tB ¼ �x� region to exist
becomes negligible and the universe becomes fully
connected.

For a Gaussian tB distribution, it could be expected that
the zero 2-surface area of the boundary of an isolated
region W i at t ¼ �x� will tend to topologically be S2

in coordinate space, so that W i is S3n@W i ¼ S3nf0g
topologically. Other 2-manifolds for the coordinate space
representation of @W i could also be possible.

Thus, we find that if a universe described by the Einstein
equations is tB-inhomogeneous, then, even with several
simplifying assumptions (Gaussian distribution of tB at a
given smoothing length, M connected and simply con-
nected for t 	 0), there is a very high probability that it
emerged from the (spacetime-smooth) mergers of comov-
ing spatial sections that were spatially disconnected from
each other prior to their mergers. The temporal sense of
‘‘merged’’ refers here to the comoving, synchronous space-
time coordinate system. Foliations of the same spacetime
according to which there is no 3-spatial topology evolution
are likely to exist but are unlikely to provide a model as
intuitively simple as the comoving, synchronous foliation.
The early-epoch disconnectivity in the comoving, synchro-
nous foliation is distinct from questions of causal connec-
tivity. Interpretations of this topology evolution are
discussed in Sec. V after first proposing a generalization
and verifying that some examples of the proposed sub-
classes of solutions exist.

IV. RELATIVISTIC, POSTQUANTUM-EPOCH
TOPOLOGY EVOLUTION

Let us formalize the meaning and existence of space-
times that solve the Einstein equations and yet have
‘‘postquantum-epoch’’ spatial topology change.

Definition 1 Let us define the generic class A where
fg�g 2 A if g� is a (regular) extension to tB < t < t0,
using a synchronous coordinate system, of a dust (pressur-
eless) metric gjt0 , i.e., g� solves the Einstein equations

over tB < t < t0, where gjt0 on a comoving spatial section

(3-manifold) at �t0, which we call M,
(1) solves the Einstein equations,
(2) is regular, and
(3) has an approximately homogeneous density �.

Here, t0 is the age of the Universe at the location of our
Galaxy, and tB is a function of comoving spatial position
defined by the initial big bang singularity. Two distinct

subclasses of A are Ad (‘‘disconnected’’) and Am (‘‘multi-
ply connected’’) as follows, using coordinate time t.
(i) Ad, in which the universe is born from an initial

singularity at t ! ðmintBÞþ as two or more spatially
disconnected regions (3-manifolds) W i, each of
which is bounded by at least one singularity (of
zero spatial volume) from which comoving space
emerges continuously. The W i successively merge
together to form the connected 3-manifold M at t
where t >maxtB >mintB. The W i themselves are
born, in general, at different times, and their enu-
meration changes as a function of t, because of their
mergers.

(ii) Am, in which the universe is born from an initial
singularity at t ! ðmintBÞþ as a connected, simply
connected region W 1 bounded by at least two
singularities during mintB < t <mintB þ 	t for
some 	t > 0. Comoving space is continuously
born from the singularities, which join together
smoothly in pairs (or n-tuples, with n > 2), so that
the spatial section at t >maxtB is a connected,
multiply connected 3-manifold M.

Theorem 1 (i) The subclass Ad is nonempty. (ii) The
subclass Am is nonempty.
The heuristic Gaussian tB discussion (Sec. III) suggests

that (i) of Theorem 1 is correct, without establishing it
rigorously in an exact solution of the Einstein equations.
Neither (i) nor (ii) of Theorem 1 are relativistically problem-
atic. However, both (i) and (ii), if they are correct, are con-
trary to common intuition, since, if the subclasses Ad and/or
Am are ‘‘common’’ according to a measure over the class of
possible universes, then early, comoving, synchronous topol-
ogy evolution is likely to occur at time sliceswhere any given
time slice at t includes both very early and very late universe
ages t� tBðr; �;�Þ. within a single time slice at t.
Examples of members of Ad and Am are given in

Secs. IVA and IVB, proving Theorem 1. This provides
the basis for hypothesising that solutions with nonconstant
tB are more common than those with constant tB, in which
case formal hypotheses about measure spaces are needed.
Conjecture 1 For a measure 
 on A that is physically

motivated at late epochs (and that does not contradict early
disconnectedness), the measure of solutions that are not
primordially disconnected (in terms of comoving, synchro-
nous coordinate time t) is small, i.e., 
ðAnAdÞ 
 
ðAÞ.
Corollary 1 If
(i) conjecture 1 is correct, and
(ii) g� for our real Universe is chosen randomly from A,

and
(iii) the standard deviation of the tB time scale is

	 10�60 times that estimated empirically in
Ref. [12], then spatial disconnectedness occurred
at early epochs t, in the sense that

1 s 	 max
r;�;�

ft� tBðr; �;�Þg; (12)
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is satisfied on the spatial section at t, but that
section also includes significantly postquantum
regions, i.e.,

max
r;�;�

ft� tBðr; �;�Þg 	 10�43 s; (13)

on the same spatial section, hereafter, a ‘‘mixed-
epoch’’ spatial section or time slice.

A. Spatially disconnected sections that merge

We show that class Ad, i.e., (i) in Definition 1, is non-
empty, using an explicit example of the ‘‘string of beads’’
LTB solution [22] (see also Ref. [34]). This is a positively
curved solution. This class of solution requires the radial
metric component grr to be defined as a limit, because of
behavior at what (in the FLRW case) is the model’s equator
(e.g., Ref. [28]). This particular example has a tB function
with sinusoidal behavior, with all the minima and maxima
occurring at a single pair of values, mintB and maxtB,
respectively. This is not a general requirement, it is just a
characteristic of this particularly simple solution.

Using the LTB metric (1) and Eqs. (2)–(6) we consider
an example of the

EðrÞ< 0 8 r; t; (14)

subcase. Following Sec. 8 of Ref. [22], we define

EðrÞ :¼ � 1

2
½1� E1sin

2ðrÞ�;
MðrÞ :¼ M0ð1þM1 cosrÞ;
tBðrÞ :¼ �GM

ð�2EÞ3=2 þGM0ð1�M1Þ;

M0 :¼ �m

2GH0ð�m � 1Þ1:5 ;

(15)

where the FLRW dimensionless matter density parameter
�m :¼ 8�G�0=ð3H2

0Þ is set to �m ¼ 2, �0 is the present

matter density,H0 is the FLRWHubble constant, andM0 is
chosen to get a time scale roughly comparable to that of an
FLRW positively curved model with zero cosmological
constant. In order to avoid R;r having zeroes where M;r

does not have zeroes (see Sec. XIV.B of Ref. [35]), the
second derivative of ð1þM1 cosrÞ=ð1� E1sin

2rÞ at 0
must be negative, i.e., E1 < 0:5M1=ð1þM1Þ. Thus, to
obtain a sub-Gyr time scale of variation in tB, i.e., compa-
rable to (but more conservative than) the solution [12], the
parameters are set at

M1 ¼ 5� 10�5; E1 ¼ 3� 10�6: (16)

Figures 3–8 show this solution at early epochs and the
evolution of some key properties. The 3-Ricci scalar is

3R ¼ �4

�
E;r

RR;r

þ E

R2

�
; (17)

and following [35], a Hubble-like expansion parameter is
defined (14), (29) of Ref. [35]

H :¼ 1

3

�
2R;t

R
þ R;rt

R;r

�
: (18)

The early epoch curve in Fig. 7, i.e., for
Rð�0:42h�1 Gyr; rÞ shows numerically what can be seen
in (4)–(6): provided that the factors that include E and M
are well behaved, the one-sided limit � ! 0þ , � ! 0þ
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FIG. 3 (color online). Example of tB-inhomogeneous posi-
tively curved LTB solution (15) and (16) that is born as dis-
connected spatial sections that smoothly merge together via the
initial singularity (cf. Fig. 7(a) of Ref. [22]), showing a finite part
of the comoving spatial section, which is of infinite length in the
r direction. The Universe exists (has emerged from the big bang
singularity) in the shaded region (excluding the singularity itself,
appearing as a sinusoid here). The thin horizontal line shows a
spatial section of the Universe at t ¼ �0:42h�1 Gyr, during
which some parts of the Universe exist, and others do not
yet exist.
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FIG. 4 (color online). Density � of the solution shown in
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shown to limits that depend on numerical implementation details
and avoid obscuring the legends. A late epoch, near recollapse, is
shown by a thinner curve in this figure and those following.
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corresponds to Rðt; rÞ ! 0þ, and t� tBðrÞ ! 0þ. Thus, as
for the solution [12], zero-surface area 2-spheres, i.e.,
pointlike singularities, bound the post-big-bang parts of
the universe model.

In coordinate space, it is clear that the spatial sections of
the universe are disconnected at t < 0. What happens
at and near the coordinate points ðt; rÞ ¼ ð0; ð2nþ 1Þ�Þ,
n 2 Z? Let us, without loss of generality, consider ðt; rÞ ¼
ð0; �Þ. Since R ¼ 0 at this point, the metric (1) has a non-
Lorentzian signature: this is the initial big bang singularity
from which the comoving spatial point (t > 0, �) is born.
Thus, at t ¼ 0, the two parts of the spatial section
(0, ��< r < �) and (0, �< r < 2�) are disconnected
from one another by the point ð0; �Þ in coordinate space.
While disconnection by a single missing point might seem
trivial, since mathematically, adding a point to a manifold
can remove a singularity, the physical significance would
be nontrivial. The addition of a single point ‘‘at infinity’’ to
infinite Euclidean 3-space R3 is enough to transform the
latter into S3, although physically, this would be absurd.

How does the radial component of the metric behave
near the connection points (0, ð2nþ 1Þ�Þ)? For t > 0,
Figs. 7 and 8 show the anisotropic way in which the metric
evolves. As t ! 0þ, R decreases (Fig. 7) but grr increases
(Fig. 8). The latter increases without bound as t ! 0þ at
(t, ð2nþ 1Þ�) and remains infinite at the r boundaries of
the disconnected sections. However, the integrated proper
length

dðt; rÞ :¼
Z r

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
grrðt; r̂Þ

q
dr̂; (19)

from the center of an initially disconnected section to its
boundary, i.e., to the big-bang singularity, remains finite
(Fig. 9).
Unless a pre-big-bang scenario is introduced, the

comoving spatial sections of the universe during mintB <
t < 0 consist of the disjoint union [i2ZS

2 � ð0; 1Þ. This is
not an issue of particle horizons within acausal spatial
sections; the spatial sections are disconnected. With the
parameters chosen, the delay before these grow and merge
with the ‘‘rest’’ of the future-to-be-created spatial section is
more than 100h�1 Myr, i.e., long after nucleosynthesis.
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Thus, Ad of Definition 1 is a nonempty set. The age of
the Universe t0 used in this example is that for an FLRW
model with �m ¼ 1:015, �� ¼ 0; a t0 ¼ 10h�1 Gyr
model can be calculated trivially by modifying M0.

B. A connected, simply connected section
that becomes multiply connected

Taking the solution (15) and (16), we apply the
holonomy

�: ðt; r; �; �Þ � ðt; rþ 2�; �;�Þ: (20)

The spatial sections for t > 0 are multiply connected, i.e.,
S2 � S1. This is an exact, nonvacuum solution of the
Einstein equations with a multiply connected spatial

section, similar for t > 0 to the S2 � S1 solution published
earlier [36,37].
But at t < 0, the spatial section is S2 � ð0; 1Þ, i.e., it is a

single, connected, simply connected 3-manifold. Hence, a
simply connected universe can smoothly become multiply
connected at early (postquantum) epochs: the class of
solutions Am of Definition 1 is nonempty, establishing
Theorem 1. Figure 10 shows the universal covering space
of this solution.

V. DISCUSSION

A. Does relativistic, postquantum-epoch
topology evolution require teleology?

Section IV establishes that universe models that evolve
from being disconnected to being connected, and from
being simply connected to being multiply connected, exist
as classical, relativistic spacetimes. If Conjecture 1 is
correct, i.e., if disconnected solutions are common, then
Corollary 1 implies that the inverse method of using extra-
galactic, astronomical observations to extrapolate back
towards the initial singularity, for example, numerically
using the (3þ 1) formalism (e.g., Ref. [38]), would be
likely to yield evidence of spatial disconnectedness in
postquantum-epoch time slices that merge together as
coordinate time t increases. This is intuitively surprising.
Is this a problem of teleology [39]? How is it possible for

the singularities in spatially disconnected regions to
‘‘know’’ where other regions and their singularities are
‘‘located’’ in order for the singularities to join together
by the ‘‘creation’’ of new comoving space? A coordinate
system such as that used for LTB models is convenient to
work with, but if there are spatial islands in the spatial part
of the coordinate system, then the remaining ‘‘sea’’ of
space consists of a purely fictional construct—useful for
coordinate-based intuition—until comoving space is born
there, converting it from fictive, coordinate space to physi-
cal (metric) space. If we only have a relativistic spacetime
(with a Lorentzian metric everywhere), then individual
W i cannot ‘‘know’’ that they must be embedded in a
future coordinate system that will unite them. The transi-
tion from simple to multiple connectedness is conceptually
simpler, since the singularities exist in the same, connected
initial manifold, but still appears to require spacelike
physical interaction.
For the block universe interpretation of a Lorentzian

spacetime (e.g., Ref. [40]), there is no problem of tele-
ology: all of spacetime in the Lorentzian 4-manifold ‘‘just
is.’’ Lorentzian causality concerns the past and future time
cones of a given spacetime event, not the time coordinate
of a given spacetime foliation. The topology evolution of
the four-dimensional spacetime viewed in terms of the
comoving, synchronous representation of the metric is a
property of the choice of foliation. A foliation defined by a
time coordinate that makes the universe age constant
within any given spatial section could be defined for the
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same spacetime (e.g., Sec. II.A. of Ref. [41]). For this
refoliation of the model of Sec. IVA, there would be no
topology evolution until epochs shortly before the big
crunch (when the universe would become disconnected
and the disconnected sections would end ‘‘simulta-
neously’’ in disconnected, individual big crunches).
However, the coordinates would be noncomoving or asyn-
chronous or both. The question of interpretation would
then be, would it be reasonable to have initial conditions
in a constant-tB foliation whose later evolution (with con-
stant 3-spatial topology) describes a four-dimensional
spacetime that can equivalently be described with a simpler
expression for the metric, i.e., in comoving, synchronous
coordinates but with spatial topology evolution? The evo-
lution from a complicated metric expression to a simpler
one could be seen as teleological.

Similarly, for the multiply connected model of
Sec. IVB, a constant-tB refoliation would imply an inter-
pretation that the universe is born multiply connected, with
a noncomoving and/or asynchronous representation of the
metric, and becomes simply connected when the big
crunch appears as two individual spatial singularities into
which all of comoving space disappears. Is this simpler
than a universe that is born simply connected, becomes
multiply connected, and later reverts to simple connected-
ness but has a metric representation that is comoving and
synchronous at all times?

In both cases, there is a conflict in terms of Occam’s
razor and avoidance of teleology. What is the preferred
model: a metric that can be expressed in a simple way with
an evolving topology, or a simple (trivial) early topology
evolution with a complicated metric expression? To help
consider the former possibility, we speculate in Sec. VB on
the minimal properties that an extension of general rela-
tivity could require.

B. Evolution of a connected 3-manifold

Let us consider a more conservative hypothesis than
Conjecture 1, i.e., a hypothesis that rejects primordial
disconnectedness as unlikely but does not force tB to be
constant.

Conjecture 2 For a measure 
 on A that is physically
motivated (and does not contradict the mergers of early
epoch singularities),

(i) the measure of solutions that are disconnected is
zero, i.e., 
ðAdÞ ¼ 0, and

(ii) the measure of the class of solutions with constant
tB on comoving (always connected) spatial sections
is small, i.e., 
ðAnAtBÞ 
 
ðAtBÞ, where AtB is
the class of solutions with nonconstant tB and
spatial sections that are always connected over
mintB < t < t0.

By the definition of Am (Definition 1), Am � AtB .
If Conjecture 2 is correct, then a universe is most likely

to be born connected atmintB, with at least one singularity

that disappears later (as in Sec. II). If the universe is born
with many singularities, then some may disappear indi-
vidually (as in Sec. II), some may disappear in pairs (as in
Sec. IVB), and others could, in principle, disappear in
n-tuples with n > 2, even though it may be hard to find
exact metrics as examples of regular mergers of n > 2
primordial singularities. Thus, if Conjecture 2 is correct
and if the universe is born with many (N 	 1) singular-
ities, then an example of a minimal extension of general
relativity that would describe the evolution of the universe
would be a definition 8 i; j 2 Z: i; j � N of
(i) Pi

1ðgðtÞ; tÞ, the probability that singularity i at time i
disappears at time t in a way such that g is regular
8 t0 < tþ 	 for some 	 > 0 over the whole spatial
section, and

(ii) 8 n: 2 � n � N, Pi1;i2;...;in
n ðgðtÞ; tÞ, the probability

that the singularities i1; i2; . . . ; in at time i merge
together at time t in a way such that g is regular
8 t0 < tþ 	 for some 	 > 0 over the whole spatial
section.

Given the existence of the numerical solution in Sec. II and
the analytical solution in Sec. IVB, and the requirement
that in the latter case, the two premerger metrics must be
postmerger compatible, it would seem reasonable that
P1 	 P2 and i < j ) Pi 	 Pj, although this is only

speculation. Two obvious classes of models would be those
that define the probabilities P1 and Pn, n � 2 to be inde-
pendent of the (comoving) spatial locations of neighbor-
hoods of the singularities, and those that define the
probablities to be dependent on the spatial locations or
on global properties (e.g., mean 3-Ricci scalar, topology)
of the spatial section. The P1 and Pn, n � 2 could also
depend on the comoving spatial number density of the
singularities.
A model of the functions Pn, n � 1 would provide a

minimal extension of general relativity that could be used
to calculate the probabilities that a universe evolved from
a connected, simply connected spatial section to a con-
nected, multiply connected spatial section and which top-
ologies would be mostly likely to remain at t >maxtB. If
the P2 and the number of spatial singularities are high
enough, then evolution to a multiply connected spatial
section would become more likely than evolution to a
simply connected spatial section. If the standard deviation
of the tB time scale is 	 10�60 times that estimated
empirically in Ref. [12], then this model would apply
at significantly postquantum epochs. Nevertheless, the
requirement of discreteness (since the singularities are
discrete within comoving spatial sections) and the sug-
gested probabilistic nature of the model suggest a quantum
model.

C. Inferences from recent time cone observations

Let us now reconsider inferences from observations.
Suppose that a given function tB estimated from
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observations has a standard deviation �ðtBÞ over the three
spatial coordinates that is�1020 times lower than�ðtBÞ for
the empirically derived tB in the solution [12], i.e., a much
more conservative estimate by many orders of magnitude.
The solution in Ref. [12] hasmaxtB �mintB * 2 Gyr over
about 4 Gpc, suggesting �ðtBÞ of about the same order of
magnitude. The study of LTB models with what are called
‘‘decaying modes’’ (in a perturbed FLRW context) in
comparison with observations [41,42] indicates that
�ðtBÞ is likely to be several orders of magnitude lower
than that estimated for illustrative purposes by Ref. [12].
Let us also suppose that a comoving synchronous metric
accurately describes the evolution of the observed recent
Universe backwards towards the initial singularity, and that
(for simplicity) we ignore the need to consider the change
to a radiation-dominated epoch.

In this case, we would infer topology evolution of spatial
sections that are significantly post-Planck but early, i.e.,
combining (13) and (12) as

1 s 	 max
r;�;�

ft� tBðr; �;�Þg 	 10�43 s: (21)

Thus, in terms of comoving synchronous coordinates,
inhomogeneous models inferred from observations would,
if Conjecture 1 is correct, typically find pairs of regions of
the observed universe (e.g., the cosmic microwave back-
ground) to be spatially disconnected at early epochs, not
just causally separated. If �ðtBÞ is only about 1010 times
lower than the estimate in Ref. [12], then the spatial
sections over which topology evolution occurs would
include significantly postnucleosynthesis regions, i.e.,

106 s * max
r;�;�

ft� tBðr; �; �Þg 	 10�43 s: (22)

VI. CONCLUSION

We have examined the early epoch topology evolution
that corresponds to nonsimultaneous big bang times in
nonempty, inhomogeneous dust models of the Universe
using a recent empirical estimate and an older analytical
exact solution. Even if �ðtBÞ estimated empirically is over-
estimated by several tens of orders of magnitude (in their
introduction, the authors suggest that a more realistic time
scale would be �100 yr, i.e., about 107 times shorter than
their empirical solution [12]), it is still postquantum unless
tB is constant to within the Planck time scale, i.e.,
�10�43 s. Other estimates of �ðtBÞ vary from Gyr (e.g.,
Figs. 6 and 8 [43]) to sub-Myr time scales [41,42],
i.e., 	 10�43 s. Thus, the temporal evolution implied by
tB-inhomogeneous models (ignoring the need to enter the
radiation-dominated epoch) may imply 3-spatial topology
evolution for a comoving, synchronous representation of
the metric, either from disconnected spatial sections to
connected spatial sections (Sec. IVA), or from multiply
connected to simply connected spatial sections (Sec. IVB).

This surprising implication could be avoided by impos-
ing tB ¼ constant as an assumption in cosmological

modeling. One problem in assuming constant tB is that
for flat LTB solutions, generalizations beyond the FLRW
model are rejected. That is, the combination of EðrÞ ¼ 0
and tBðrÞ ¼ 0 leaves no freedom to adjust the third
‘‘arbitrary’’ function MðrÞ; see VIII (63a), XIV.B in
Ref. [35]. Section XIV.B of Ref. [35] also discusses the
restrictions on LTB models implied by imposing
tBðrÞ ¼ 08 r in the positive and negative EðrÞ cases.
More importantly from a physical point of view, allowing
tB spatial dependence to be a result of comparison between
models and observations rather than an assumption could
potentially lead to evidence for early universe spatial sec-
tions that in comoving, synchronous coordinates undergo
topology evolution. This evidence would be artificially
suppressed if tB ¼ 08 r were forced.
We have formalized some of the possible properties of

subclasses of solutions of this type and of possible impli-
cations in Definition 1, Theorem 1, Conjecture 1,
Corollary 1, and Conjecture 2. Conjecture 2 opens the
way to calculations of the probabilities of a simply con-
nected initial spatial section smoothly evolving into a
multiply connected spatial section, based on a choice of

functions Pi
1ðgðtÞ; tÞ, 8 n: 2 � n � N, Pi1;i2;...;in

n ðgðtÞ; tÞ as
defined in the requirements of a physical theory suggested
above (Sec. VB). Understanding how a multiply connected
spatial section arises would have considerable observatio-
nal interest (e.g., Refs. [44–52]), since it would offer an
alternative to the topological acceleration effect [53–55]
for theoretical understanding of the topology of the
present-day (i.e., recent time-cone) Universe (see also
Refs. [56,57]).
How was it possible that postquantum-epoch topology

change without causality problems was overlooked in cos-
mic topology literature? It has generally been thought that
if the spatial sections of the Universe are compact, then the
topology of spatial sections of the Universe cannot have
evolved at postquantum epochs, because this would imply
the existence of closed timelike curves or a discontinuity in
the choice of the forward light cone, as a consequence of
Geroch’s Theorem 2 [58], Sec. 9.4.1. of Refs. [59,60], and
both are generally considered unphysical. Singularities
make spacelike sections noncompact, so that the theorem
no longer applies, but it is not immediately obvious that an
astrophysically realistic black (let alone white) hole could
change the large-scale, global topology of spatial sections
in a way that leads to approximate homogeneity in the late-
time Universe. What was overlooked was the fact that a
nonconstant tB provides (in general) an arbitrary number of
singularities in early, postquantum comoving spatial sec-
tions, which in spacetime constitute just one singularity—
the initial big bang singularity that is generally accepted as
physical in relativistic, nonquantum cosmology. Moreover,
as illustrated above, the density and curvature inhomoge-
neities near vanished singularities/connection points can
become much weaker, i.e., enter a ‘‘decaying mode’’ in a
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perturbed FLRW context. The LTB models provide a
useful tool for studying examples of characteristics that
are counterintuitive for FLRW-like models.

Although in this work we only consider topology change
implied by nonconstant tB in classical relativity, see
Ref. [60] for a quantum gravity approach using sums of
histories and Morse theory.
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Bruxelles 53, 51 (1933).

[18] R. C. Tolman, Proc. Natl. Acad. Sci. U.S.A. 20, 169
(1934).

[19] H. Bondi, Mon. Not. R. Astron. Soc. 107, 410 (1947).
[20] hi denotes an implicitly defined average, ðÞ denotes func-

tional dependence.
[21] T. Buchert and M. Carfora, Classical Quantum Gravity 19,

6109 (2002).
[22] C. Hellaby, Classical Quantum Gravity 4, 635 (1987).
[23] M. P. Dabrowski and M.A. Hendry, Astrophys. J. 498, 67

(1998).
[24] E.W. Kolb and C. R. Lamb, arXiv:0911.3852.

[25] J. Simon, L. Verde, and R. Jimenez, Phys. Rev. D 71,
123001 (2005).

[26] The limit in the grr term is not normally written but is
often required in the positively curved case.

[27] W.B. Bonnor, Classical Quantum Gravity 2, 781
(1985).

[28] R. A. Sussman, Classical Quantum Gravity 27, 175001
(2010).

[29] Positive density �ðrÞ> 08 r is also assumed here.
[30] The area of a zero thickness shell of radius r is 4�R2ðt; rÞ

in (1) of Ref. [12], thus, areal.
[31] Defined here as Rþ :¼ fx: 0< x 2 Rg.
[32] For a fixed cosmological constant ��.
[33] Conservatively, cubes that touch at corners are considered

to be connected.
[34] R. A. Sussman, Gen. Relativ. Gravit. 17, 251 (1985).
[35] R. A. Sussman, arXiv:1001.0904.
[36] D. R. Matravers and N. P. Humphreys, Gen. Relativ.

Gravit. 33, 531 (2001).
[37] The solution in Sect. VI.D of Ref. [36], with E nondiffer-

entiable at d=4 and 3d=4, is stated by the authors to be a
‘‘three torus,’’ presumably by analogy with S1 � S1 ¼:

T2. However, the analogy fails, since S2 � S1 � T3 :¼
S1 � S1 � S1.

[38] E. Gourgoulhon, arXiv:gr-qc/0703035.
[39] Events occurring with the ‘‘aim’’ of achieving a future

goal not required by past events.
[40] G. F. R. Ellis, Gen. Relativ. Gravit. 38, 1797 (2006).
[41] J. P. Zibin, Phys. Rev. D 84, 123508 (2011).
[42] P. Bull, T. Clifton, and P.G. Ferreira, Phys. Rev. D 85,

024002 (2012).
[43] K. Bolejko, C. Hellaby, and A.H.A. Alfedeel, J. Cosmol.

Astropart. Phys. 9 (2011) 011.
[44] J. Luminet, J. R. Weeks, A. Riazuelo, R. Lehoucq, and J.

Uzan, Nature (London) 425, 593 (2003).
[45] R. Aurich, S. Lustig, and F. Steiner, Classical Quantum

Gravity 22, 3443 (2005).
[46] J. Gundermann, arXiv:astro-ph/0503014.
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