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Avenida Rovisco Pais 1, 1049 Lisboa, Portugal

2Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of Cambridge,
Wilberforce Road, Cambridge CB3 0WA, United Kingdom

3Department of Physics and Astronomy, The University of Mississippi, University, Mississippi 38677, USA
4Department of Physics, Kinki University, Higashi-Osaka 577-8502, Japan

5Institute of Space Sciences, CSIC-IEEC, 08193 Bellaterra, Spain
6California Institute of Technology, Pasadena, California 91125, USA

(Received 10 December 2012; published 5 February 2013)

Light bosonic degrees of freedom have become a serious candidate for dark matter, which seems to

pervade our entire Universe. The evolution of these fields around curved spacetimes is poorly understood

but is expected to display interesting effects. In particular, the interaction of light bosonic fields with

supermassive black holes, key players in most galaxies, could provide colorful examples of superradiance

and nonlinear bosenovalike collapse. In turn, the observation of spinning black holes is expected to

impose stringent bounds on the mass of putative massive bosonic fields in our Universe. Our purpose here

is to present a comprehensive study of the evolution of linearized massive scalar and vector fields in the

vicinities of rotating black holes. The evolution of generic initial data has a very rich structure, depending

on the mass of the field and of the black hole. Quasinormal ringdown or exponential decay followed by a

power-law tail at very late times is a generic feature of massless fields at intermediate times. Massive

fields generically show a transition to power-law tails early on. For a certain boson field mass range, the

field can become trapped in a potential barrier outside the horizon and transition to a bound state. Because

there are a number of such quasibound states, the generic outcome is an amplitude modulated sinusoidal,

or beating, signal, whose envelope is well described by the two lowest overtones. We believe that the

appearance of such beatings has gone unnoticed in the past, and in fact mistaken for exponential growth.

The amplitude modulation of the signal depends strongly on the relative excitation of the overtones, which

in turn is strongly tied to the bound state geography. A fine-tuning of the initial data allows one to see the

evolution of the nearly pure bound state mode that turns unstable for sufficiently large black hole (BH)

rotation. For the first time we explore massive vector fields in a generic black hole background that are

difficult, if not impossible, to separate in the Kerr background. Our results show that spinning BHs are

generically strongly unstable against massive vector fields.
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I. INTRODUCTION

One of the most exciting outcomes of general relativity
(GR) are black holes (BHs), the physics of which has
grown into a mature and fully developed branch of GR
and extensions thereof [1,2]. Observations of, e.g., x-ray
binaries indicate that solar mass (3–30M�) BHs mark the
endpoint of the life of massive stars and are anticipated
to be a significant component of the galaxies’ population.
Supermassive BHs with masses 106–109M� or higher are
conjectured to be hosted in the center of most galaxies,
controlling galaxy growth and evolution, stellar birth
and powering active galactic nuclei and other powerful
phenomena.

Tremendous progress has been made in actually observ-
ing some of the fascinating general relativistic effects.
From x-ray spectra on the inner edge of accretion disks,
which probe the innermost stable circular orbit of the

geometry, to gravitational wave physics, ‘‘precision BH

physics’’ is a new and rapidly developing field [3–5]. The

future holds the promise to observe some of these effects

accurately by monitoring the supermassive BH at the

center of our own galaxy.
One of the fundamental reasons why precision BH

physics is possible at all are the no-hair and uniqueness

theorems: BHs in four-dimensional, asymptotically flat

spacetimes must belong to the Kerr-Newman family

and are, thus, fully specified by three parameters only:

their mass, angular momentum, and electric charge (see,

e.g., Refs. [6,7], or Carter’s contribution to Ref. [8]). In

more colloquial terms, this is commonly expressed by

saying that BHs have no hair or, rather, have three hairs

only. This simple yet powerful result has far reaching

consequences: given some arbitrary perturbations with the

same conserved charges, they must all decay to the same

final state, namely one BH with those charges. By now,

there are a plethora of studies, at the perturbative and fully*h.witek@damtp.cam.ac.uk
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nonlinear level, investigating how this unique final state is
approached (see, e.g., Refs. [9,10] for recent overviews). In
the following we briefly summarize these studies.

A. Generic response of a BH spacetime
to external perturbations

The generic behavior of massless fields around a
BH is illustrated in Fig. 1, where we plot the evolution

of a Gaussian wave packet � ¼ e�ðr�10Þ2=102 around a
Schwarzschild BH. The particular initial data refers to a
scalar field, but the qualitative results are universal and
independent of the initial conditions. The generic behavior
of massless fields around a BH can be divided into three
parts (cf. Fig. 1):

(i) An initial data-dependent prompt response at early
times, which is the counterpart to light-cone propa-
gation in flat space.

(ii) An exponentially decaying ‘‘ringdown’’ phase at
intermediate times, where the BH is ringing with
its characteristic quasinormal modes (QNMs). This
stage typically dominates the signal, and its proper-
ties, such as vibration frequency and decay time
scale, depend solely on the parameters of the final
BH [9]. Because of the no-hair theorem, the detec-
tion of QNMs allows one to uniquely determine
the BH mass and spin and provides tests of GR
[9,11,12].

(iii) At late times, the signal is dominated by a power-
law falloff, known as ‘‘late-time tail’’ [13–15].
Tails are caused by backscattering off spacetime
curvature and more generically by a failure of
Huygen’s principle. As such, tails also appear in
other situations where light propagation is not on
the light cone such as in massive field propagation
in Minkowski spacetime [16], or massless field
propagation in odd-dimensional spacetimes [17].

B. Superradiant effects

The long-lasting oscillation of the lowest QNMs is the
most important stage in the life of any field around a BH.
Its lifetime, or quality factor, depends solely on the BH
spin [9]. Specifically, the lifetime tends to increase with
growing spin and the decay time scale approaches zero
for nearly extremal BHs. This behavior is tightly connected
to superradiance [18–20]: In a scattering experiment of
low-frequency waves off a BH the scattered wave is ampli-
fied if the real part of its frequency !R satisfies the super-
radiant condition

!R <m�H; (1)

where m is the azimuthal ‘‘quantum’’ number and �H is
the angular velocity of the BH horizon. We refer the reader
to Appendix A for a derivation of this condition for both
scalar and vector fields. The excess energy is withdrawn
from the object’s rotational energy [18,19] and, in a dy-
namical scenario, the BH would presumably spin down.
The effect can be attributed to the existence of negative-
energy states in the ergoregion and dissipation at the event
horizon.
Superradiance is the chief cause of a number of exciting

phenomena in BH physics:
(i) Generic perturbations are damped away to infinity

and across the event horizon. Because rotating BHs
amplify waves that fulfill the superradiant condition,
Eq. (1), the amplification factors as well as the
quality factor of these superradiant modes increase
with rotation.

(ii) Satellites around BHs typically spiral inwards as
time goes by, due to gravitational wave emission
and energy conservation. Emission of radiation to
infinity results in a larger binding energy of the
particle. Because superradiance implies the extrac-
tion of the BH’s rotational energy, it is possible that
the energy deficit comes entirely from the BH ki-
netic energy. In this way, satellites around rapidly
spinning BHs can in principle orbit at a nearly fixed
radius—on so-called floating orbits—for a much
longer time, tapping the BH’s kinetic energy. In
BH binaries, this effect can dominate in the pres-
ence of resonances [21–23]. This phenomenon is
analogous to tidal acceleration, e.g., in the case of
the Earth-moon system [24,25].

(iii) A further interesting effect can be triggered by
enclosing the spinning BH inside a perfectly
reflecting cavity. As was recognized already by
Zel’dovich [18,19], any initial perturbation will
get successively amplified near the BH and
reflected back at the mirror, thus creating an insta-
bility, which was termed the ‘‘BH bomb’’ [26,27].
Whereas the setup appears physically artificial at
first glance, the role of the mirror can actually be
realized naturally in many ways, including an
anti–de Sitter spatial infinity. In this case, the BH
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FIG. 1 (color online). Time evolution of a dipole (l ¼ 1,m¼0)
scalar Gaussian wave packet in Schwarzschild background.
We clearly observe the main features of such a field: (i) a prompt
response at early times followed by (ii) the quasinormal mode
ringdown and (iii) a late-time tail.
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bomb translates into a real, physical instability
of (small) rotating BHs in asymptotically AdS
spacetimes [28–31].

(iv) Finally, of direct interest for the present study is the
fact that massive fields around Kerr BHs are also
prone to a BH bomblike instability, because the
mass term effectively confines the field [32–39].

Consider a scalar field surrounding a black hole with
massM and angular momentum J ¼ aM. The instability is
regulated by the dimensionless parameter �SM (from now
on we set G ¼ c ¼ 1), where ms ¼ �Sℏ is the scalar field
mass and is described by the time dependence of the field,
�� e�i!t with complex frequency ! ¼ !R þ {!I. For
small coupling M�S � 1 the characteristic (unstable
mode) frequency giving rise to the instability is [40,41]1

M!I ¼ a

48M
ðM�SÞ9: (2)

In the opposite limit, i.e., for very large mass couplings
M�S � 1, the characteristic inverse time is [33]

M!I ¼ 10�7 expð�1:84M�SÞ: (3)

The instability time scales are typically large. The scalar
field growth rate has a global maximum of � � 1=!I �
107M for the dipole with mass coupling M�S ¼ 0:42 in
the background of a Kerr BH with a=M ¼ 0:99 [36,37].

The above results refer to massive scalar fields in the
background of Kerr BHs. It was widely believed that
massive vectors would be subject to a similar instability.
Unfortunately, the nonseparability of the field equations
renders this is a nontrivial problem. Recently, significant
progress has been made, with a thorough study of massive
vector fields around Schwarzschild BHs [42] and slowly
rotating Kerr BH backgrounds [40,41]. Pani et al. use a
slow-rotation expansion of the Fourier transformed field
equations, accurate to second order in rotation, to prove
that the Kerr spacetime is indeed unstable against massive
vector fields [40,41]. The massive vector field instability
can be orders of magnitude stronger (i.e., shorter time
scales) than its scalar counterpart.

All these calculations have been performed in the linear
regime, thus neglecting backreaction effects such as the
BH spin-down or effects due to nonlinear self-interaction
of the scalar field. Therefore, the final state of the super-
radiant instability in the fully dynamical regime is not
known, partly because it requires the nonlinear evolution
of Einstein’s equations for a time scale of order 106M.
A plausible evolution scenario consists of an exponentially
growing scalar condensate outside the BH, extracting
energy and angular momentum from the BH until the
superradiant extraction stops, i.e., until the condition (1)
is no longer satisfied. Further interesting new phenomena
arise when we consider nonlinear interaction terms, such

as bosenova-type collapse presented in Refs. [43–45],
or higher dimensional background spacetimes, such as
the boosted black string recently reported in Ref. [46] or
the Schwarzschild-Tangherlini solution discussed in
Refs. [47,48].

C. Superradiant instability in astrophysical systems

Massive fields in the vicinity of BHs are subject to a BH
bomblike, superradiant instability, and they grow exponen-
tially with time. However, the effect is very weak for
known standard model particles in astrophysical environ-
ments: For example, the mass coupling for the lightest
known elementary scalar particle, the pion, around a
solar mass BH is M�S � 1018, resulting in an instability
time scale much larger than the age of the Universe.
Nevertheless, the superradiant instability might become
significant if we consider standard model particles around
primordial BHs (see, e.g., Refs. [49,50]) or if there exist
fields with small but nonvanishing mass. One exciting
possibility for these fields is provided by axions, ultralight
bosonic states emerging from string theory compactifica-
tions, which have not been ruled out by current experi-
ments. In the ‘‘axiverse’’ scenario an entire landscape of
ultralight pseudoscalar fields covering a mass range
from 10�33 eV � �S � 10�8 eV has been proposed (see
Refs. [3,4,43] for recent overviews). In fact, the existence
of ultralight axions leads to a plethora of possible obser-
vational implications and signatures, such as modifications
of the cosmic microwave background polarization (for
10�33 eV � �S � 10�28 eV). They are also anticipated
to make up a fraction of dark matter if 10�28 eV � �S �
10�22 eV [3,51,52]. Of particular interest in the context of
BH physics are axions in the mass range 10�22 eV �
�S � 10�10 eV [3,4,43]. Then, the time scales for the
superradiant instability become astrophysically significant,
giving rise to a number of interesting effects:
(i) A bosonic cloud bounded in the vicinity of a Kerr

BH might create a ‘‘gravitational atom,’’ which can
be deexcited by the emission of gravitons, thus car-
rying away BH angular momentum.

(ii) If the accretion of bosons from this cloud is efficient
enough, the rotation of the BH can be sustained and
it might be turned into a gravitational wave pulsar.

(iii) If, on the other hand, the accretion from the axionic
cloud is not efficient enough, the BH will eventu-
ally spin down, thus yielding gaps in the Regge
plane (the phasespace spanned by mass and spin
parameter of the BH). Further possible effects have
been discussed in Refs. [3,4,21,22,43–45,53].

Similar superradiant instabilities are expected to occur
for massive hidden Uð1Þ vector fields, which are also a
generic feature of extensions of the standard model
[54–57]. As already stated, while superradiant instabilities
have been widely studied for massive scalar fields
[21,26,27,32,36,37,58,59], the case of massive vector1Notice the difference of a factor 2 to the original result [34].
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fields is still in its infancy, though significant work along
these lines was recently reported [40–42,47,48].

So far most studies on the massive boson instability have
been performed in Fourier space. An early attempt at
studying the massive scalar field instability in the time
domain, with generic initial conditions was presented by
Strafuss and Khanna [60]. We believe that, while the
technical study may be correct, some of its conclusions
are not; specifically, the authors reported an instability
growth rate of M!I � 2� 10�5, which is 2 orders of
magnitude larger than previous results in the frequency
domain [36,37] and more recent numerical studies in the
time domain [44,61]. Wewill attempt a correct explanation
for these puzzling results in the body of this work.

The purpose of the present study is to investigate the time
evolution of generic linearized massive scalar and vector
fields in the vicinities of spinning BHs. Surprisingly, not
much seems to have been done on this problem. Our
‘‘generic’’ initial data consists of Gaussian wave packets,
but we will also study the evolution of bound state modes.
The exploration of nonlinear gravitational dynamics or
self-interactions will be presented elsewhere.

This work is organized as follows. In Sec. II we present
the numerical framework, describing the formulation as a
Cauchy problem, the setup of initial configurations, and the
background spacetime. Section III is devoted to the nu-
merical results of massive scalar field evolution. In par-
ticular, we present a number of benchmark tests to verify
our implementation before studying more generic setups.
We will show that the evolution of a massive scalar has a
nontrivial pattern, which can be explained in terms of
multimode excitation. We believe that this pattern also

describes the results reported by Strafuss and Khanna
[60]. In Sec. IV we discuss our investigations of the mas-
sive vector (also known as Proca [57]) field in generic Kerr
BH backgrounds, where we show, for the first time in a
time evolution of rapidly spinning BHs, that Kerr BHs are
strongly unstable against these fields. Finally, we summa-
rize our results and present concluding remarks in Sec. V.

II. SETUP: ACTION, EQUATIONS OF MOTION,
AND BACKGROUND METRIC

A. Action and equations of motion

We consider a generic action [3,62] involving one
complex, massive scalar � and a massive vector field A�

with mass mS ¼ �Sℏ and mV ¼ �Vℏ, respectively,

S ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p �
R

k
� 1

4
F��F�� ��2

V

2
A�A

�

� kaxion
2

�	F��F�� � 1

2
g���	

;��;�

��2
S

2
�	�� Vð�Þ

�
: (4)

Here, the potential Vð�Þ is of cubic or higher order in the
scalar field. The scalar and vector fields are allowed to
interact through the axionlike coupling constant kaxion.
F�� � r�A� �r�A� is the Maxwell tensor and 	F�� �
1
2 �

����F�� is its dual. Here, ����� � 1ffiffiffiffiffi�g
p E���� and

E���� is the totally antisymmetric Levi-Civita symbol
with E0123 ¼ 1.2 The resulting equations of motion are

ðr�r� ��2
SÞ� ¼ kaxion

2
	F��F�� þ V 0ð�Þ; (5a)

r�F
�� þ�2

VA
� ¼ �2kaxion

	F��@��; (5b)

1

k

�
R�� � 1

2
g��R

�
¼ � 1

8
F��F��g

�� þ 1

2
F�

�F
�� � 1

4
�2

VA�A
�g�� þ�2

V

2
A�A�

� 1

2
g��

�
1

2
�	

;��
;� þ�2

S

2
�	�þ Vð�Þ

�
þ 1

4
ð�	;��;� þ�;��	;�Þ: (5c)

We note that these equations describe the fully nonlinear
evolution of the system. Also, we have written the equa-
tions such that all terms quadratic or of higher order in
the vector or scalar fields appear on the right-hand side. In
the remainder of this work, we will restrict ourselves to the
case of scalar and vector fields with small amplitudes and
will ignore the higher order contributions on the right-hand
sides of (5a)–(5c).

Under this assumption Eq. (5c) is equivalent to
Einstein’s equations in vacuum and a solution to this
equation is the Kerr metric, which in Boyer-Lindquist
coordinates is given by

ds2 ¼ �
�
1� 2MrBL

�

�
dt2 þ

�
1þ 2MrBL

�

�
dr2BL

þ�d	2 þ sin2	

�
r2BL þ a2 þ 2Ma2rBLsin

2	

�

�
d
2

þ
�
4MrBL

�

�
dtdrBL �

�
4MrBLasin

2	

�

�
dtd


� 2asin2	

�
1þ 2MrBL

�

�
drBLd
; (6)

2The identity r�
	F�� ¼ 0 is useful to derive the equations of

motion for the Chern-Simons term.
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with

� ¼ r2BL þ a2cos2	; � ¼ r2BL � 2MrBL þ a2: (7)

This geometry describes a rotating BH with mass M and
angular momentum J ¼ aM. Note that in order to ensure
the regularity of the spacetime, i.e., the existence of an
event horizon, the BH spin is constrained by the Kerr
bound a=M � 1.

A second consequence of our assumptions is that the
axionic coupling can be neglected. This means that we
effectively study minimally coupled massive scalar and
vector fields separately and our results will describe small
linearized fields around the Kerr background. Any poten-
tial instability we find is consistent with the above assump-
tions for time scales small enough such that the fields are
small. Over long time scales, the fields may grow to large
amplitudes where our assumption no longer remains valid
and a nonlinear study becomes necessary. We postpone
such nonlinear evolutions to a future investigation.

In our approximation, the scalar and vector field dynamics
are governed by the linearized version of Eqs. (5a) and (5b)

ðr�r� ��2
SÞ� ¼ 0; (8a)

r�F
�� þ�2

VA
� ¼ 0; (8b)

while the Kerr metric (6) satisfies G�� ¼ 0, i.e., Eq. (5c)

linearized in� and A�.

1. Evolution equations for scalar fields

Because we intend to solve the equations of motion
(8a) and (8b) numerically, it is convenient to reformulate
them as a time evolution problem. For this purpose we
employ the 3þ 1 decomposition of the spacetime (see,
e.g., Ref. [63]) and consider the background spacetime in
generic 3þ 1 form

ds2 ¼ ��2dt2 þ �ijðdxi þ �idtÞðdxj þ �jdtÞ: (9)

Here, �ij is the spatial metric and � and �i are the lapse

function and shift vector that represent the coordinate or
gauge freedom of general relativity. We introduce the
conjugated momenta

�R ¼ � 1

�
ð@t �L�Þ�R; �I ¼ � 1

�
ð@t �L�Þ�I;

(10)

where XR :¼ <ðXÞ and XI :¼ =ðXÞ denote the real and
imaginary parts, respectively. Definition (10) provides
evolution equations for the scalar field �

@t�R ¼ L��R � ��R; @t�I ¼ L��I � ��I;

(11)

whereL��R;I ¼ �k@k�R;I. By applying the 3þ 1 split to

the Klein-Gordon equation (8a), we obtain the evolution
equations for the momentum

@t�R ¼ L��R �Di�Di�R

þ �ð�DiDi�R þ K�R þ�2
S�RÞ; (12a)

@t�I ¼ L��I �Di�Di�I

þ �ð�DiDi�I þ K�I þ�2
S�IÞ; (12b)

where L��R;I ¼ �k@k�R;I. Di is the covariant derivative

associated with the three-metric �ij and K is the trace of

the extrinsic curvature.

2. Evolution equations for vector fields

We next apply the 3þ 1 decomposition to the evolution
equation (8b) and obtain

r�r�A� �r�r�A� þ�2
VA�

¼ �½r�r�A� �r�ðr�A�Þ � R�
�A� ��2

VA�
 ¼ 0:

(13)

By operating with r� on Eq. (13) it is straightforward to
show that the Lorenz gauge

r�A� ¼ 0 (14)

needs to be satisfied. For a vacuum background spacetime
as considered in our work, we also have R�� ¼ 0 and

Eq. (13) simplifies to

r�r�A� ��2
VA� ¼ 0: (15)

Note that in case of a nonvanishing cosmological constant
�, R�� ¼ �g�� and in place of Eq. (15) we would obtain

r�r�A� � ð�þ�2
VÞA� ¼ 0; (16)

i.e., the cosmological constant enters as an additional
‘‘masslike’’ term. In particular, it changes the evolution
equation of a massless vector field to that of a massive one.
Note, however, that the Maxwell equations in Kerr-(anti–)
de Sitter background are known to be separable and can
be written in the form of a Teukolsky-type equation
[29,64,65]. Therefore, one might expect that the equations
of motion for a massive vector field in a vacuum Kerr
spacetime should also be separable. We emphasize,
however, that this analogy between a massless field with
cosmological constant and a massive one without needs
to be taken with care: a massless vector field has only 2
dynamical degrees of freedom irrespective of the value of
the cosmological constant, whereas a massive vector field
has 3. In fact, up to date, a separation of the equations of
motion for a massive vector field has not been accom-
plished. It is not immediately obvious, for this reason,
whether there exists a well-defined correspondence
between the two cases. In this work we focus on � ¼ 0
and therefore leave a detailed investigation of this question
for future work.
We now apply the 3þ 1 decomposition to the vector field

and split A� into its spatial part and normal component
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A� ¼ ��
�A�; and ’ ¼ �n�A�; (17)

where n� is the vector normal to the spatial hypersurface�.
The vector field can be reconstructed from its projections
according to A� ¼ A� þ n�’. Furthermore, the projec-

tion of theMaxwell tensor along the normal vector n� yields
the electric field

E� ¼ F��n
�; (18)

which is a purely spatial quantity, i.e., E�n
� ¼ 0.

With all the necessary ingredients at hand we now
proceed by performing the 3þ 1-split Eqs. (14) and (15).
In terms of the dynamical variables f’;Ai; Eig this
procedure results in the constraint

CE ¼ DiEi þ�2
V’ ¼ 0; (19)

and in the evolution equations

ð@t �L�Þ’ ¼ ��ðDiAi � K’Þ �AiD
i�; (20a)

ð@t �L�ÞAi ¼ ��ðEi þDi’Þ � ’Di�; (20b)

ð@t �L�ÞEi ¼ �ð�2
VAi þ KEi � 2EjKij

þDjðDiAj �DjAiÞÞ
þDj�ðDiAj �DjAiÞ; (20c)

whereL�’ ¼ �k@k’,L�Ai ¼ �k@kAi þAk@i�
k and

L�Ei ¼ �k@kEi þ Ek@i�
k.

B. Background in horizon penetrating coordinates

In practice, it is convenient to employ horizon penetrat-
ing coordinates and consider the Kerr spacetime in
Cartesian Kerr-Schild coordinates ðt; x; y; zÞ. Without loss
of generality, we assume the angular momentum to point in
the z direction. Then, the Kerr-Schild form of the lapse
function �, shift vector �i, three-metric �ij, and extrinsic

curvature Kij is given by

� ¼ ð1þ 2HltltÞ�1=2; �i ¼ � 2Hltli

1þ 2Hltlt
;

�ij ¼ �ij þ 2Hlilj; (21a)

Kij ¼ � 1

�
ðlilj@tHþ 2Hlði@tljÞÞ � 2�ð@ðiðljÞHltÞ

þ 2H2ltlklði@jkjljÞ þHltliljl
k@kHÞ; (21b)

where

H ¼ Mr3BL
r4BL þ a2z2

;

l� ¼
�
1;
rBLxþ ay

r2BL þ a2
;
rBLy� ax

r2BL þ a2
;
z

rBL

�
;

(22)

and the Boyer-Lindquist radial coordinate rBL is related to
the Cartesian Kerr-Schild coordinates by

x2 þ y2

r2BL þ a2
þ z2

r2BL
¼ 1: (23)

C. Initial data

In this work we consider two types of initial configura-
tions: (i) generic pulses of Gaussian shape and (ii) bound
states that are particularly suitable for identifying putative
instabilities. We describe each of these initial data in detail.

1. Gaussian initial data

We specify Gaussian wave packets of the form

�ðt¼0Þ¼0; �ðt¼0Þ¼exp

 
�ðr�r0Þ2

w2

!
0�ð	;
Þ;

(24a)

’ðt¼0Þ¼0; Aiðt¼0Þ¼exp

 
�ðr�r0Þ2

w2

!
�1�ð	;
Þ;

Eiðt¼0Þ¼0; i¼1;2;3; (24b)

where r ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
is the Kerr-Schild radial coor-

dinate. r0 and w are the center and width of the Gaussian,
while 0�ð	;
Þ and �1�ð	;
Þ represent superpositions of
spherical harmonics sYlmð	;
Þ of spin weight s ¼ 0 and

s ¼ �1, respectively. Expressed in Cartesian coordinates
ðx; y; zÞ
x ¼ r sin	 cos
; y ¼ r sin	 sin
; z ¼ r cos	;

(25)

the spin-weighted spherical harmonics up to l ¼ 2 are
given by Eqs. (B1)–(B6) in Appendix B.

2. Bound state initial data

Our second type of initial data is given by the quasi-
bound states of massive scalar fields around BHs that
represent long-lived modes of massive scalar field pertur-
bations around Schwarzschild or Kerr BHs and have been
studied extensively in the literature in the frequency
domain [9,34,36,37,40,41,66]. Our particular interest in
these modes arises from their pure nature; they represent
potentially superradiant, single-frequency states. By spec-
ifying single-mode states of this type, we are able to
suppress interference or beating effects of the kind dis-
cussed below for Gaussian initial data. Evolutions of such
modes additionally serve as a useful test for our code [44].
There exist powerful and simple methods to construct

the bound states for massive scalars, either by direct nu-
merical integration or a continued fraction approach
[9,14,36,37]. Here, we adopt Leaver’s continued fraction
method and obtain in Boyer-Lindquist coordinates

�lm ¼ e�{!tBLe�{m
BLSlmð	BLÞRlmðrBLÞ: (26)
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Here, Slmð	BLÞ are spheroidal harmonics [67] and the
radial dependence is given by

RlmðrBLÞ ¼ ðrBL � rBL;þÞ�{�ðrBL � rBL;�Þ{�þ�1erBLq

� X1
n¼0

an

�
rBL � rBL;þ
rBL � rBL;�

�
n
; (27)

with

� ¼ 2rBL;þð!�!cÞ
rBL;þ � rBL;�

; q ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2

S �!2
q

;

 ¼ �2
S � 2!2

q
: (28)

rBL;� ¼ M�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 � a2

p
are the radii of the inner and

outer horizon and !c ¼ m�H ¼ m a
2MrBL;þ

is the critical

frequency for superradiance. All remaining terms in this
expression are known in closed form and the characteristic
frequency ! can be obtained by solving a three-term
recurrence relation for the coefficients an given by, e.g.,
Eqs. (35)–(48) of Ref. [37]. For our purposes, we still
need to transform these results from Boyer-Lindquist to
Kerr-Schild coordinates denoted in this discussion for
clarity by a subscript ‘‘KS,’’

dtKS ¼ dtBL þ 2MrBL
�

drBL; drKS ¼ drBL;

d	KS ¼ d	BL; d
KS ¼ d
BL þ a

�
drBL: (29)

Then, the bound state scalar field is given by

�lm ¼ e�{!tKSðrKS � rKS;þÞAðrKS � rKS;�ÞB

�
�
rKS � rKS;þ
rKS � rKS;�

�
C
Ylmð	KS; 
KSÞRlm; (30)

where A ¼ � 2{!MrKS;þ
rKS;��rKS;þ

, B ¼ 2{!MrKS;�
rKS;��rKS;þ

, C ¼ {ma
rKS;��rKS;þ

.

Henceforth we will drop the subscript KS and denote the
Kerr-Schild radius and angles by ðr; 	; 
Þ.

The corresponding conjugated momenta �lm are com-
puted from their definition, Eq. (10). Unfortunately, a
simple construction of these modes exists only for scalar
fields, while for vector fields a fully numerical procedure is
required [36,37,40,41]. Partly for this reason and partly
because Gaussian initial data turn out to be adequate for the
identification of superradiant instabilities, we will not con-
sider vector bound states in the remainder of this work.

D. Wave extraction and output

The main diagnostic quantities extracted from our
simulations are the radiated scalar and vector waves. The
scalar multipoles are directly obtained from interpolating
the fields c and � onto spheres of constant coordinate
radius r ¼ rex and projecting onto s ¼ 0 spherical harmon-
ics according to

�lmðtÞ ¼
Z

d��ðt; 	;
ÞY	
lmð	;
Þ;

�lmðtÞ ¼
Z

d��ðt; 	; 
ÞY	
lmð	;
Þ:

(31)

For vector fields, we construct the gauge invariant Newman
Penrose scalar [68] (see also, e.g., Refs. [69–71] for recent
applications in numerical simulations)

�2 ¼ F��‘
� �m�; (32)

where ‘� ¼ 1ffiffi
2

p ðn� � u�Þ and �m� ¼ 1ffiffi
2

p ðv� � {w�Þ are

vectors of a null tetrad. In practice, the vectors of the
null tetrad are constructed from a Cartesian orthonormal
basis fui; vi; wig on the spatial hypersurface and the time-
like orthonormal vector n�. Together with the reconstruc-
tion of the Maxwell tensor from

F�� ¼ n�E� � n�E� þD�A� �D�A�; (33)

we can straightforwardly derive the Newman-Penrose sca-
lar �2 whose real and imaginary components are given by

�R
2 ¼ � 1

2
½ER

i v
i þ uivjðDiAR

j �DjAR
i Þ þ EI

iw
i

þ uiwjðDiAI
j �DjAI

i Þ
; (34)

�I
2 ¼

1

2
½ER

i w
i þ uiwjðDiAR

j �DjAR
i Þ � EI

iv
i

� uivjðDiAI
j �DjAI

i Þ
: (35)

Finally, we obtain the multipoles by projecting �2 onto
s ¼ �1 spin-weighted spherical harmonics

�R
2lm
ðtÞ ¼

Z
d�½�R

2 ðt; 	; 
Þ�1Y
R
lmð	;
Þ

þ�I
2ðt; 	; 
Þ�1Y

I
lmð	;
Þ
; (36)

�I
2lm
ðtÞ ¼

Z
d�½�I

2ðt; 	; 
Þ�1Y
R
lmð	;
Þ

��R
2 ðt; 	; 
Þ�1Y

I
lmð	;
Þ
: (37)

E. Numerical implementation

We have implemented this framework as a module
LIN-LEAN in the LEAN code [72], which is based on the

CACTUS computational toolkit [73,74] and the CARPET

mesh refinement package [75,76]. The evolution equations
are integrated in time using the method of lines with a
fourth-order Runge-Kutta scheme and fourth-order spatial
discretization on all refinement levels except the innermost
where we excise the black hole singularity and use second-
order accurate stencils instead. The excision is imple-
mented by removing a ‘‘legosphere’’ of radius rex � 1M
centered on the singularity [77,78] and therefore guaran-
teed to be inside the event horizon for all values of a. Inside
the excision region, we set all evolution variables to their
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flat spacetime values � ¼ 1, �i ¼ 0, �ij¼�ij, and Kij¼0,

and extrapolate values onto the excision boundary from the
exterior regular grid; see Refs. [77,78] for more details of
this procedure.

III. SCALAR FIELD EVOLUTIONS

In this section we report our results obtained for the
evolution of scalar fields in BH background spacetimes.
For this purpose, we have evolved Gaussian wave pulses of
width w ¼ 2M centered at r0 ¼ 12M around either a non-
rotating Schwarzschild BH or a rapidly spinning Kerr BH
with a=M ¼ 0:99. The set of our simulations is summa-
rized in Table I.

As mentioned in the Introduction, the resulting signal is
typically composed of three stages, a transient, an expo-
nential ringdown phase, and late-time tails. Whereas we
identify these stages clearly in evolutions of massless
scalar fields, the massive case exhibits a richer phenome-
nology that we will discuss in detail further below. First,
however, we summarize results from the literature and
present tests of our numerical infrastructure.

A. A summary of results in the literature

In the following discussion, we will make frequent
use of the characteristic frequencies of the two lowest
(fundamental and first overtone) modes of the dipole as

obtained from a linearized analysis in the frequency
domain [9,11]. These values are summarized for a set of
chosen mass parameters �S of the scalar field and our two
choices of the rotation parameter a=M in Table II.
In the case of massless perturbations the classification of

oscillation modes is relatively straightforward; there exists
one family of oscillation modes, the quasinormal modes,
characterized by an integer number and the ‘‘lowest’’ or
fundamental mode is defined as having the largest damping
time. In fact, massless perturbations are generally short
lived and decay fast (on time scales of order of the BH
mass) unless the BH is rotating at nearly extremal rate. In
contrast, massive perturbations generally decay on larger
time scales and their class of oscillation modes contains a
second family with profiles concentrated near the effective
potential well. These long-lived modes, referred to as
‘‘bound states’’ [37], are conventionally ordered by
decreasing absolute value of the imaginary part, i.e., the
fundamental oscillation mode is defined as that with the
shortest damping time. This is in contrast to the usual
quasinormal modes, which are conventionally ordered by
increasing imaginary part. The values for the fundamental
(n ¼ 0) and the first overtone (n ¼ 1) bound state mode
obtained from the continued fraction method are listed in
Table II together with the difference �10 � !n¼1

R �!n¼0
R ,

which will play an important role in our interpretation of
the results further below.

TABLE I. Initial setup for simulations of a scalar field with Gaussian initial data located at r0 ¼ 12M and with width w ¼ 2M in a
Schwarzschild or Kerr background. We denote the mass parameter M�S, the dimensionless spin parameter a=M, the modes of the
initial pulse 0�ð	;
Þ, and the specific grid setup, measured in units of the BH massM, following the notation of Sec. II E in Ref. [72].

Run M�S a=M 0�ð	;
Þ Grid setup

sS_m000 0.00 0.00 Y00 þ Y10 þ Y1�1 � Y11 fð384; 192; 96; 48; 24; 12; 6; 3; 1:5Þ; h ¼ M=100g
sK_m000 0.00 0.99 Y00 þ Y10 þ Y1�1 � Y11 fð384; 192; 96; 48; 24; 12; 6; 3; 1:5Þ; h ¼ M=108g
sS_m001 0.10 0.00 Y11 fð1024; 512; 256; 128; 64; 32; 8; 4; 2Þ; h ¼ M=40g
sS_m042 0.42 0.00 Y10 þ Y11 þ Y20 þ Y22 fð1536; 384; 192; 96; 48; 24; 12; 6; 3; 1:5Þ; h ¼ M=60g
sS_m100 1.00 0.00 Y11 fð1024; 512; 256; 128; 64; 32; 8; 4; 2Þ; 1=40g
sK�m042c 0.42 0.99 Y00 þ Y10 þ Y1�1 � Y11 fð1536; 384; 192; 96; 48; 24; 12; 6; 3; 1:5Þ; h ¼ M=60g
sK�m042m 0.42 0.99 Y11;1�1 fð1536; 384; 192; 96; 48; 24; 12; 6; 3; 1:5Þ; h ¼ M=72g
sK�m042f 0.42 0.99 Y11;1�1 fð1536; 384; 192; 96; 48; 24; 12; 6; 3; 1:5Þ; h ¼ M=84g

TABLE II. Frequencies for the fundamental (n ¼ 0) and first overtone (n ¼ 1) modes of
(i) the quasinormal modes for M�S ¼ 0 and (ii) the bound states for M�S ¼ 0:42, 1.0 for a set
of BH spins a=M obtained with the continued fraction method. The beating frequency �10 is
defined as the difference of the real parts of the frequencies for n ¼ 0 and n ¼ 1.

M�S a=M M!11 (n ¼ 0) M!11 (n ¼ 1) M�10

0.00 0.00 0:2929� i0:09766 0:2645� i0:3063 0.0284

0.00 0.99 0:4934� i0:03671 0:4837� i0:09880 0.0097

0.42 0.00 0:4075� i0:001026 0:4147� i0:0004053 0.0072

0.42 0.99 0:4088þ i1:504� 10�7 0:4151þ i5:364� 10�8 0.0063

1.00 0.00 0:9222� i0:11842 0:9570� i0:04792 0.0348

1.00 0.99 0:8765� i0:18994 0:9515� i0:06292 0.075
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In the regime of small mass couplingsM�S, one finds an
analytic approximation for the oscillation frequencies of
these bound states, resembling a hydrogenlike spectrum
[40,41],

M!R ¼ M�S � ðM�SÞ3
2ðlþ nþ 1Þ2 ; (38a)

M!I ¼ �{��

�
M�S

lþ nþ 1

�
3
; (38b)

where �� is given by Eq. (C8) of Ref. [41].
At late times, after the relaxation of the BH, power-law

tails arise [13–15,79]. Power-law tails exist both in flat and
in curved spacetime and are generically caused by a failure
of Huygen’s principle. In the case of flat spacetime, they
can arise in massive interactions [16] or even with massless
fields in odd-dimensional spacetimes due to the peculiar
nature of the Green’s function [17]. Curved backgrounds
give generically rise to power-law tails that are a conse-
quence of the continued scattering of the scalar field off the
background curvature. These tails have the form

�� tp sinð�StÞ: (39)

For massless scalar fields, one finds one exponentp given by

p ¼ �ð2lþ 3Þ: (40)

Tails of massive perturbations, however, exhibit a more
complex behavior; details depend on the mass parameter
�S [80–83], but their intermediate and late-time behavior is
characterized by

p ¼ �ðlþ 3=2Þ; at intermediate times; (41a)

p ¼ �5=6; at very late times: (41b)

These exponents are loosely associated with the two time
scales M, �S of the problem; in particular, intermediate
times refer to the window (we assume small M�S)
M�S � t�S � ðM�SÞ�2.

Note that the intermediate-time behavior is identical to
the power-law behavior of massive fields in flat spacetime
[16] whereas the late-time behavior is also affected by
scattering off the spacetime curvature.

B. Space-dependent mass coupling and massless scalars

We next employ the results summarized in the previous
section to test our numerical framework. For the first
test, we consider the unphysical scenario of a scalar field
with space-dependent mass term �2

S ¼ �10M2=r4 in a

Schwarzschild background. This choice is motivated by
the strong instability it generates and provides a unique and
fast setup to test the code in a particularly violent regime.
A mode analysis of the Klein-Gordon equation for this
choice of �S is straightforward and demonstrates the
existence of at least one unstable mode with time depen-
dence�� e0:071565t. The results obtained for the evolution

of a spherical shell described by�t¼0 ¼ 1ffiffiffiffiffi
4�

p expð� ðr�12Þ2
4 Þ

are shown in Fig. 2, which shows the amplitude of the
scalar field extracted at rex ¼ 10M as a function of time.
Our numerical results are consistent with an exponential
growth, �� e0:07161t in excellent agreement with the fre-
quency calculation.
A second test for our code is provided by the evolution

of massless scalar fields around BHs, a case well studied in
the literature [9,10]. For this purpose we have initialized
the field by a Gaussian with r0 ¼ 12M and w ¼ 2M and
extracted the monopole and dipole at rex ¼ 10. The results
are shown in Fig. 3 for a BH background with a=M ¼ 0
and a=M ¼ 0:99, respectively. The waveform displays the
familiar features: an early transient followed by an expo-
nentially decaying sinusoid and a power-law tail at late times.
A fit to the ringdown phase of the dipole yields numerical
QNM frequencies within less than 2% of the values in
Table II. Likewise, we obtain a numerical power-law tail of
the form tp for themonopole, withp ¼ �3:08 for a=M ¼ 0
andp ¼ �3:07 fora=M ¼ 0:99 in good agreementwith the
prediction p ¼ �3 obtained from the low-frequency expan-
sion of the wave equation underlying Eq. (40).
Additionally, we have performed a convergence analysis

for the more challenging of these two cases, that of a highly
rotating BH background with a=M ¼ 0:99. This analysis
provides the estimate of the numerical uncertainties
��11=�11 � 8% for the l ¼ m ¼ 1 mode at late times
of the evolution and ��00=�00 � 3% for l ¼ m ¼ 0.

C. Massive scalar fields

Having tested the numerical framework, we next explore
the dynamics of generic, massive scalar fields. A mass term
introduces a new scale to the problem and new features
appear in the evolution that depend on the particular details
of the initial configuration. Roughly, these configurations
can be classified into three groups.
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t/M

0

10

20

30

ln
 |ψ

00
|

ln |ψ00 |

e
0.07161 t

e
0.071565 t

FIG. 2 (color online). Amplitude of the scalar field extracted at
rex ¼ 10M as function of time obtained from the evolution of a
scalar field initialized as spherical shell with space-dependent
mass �2

S ¼ �10M2=r4 around a nonrotating BH.
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(i) Bound state configurations. These configurations
are characterized by unusually long-lived modes
[21,33–37,44,52,84] and exist for any m, �S � 0.
These modes are described by Eq. (38) for small
M�S. If they, furthermore, satisfy the condition
!R <�S � m�H they are subject to the superra-
diant instability.

(ii) Rapidly damped configurations. Generic initial
profiles of massless or massive scalar fields typi-
cally decay on short time scales via quasinormal
ringdown followed by a power-law tail.

(iii) Beating regime. Additionally, massive fields may
exhibit long-lived, strongly modulated oscillations
that result from the interplay between different
overtones of the same multipole.

In the following we will discuss numerical evolutions
of initial configurations for each of these classes in more
detail.

1. Bound states

We have constructed bound state initial configurations
for fields with a mass coupling M�S ¼ 0:42, cf. Eq. (30),

following Refs. [9,36,37], and evolved them in a
Schwarzschild or a Kerr background with a=M ¼ 0:99.
In the left and middle panels of Fig. 4 we show the modulus
of the fundamental mode and first overtone of the m ¼ 1
dipole bound state along the x axis; cf. Table II. For non-
rotating BHs the fundamental bound state is localized near
the origin, whereas its maxima are shifted to larger radii
as the rotation parameter a=M is increased. For a highly
spinning BH with a=M ¼ 0:99, the fundamental mode is
peaked at around r� 12M. For the first overtone we
observe a node at rnode � 22:5M and at rnode � 26:5M
for a=M ¼ 0 and a=M ¼ 0:99, respectively. The specific
structure of the bound state profiles will play an important
role in our analysis of beating effects below.
Throughout the time evolution, we expect the bound

state scalar field to remain localized in the vicinity of
the BH. Thus, by construction, its absolute value
�11�

	
11 � expð�{!tÞ expð{!tÞ � const should remain

almost constant in time, with a small growth rate ofM!I �
1:5� 10�7 [36,37]. This behavior is confirmed in the
animations generated from our numerical data and made
available online [85]. Here we have tested these properties
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FIG. 3 (color online). Evolution of a Gaussian profile of a massless scalar field with width w ¼ 2M centered at r0 ¼ 12M around
a Schwarzschild BH (left) and around a Kerr BH with a=M ¼ 0:99 (right). We depict the l ¼ 0 (solid black line) and l ¼ m ¼ 1
(red dashed line) multipoles.
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FIG. 4 (color online). Left and center: Initial profile of j�11j2 for a bound state m ¼ 1 dipole configuration with M�S ¼ 0:42 in a
Schwarzschild (left) and a=M ¼ 0:99 Kerr background (middle). Black solid lines represent the fundamental mode and red dashed
lines the first overtone. Right: Relative change of the modulus of the (1,1) mode extracted at rex ¼ 20M.
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numerically by extracting the dipole mode as a function of
time at rex ¼ 20M. The result is shown in the right panel of
Fig. 4 for a Kerr background with a=M ¼ 0:99. The scalar
field varies by less than �2% until t� 200M and by less
than �1% at late times, which is within the numerical
uncertainties.

We note that bound states are unstable states but have a
long instability time scale of �107M (see Table II), about
3 orders of magnitude larger than the evolution times
feasible within our framework. Over the time range cov-
ered in the figure the instability has not yet generated a
visible growth in amplitude.

2. Damped states: Ringdown and tails

In order to study the behavior of rapidly damped con-
figurations, we initialize the field by a Gaussian wave pulse
with r0 ¼ 12M and w ¼ 2M according to Eq. (24a). The
specific choices of the mass coupling M�S, rotation rate
a=M, and the initial mode contributions for our set of
simulations are summarized in Table I. The resulting

dipole and monopole amplitudes for a subset of our simu-
lations are shown in Fig. 5. For all simulations we observe
the expected pattern of an early transient followed by
quasinormal ringdown and a late-time tail that is domi-
nated by an oscillatory behavior characterized by the mass
term according to Eq. (39) and governed by scattering off
spacetime curvature according to Eq. (41b) at late times
[81–83].
At intermediate times we find for the case of an m ¼ 1

dipole with M�S ¼ 0:1 (left top panel of Fig. 5) an oscil-
latory decay of the field as �11 � t�2:543 sinð0:1tÞ, within
2% of the expected value for tails at intermediate times
[80–82]; cf. Eqs. (39) and (41a). At very late times, we
expect a tail of the form (39) with p ¼ �5=6 to dominate,
but simulations of sufficient duration are computationally
too expensive with our present computational framework.
Furthermore, we consider larger mass couplingsM�S ¼

0:42 and M�S ¼ 1. We present the l ¼ m ¼ 1 dipole
mode of sS_m100 in the top right panel of Fig. 5 and the
monopole modes for both runs sS_m042 and sK_m042
in the bottom panels of Fig. 5. Here, the intermediately
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FIG. 5 (color online). Upper left: l ¼ m ¼ 1 multipole of run sS_m001 extracted at 10M. The solid (black) line refers to numerical
data, the dashed (red) to an oscillatory tail fit. Upper right: Same for sS_m100, extracted at rex ¼ 20M (black solid line) together with
the tail fit (red dashed line, we omit the oscillatory term for clarity). Lower panels: l ¼ m ¼ 0 multipole of runs sS_m042
(left, extracted at 20M) and sK_m042 (right, extracted at 25M). The solid black lines refer to the numerical data while the red
dashed lines denote the fit to the envelope of the oscillatory late-time tail.
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late-time tail with p ¼ �ðlþ 3=2Þ in Eq. (39) appears to
be suppressed. Instead, the decay with p ¼ �5=6 expected
at very late times clearly dominates the signal. Focusing on
the case with mass couplingM�S ¼ 0:42, we observe that
the tail is present for both spinning and nonspinning BH
backgrounds; cf. the bottom panel of Fig. 5. For a=M ¼ 0
and a=M ¼ 0:99, we find the exponents p ¼ �0:880 and
p ¼ �0:861, respectively, which agree within 5% with the
theoretically expected late-time behavior [81–83]. We note
that these results are independent of the extraction radii rex
at which the field is observed.

3. Massive scalar fields: Mode excitation and beating

In addition to the well-known ringdown and decay, the
evolution of massive Gaussian wave packets around BHs
can exhibit more complex patterns. In particular, we expect
massive scalar fields in Kerr backgrounds to eventually
show exponential growth if they satisfy the superradiance
condition Eq. (1) as well as !R � �S. The time scale for
this instability, however, is of the order * 107M, which is
computationally too expensive to be realized within our
numerical framework. In the following, we therefore focus
on the complex signals observed at earlier times up to
�104M in the evolution of massive scalar fields around
Schwarzschild or Kerr black holes.

In particular, the time evolution of the l ¼ m ¼ 1 mode
of the scalar field with mass coupling M�S ¼ 0:42 exhib-
its an oscillatory pattern with significant modulation of

the amplitude. The quantitative behavior of the oscilla-
tions, however, depends sensitively not only on the initial
data but also on the radius where the modes are measured.
This is illustrated in Fig. 6, where we show the m ¼ 1
dipole extracted at different radii for M�S ¼ 0:42 consid-
ering a Schwarzschild or a Kerr BH background with
a=M ¼ 0:99. For each configuration shown in the figure,
we have chosen three extraction radii, including the loca-
tion rnode of the node, 22:5M and 26:5M, respectively, for
the Schwarzschild and Kerr case.
This phenomenon can be explained in terms of a beating

modulation between two or more long-lived modes
described by Eq. (38). This beating modulation depends
on the relative strength of the different overtones which, in
turn, depends on the extraction radius; for the case of a
guitar string, for example, a specific mode cannot be
excited at the location of its nodes. Our choice of initial
parameters for this example did not involve any fine-tuning
and we expect these features to be present in the time
evolution of generic massive fields around BHs provided
only that at least two long-lived modes are excited.
Our interpretation is confirmed by the Fourier spectra of

the m ¼ 1 dipole obtained at different radii that are shown
in Fig. 7 for the two background spacetimes. For the Kerr
case with a=M ¼ 0:99 (right panel), we see that the signal
is dominated by the fundamental mode at rex ¼ 20M<
rnode and has two overtones of smaller amplitude. This is in
agreement with the weakly modulated high-frequency sig-
nal in the time evolution in the bottom left panel of Fig. 6.
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FIG. 6. Real part of the m ¼ 1 dipole obtained at selected extraction radii rex for a massive scalar field with M�S ¼ 0:42 in a
Schwarzschild (top panels) and Kerr background with a ¼ 0:99M (bottom panels). The location of the node of the first overtone is
rex ¼ 22:5M for the Schwarzschild case (upper left-most panel) and rex ¼ 26:5M for the Kerr case (bottom center panel). rex � 50M
corresponds to the overtone’s local maximum in the Kerr case.
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As expected, the amplitude modulation is particularly
weak for rex ¼ rnode ¼ 26:5M, which coincides with the
node of the first overtone. In fact, the small amount of
modulation visible in the bottom center panel of Fig. 6 at
early times is mostly due to the second overtone which,
however, damps out at later times. Then, the envelope is
almost constant with a small growth rate M!I � 10�7,
in order-of-magnitude agreement with previous studies
[37,44]. The situation is markedly different at rex ¼
50M, where the first overtone has a local maximum and
the comparable strength of fundamental mode and over-
tone result in the strong beating modulation displayed in
the bottom right panel of Fig. 6. This analysis can be
repeated for the nonrotating case, with similar conclusions.
In contrast to the Kerr case, however, all modes decay
resulting in overall damped signals.

Before proceeding with a detailed analysis of the beating
modulation and mode excitation, we perform a convergence

analysis of this setup that represents the most demanding
and longest of our simulations. For this purpose, we have
evolved the setup sK_m042 using three different resolu-
tions: hc ¼ M=60, hm ¼ M=72, and hh ¼ M=84. We
present the convergence plot, i.e., the differences between
the coarse-medium and medium-high resolution runs, in
Fig. 8 for the monopole (left panel) and dipole (right panel).
Our numerical results show second-order convergence
throughout the simulation. We estimate the discretization
error to be about �c 11=c 11 � 1:1% for the entire interval
and �c 00=c 00 � 1% l ¼ m ¼ 0 mode at early times,
which increases to �c 00=c 00 � 7% at late times.

4. Beating

In order to better understand the beating pattern quanti-
tatively, let us for simplicity consider the presence of only
two modes with similar frequencies: the long-lived funda-
mental mode with frequency !0 ¼ !R;0 þ {!I;0 �!R;0
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FIG. 7 (color online). Spectra of the l ¼ m ¼ 1 mode of the massive scalar field with M�S ¼ 0:42 evolved in the background of a
Schwarzschild (left) or Kerr BH with a=M ¼ 0:99 (right). The lines correspond to the waveforms measured at different extraction
radii. In particular, rex ¼ 22:5M (left) and rex ¼ 26:5M (right) correspond to the nodes of the first overtone.
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and amplitude A0 and the first overtone with frequency
!1 ¼ !R;0 þ �10, where �10 � 1 and amplitude A1. The

generalization to a larger number of modes is straightfor-
ward. For illustration, we explicitly list �10 for a selected
subset of configurations in Table II. Because all these
modes are long lived, they are well approximated by pure
sinusoids over short periods of time. The waveform � is
then described by the superposition

�� ðA0 � A1Þ sinð!R;0tÞ þ A1 sinð!R;0tÞ cosð�10t=2Þ:
(42)

The modulation in amplitude is governed by the low-
frequency signal cos�10t whereas the beating amplitude
depends on the relative strength of the modes A0, A1.
For equal amplitudes A0 ¼ A1, for instance, the total signal
is given by a sinusoid modulated by a cosine. The beating
frequency �10 can be estimated by fitting the envelope of
the total signal. For the two cases displayed in Fig. 6 we
obtain �10 � 0:0074 (for sS_m042) and �n0 � 0:0063 (for
sK_m042), in excellent agreement with the corresponding
predictions listed in the third and fourth rows of Table II.

This picture is confirmed by calculating the mode spec-
tra from a Fourier transformation of the time series. The
spectra thus obtained for the two configurations and differ-
ent extraction radii are shown in Fig. 7, and each exhibit
three pronounced peaks that correspond to the real parts
of the fundamental and first two overtone QN frequencies.
A spectral analysis applied to the Kerr case a=M ¼ 0:99
reveals �10 ¼ 0:0063 and �20 ¼ 0:0087. Thus, the evolu-
tion of Gaussian initial data excites a third long-lived
mode that is not listed in Table II. We have verified
that this mode indeed exists, via a continued fraction
scheme in the frequency domain, corresponding to
M! ¼ 0:41730þ i2:265� 10�8.

5. Mode excitation

The mode excitation can be put on a more rigorous
framework: Leaver’s seminal work, in particular, has
established important results in this context and for further
details we refer the reader to the original work [14] as well
as comprehensive follow-up studies [9,86,87]. The upshot
is that each quasinormal mode, which corresponds to a
pole in the complex-frequency plane, is excited to a differ-
ent degree depending on the initial data and on the mode
in question. The QNM contribution can be isolated from
other features of the signal, such as the late-time tail, using
the Green’s function technique [14,86,87]. In this formal-
ism, the scalar field amplitude at intermediate times is
given by a sum over quasinormal modes as

� ¼ X
Cne

�i!ntc nð!n; rÞ; (43)

where c nð!n; rÞ is the quasinormal mode eigenfunction
and !n its frequency; both quantities can be computed

via the Fourier-domain ordinary differential equation that
governs massive scalars in the Kerr background [14,86,87].
The numbers Cn, called excitation coefficients, characterize
the amplitude to which each mode is excited. Two quantities
are crucial to determine the excitation coefficients [87]:
the behavior of c n close to the eigenfrequency !n, and
the convolution of the eigenfunction c n with the initial
data. Thus, for instance, the relative amplitude between
different modes depends strongly on the point where this
amplitude is evaluated: if it is close to a node of one of the
modes, the mode in question will have a very small ampli-
tude: by definition a mode is not excited at its node.
Likewise, localized initial data close to the node of the
mode do not excite the mode in question, a well-known
result for closed systems [87].
We have not attempted a complete quantitative under-

standing of mode excitation for this work; a preliminary
analysis indicates that the excitation coefficients are
indeed of comparable magnitude away from the nodes
of the eigenmodes but vary substantially close to the
nodes.

IV. PROCA FIELD EVOLUTIONS

The evolution of vector fields, as for example the
photon, are governed by Eq. (8b) which, after substitu-
tion of the definition F�� ¼ r�A� �r�A� and the

Lorenz condition, Eq. (14), becomes rather similar to
its scalar counterpart (8a). For this reason, it has been
believed for a long time that massive vector fields should
also be prone to a ‘‘BH bomblike’’ superradiant instabil-
ity. In fact, Rosa and Dolan [42] conjectured that insta-
bilities of vector fields should not only be present but can
be much stronger than those of scalar fields. This has
recently been verified explicitly by Pani et al. [40,41]
who derived the instability growth rates of massive vec-
tor fields in the slow-rotation approximation and found
them to be several orders of magnitude larger than their
scalar field counterparts. Their results, however, have been
obtained only in the regime of slowly rotating black holes.
Even though their results are conjectured to hold for arbi-
trary spins, a definitive answer to this question calls for the
modeling of vector fields in generic Kerr geometries. In
the frequency domain, such modeling represents a formi-
dable challenge because the equations of motion appear to
be nonseparable. Here we therefore address this question in
the framework of numerical evolutions in the time domain,
where the nonseparability of the equations does not repre-
sent a serious obstacle.
For this purpose, we prescribe initial data in the form

of a superposition of Gaussian pulses centered around
r0 ¼ 12M and composed of several multipoles with angu-
lar dependence given by s ¼ �1 spin-weighted spherical
harmonics �1Ylm. Specifically, we have chosen linear
combinations
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�1�ð	;
Þ ¼ � 1ffiffiffi
3

p ð�1Y1�1 þ �1Y11Þ �
1ffiffiffi
5

p ð�1Y2�1 � �1Y21Þ �
1ffiffiffi
6

p �1Y10 �
1ffiffiffiffiffiffi
30

p �1Y20 �
1

3
ffiffiffi
5

p ð�1Y2�2 � �1Y22Þ

�
ffiffiffi
2

p

3
ffiffiffiffiffiffi
35

p ð�1Y3�2 þ �1Y32Þ; (44a)

�1�ð	;
Þ ¼ � 1ffiffiffi
3

p ð�1Y1�1 þ �1Y11Þ �
1ffiffiffi
5

p ð�1Y2�1 � �1Y21Þ; (44b)

such that the imaginary parts of the fields vanish. By virtue
of the evolution equations (20a)–(20c), purely real initial
data remain real throughout the evolution so that our
choice reduces the computational requirements to evolving
only 7—instead of 14—independent variables. We have
summarized the initial configurations of our set of simula-
tions together with the grid setup in Table III. In order to
analyze the time evolutions of the vector field A�, we
decompose its time component ’ and the Newman-
Penrose scalar �2, constructed from the spatial compo-
nents according to Eq. (32), into multipoles by projecting
them onto spherical harmonics with spin weight s ¼ 0 and
s ¼ �1, respectively.

A. Massless vector fields

We first study the behavior of massless vector field
perturbations with M�V ¼ 0. This case has been studied
extensively in the literature [9] and therefore also enables
us to compare our findings with previous investigations.
Our results for massless Proca fields are summarized in
Table IV and Figs. 9 and 10. Let us first consider the
simplest case of a massless vector field in Schwarzschild
background. The time evolutions of the l ¼ m ¼ 1 multi-
pole obtained for initial Gaussian pulses of width w ¼ 2M
and w ¼ 30M are shown in Fig. 9. For the narrow pulse
(solid curve in the figure) we clearly identify the pattern
familiar from our scalar field evolutions in Sec. III B: an
early transient whose details depend on the initial configu-
ration is followed by a quasinormal ringing characterized

entirely by the BH parameters and a late-time tail. For an
initially broad pulse (red dashed curve), however, the
initial transient is directly followed by a power-law tail
with no visible intermediate ringdown stage. This feature
has been reported for scalar fields in Refs. [86,89] and is a
consequence of the negligible excitation of the long-lived
fundamental mode and low overtones by broad pulses; the
high overtones which are excited significantly by this type
of initial data rapidly decay before the transient gives way
for a clear QN ringdown pattern to emerge.
For a quantitative comparison with calculations

performed in the frequency domain, we have fitted the
ringdown part of our numerically extracted multipoles
for the case of a narrow initial Gaussian with exponentially

TABLE III. Initial setup for simulations of Proca fields with mass coupling M�V in BH background with dimensionless spin
parameter a=M. The initial Gaussian pulse with width w=M is located at r0 ¼ 12M and consists of a superposition of s ¼ �1 spin-
weighted spherical harmonics given by Eq. (44a) (‘‘Sup1’’) or Eq. (44b) (‘‘Sup2’’). We further denote the grid setup in units of the BH
mass M following the notation of Sec. II E in Ref. [72].

Run a=M M�V �1�ð	;
Þ w=M Grid setup

v1S_m000 0.00 0.00 Sup1 2.0 fð192; 96; 48; 24; 12; 6; 3; 1:5Þ; h ¼ M=60g
v2S_m000 0.00 0.00 Sup1 30.0 fð192; 96; 48; 24; 12; 6; 3; 1:5Þ; h ¼ M=60g
v1S_m010 0.00 0.10 Sup1 2.0 fð192; 96; 48; 24; 12; 6; 3; 1:5Þ; h ¼ M=60g
v1S_m020 0.00 0.20 Sup1 2.0 fð192; 96; 48; 24; 12; 6; 3; 1:5Þ; h ¼ M=60g
v2K1_m040 0.50 0.40 Sup2 30.0 fð1536; 384; 192; 96; 48; 24; 12; 6; 3; 1:5Þ; h ¼ M=60g
v1K2_m000 0.99 0.00 Sup1 2.0 fð192; 96; 48; 24; 12; 6; 3; 1:5Þ; h ¼ M=96g
v2K2_m040 0.99 0.40 Sup1 30.0 fð1536; 384; 192; 96; 48; 24; 12; 6; 3; 1:5Þ; h ¼ M=64g
v2K2_m042 0.99 0.42 Sup1 30.0 fð1536; 384; 192; 96; 48; 24; 12; 6; 3; 1:5Þ; h ¼ M=64g
v2K2_m044 0.99 0.44 Sup1 30.0 fð1536; 384; 192; 96; 48; 24; 12; 6; 3; 1:5Þ; h ¼ M=64g
v1K2_m100 0.99 1.00 Sup1 2.0 fð1536; 384; 192; 96; 48; 24; 12; 6; 3; 1:5Þ; h ¼ M=60g

TABLE IV. Quasinormal mode frequencies of massless vector
perturbations in a Schwarzschild or Kerr BH background with
a=M ¼ 0:99. The values for M!num

lm have been obtained from

fits to our numerical evolution of the field, whereas those for
M!fd

lm have been computed with the continued fraction method

[9,11,88].

a=M (lm) M!fd
lm M!num

lm

0.00 (10) 0:2483� {0:0925 0:248� {0:092
0.00 (20) 0:4576� {0:0950 0:455� {0:093
0.99 (10) 0:2743� {0:0759 0:274� {0:075
0.99 (11) 0:4634� {0:0313 0:464� {0:033
0.99 (20) 0:4999� {0:0800 0:498� {0:079
0.99 (22) 0:9099� {0:0301 0:887� {0:037
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damped sinusoids. The resulting complex frequencies !num
lm

are listed in Table IV and agree well with the values !fd
lm

obtained from frequency-domain calculations [9,11,14,88].
The time evolution of a massless vector field initialized

as a narrow Gaussian of width w ¼ 2M around a rapidly
spinning Kerr BH with a=M ¼ 0:99 is displayed in Fig. 10
and qualitatively agrees with the corresponding simulation

around a Schwarzschild background. Note, however that
the quasinormal ringdown is significantly slower for the
spinning case which is also reflected by the relatively small
imaginary quasinormal mode frequencies listed for this
case in Table IV. Accurately measuring such small imagi-
nary components in numerical simulations represents a
considerable challenge, which is why we have chosen a
higher numerical resolution for this particular simulation;
cf. Table III. We thus obtain agreement of a few % with
frequency-domain predictions for the imaginary part. In
contrast the real part of the frequency is much easier to
extract numerically and shows excellent agreement around
1% or less with the values calculated in the frequency
domain.

B. Proca field in Schwarzschild backgrounds
and in the slow-rotating limit

We now consider time evolutions of massive vector, or
Proca, fields in a Schwarzschild background. For this
purpose, we choose the mass parameters M�V ¼ 0:1 and
M�V ¼ 0:2 that allow for a direct comparison with recent
QNM computations by Rosa and Dolan [42] and Pani et al.
[40,41]. In contrast to the massive scalar field, the Proca
field has 3 degrees of freedom and the resulting radiation
multipoles can be classified into three groups: axial modes
with spin s ¼ 0 and two polar modes with s ¼ �1.
Following Refs. [40–42], we denote s ¼ 0 multipoles as
even scalars and the s ¼ þ1, �1 as odd and even vector,
respectively. We emphasize that these 3 different degrees
of freedom have different spectra except for the massless
case where the spectra of the vector modes are degenerate
while the scalar mode reduces to a gauge field [9,42,88].
The quasinormal ringdown frequencies !fd

lm obtained from

frequency-domain calculations for the three types of multi-
poles are shown in Table V for M�V ¼ 0:1 considering a
Schwarzschild background.
In order to obtain numerical estimates for the frequen-

cies, we have evolved Gaussian initial data of width w ¼
2M centered around r0 ¼ 12M for our two choices of
M�V ¼ 0:1 and 0.2. The resulting dipoles of �2 extracted
at rex ¼ 10M are shown in Fig. 11 and reveal the by now
familiar pattern of early transient, ringdown, and tail.
Fitting an exponentially damped sinusoid to the ringdown
part of the dipoles of �2 (solid curve in the figure) as well
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FIG. 10. Time evolution of the l ¼ m ¼ 1 mode of �2 of run
v1K2_m000, i.e., a massless vector field in a Kerr background
with a=M ¼ 0:99 extracted at rex ¼ 10M.
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FIG. 9 (color online). The l ¼ 1, m ¼ 0 multipole of �2,
extracted at rex ¼ 10M from the time evolution of a Gaussian
pulse of width w ¼ 2M (black solid line) and w ¼ 30M
(red dashed line) around a Schwarzschild BH.

TABLE V. QNM frequencies and tail exponents for Proca field perturbations in the Schwarzschild background, for M�V ¼ 0:1.
Modes !fd have been computed with the continued fraction and forward-integration method in the frequency domain [40–42]. These
modes are divided in odd (O), even scalar (ES), and even vector (EV) parity; see text for details. The QNM frequencies extracted from
our numerical simulations are shown as !num, as extracted from ’l0 and �2;l0. Finally, we also show the decay exponent p of the

oscillatory tail; cf. Eq. (45).

l M!fd
l0 (ES) M!fd

l0 (O) M!fd
l0 (EV) M!num

l0 (’l) M!num
l0 (�2;l) p (’l0) p (�2;l0)

0 0:1216� {0:0791 0:125� {0:080 1.51

1 0:3054� {0:0914 0:2435� {0:0944 0:2539� {0:0887 0:245� {0:098 0:252� {0:087 0.49 0.49

2 0:4921� {0:0943 0:4552� {0:0955 0:4610� {0:0938 0:462� {0:091 0:452� {0:096 0.48 0.49
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as the scalar component ’ for the case M� ¼ 0:1 yields
numerical estimates for the frequencies listed in Table Vas
!num

lm . These estimates agree with the frequency-domain

predictions within a few percent or less. Note, however,
that the frequencies for some types of modes are very
similar, so that we cannot unambiguously identify which
modes are excited by our particular choice of initial data.
For l ¼ 2, for instance, our numerical results are compat-
ible with both an odd or even vector mode.

In Fig. 11 we see that from time t� 100M onwards, the
signal is dominated by the tails whose functional form is
given by a decaying sinusoid of the form [90]

�� t�ðlþpÞ sinð�VtÞ; (45)

at intermediate times, where p ¼ 3=2þ s depends on the
spin, or parity, of the mode. At late times, on the other hand,
the signal is expected to follow the universal behavior

�� t�5=6 sinð�VtÞ; (46)

independent of the spin s of the field [81,82,90]. Numerical
estimates for the exponent p extracted from our numerical
results for �2 and ’ are shown in Table V and are in
excellent agreement with the prediction p ¼ 3=2þ s for
intermediate times and spin values s ¼ 0 for the monopole
and s ¼ �1 for dipole and quadrupole. A similar analysis
for the larger mass parameterM� ¼ 0:2 also leads to good
agreement between numerical and frequency-domain
results, albeit with slightly larger discrepancies of & 7%.

Before we discuss in detail the behavior of Proca fields
in rapidly rotating Kerr backgrounds, we briefly test our
code in the case of a smaller rotation rate a=M ¼ 0:5
where the slow-rotation approximation of Refs. [40,41] is
expected to provide rather accurate results. For this pur-
pose, we have evolved a Proca field with a mass parameter
M�V ¼ 0:4 (simulation v2K1_m040 in Table III) that can

be shown to result in a stable mode, i.e., it does not satisfy
the superradiance criterion (1). For this configuration we
observe an extended transient resulting from the wave
packet impinging on the black hole followed by a slowly
decaying QN ringdown signal after t� 200M. Fitting a
damped sinusoid to this ringdown part, we find a ringdown
frequency M!11 ¼ 0:389� i0:0023 in excellent agree-
ment with semianalytic calculations in the slow-rotation
approximation [40,41].

C. Instability of Proca fields in highly spinning
Kerr backgrounds

According to the superradiant condition (1), rapidly
rotating black holes are most likely to induce superra-
diance phenomena in ambient vector fields, and we there-
fore discuss the case of Proca fields in a Kerr background
with a=M ¼ 0:99 in this section. In fact, recent calcula-
tions [40,41] indicate that the maximum instability growth
rate is realized in this background spacetime for a mass
parameter of about M�V ¼ 0:4 and our discussion will
focus on this case supplemented by additional simulations
with M�V ¼ 0:42, 0.44 and 1.0. The time evolution of the
l ¼ m ¼ 1 multipole of the Newman-Penrose scalar�2 as
well as the scalar component ’ obtained for the case
M�V ¼ 0:4 is shown for several choices of the extraction
radius rex in Fig. 12. Animations of the numerical evolu-
tions are available online [85].

1. Beating of modes

The time evolutions of the Proca field shown in Fig. 12
reveal strong amplitude modulations similar to those
observed for scalar fields in Fig. 6. They also depend sensi-
tively on the location of the measurement specified by the
extraction radius rex and, again, we interpret this feature as a
beating effect. In order to study this in more detail, we have
computed the Fourier spectra of the waveforms at different
radii and show the results in Fig. 13. The curves clearly reveal
several peaks corresponding to separate mode contributions
(fundamental mode or overtones) of the dipole field and the
relative amplitude of these peaks varies significantly with
extraction radius. Consider, for example, the spectrum of the
dipole of �2 in the left panel of Fig. 13: At rex ¼ 10M the
amplitude of the lowest frequency mode is about two thirds
of the amplitude of the strongest peak nearM!R ¼ 0:39, but
its relative strength rapidly decreases at larger extraction
radii. This is also reflected in the observed time evolutions
of the�2 dipole in the upper panels of Fig. 12: thewaveform
extracted at rex ¼ 10M exhibits a high-frequency modula-
tion that is weakly present at rex ¼ 25M and entirely absent
in thewaveformmeasured at rex ¼ 40M. Likewise, the high-
frequency modulation of the time component ’ weakens at
larger radii as the relative amplitude of the two lowest peaks
in the spectrum (right panel of Fig. 13) decreases.
There remains one important issue: which conditions

lead to the beating of modes? While beating is expected

0 50 100 150 200 250
t / M 

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

| Φ
2,

10
 |

M µ V = 0.1
M µ V = 0.2

FIG. 11 (color online). Time evolution of the Proca field with
mass coupling M�V ¼ 0:1 (black solid line) and M�V ¼ 0:2
(red dashed line) in a Schwarzschild background. We show the
l ¼ 1, m ¼ 0 multipole of the Newman-Penrose scalar �2,
extracted at rex ¼ 10M.
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to be a generic feature, it is not always excited. Here, we
attempt to determine indicators for the (non)observability
of beating effects. Because we have performed a multipole
expansion of the fields, and beating is present on a fixed
multipole, then clearly a beating pattern requires the exci-
tation of different overtones. For this reason, a modulation
of the amplitude is only triggered by evolutions of generic
initial pulses.3 Furthermore, our numerical simulations
indicate no dependence on the background spacetime;
Fig. 6 shows beating effects of the scalar field around
Schwarzschild and Kerr BHs. Beating is therefore not
related to superradiance. On the other hand, the excitation
of different modes is merely a necessary condition but not
sufficient to trigger amplitude modulations. This becomes
evident in the evolutions of Gaussian initial data for the
vector field with small mass parameters in a Schwarzschild
background that only exhibit a quasinormal ringdown and
tail. In order to shed further light on this question, we
therefore consider the entire set of Proca evolutions in
BH backgrounds and summarize our results as follows:

(i) We do not observe beating nor any long-lived
modes for mass parameters M�V ¼ 0:1, 0.2 in
Schwarzschild background.

(ii) We observe beating in the dipole mode for
M�V ¼ 0:4, 0.42, 0.44 in rapidly rotating Kerr.

(iii) We observe beating in the quadrupole but not in the
dipole for M�V ¼ 1:0 in the background of a
highly spinning Kerr BH.

Let us first consider in our interpretation of these obser-
vations the case of small mass parameters M�S;V . The

absence of long-lived modes in our simulations is most
likely a consequence of low-mass bound states being con-
centrated far from the black holes. For our choice of initial
Gaussian pulses centered around r0 ¼ 12M, these states
are therefore only weakly excited and play no significant
role in the evolution. Furthermore, beating patterns for
small mass parameters have particularly large periods.
We can therefore not rule out that amplitude modulations
might become visible in these evolutions at late times far
larger than the evolution times feasible with our numerical
framework. We suspect a similar reason is behind our not
observing beating modulation in the dipole mode in case of
large mass coupling M�V ¼ 1. We therefore tentatively
conclude that two conditions need to be met in addition to
the presence of at least two modes in order to observe
beating on time scales of �104M: (i) The bound states
must not be localized far away from the peak of the initial
data and (ii) beating periods need to be sufficiently short.

2. Instability of Proca fields around Kerr

The most striking feature of the time evolutions in
Fig. 12 is the amplitude growth of the signal over time
(ignoring the early transient stage). We interpret this
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FIG. 12. Time evolution of the Proca field with mass coupling M�V ¼ 0:40 in Kerr background with a=M ¼ 0:99, at
different extraction radii. We plot the l ¼ m ¼ 1 mode of the Newman-Penrose scalar �2 (top panels) and of the scalar component
’ (bottom panels).

3As opposed to pure bound states. It is important to note that
by pure bound states we mean stationary solutions of the
linearized field equations in the Kerr background; therefore
effects such as mode coupling are already taken into account:
pure modes do not couple to other multipoles when the expan-
sion basis is taken to be spheroidal harmonics.
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growth as a signature of the superradiant instability
of massive vector fields and estimate the growth rate of
the m ¼ 1 dipole of �2 obtained for M�V ¼ 0:4 and
a=M ¼ 0:99 as

M!I � ð5� 1Þ � 10�4 ! �

M
� ð3:3� 1:7Þ � 103; (47)

and about half that value for the instability rate of ’. We
believe the discrepancy of the growth rates of �2 and ’ is
due to the different growth scales of the axial and polar
sector and the fact that’ only sees the axial sector. We note
that our estimates for the growth rates are of the same order
of magnitude as the value �=M� 103 derived from
extrapolation of slow-rotation calculations; cf. Eq. (98) in
Ref. [41] and Fig. 2 in Ref. [40]. The superradiant insta-
bility time scales for vector fields are thus up to 4 orders of
magnitude larger than those of their scalar counterparts,
which renders possible their identification in the numerical
evolutions presented in this work.

V. CONCLUSIONS

We have performed an extended study of the time evo-
lution of massless and massive scalar and vector fields in
Schwarzschild and Kerr BH background spacetimes with
spin parameters up to a=M ¼ 0:99. Our results are con-
sistent with published results obtained in the frequency
domain in so far as these are available. For evolutions
involving exclusively short-lived modes, we observe the
known pattern of an initial transient followed by an expo-
nentially damped ringdown phase and late-time tails.

For the case of massive fields, there exists a second class
of long-lived modes called bound states whose evolution
exhibits a significantly richer structure. In particular, we
have identified a beating pattern caused by the interference
of different modes (the fundamental mode and overtones)

as manifest in the Fourier spectra calculated from the time
evolutions. The relative amplitude of different modes in the
spectra and, thus, the specific shape of the beating pattern
strongly depends on the observation radius. We believe that
these beating effects provide an explanation for an appar-
ent discrepancy between time and frequency-domain cal-
culations of instability growth rates of scalar fields around
Kerr backgrounds. Specifically, Ref. [60] (see their Fig. 3)
reported a time evolution lasting about 3� 103M of a
massive scalar field with M�S ¼ 0:25 in a Kerr back-
ground with a=M ¼ 0:9999 and obtained a growth time
scale approximately 2 orders of magnitude smaller than
that predicted by frequency-domain calculations. For this
particular configuration, the frequency-domain estimate,
Eq. (38), predicts a beating period �� 5� 103M, about
the entire duration of their time evolution, and we believe
that their estimate of the growth rate was correspondingly
contaminated by the resulting amplitude modulation.
Based on our numerical results, we conjecture that two

conditions are required for the presence of beating:
(i) generic initial configurations of massive fields as
opposed to single-frequency bound state initial data, and
(ii) initial data able to excite these bound states. For
extremely small masses for instance, the bound states are
localized far from the BH. Accordingly, initial data peaked
far from the BH would be required to excite them.
In an accompanying paper Dolan [61] has investigated

the massive scalar field instability as well as a system
involving massless scalars but enclosed by a mirror in the
time domain. Specifically, the author employs a ‘‘coupled
1þ 1-dimensional’’ numerical scheme that allows for
significantly longer evolution times up to t� 106M. This
work finds bound state frequencies and instability time
scales in excellent agreement with frequency-domain cal-
culations and, due to the generic initial configurations,
confirms/supports our findings of the beating phenomena.
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FIG. 13 (color online). Spectra of the l ¼ m ¼ 1 mode of the Newman-Penrose scalar �2 (left) and of the scalar component ’
(right) excited by the Proca field with mass couplingM�V ¼ 0:40 in Kerr background with a=M ¼ 0:99. Different lines correspond to
the waveforms measured at different extraction radii.
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Finally, we have confirmed the existence of superradiant
unstable massive vector fields around rapidly spinning
BHs. In contrast to massive scalar fields, the instability
of Proca fields is stronger by about 4 orders of magnitude
leading to growth times as short as �=M� 3:3� 103 in
rapidly spinning Kerr BH backgrounds. It is instructive to
translate this number for the case of realistic astorphysical
black hole candidates. For a solar mass BH and a super-
massive BH of the size of SagittariusA	 (M� 4:1�
106M�) at the center of our Galaxy, we obtain time scales
of �� 9 ms and �� 4� 104 s, respectively.

It has been argued by Pani et al. [40] that the angular
momentum thus extracted from the black hole provides a
mechanism to observationally constrain the mass of the
photon. In view of the short time scales even for super-
massive black holes, spin measurements of the BH at the
center of the Milky Way may indeed constrain the photon
mass to unprecedented levels. The exciting prospect of
using large, supermassive black holes to understand the
microscopic world raises several questions:

(1) Influence of accretion disks. Astrophysical black
holes are not isolated, but typically are surrounded
by accretion disks. Can the interaction with matter
kill the instability? It was argued previously [40] that
the superradiant instability is a globalmode, on scales
larger than the BH. On these scales matter is electri-
cally neutral, and the coupling should be negligible.
Therefore, it is not likely that (thin) accretion disks
can quench the instability; thin disks are expected to
lie along the equator of aKerrBHand are not expected
to interact stronglywith boson clouds that extendwell
off the equator. The influence of thick disks or other
effects is unknown at the moment, but it is surely
important to study these effects in more detail.

(2) Self-interacting scalar fields: One class of interest-
ing problems involves massive scalar fields whose
dynamics are described by additional nonlinear
terms, modeling their self-interaction. This open
issue has first been addressed by Yoshino and
Kodama [44] who modeled the collapse of a so-
called bosenova.

(3) Backreaction effects: As far as we are aware, all
studies exploring massive fields have been per-
formed in the linear regime. Therefore it is of utmost
interest to explore the fully nonlinear regime, which
allows for the investigation of the backreaction of
the spacetime, such as the spin-down of the BH due
to (subsequent) superradiant scattering. These types
of studies would enable us to glance at the end state
of the superradiant instability or, possibly, equilib-
rium configurations.

The present study marks crucial first steps to exploring
an entire playground of exciting future applications of
massive fields in BH spacetimes.

Animations of the evolutions can be found online [85].
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APPENDIX A: FLUX FORMULA

From the Lagrangian L,

1ffiffiffiffiffiffiffi�g
p L :¼ � 1

2
g���	

;��;� ��2
S

2
�	�� Vð�Þ

� 1

4
F��F�� ��2

V

2
A�A

� � kaxion
2

�	F��F��

þ JðSÞ� A�; (A1)
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we obtain, under the Lorenz condition (14), the equations
of motion

ðr�r� ��2
SÞ�� kaxion

2
	F��F�� � V 0ð�Þ ¼ 0; (A2)

ðr�r� ��2
VÞA� � R�

�A� � 2kaxion
	F��r�� ¼ �JðSÞ�;

(A3)

and the stress-energy tensor

T�� ¼ TA
�� þ T�

��; (A4)

TA
�� :¼ F��F�

� � 1

4
g��F��F

�� þ�2
VA�A�

� 1

2
�2

VA
�A�g��; (A5)

T�
�� :¼ 1

2
ðr��

	r��þr��r��
	Þ

� 1

2
g��ðr��

	r��þ�2
S�

	�þ 2Vð�ÞÞ: (A6)

Note that the Chern-Simons term does not alter the stress-
energy tensor.

We are concerned with stationary axisymmetric space-
times. Let us denote by t� and 
�, respectively, the sta-
tionary and the axisymmetric Killing field. The rigidity
theorem states that there exists a Killing vector field �,
which is normal to, hence null on, the horizonHþ. Such a
Killing vector field is given by the combination of t� and
�,

� ¼ t� þ�H

�; (A7)

where�H denotes the angular velocity of theKilling horizon
of the black hole, and for the Kerr metric

�H ¼ a

r2þ þ a2
; (A8)

with rþ being the horizon radius rþ ¼ Mþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 � a2

p
in

the Boyer-Lindquist coordinates.
Let us introduce the energy current J� by

J� ¼ �T��t
� ¼ �T�

��t
� � TA

��t
�; (A9)

and consider two time slices �1 and �2 � fJþð�1Þ n �1g,
which intersect the event horizonHþ at t ¼ t1 and t ¼ t2,
respectively. (One may view t as the Killing parameter of
t�.) Then the energy flux F that flows into the black hole
in the time interval I ¼ fHþ: t1 < t < t2g is given by

F ¼
Z
�2

d��J� �
Z
�1

d��J� ¼
Z
I
dNn�J�

¼ �
Z
I
dN�J� ¼

Z
H
dSh�t�T��i: (A10)

Here n� denotes the normal to Hþ, dN the volume
element of the horizon Hþ, dS the area element of the

cross section H ¼ Hþ \�, and hi expresses the time
average along the horizon. Superradiant scattering occurs
when the energy flux going into the horizon becomes
negative:

F < 0: (A11)

We consider below the flux with respect to the scalar
field and the vector field separately. For the scalar field, the
mode decomposition is defined by

Lt� ¼ �i!�; L
� ¼ im�; (A12)

where! denotes the frequency andm the angular quantum
number. It implies, in particular,

L� ¼ �ið!�m�HÞ�: (A13)

Then, substituting (A6) into (A10) and using the fact that
g��t

�� ¼ 0 on the horizon, we can immediately find the

flux formula for �:

F� ¼ !ð!�m�HÞ
Z
H
dShj�j2i; (A14)

and read off the superradiance condition

0<!<m�H: (A15)

For the vector field, substituting (A5) into (A10), we
have

F A ¼
Z
H
dSh�F��t

�F�
�i þ�2

V

Z
H
dh�A�t

�A�i;
(A16)

where we have again used g��
�t� ¼ 0 on the horizon.

For the vector field, the mode decomposition is defined
by

ðLtAÞ� ¼ �i!A�; ðLAÞ� ¼ �ið!�m�ÞA�:

(A17)

Now, noting

�F�� ¼ LA� �r�ðA�
�Þ;

t�F�� ¼ LtA� �r�ðA�t
�Þ; (A18)

and using Eq. (A17) and the Lorenz condition (14) we find

�F��t
�F�

� ¼ g��LA�LtA� þ �A�r�r�ðt�A�Þ
þ divergence terms: (A19)

On the horizon integral, we ignore the divergence terms
and then obtain
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F A ¼
Z
H
dShReð�F��t

�F�
�	Þi

þ�2
V

Z
H
dShReð�A�t

�A	
�Þi

¼ !ð!�m�Þ
Z
H
dShjAj2i

þ�2
V

Z
H
dShj�A�t

�A�ji

�
Z
H
dShReð�A�r�r�ðt�A	

�ÞÞi: (A20)

If we impose

�A� ¼ 0 on Hþ; (A21)

we get the simple formula, similar to the scalar field case
(A14),

F A ¼ !ð!�m�Þ
Z
H
dShjAj2i; (A22)

and the superradiance condition for the vector field is again
given by (A15).

APPENDIX B: SPIN-WEIGHTED SPHERICAL HARMONICS

Here we list the spin-weighted spherical harmonics up to l ¼ 2 in spherical coordinates f	;
g and Cartesian coordinates
fx; y; zg given by Eq. (25). In the case of spin-weight s ¼ 0 we obtain

l ¼ 0:

YR
00 ¼

1ffiffiffiffiffiffiffi
4�

p ; YI
00 ¼ 0: (B1)

l ¼ 1:

YR
10 ¼

ffiffiffiffiffiffiffi
3

4�

s
cos	 ¼

ffiffiffiffiffiffiffi
3

4�

s
z

r
; YI

10 ¼ 0; (B2a)

YR
11 ¼ �

ffiffiffiffiffiffiffi
3

8�

s
sin	 cos
 ¼ �

ffiffiffiffiffiffiffi
3

8�

s
x

r
;

YI
11 ¼ �

ffiffiffiffiffiffiffi
3

8�

s
sin	 sin
 ¼ �

ffiffiffiffiffiffiffi
3

8�

s
y

r
;

(B2b)

YR
1�1 ¼ �YR

11; YI
1�1 ¼ YI

11: (B2c)

l ¼ 2:

YR
20 ¼

ffiffiffiffiffiffiffiffiffi
5

16�

s
ð3cos2	� 1Þ ¼

ffiffiffiffiffiffiffiffiffi
5

16�

s �
3
z2

r2
� 1

�
; YI

20 ¼ 0; (B3a)

YR
21 ¼ �

ffiffiffiffiffiffiffi
5

8�

s
cos	 sin	 cos
 ¼ �

ffiffiffiffiffiffiffi
5

8�

s
xz

r2
; YI

21 ¼ �
ffiffiffiffiffiffiffi
5

8�

s
cos	 sin	 sin
 ¼ �

ffiffiffiffiffiffiffi
5

8�

s
yz

r2
; (B3b)

YR
22 ¼

ffiffiffiffiffiffiffiffiffi
15

32�

s
sin2	 cosð2
Þ ¼

ffiffiffiffiffiffiffiffiffi
15

32�

s
x2 � y2

r2
; YI

22 ¼
ffiffiffiffiffiffiffiffiffi
15

32�

s
sin2	 sinð2
Þ ¼

ffiffiffiffiffiffiffi
15

8�

s
xy

r2
(B3c)

YR
2�1 ¼ �YR

21; YI
2�1 ¼ YI

21; YR
2�2 ¼ YR

22; YI
2�2 ¼ �YI

22; (B3d)

where cosð2
Þ ¼ cos2
� sin2
, sinð2
Þ ¼ 2 cos
 sin
, cosð3
Þ ¼ 4cos3
� 3 cos
, and sinð3
Þ ¼ 4cos2
 sin
�
sin
. We further summarize the s ¼ �1 spin-weighted spherical harmonics up to l ¼ 2, where we have also defined
�2 ¼ x2 þ y2.

l ¼ 0:

�1Y
R
00 ¼ 0; �1Y

I
00 ¼ 0: (B4)

l ¼ 1:
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�1Y
R
1�1 ¼

ffiffiffiffiffiffiffiffiffi
3

16�

s
cos
ðcos	� 1Þ ¼

ffiffiffiffiffiffiffiffiffi
3

16�

s
xðz� rÞ

r�
; (B5a)

�1Y
I
1�1 ¼ �

ffiffiffiffiffiffiffiffiffi
3

16�

s
sin
ðcos	� 1Þ ¼ �

ffiffiffiffiffiffiffiffiffi
3

16�

s
yðz� rÞ
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; (B5b)
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16�
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ð1þ cos	Þ ¼ �
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16�
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: (B5e)

l ¼ 2:

�1Y
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16�
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sin	ðcos	� 1Þð2cos2
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