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Cosmological equivalence between the Finsler-Randers space-time and the DGP gravity model
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We perform a detailed comparison between the Finsler-Randers cosmological model and the Dvali,
Gabadadze, and Porrati (DGP) braneworld model. If we assume that the spatial curvature is strictly equal
to zero then we prove the following interesting proposition: despite the fact that the current cosmological
models have a completely different geometrical origin, they share exactly the same Hubble expansion.
This implies that the Finsler-Randers model is cosmologically equivalent with that of the DGP model
as far as the cosmic expansion is concerned. At the perturbative level we find that the Finsler-Randers
growth index of matter perturbations is ygg = 9/14, which is somewhat lower than that of DGP gravity
(vpgp = 11/16), implying that the growth factor of the Finsler-Randers model is slightly different
(~0.1-2%) from the one provided by the DGP gravity model.
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L. INTRODUCTION

Geometrical dark energy models act as an important
alternative to the scalar-field dark energy models, since
they can explain the accelerated expansion of the universe.
Such an approach is an attempt to evade the coincidence
and cosmological constant problems of the standard
ACDM model. In this framework, one may consider that
the dynamical effects attributed to dark energy can be
resembled by the effects of a nonstandard gravity theory,
implying that the present accelerating stage of the universe
can be driven only by cold dark matter under a modifica-
tion of the nature of gravity.

Particular attention over the last decade has been paid to
the so-called Finsler-Randers (hereafter FR) cosmological
model [1]. In general, metrical extensions of Riemann
geometry can provide a Finslerian geometrical structure
in a manifold which leads to generalized gravitational
field theories. During the last decade there has been a rapid
development of applications of Finsler geometry in its FR
context, mainly in the topics of general relativity, astro-
physics, and cosmology [1-20]. It has been found [6] that
the FR field equations provide a Hubble parameter that
contains an extra geometrical term which can be used as a
possible candidate for dark energy.

Of course, there are many other possibilities to explain
the present accelerating stage. Indeed, in the literature one
can find a large family of modified gravity models (for
review see Refs. [21,22]), which include the braneworld
Dvali, Gabadadze, and Porrati (hereafter DGP [23]) model,
f(R) gravity theories [24], scalar-tensor theories [25], and
Gauss-Bonnet gravity [26]. Technically speaking, it would
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be interesting if we could find a way to unify (up to a
certain point) the geometrical dark energy models at the
cosmological level. In general, we would like to pose the
following question: how many (if any) of the above geo-
metrical dark energy models can provide exactly the same
Hubble expansion? In the current work we prove that the
flat FR and DGP models, respectively, share the same
Hubble parameter, which means that the two geometrical
models are cosmologically equivalent as far as the cosmic
expansion is concerned.

The structure of the paper is as follows. Initially in
Sec. II, we briefly discuss the DGP gravity model, while
in Sec. III we present the main properties of the FR model.
In Sec. IV, we study the linear growth of perturbations as
and constrain the FR growth index. Finally, in Sec. V we
summarize the basic results.

II. THE DGP COSMOLOGICAL MODEL

In this section, we briefly describe the main features
of the DGP gravity model. The idea here is that the
“accelerated” expansion of the universe can be explained
by a modification of the gravitational interaction in which
gravity itself becomes weak at very large distances (close
to the Hubble scale) due to the fact that our four-
dimensional brane lives on a five-dimensional manifold
[27,28]. Note that the Einstein field equations are defined
on the five-dimensional brane. In this framework, the
modified Friedmann equation can be written as

H2 + k _ 2M (Hz + 5)1/2 _87G

2 2

a M @
where a(z) is the scale factor of the universe, H(¢) = a/ais
the Hubble function, and k = 0, =1 is the spatial curvature
parameter.
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Notice that M5y and M4 are the five-dimensional and
four-dimensional Planck masses, respectively. Inserting
the following present-value quantities into Eq. (2.1),

1 k 877G

re = 1A Dy =~ 77, Qo = Lpzmo,

4r:Hj Hj 3H;

(2.2)

one can write

2
Ez(a) = [“'Qmoa73 + Qrc + Qrc] + Qkoaiz, (23)

(4)/2M(5) and E(a) = H(a)/H,. Using a
spatially flat geometry (), = 0) and E(1) = 1, the above
normalized Hubble parameter takes the form

where r. =

E*(a) = Q,pa > + AH?, (2.4)
where the quantity AH? is given by
AH?* =2Q,. + 2\/0,6\/9,,,051—3 +Q,., (2.5

with Q,. = (1 — Q,,0)?/4. On the other hand, Linder and
Jenkins [29] have shown that the corresponding effective
(geometrical) dark energy equation-of-state parameter of
Eq. (2.4) is written as

1 dInAH?
3 dlna
Therefore, from Eq. (2.6) it is easily shown that the geo-

metrical dark energy equation-of-state parameter of the flat
DGP model reduces to

wl(a) = —1 — (2.6)

1
w(a) = Tr @ (2.7)
where
. Qmoa_3
Q,(a) = ) (2.8)

From the observational point of view the DGP gravity
model has been well tested against the available cosmo-
logical data [30-33]. Although the flat DGP model
was found to be consistent with Type Ia supernova data
(SNIa), it is under observational pressure by including in
the statistical analysis the data of the baryon acoustic
oscillation (BAO) and the cosmic microwave background
(CMB) shift parameter [31]. Furthermore, it has been
found (cf. Ref. [33]) that the integrated Sachs-Wolfe
(ISW) effect poses a significant problem for the DGP
cosmology, especially at the lowest multipoles.

II1. THE FINSLER-RANDERS-TYPE COSMOLOGY

The FR cosmic scenario is based on the Finslerian
geometry which extends the traditional Riemannian
geometry. Notice that a Riemannian geometry is also a
Finslerian. Bellow we discuss only the main features of the
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theory (for more details see Refs. [34-37]). Generally, a
Finsler space is derived from a generating differentiable
function F(x, y) on a tangent bundle F: TM — R, TM =
T(M)/{0} on a manifold M. The function F is a degree-one
homogeneous function with respect to y = % and it is
continuous in the zero cross section. In other words, F
introduces a structure on the space-time manifold M that is

called Finsler space-time. In the case of an FR space-time

we have

F(x,y) = o(x,y) + u,(x)y*, olx,y) = \/a,”y“y”,
3.1

where a,,, is a Riemannian metric and u,, = (u, 0, 0, 0) is

a weak primordial vector field with |u,| < 1. Now the
Finslerian metric tensor f,, is constructed by the Hessian
of F:

1 9°F?

= . 32
e T (3.2)

It is interesting to mention that the Cartan tensor C,,

2 f 22 is a significant ingredient of the Finsler geometry.

Indeed it has been found [6] that uy = 2Cqp.
Armed with the above, the FR field equations are
given by

1
L,, = 87TG<TW - ETg,“,), c=1 (3.3
where L, is the Finslerian Ricci tensor, g, = Fa,, /o,

T,, is the energy-momentum tensor, and T is the trace of
the energy-momentum tensor. Modeling the expanding
universe as a Finslerian perfect fluid that includes radiation
and matter with four-velocity U, for comoving observers,'
we have T,, = —Pf,,+(p+ P)U,U, where p=
pm t p, and P = P, + P, are the total energy density
and pressure of the cosmic fluid, respectively. Note that
Pm = Pmod > is the matter density, p, = p,oa * denotes
the density of the radiation, and P,, = 0, P, = p,/3 are the
corresponding pressures.” Thus the energy-momentum
tensor becomes T,, = diag(p, —Pf;;), where the Greek
indices belong to 0, 1, 2, 3 and the Latin ones to 1, 2, 3.

In the context of an Friedmann-Lemaitre-Robertson-
Walker metric’

2
, = diag(l, e ar —a2r2sin20), (3.4)

'"Here we use U% = 4" = y@ = (1,0,0,0), where ¢ is the
cosmic time.

*We use the fact that the radiation component is negligible in
the matter-dominated era.

3The nonzero components of the Finslerian Ricci tensor are
Loo =3(E+3Luy) and L;= —(aa+2a +2k+aaig) /A,
where (A“, Azz, Ag‘;) = (] - kr r T 811‘120)
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the gravitational FR field equations (3.3), for comoving
observers, boil down to modified Friedmann equations [6]:

i 3a 47G
S48z, = -2 +3p), (3.5)
a 4a 3
a k1l
L2425+ —%2,=47G(p— P, (36)
a a a 4 a

where the over-dot denotes a derivative with respect to
the cosmic time ¢ and Z;, = 115 <0 (see Ref. [6]). With
the aid of the Egs. (3.5) and (3.6) we obtain—after some
simple algebra—the Friedmann-like expression in the mat-
ter dominated era (p = p,,),

5 k :87TG
H+ S5+ HZ, ="~
a

Pms (3.7
which looks similar to the form of the DGP Friedmann
equation [see Eq. (2.1)]. Obviously, the extra term
H(#)Z, in the modified Friedmann equation (3.7) affects
the dynamics of the universe. If we consider uy = 0 (or
Cooo =0, F/o = 1), which implies Z, = 0, then the field
equations (3.3) reduce to the nominal Einstein’s equations
(L., = R,,, where R, is the usual Ricci tensor) a solu-
tion of which is the usual Friedmann equation.

Therefore, utilizing the last two equalities of Eqgs. (2.2)
and (3.7), and E(a) = H(a)/H,, one can easily show that
the normalized Hubble parameter is written as

2
Ez(a) = [JQZz + Qmoa_S + Qkoa_z + ta] , (38)

where 1/92, = —2%’0. Assuming now a spatially flat

geometry k=0 (4 =0) and E(1) = 1, the above
expression becomes

E*(a) = Q00> + AHgy, (3.9)
where AHZ, is given by
AHIZ:R = ZQZ, + 2»\'92{‘,9,,10073 + er, (310)

with Q, = (1 —Q,0)*/4. Amazingly, the Hubble
parameter of the FR cosmology reduces to that of the flat
DGP gravity, AHi = AH? [see Eqgs. (2.4) and (2.5) or
Eqgs. (2.1) and (3.7)].

The importance of the current work is that we find that
the flat FR model has exactly the same Hubble parameter
as the flat DGP gravity model, despite the fact that the
geometrical base of the two models is completely different.
Our result implies that the flat FR and the DGP models can
be seen as equivalent cosmologies as far as the Hubble
expansion is concerned. Below we investigate at the per-
turbative level the predictions of the FR model with the
DGP cosmology in order to show the extend to which they
are comparable.
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IV. THE LINEAR MATTER FLUCTUATIONS

In this section, we briefly present the basic equation
which governs the behavior of the matter perturbations
on subhorizon scales and within the context of any dark
energy model, including those of modified gravity
(“geometrical dark energy’’), in which the dark energy is
homogeneously distributed. The reason for investigating
the growth analysis in this work is to give the reader the
opportunity to appreciate the relative strength and similar-
ities of the FR and DGP models at the perturbative level.

At subhorizon scales the effective (geometrical in our
case) dark energy component is expected to be smooth and
thus it is fair to consider perturbations only on the matter
component of the cosmic fluid [38]. The evolution equa-
tion of the matter fluctuations 8,, = 8p,,/p, for cosmo-
logical models where the dark energy fluid has a vanishing
anisotropic stress and the matter fluid is not coupled to
other matter species (see Refs. [39—45]), is given by

6m + 2H5m = 47TGeffpm5m’ (41)
where G is the effective Newton’s constant and p,,
is the matter density. Transforming Eq. (4.1) from ¢ to
a(4=H ﬁ), we simply obtain

a® d*s,,

S, da®

( dlnE) a dé, 3

)Geff(a)
dlna)é, da 2

Gy
4.2)

with Gy denoting Newton’s gravitational constant.
It is interesting to mention that solving Eq. (4.2) for the
concordance A cosmology,4 we derive the well-known
perturbation growth factor [46] scaled to unity at the
present time:

S * D(z) =

5Q0,,0E(z) [+ (1 + u)du
> ]; “4.3)

E(u)

Notice that we have used a(z) = 1/(1 + z).

At this point we define the so-called growth rate of
clustering, which is an important parametrization of the
matter perturbations [46]:

__dIné,

fla) = 2% ~ 0} (a). @44

The parameter y is the growth index, which plays
a significant role in cosmological studies (see
Refs. [29,39,45,47-49]).

Combining the first equality of Eq. (4.4) with Eq. (4.2),
we derive (after some algebra) that

“For the usual ACDM cosmological model we have w(a) =
_], QA(G) =1- Qm(a), and Geff(a) = GN'
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df dQ, d1nE Gosla)
dQ,, dlna dlna Gy
4.5)

+f2+(2+ >f=%ﬂm(a)

In our case the basic quantities of Eq. (4.5) are (see also
Refs. [39,50])

30,(a)
dinE _ | ~158,@ DGP or FR, “6)
dlna -20,,(a) ACDM,
3‘Q’m a 179’1;1(“

dinQ,, _ [ —2edi=a (] DOPorFR.
dlna -3Q,@[1 - Q,(@)] ACDM,
and

Gegrla) 1 . ACDM or FR, 45

- 2+40; (a .
Gy T30 @) DGP.

Inserting the ansatz f = Q,y,l(“’") into Eq. (4.5), using
simultaneously Egs. (4.6), (4.7), and (4.8) and performing
a first-order Taylor expansion around (),, = 1 (for a similar
analysis see Refs. [45,49,51]), we find that the asymptotic
value of the FR growth index to the lowest order is ygg =
9/14, while in the case of the DGP braneworld model we
have ypgp = 11/16 (see also Refs. [28,45,50,52]). Notice
that for the concordance ACDM cosmology it has been
found (see Refs. [45,47-49]) that y, =~ 6/11. Using the
above we find the following restriction:

YA < YR < YDGP-

The small difference (~ 7%) between ygg and ypgp is due
to G/ Gy used in the growth analysis [see Eq. (4.8)].

In Fig. 1 we present the evolution of the growth rate of
clustering for the current cosmological models, i.e., the FR
model (solid line), the DPG (dashed line), and standard
ACDM (long dashed line) models and the fractional dif-
ference between the first (FR model) and each of the other

1 T

0.8

0.6

0.4

FIG. 1. The evolution of the growth rate of clustering f(z). The
lines correspond to the following models: FR (solid), DGP
(dashed), and ACDM (long dashed). In the insert panel we
present the corresponding fractional difference of the DGP
(dashed line) and ACDM (long dashed line) models with respect
to the FR model. To produce the curves we use (1,9 = 0.273.
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two models (insert panel). Notice that in order to produce
the curves we utilize (),,; = 0.273. The general behavior
of the functional form of the FR growth rate is an inter-
mediate case between the DGP and ACDM growth rates.

In Fig. 2 we show the growth factor evolution, which is
derived by integrating Eq. (4.4), for the FR cosmological
model. In the insert panel of Fig. 2 we plot the fractional
difference between the different models, similarly to
Fig. 1, but now for the growth factor. Obviously, the growth
factor of the flat FR model is slightly different [ 32-(%) ~

0.1-2%] from the one provided by the conventional
flat DGP cosmology. Concering the ACDM model,
the expected differences are small at low redshifts, but
become gradually larger for z = 1, reaching variations up
to ~ — 15% at z ~ 3.

We would like to end this section with a brief discussion
about the observational consequences of the FR model.
Since the flat FR model shares exactly the same Hubble
parameter with the flat DGP model, this implies that the flat
FR model inherits all the merits and demerits of the flat
DGP gravity model. Thus, it becomes obvious that the FR
model is under observational pressure when we compare
against the background cosmological data (SNIa, BAO,
CMB shift parameter). We would like to mention that the
FR model is in agreement with the SNIa data [6] (a similar
situation holds also for the DGP; see Sec. II). As far as the
ISW effect is concerned the situation is almost the same. In
particular, the dependence of the ISW effect on the differ-
ent cosmologies enters through the different behavior of
D(a) (the growth factor), which is affected by vy, and of
H(a) [see Eq. (14.16) in Ref. [22]]. Taking the above
arguments into account—namely, the same H(a) and a
very small difference in D(a) [see insert panel of
Fig. 2]—we conclude that both flat FR and DGP models
predict almost the same ISW effect, which of course is in
disagreement with the ISW observational data. It is how-
ever possible to derive an extended version of the FR
model free from the observational problems by including
additional terms of the Finslerian metric f,, in the

FIG. 2. The evolution of the growth factor, with that corre-
sponding to the FR model (ypgr = 9/14) showing a ~0.1-2%
difference with respect to that of the DGP model (ypgp =
11/16), especially at large redshifts (z = 1). Notice that the
growth factor is normalized to unity at the present time.
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modified Friedmann equation. Such an analysis is in
progress and will be published elsewhere.

V. CONCLUSIONS

In this paper we compared the Finsler-Randers
(FR) space-time against the DGP gravity model. To our
surprise, we found that the flat FR space-time is perfectly
equivalent to the cosmic expansion history of the flat DGP
cosmological model, despite the fact that the two models
live in a completely different geometrical background.
At the perturbative level we studied the linear growth

PHYSICAL REVIEW D 87, 043506 (2013)

of matter perturbations, and it was found that the FR
growth index is ypgr = 9/14, which is almost ~7% less
than the theoretically predicted value of the DGP gravity
model, ypgp = 11/16. The latter implies that the growth
factor of the flat FR model is slightly different (~ 0.1-2%)
from the one provided by the conventional flat DGP
cosmology.
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