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We perform a detailed comparison between the Finsler-Randers cosmological model and the Dvali,

Gabadadze, and Porrati (DGP) braneworld model. If we assume that the spatial curvature is strictly equal

to zero then we prove the following interesting proposition: despite the fact that the current cosmological

models have a completely different geometrical origin, they share exactly the same Hubble expansion.

This implies that the Finsler-Randers model is cosmologically equivalent with that of the DGP model

as far as the cosmic expansion is concerned. At the perturbative level we find that the Finsler-Randers

growth index of matter perturbations is �FR ’ 9=14, which is somewhat lower than that of DGP gravity

(�DGP ’ 11=16), implying that the growth factor of the Finsler-Randers model is slightly different

(�0:1–2%) from the one provided by the DGP gravity model.
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I. INTRODUCTION

Geometrical dark energy models act as an important
alternative to the scalar-field dark energy models, since
they can explain the accelerated expansion of the universe.
Such an approach is an attempt to evade the coincidence
and cosmological constant problems of the standard
�CDM model. In this framework, one may consider that
the dynamical effects attributed to dark energy can be
resembled by the effects of a nonstandard gravity theory,
implying that the present accelerating stage of the universe
can be driven only by cold dark matter under a modifica-
tion of the nature of gravity.

Particular attention over the last decade has been paid to
the so-called Finsler-Randers (hereafter FR) cosmological
model [1]. In general, metrical extensions of Riemann
geometry can provide a Finslerian geometrical structure
in a manifold which leads to generalized gravitational
field theories. During the last decade there has been a rapid
development of applications of Finsler geometry in its FR
context, mainly in the topics of general relativity, astro-
physics, and cosmology [1–20]. It has been found [6] that
the FR field equations provide a Hubble parameter that
contains an extra geometrical term which can be used as a
possible candidate for dark energy.

Of course, there are many other possibilities to explain
the present accelerating stage. Indeed, in the literature one
can find a large family of modified gravity models (for
review see Refs. [21,22]), which include the braneworld
Dvali, Gabadadze, and Porrati (hereafter DGP [23]) model,
fðRÞ gravity theories [24], scalar-tensor theories [25], and
Gauss-Bonnet gravity [26]. Technically speaking, it would

be interesting if we could find a way to unify (up to a
certain point) the geometrical dark energy models at the
cosmological level. In general, we would like to pose the
following question: how many (if any) of the above geo-
metrical dark energy models can provide exactly the same
Hubble expansion? In the current work we prove that the
flat FR and DGP models, respectively, share the same
Hubble parameter, which means that the two geometrical
models are cosmologically equivalent as far as the cosmic
expansion is concerned.
The structure of the paper is as follows. Initially in

Sec. II, we briefly discuss the DGP gravity model, while
in Sec. III we present the main properties of the FR model.
In Sec. IV, we study the linear growth of perturbations as
and constrain the FR growth index. Finally, in Sec. V we
summarize the basic results.

II. THE DGP COSMOLOGICAL MODEL

In this section, we briefly describe the main features
of the DGP gravity model. The idea here is that the
‘‘accelerated’’ expansion of the universe can be explained
by a modification of the gravitational interaction in which
gravity itself becomes weak at very large distances (close
to the Hubble scale) due to the fact that our four-
dimensional brane lives on a five-dimensional manifold
[27,28]. Note that the Einstein field equations are defined
on the five-dimensional brane. In this framework, the
modified Friedmann equation can be written as

H2 þ k

a2
� 2M3

ð5Þ
M2

ð4Þ

�
H2 þ k

a2

�
1=2 ¼ 8�G

3
�m; (2.1)

where aðtÞ is the scale factor of the universe,HðtÞ � _a=a is
the Hubble function, and k ¼ 0,�1 is the spatial curvature
parameter.
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Notice that Mð5Þ and Mð4Þ are the five-dimensional and

four-dimensional Planck masses, respectively. Inserting
the following present-value quantities into Eq. (2.1),

�rc ¼ 1

4r2cH
2
0

; �k0 ¼ � k

H2
0

; �m0 ¼ 8�G�m0

3H2
0

;

(2.2)

one can write

E2ðaÞ ¼
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�m0a
�3 þ�rc

q
þ ffiffiffiffiffiffiffiffi

�rc

p �
2 þ�k0a

�2; (2.3)

where rc ¼ M2
ð4Þ=2M

3
ð5Þ and EðaÞ ¼ HðaÞ=H0. Using a

spatially flat geometry (�k0 ¼ 0) and Eð1Þ ¼ 1, the above
normalized Hubble parameter takes the form

E2ðaÞ ¼ �m0a
�3 þ �H2; (2.4)

where the quantity �H2 is given by

�H2 ¼ 2�rc þ 2
ffiffiffiffiffiffiffiffi
�rc

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�m0a

�3 þ�rc

q
; (2.5)

with �rc ¼ ð1��m0Þ2=4. On the other hand, Linder and
Jenkins [29] have shown that the corresponding effective
(geometrical) dark energy equation-of-state parameter of
Eq. (2.4) is written as

wðaÞ ¼ �1� 1

3

d ln�H2

d lna
: (2.6)

Therefore, from Eq. (2.6) it is easily shown that the geo-
metrical dark energy equation-of-state parameter of the flat
DGP model reduces to

wðaÞ ¼ � 1

1þ�mðaÞ ; (2.7)

where

�mðaÞ ¼ �m0a
�3

E2ðaÞ : (2.8)

From the observational point of view the DGP gravity
model has been well tested against the available cosmo-
logical data [30–33]. Although the flat DGP model
was found to be consistent with Type Ia supernova data
(SNIa), it is under observational pressure by including in
the statistical analysis the data of the baryon acoustic
oscillation (BAO) and the cosmic microwave background
(CMB) shift parameter [31]. Furthermore, it has been
found (cf. Ref. [33]) that the integrated Sachs-Wolfe
(ISW) effect poses a significant problem for the DGP
cosmology, especially at the lowest multipoles.

III. THE FINSLER-RANDERS-TYPE COSMOLOGY

The FR cosmic scenario is based on the Finslerian
geometry which extends the traditional Riemannian
geometry. Notice that a Riemannian geometry is also a
Finslerian. Bellow we discuss only the main features of the

theory (for more details see Refs. [34–37]). Generally, a
Finsler space is derived from a generating differentiable
function Fðx; yÞ on a tangent bundle F: TM ! R, TM ¼
~TðMÞ=f0g on a manifoldM. The function F is a degree-one
homogeneous function with respect to y ¼ dx

dt and it is

continuous in the zero cross section. In other words, F
introduces a structure on the space-time manifoldM that is
called Finsler space-time. In the case of an FR space-time
we have

Fðx; yÞ ¼ �ðx; yÞ þ u�ðxÞy�; �ðx; yÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a��y

�y�
q

;

(3.1)

where a�� is a Riemannian metric and u� ¼ ðu0; 0; 0; 0Þ is
a weak primordial vector field with ju�j � 1. Now the

Finslerian metric tensor f�� is constructed by the Hessian

of F:

f�� ¼ 1

2

@2F2

@y�@y�
: (3.2)

It is interesting to mention that the Cartan tensor C��k ¼
1
2

@f��

@yk
is a significant ingredient of the Finsler geometry.

Indeed, it has been found [6] that u0 ¼ 2C000.
Armed with the above, the FR field equations are

given by

L�� ¼ 8�G

�
T�� � 1

2
Tg��

�
; c � 1; (3.3)

where L�� is the Finslerian Ricci tensor, g�� ¼ Fa��=�,

T�� is the energy-momentum tensor, and T is the trace of

the energy-momentum tensor. Modeling the expanding
universe as a Finslerian perfect fluid that includes radiation
and matter with four-velocityU� for comoving observers,1

we have T�� ¼ �Pf�� þ ð�þ PÞU�U�, where � ¼
�m þ �r and P ¼ Pm þ Pr are the total energy density
and pressure of the cosmic fluid, respectively. Note that
�m ¼ �m0a

�3 is the matter density, �r ¼ �r0a
�4 denotes

the density of the radiation, andPm � 0, Pr � �r=3 are the
corresponding pressures.2 Thus the energy-momentum
tensor becomes T�� ¼ diagð�;�PfijÞ, where the Greek

indices belong to 0, 1, 2, 3 and the Latin ones to 1, 2, 3.
In the context of an Friedmann-Lemaı̂tre-Robertson-

Walker metric3

a�� ¼ diag

�
1;� a2

1� kr2
;�a2r2;�a2r2sin2�

�
; (3.4)

1Here we use U� ¼ dx�

dt ¼ y� ¼ ð1; 0; 0; 0Þ, where t is the
cosmic time.

2We use the fact that the radiation component is negligible in
the matter-dominated era.

3The nonzero components of the Finslerian Ricci tensor are
L00 ¼ 3ð €aa þ 3 _a

4a _u0Þ and Lii¼�ða €aþ2 _a2þ2kþ11
4 a _a _u0Þ=�ii,

where ð�11;�22;�33Þ ¼ ð1� kr2; r2; r2sin2�Þ.
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the gravitational FR field equations (3.3), for comoving
observers, boil down to modified Friedmann equations [6]:

€a

a
þ 3

4

_a

a
Zt ¼ � 4�G

3
ð�þ 3PÞ; (3.5)

€a

a
þ 2

_a

a
þ 2

k

a2
þ 11

4

_a

a
Zt ¼ 4�Gð�� PÞ; (3.6)

where the over-dot denotes a derivative with respect to
the cosmic time t and Zt ¼ _u0 < 0 (see Ref. [6]). With
the aid of the Eqs. (3.5) and (3.6) we obtain—after some
simple algebra—the Friedmann-like expression in the mat-
ter dominated era (� ¼ �m),

H2 þ k

a2
þHZt ¼ 8�G

3
�m; (3.7)

which looks similar to the form of the DGP Friedmann
equation [see Eq. (2.1)]. Obviously, the extra term
HðtÞZt in the modified Friedmann equation (3.7) affects
the dynamics of the universe. If we consider u0 � 0 (or
C000 � 0, F=� ¼ 1), which implies Zt ¼ 0, then the field
equations (3.3) reduce to the nominal Einstein’s equations
(L�� ¼ R��, where R�� is the usual Ricci tensor) a solu-

tion of which is the usual Friedmann equation.
Therefore, utilizing the last two equalities of Eqs. (2.2)

and (3.7), and EðaÞ ¼ HðaÞ=H0, one can easily show that
the normalized Hubble parameter is written as

E2ðaÞ ¼
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�Zt
þ�m0a

�3 þ�k0a
�2

q
þ

ffiffiffiffiffiffiffiffi
�Zt

q �
2
; (3.8)

where
ffiffiffiffiffiffiffiffi
�Zt

q
¼ � Zt

2H0
. Assuming now a spatially flat

geometry k ¼ 0 (�k0 ¼ 0) and Eð1Þ ¼ 1, the above
expression becomes

E2ðaÞ ¼ �m0a
�3 þ�H2

FR; (3.9)

where �H2
FR is given by

�H2
FR ¼ 2�Zt

þ 2
ffiffiffiffiffiffiffiffi
�Zt

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�m0a

�3 þ�Zt

q
; (3.10)

with �Zt
¼ ð1��m0Þ2=4. Amazingly, the Hubble

parameter of the FR cosmology reduces to that of the flat
DGP gravity, �H2

FR ¼ �H2 [see Eqs. (2.4) and (2.5) or
Eqs. (2.1) and (3.7)].

The importance of the current work is that we find that
the flat FR model has exactly the same Hubble parameter
as the flat DGP gravity model, despite the fact that the
geometrical base of the two models is completely different.
Our result implies that the flat FR and the DGP models can
be seen as equivalent cosmologies as far as the Hubble
expansion is concerned. Below we investigate at the per-
turbative level the predictions of the FR model with the
DGP cosmology in order to show the extend to which they
are comparable.

IV. THE LINEAR MATTER FLUCTUATIONS

In this section, we briefly present the basic equation
which governs the behavior of the matter perturbations
on subhorizon scales and within the context of any dark
energy model, including those of modified gravity
(‘‘geometrical dark energy’’), in which the dark energy is
homogeneously distributed. The reason for investigating
the growth analysis in this work is to give the reader the
opportunity to appreciate the relative strength and similar-
ities of the FR and DGP models at the perturbative level.
At subhorizon scales the effective (geometrical in our

case) dark energy component is expected to be smooth and
thus it is fair to consider perturbations only on the matter
component of the cosmic fluid [38]. The evolution equa-
tion of the matter fluctuations 	m � 	�m=�m, for cosmo-
logical models where the dark energy fluid has a vanishing
anisotropic stress and the matter fluid is not coupled to
other matter species (see Refs. [39–45]), is given by

€	m þ 2H _	m ¼ 4�Geff�m	m; (4.1)

where Geff is the effective Newton’s constant and �m

is the matter density. Transforming Eq. (4.1) from t to
a ( d

dt ¼ H d
d lna ), we simply obtain

a2

	m

d2	m

da2
þ

�
3þ d lnE

d lna

�
a

	m

d	m

da
¼ 3

2
�mðaÞGeffðaÞ

GN

;

(4.2)

with GN denoting Newton’s gravitational constant.
It is interesting to mention that solving Eq. (4.2) for the
concordance � cosmology,4 we derive the well-known
perturbation growth factor [46] scaled to unity at the
present time:

	m / DðzÞ ¼ 5�m0EðzÞ
2

Z þ1

z

ð1þ uÞdu
E3ðuÞ : (4.3)

Notice that we have used aðzÞ ¼ 1=ð1þ zÞ.
At this point we define the so-called growth rate of

clustering, which is an important parametrization of the
matter perturbations [46]:

fðaÞ ¼ d ln	m

d lna
’ ��

mðaÞ: (4.4)

The parameter � is the growth index, which plays
a significant role in cosmological studies (see
Refs. [29,39,45,47–49]).
Combining the first equality of Eq. (4.4) with Eq. (4.2),

we derive (after some algebra) that

4For the usual �CDM cosmological model we have wðaÞ ¼
�1, ��ðaÞ ¼ 1��mðaÞ, and GeffðaÞ ¼ GN .
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df

d�m

d�m

d lna
þ f2 þ

�
2þ d lnE

d lna

�
f ¼ 3

2
�mðaÞGeffðaÞ

GN

:

(4.5)

In our case the basic quantities of Eq. (4.5) are (see also
Refs. [39,50])

d lnE

d lna
¼

8<
:
� 3�mðaÞ

1þ�mðaÞ DGP or FR;

� 3
2�mðaÞ �CDM;

(4.6)

d ln�m

d lna
¼

8<
:
� 3�mðaÞ½1��mðaÞ�

1þ�mðaÞ DGP or FR;

�3�mðaÞ½1��mðaÞ� �CDM;
(4.7)

and

GeffðaÞ
GN

¼
8<
:
1 �CDM or FR;
2þ4�2

mðaÞ
3þ3�2

mðaÞ DGP:
(4.8)

Inserting the ansatz f ’ ��ð�mÞ
m into Eq. (4.5), using

simultaneously Eqs. (4.6), (4.7), and (4.8) and performing
a first-order Taylor expansion around�m ¼ 1 (for a similar
analysis see Refs. [45,49,51]), we find that the asymptotic
value of the FR growth index to the lowest order is �FR ’
9=14, while in the case of the DGP braneworld model we
have �DGP ’ 11=16 (see also Refs. [28,45,50,52]). Notice
that for the concordance �CDM cosmology it has been
found (see Refs. [45,47–49]) that �� ’ 6=11. Using the
above we find the following restriction:

�� < �FR < �DGP:

The small difference (� 7%) between �FR and �DGP is due
to Geff=GN used in the growth analysis [see Eq. (4.8)].

In Fig. 1 we present the evolution of the growth rate of
clustering for the current cosmological models, i.e., the FR
model (solid line), the DPG (dashed line), and standard
�CDM (long dashed line) models and the fractional dif-
ference between the first (FR model) and each of the other

two models (insert panel). Notice that in order to produce
the curves we utilize �m0 ¼ 0:273. The general behavior
of the functional form of the FR growth rate is an inter-
mediate case between the DGP and �CDM growth rates.
In Fig. 2 we show the growth factor evolution, which is

derived by integrating Eq. (4.4), for the FR cosmological
model. In the insert panel of Fig. 2 we plot the fractional
difference between the different models, similarly to
Fig. 1, but now for the growth factor. Obviously, the growth
factor of the flat FR model is slightly different [ 	D

DFR
ð%Þ �

0:1–2%] from the one provided by the conventional
flat DGP cosmology. Concering the �CDM model,
the expected differences are small at low redshifts, but
become gradually larger for z � 1, reaching variations up
to �� 15% at z� 3.
We would like to end this section with a brief discussion

about the observational consequences of the FR model.
Since the flat FR model shares exactly the same Hubble
parameter with the flat DGPmodel, this implies that the flat
FR model inherits all the merits and demerits of the flat
DGP gravity model. Thus, it becomes obvious that the FR
model is under observational pressure when we compare
against the background cosmological data (SNIa, BAO,
CMB shift parameter). We would like to mention that the
FR model is in agreement with the SNIa data [6] (a similar
situation holds also for the DGP; see Sec. II). As far as the
ISWeffect is concerned the situation is almost the same. In
particular, the dependence of the ISW effect on the differ-
ent cosmologies enters through the different behavior of
DðaÞ (the growth factor), which is affected by �, and of
HðaÞ [see Eq. (14.16) in Ref. [22]]. Taking the above
arguments into account—namely, the same HðaÞ and a
very small difference in DðaÞ [see insert panel of
Fig. 2]—we conclude that both flat FR and DGP models
predict almost the same ISW effect, which of course is in
disagreement with the ISW observational data. It is how-
ever possible to derive an extended version of the FR
model free from the observational problems by including
additional terms of the Finslerian metric f�� in the

z

FIG. 1. The evolution of the growth rate of clustering fðzÞ. The
lines correspond to the following models: FR (solid), DGP
(dashed), and �CDM (long dashed). In the insert panel we
present the corresponding fractional difference of the DGP
(dashed line) and �CDM (long dashed line) models with respect
to the FR model. To produce the curves we use �m0 ¼ 0:273.

z

FIG. 2. The evolution of the growth factor, with that corre-
sponding to the FR model (�FR ¼ 9=14) showing a �0:1–2%
difference with respect to that of the DGP model (�DGP ¼
11=16), especially at large redshifts (z � 1). Notice that the
growth factor is normalized to unity at the present time.
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modified Friedmann equation. Such an analysis is in
progress and will be published elsewhere.

V. CONCLUSIONS

In this paper we compared the Finsler-Randers
(FR) space-time against the DGP gravity model. To our
surprise, we found that the flat FR space-time is perfectly
equivalent to the cosmic expansion history of the flat DGP
cosmological model, despite the fact that the two models
live in a completely different geometrical background.
At the perturbative level we studied the linear growth

of matter perturbations, and it was found that the FR
growth index is �FR ’ 9=14, which is almost �7% less
than the theoretically predicted value of the DGP gravity
model, �DGP ’ 11=16. The latter implies that the growth
factor of the flat FR model is slightly different (� 0:1–2%)
from the one provided by the conventional flat DGP
cosmology.
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