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We assess the detectability of the gravitational wave signals from highly eccentric compact binaries. We

use a simple model for the inspiral, merger, and ringdown of these systems. The model is based on

mapping the binary to an effective single black hole system described by a Kerr metric, thereby including

certain relativistic effects such as zoom-whirl-type behavior. The resultant geodesics source quadrupolar

radiation and, in turn, are evolved under its dissipative effects. At the light ring, we attach a merger model

that was previously developed for quasicircular mergers but also performs well for eccentric mergers with

little modification. We apply this model to determine the detectability of these sources for initial,

Enhanced, and Advanced laser interferometer gravitational-wave observatory across the parameter space

of nonspinning close capture compact binaries. We conclude that, should these systems exist in nature, the

vast majority will be missed by conventional burst searches or by quasicircular waveform templates in the

advanced detector era. Other methods, such as eccentric templates or, more practically, a stacked excess

power search, must be developed to avoid losing these sources. These systems would also have been

missed frequently in the initial laser interferometer gravitational-wave observatory data analysis. Thus,

previous null coincidence results with detected gamma-ray bursts cannot exclude the possibility of

coincident gravitational wave signals from eccentric binaries.
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I. INTRODUCTION

In dense stellar regions, such as galactic nuclei or globular
clusters, individual black holes (BHs) or neutrons stars (NSs)
can become gravitationally bound as energy is lost to gravi-
tational radiation during a close passage. These dynamically
captured pairs may be additional sources for gravitational
wave (GW) detectors, as well as sources of electromagnetic
(EM) transients such as short gamma-ray bursts (SGRBs).
Eccentric pairs will be distinguishable from quasicircular
coeval binaries, which are born in a bound system and have
had time to circularize before reaching the sensitive band-
widths of ground-based GW observatories such as laser
interferometer gravitational-wave observatory (LIGO) [1],
VIRGO [2], GEO600 [3], and KAGRA (LCGT) [4].

The primary purpose of this paper is to study the detect-
ability of sources that retain eccentricity while in the LIGO
band (for simplicity, we only employ LIGO sensitivity
curves). Before getting into the details of our model and
results, we briefly review current event rate estimates,
high-eccentricity population fractions, possible EM coun-
terparts, and the GW detectability of dynamically captured
compact objects.

A. Event rates

Galactic nuclei are a promising setting for the formation
of dynamical capture binaries. Mass segregation around a

central massive BH can lead to large densities of stellar
mass BHs and stars. For example, the Fokker-Planck model
used in Ref. [5] suggests that our galactic nucleus should
have �2000 BHs and �400 NSs in the central 0.1 pc. In
Refs. [6,7], the event rate for the formation of BH-BH
binaries from GW capture in this setting was estimated
to be roughly between 0.01 and 1:0 yr�1 Gpc�3, with
corresponding Advanced LIGO detection rates of
� 1� 102 yr�1. This rate assumes that the number density
n of BHs in galactic nuclei has a scatter with hn2i=hni2 ¼
30. Assuming no scatter would reduce the above rate by a
factor of 30. This also assumes a number density of
contributing galaxies of 0:05 Mpc�3; i.e., it includes all
galaxies as contributing roughly equally. Lower mass gal-
axies are not as well understood, though if a significant
number of them have total cluster mass fractions above the
2.5% used in the aforementioned calculation, this rate
would increase. Other unaccounted for effects, such as
steeper profiles from light-dominated mass functions [8],
could also potentially increase this rate. The formation of
BH-NS binaries is estimated to be �1% of this rate [6].
Dynamical capture binaries may also form in globular

clusters (GCs) that undergo core collapse [9,10]. In
Ref. [11] binary formation through tidal capture was
studied. Using M15 as a prototypical GC, it was calculated
that the NS-NS tidal capture rate would peak at
�50 yr�1 Gpc�3 at z ¼ 0:7 (falling to �30 yr�1 Gpc�3

by z ¼ 0) for their default model of core collapse. They
also provide a scaling to BH-NS and BH-BH mergers
which (assuming MBH ¼ 4:5M� and a relative fraction of

*weast@princeton.edu
†stmcwill@princeton.edu

PHYSICAL REVIEW D 87, 043004 (2013)

1550-7998=2013=87(4)=043004(17) 043004-1 � 2013 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.87.043004


BHs to NSs, fBH=fNS � 0:28) gives rates that peak at
�70 yr�1 Gpc�3 and �20 yr�1 Gpc�3 for BH-NS and
BH-BH mergers, respectively. This scaling does not
include complications due to BH ejection [12–16]. Also,
these calculations do not include the likely reduction in
compact object (CO) populations within the GC due to
natal kicks. In Ref. [17] it was found that including a 5%
NS retention fraction when fitting simulation results to
observations of M15, and assuming no central BH, reduced
the estimated number of NSs in the inner 0.2 pc by �1=4
compared to a similar study that did not include natal kicks
[18]. The calculated NS-NS merger rate is quite sensitive
to the fraction f of NSs in the core, scaling as �f2, which
means the aforementioned rates could be too large by an
order of magnitude if retention rates are this low. However,
observations suggest that in some GCs the NS retention
fraction could be as high as 20% [19]. Also, note that the
tidal capture cross section used in Ref. [11] is more than an
order of magnitude smaller than the GW capture cross
section (discussed in the following section) for compact
objects, and using the latter would increase the rates by the
same factor. In geometric units G ¼ c ¼ 1 (which, unless
otherwise stated, we use throughout), tidal capture is esti-
mated to occur in Ref. [11] for periapse values rp=M � 32,

25, and 13 for NS-NS, BH-NS, and BH-BH binaries,
respectively.

In Ref. [20] NS-NS binary formation in GCs via
exchange interactions was studied, giving a merger rate
of �2 yr�1 Gpc�3. A similar mechanism was explored in
Ref. [21] for BH-NS systems; the results depend sensi-
tively on the initial mass fraction of BHs, with more
massive BHs leading to higher event rates. For example,
models where the GC contained M ¼ 35� BHs lead to
advanced LIGO detection rates of 0:04–0:7 yr�1. Though
in contrast to tidal or GW capture discussed in the previous
paragraph, the mechanisms looked at in both these studies
typically produce binaries with periods of 0.1 days or
longer, and they will effectively circularize before entering
the LIGO band.

There is also the possibility that eccentric mergers could
result from hierarchical triples through the Kozai mecha-
nism. This has been suggested to occur in BH-BH mergers
in GCs [16,22,23] and CO mergers around supermassive
BHs in galactic nuclei [24], as well as in coeval or dy-
namically formed BH-NS or NS-NS binaries [25]. Though
the dynamics of these systems will be different from those
studied here, they could be similar at late times. Efforts to
understand this mechanism in the general-relativistic
regime are ongoing (see e.g., Ref. [26]), and the event rates
of these systems are not well known (though see Ref. [27]).

B. Cross sections and high-eccentricity fractions

We focus on mergers with initial periapse rp & 10M,

where M is the total mass, making this study complemen-
tary to previous studies [6,7]. As we show later, in this

regime essentially all mergers occur with non-negligible
eccentricity (e * 0:2). This is also the regime where
strong-field effects such as black hole spin and zoom-whirl
behavior can influence the dynamics. To estimate the
fraction of dynamical capture binaries that retain high
eccentricity, we can use Newtonian dynamics with quad-
rupolar energy loss following Refs. [28–30]. First, for a
hyperbolic orbit with a small velocity at infinity v � 1, the
relationship between impact parameter b and rp is rp �
b2v2=2M. In other words, the cross section � / b2 scales
linearly with rp. The maximum pericenter passage that

leads to a bound system through gravitational radiation

loss1 is rp;m � ð31�Þ2=7v�4=7M, where � ¼ m1m2=M
2 ¼

q=ð1þ qÞ2 is the symmetric mass ratio, with q the mass
ratio. For a galactic nuclear cluster where v � 1000 km=s,
between 20% and 30% of dynamical capture binaries
(where the range is from q ¼ 1 to q ¼ 0:1) will have
rp=M < 10; for a globular cluster with v � 10 km=s,

this drops to 1.5%–2.0%.
Although we focus on those with small initial periapse,

all dynamical capture binaries will have a repeated burst
phase [7]. For a large fraction of expected binary masses
the repeated bursts will be within the Advanced LIGO

band. The burst frequency is �b � r�1
p ðrp=MÞ�1=2; the

lowest frequency occurs at rp ¼ rp;m, which ranges from

ð1–100 HzÞ=M10 for q ¼ 0:1 encounters in globular
clusters to q ¼ 1 encounters in nuclear clusters, with
M10 ¼ M=10M�. To estimate the percentage of systems
that will end with a low-eccentricity inspiral phase, if the
initial periapse is rp;i, and we consider the repeated burst

phase to end at a periapse of rp;f with eccentricity ef, from

Ref. [29] rp;i � 0:57rp;fð1þ efÞe�12=19
f ½1þOðe2fÞ�. For

example, if a binary with ef < 0:1 by rp;f ¼ 10M can be

considered to have a low-eccentricity inspiral phase, then
this corresponds to all systems with rp;i > 27M. For

nuclear clusters, this is between 20% and 40% for
q ¼ 1� 0:1, while the corresponding range for globular
clusters is 94%–96%.

C. Electromagnetic counterparts

Binary NS or BH-NS mergers are thought to be progen-
itors for SGRBs, and may also source a number of other
EM transients [31,32]. Possibilities include optical/UV
emission on time scales of a day from radioactive decay
of ejected material. (This depends on heavy element opac-
ities. Recent work using more detailed calculations sug-
gests the time scale may be up to a week with emission

1As mentioned earlier, for the COs considered here, energy
lost to tidal effects is much less than GW emission at these
separations, so the latter process determines the cross section.
Also, when a bound system is formed, the fraction that has a
semimajor axis large enough to have the binary tidally unbound
by a subsequent interaction with the surrounding cluster poten-
tial is insignificant.
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peaking in the IR [33]). Interaction of the outflow with
surrounding matter can also produce radio emission on
time scales of weeks to years [34]. And, for binary NS
mergers, the strong shocks produced can emit in radio to
x rays over a second to day time scales [35].

Simulations of eccentric BH-NS and NS-NS mergers
have shown a rich variation in outcome with impact pa-
rameter, with the possibility of large accretion disks as well
as ejecta that could undergo the r process [11,36–39].
There is also significant variability in observed SGRBs.
It is not implausible that this may in part be due to a
subclass of SGRBs associated with dynamical capture
binaries. Though not conclusive, there is also observational
evidence for multiple SGRB progenitors. Of SGRBs with
identified host galaxies, �25% have offsets of * 15 kpc
from their hosts [40], which would be consistent with
kicked, primordially formed binary COs or with dynami-
cally formed binaries in globular clusters. The latter may
be preferred for the largest offsets [41], especially if
primordial binary COs experience weak kicks [42]. X-ray
afterglows suggest that different progenitors may be re-
sponsible for SGRBs with and without extended emission
[43]; simulations of dynamical capture binaries show that
it is more common to get long tidal tails, which could lead
to extended emission as the material falls back to the
accretion disk. There is also a claim that a high-energy
gamma-ray source observed in Terzan 5 may be the rem-
nant of a binary CO merger-powered SGRB [44]; if true,
this provides evidence that dense cluster environments can
be significant sources of binary CO mergers.

The time scales between close encounters in eccentric
mergers may also explain observed delays between pre-
cursors and SGRBs [45]. For example, NS crust cracking
on a nonmerging close encounter could potentially cause
flares that precede the merger by an interval ranging from
milliseconds to possibly a few seconds [38].

D. Gravitational wave detectability

Multimessenger exploration is of course an exciting
possibility. Even a null GW detection provides astronomi-
cal information as it rules out compact object mergers as
the source of an observed GRB, but only if the detectability
of these types of signals is understood. Given the disparate
nature of the waves from dynamical capture versus coeval
mergers, data analysis methods designed specifically for
each are required for this kind of astronomy. Methods to
search for quasicircular inspiral (of relevance to the major-
ity of coeval binaries, and a subset of dynamical capture
binaries that form with a sufficiently large periapse to
circularize before merger) have been the predominant
focus of the GW community over the past decades [46].
Comparatively, there is a dearth of studies on the detect-
ability of highly eccentric mergers (though see Ref. [47]
for a recent study of the efficacy of quasi-circular templates
to detect lower eccentricity NS binaries). In Ref. [48] the

single burst from a parabolic close encounter was studied,
while [6] included the additional signal provided by sub-
sequent bursts. This repeated burst phase was studied in
Ref. [7] using 2.5 and 3.5 order post-Newtonian (PN)
equations of motion. It was found that GWs from this
phase may be detectable by Advanced LIGO out to 200–
300 Mpc for BH-NS binaries and 300–600 Mpc for BH-
BH binaries. Since the PN approximations begin to break
down close to merger, the evolution was only followed to
rp ¼ 10M. To model the last stages of merger requires

numerical relativity (NR), and there have been a number of
numerical studies of eccentric mergers [36–38,49–54].
However, because of the computational expense of these
simulations, it is not possible with current computer resour-
ces to follow high-eccentricity binaries through multiple
close encounters. The challenge is compounded by a large
parameter space, including the impact parameter, mass
ratio, BH spin, and NS equation of state. It is thus not
reasonable to expect that brute-force numerical simulations
will be able to provide templates before the Advanced
LIGO era, even accounting for expected increases in com-
puter power.

E. Outline of remainder of paper

To begin to bridge the gap between large periapse PN
solutions and late-time numerical solutions, we introduce a
model for the inspiral, merger, and ringdown of dynamical
capture compact binaries. This model is based on geodesic
equations of motion in an effective Kerr spacetime, com-
bined with quadrupole radiation (Sec. II A) and a version of
the Implicit Rotating Source (IRS) model [55,56] for the
merger and ringdown parts of the GW signal (Sec. II C).
(Except for the IRS extension, and the comparable masses,
our hybrid is reminiscent of the ‘‘kludge’’ introduced to
study extreme mass ratio inspirals [57–60], based in part on
the ‘‘semirelativistic’’ approach of Ref. [61].) We validate
this model through a comparison to full numerical simu-
lations in the strong-field regime (Sec. II B) and to the PN
approximation for rp > 10M (Sec. II D).

The waveforms we produce here are likely not accurate
enough for optimal template-based detection of multiple-
burst events. Indeed, creating improved accuracy wave-
forms will probably require a different approach, for
example, using the effective one body (EOB) formalism
which has recently been extended to generic orbits [62] and
calibrating it using full numerical simulations. However,
our waveforms capture the relevant features with sufficient
faithfulness that we can use them to assess the efficacy of
existing LIGO search strategies. We can also use our
waveforms to investigate new search strategies that may
be better suited to highly eccentric mergers. In Sec. III we
use this model to evaluate how well these GW signals
could be seen with each generation of the LIGO detectors,
varying impact parameter (equivalently rp), total mass, and

mass ratio. We use various analysis methods: matched
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filtering with the model templates, filtering with ringdown
templates, and a burst search with sine-Gaussian templates.
We also estimate how well a hypothetical search using
incoherent stacking of bursts following Ref. [63] would
perform. Though not as optimal as matched filtering,
stacking is likely more robust to timing uncertainties in
the burst sequence. We find that if capture binaries do exist,
in many cases their GW signals will be missed by single-
burst or ringdown searches (and, as we argue, quasicircular
templates), whereas these sources would be detectable with
a full template or a stacked burst search. In particular,
GRB051103 [64] had a measured distance of 3.6 Mpc,
and no coincident GW signal was found using traditional
searches [65,66]. However, there is a sizable region of the
parameter space of dynamical capture binaries that existing
searches would have missed. The possibility that the GRB
was preceded by an eccentric merger remains a viable
possibility.

In Sec. IV we make concluding remarks and comment
on the direction of future work.

II. WAVEFORM MODEL

In this section we describe our model for high-
eccentricity merger waveforms. We first look at the inspiral
phase in Sec. II A, which can be considered a sequence of
GW bursts, each generated at a periapse passage. In
Sec. II B we compare the model expressions we use for
the bursts to full numerical simulations. In Sec. II C we
discuss the IRS model for the merger and ringdown phase,
and in Sec. II D we present examples of the full signal and
make further comparisons to PN results for the inspiral
phase.

A. Repeated burst phase

Our objective here is to model the GW signal from an
eccentric binary that passes through a series of close
encounters prior to merger. To this end, we use a prescrip-
tion based on the equations of motion of a geodesic in a
Kerr spacetime, coupled with the quadrupole formula for
gravitational radiation. We identify the mass and total
angular momentum of the binary with the mass and spin
parameters of the effective Kerr spacetime and the orbital
angular momentum and energy with that of the geodesics.
This approach has the advantage of reproducing the correct
orbital dynamics in the Newtonian limit and general-
relativistic test particle limit, while still incorporating
strong-field phenomena such as pericenter precession,
frame dragging, and the existence of unstable orbits and
related zoom-whirl dynamics. For simplicity, in this first
study we restrict our attention to equatorial orbits and, for
the most part, nonspinning BHs (we compare the IRS
model to a merger involving a spinning BH in Sec. II C).

The equations for an equatorial geodesic in a Kerr space-
time with massM and dimensionless spin a can be written
in first order form using Boyer-Lindquist coordinates as

_� ¼ �
~ER2

0 � 2M2a ~L=r
� Q;

_� ¼ 1

R2
0

½ ~LQþ 2M2a=r� � �;

_r ¼ �QPr=r
2;

_Pr ¼ 1

r2Q
½�2ðr3 �M3a2Þ þMð2Ma�� 1Þ�

þ P2
rQ

r3
½M2a2 �Mr�; (1)

where R0 ¼ r2 þ 2M3a2=rþM2a2, � ¼ r2 � 2Mrþ
M2a2, Pr ¼ r2 _r=ð�QÞ, � is proper time, and the overdot
indicates a derivative with respect to the coordinate time.
Here ~E and ~L are the energy and angular momentum of the
geodesic.
In order to apply these equations to a binary system we

go to the center-of-mass frame and let r be the separation
between the objects. Then we identify the geodesic
parameters ~E and ~L with the reduced energy and angular
momentum of the system and promote these quantities to
time-dependent variables. To determine the amount of
energy and angular momentum radiated away to gravita-
tional waves, we use the quadrupole formula

_~E ¼ ��

5
I
:::
ijI
:::
ij

_~L ¼ � 2�

5
�zij €I ikI

:::
jk; (2)

where� is the reduced mass, I ij is the reduced quadrupole

moment, and €I ij and I
:::
ij are written in terms of the

variables fr;�; Pr; ~E; ~Lg using (1). We set M in (1) to the
total mass (neglecting orbital energy contributions), and
we set a ¼ � ~L=M2 þ aBH, where aBH is the net spin of
any BHs (though again for this study we focus on non-
spinning BHs, where aBH ¼ 0). The use of an effective
spinning BH spacetime based on total angular momentum
is motivated by Ref. [49], where it was found that
the properties of zoom-whirl-like dynamics exhibited in
equal mass mergers in full numerical relativity are better
approximated by geodesics on the effective Kerr spacetime
than Schwarzschild spacetime, and it differs from the EOB
approach which uses deformations of the Schwarzschild
metric for the merger of nonspinning objects [67]. We note
that when the orbital angular momentum is large we will
have a > 1. However, this will occur only when the sepa-
ration r is also large, so general-relativistic effects are
small, and no unusual behavior arises from exceeding the
Kerr limit. We numerically integrate the coupled set of
equations (1) and (2).
The remaining element is to calculate the observed

gravitational radiation, which will depend on the intrinsic
source parameters (i.e., the mass, mass ratio, eccentricity,
and initial periapse distance), and will also vary with sky
location and relative orientation of the source to the detec-
tor. At linear order and in the transverse traceless gauge,
the complex gravitational wave strain hopt a distance d
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from an optimally oriented source is simply related to
changes in the quadrupole moment through

hopt � h
opt
þ þ ih

opt
	 � 2

d
ð €Ixx þ i €IyxÞ: (3)

For general orientations, the emitted strain can be repre-
sented through a mode decomposition as

�h�hþþ ih	¼X1
‘¼2

X‘
m¼�‘

h‘mðt;dÞ�2Y‘mð�;�Þ; (4)

where �2Y‘m are the spherical harmonics of spin weight

�2 [68], and � and� are the polar and azimuthal angles of
orientation, respectively. For the comparable mass, non-
spinning systems that we are primarily interested in, the
quadrupole (i.e., ‘ ¼ 2, m ¼ 
2) component dominates
the strain, so that

�h � h22ðt; dÞ�2Y22ð�;�Þ þ h2�2ðt; dÞ�2Y2�2ð�;�Þ: (5)

This completes the approach for calculating the source
waveform that reaches a detector. In a later section we
will include the sensitivity of the detector in the analysis.

B. Comparison to fully general-relativistic
numerical simulations

To provide some validation for this model we compare
several waveforms of single high-eccentricity fly-by
encounters from full general-relativistic numerical simula-
tions to those obtained from the geodesic equation with the
quadrupole formula. The simulations include a 4:1 mass
ratio BH-NS system [37], an equal mass NS-NS system
[38], and an equal mass BH-BH system. The NR simula-
tions were all performed using the code described in
Ref. [69].
In Fig. 1 we show several such examples from NR

simulations of the 4:1 BH-NS system alongside corre-
sponding waveforms from our model with best-fit parame-
ters. The peak amplitude of the geodesic is scaled to be the
same as in the simulations. The fit is performed by finding
the initial orbital parameters that maximize the phase over-
lap between the waveforms (see e.g., Ref. [70]). In this
regime the match between the waveforms is most sensitive
to rp as opposed to e. As can be seen, the fly-by waveforms

from our model provide a good match to those from
simulations. Even close to the effective innermost stable
orbit for the BH-NS system (the bottom panels of Fig. 1),
where the system begins to show evidence of whirling
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FIG. 1 (color online). Comparison of the ‘ ¼ 2, m ¼ 2 component of �h for fly-by waveforms from 4:1 BH-NS simulations (solid
line) and our model with best-fit periapse distance (dashed line). The approximate effective geodesic orbital parameters of the
simulated system (left to right, top to bottom) are ðrp; eÞ ¼ ð8:3; 1:0Þ, (8.0, 0.8), (5.6, 1.0), and (5.0, 1.0). The fit parameters are given in

Table I.
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behavior, our model is able to approximately capture the
shape of the waveform.

In Table I we give the fit parameters, amplitude enhance-
ment, and overlap. We also show the approximate initial
orbital parameters (rp and e) of the simulation obtained by

equating a Newtonian estimate of the reduced orbital
energy and angular momentum at the beginning of the
simulation with the ~E and ~L parameters of the geodesic
model described above. (Note, this is different from the
Newtonian values for rp and e used in Refs. [37,38].) For

most of the BH-NS systems in Table I we can see that the
enhancement required to match the amplitude of our model
to the simulation results is �4%–11%. This is presumably
due to aspects not captured by this simple model, such as
finite-size effects, as well as truncation error from the
simulations. The one case where the amplitude of the
simulation waveform was below the model result was
a simulation with strong whirling behavior (bottom-right
panel of Fig. 1) where the NS had large f-mode oscilla-
tions excited as described in Ref. [37].

We also compare the geodesic model with an equal mass
BH-BH and an equal mass NS-NS system as shown in
Fig. 2. Although one would expect a geodesic approxima-
tion to be most accurate in the limit that one mass is much
larger than the other, it still provides good fits for equal
masses. This model, however, does not attempt to include
finite-size effects (such as the f-mode excitation visible in
the latter part of the bottom of Fig. 2), which would be
required to address questions related to measuring the NS
equation of state from such GW signals.

C. Merger model

After a binary has evolved through some number of
close encounters, it will merge. In order to include the
waveforms resulting from merger, we supplement the
model outlined in Sec. II Awith a version of the IRS model
[55,56] for the merger and ringdown part of the GW signal.

Note that the IRS assumes the waveform is circularly
polarized. This is not strictly valid for the complete
merger-ringdown phase of eccentric binaries, though as
we show below, it does provide a reasonably good approxi-
mation to results from numerical simulations. As with
other aspects of our waveform model, this assumption
could be refined in the future, but it is adequate for the
purpose of testing the efficacy of existing search strategies
for detecting eccentric binaries.
In particular, we model the phase evolution to asymp-

totically approach the least damped quasinormal mode
frequency of the final BH, !QNM, via

!ðtÞ ¼ !QNMð1� f̂Þ; (6)

where

f̂ ¼ c

2

�
1þ 1

	

�
1þ	

�
1�

�
1þ 1

	
e�2t=b

��	
�
: (7)

TABLE I. Fit parameters for close-encounter GWs.

Simulationa Fitb

Binary rp e rp e Ac Overlapd

NS-BH 8.30 1.00 8.77 1.00 1.04 0.99

NS-BH 8.00 0.80 7.97 0.81 1.11 0.98

NS-BH 5.62 1.00 5.61 1.00 1.11 0.97

NS-BH 5.04 1.00 4.26 1.00 0.61 0.74

BH-BH 8.71 1.00 8.23 1.00 1.16 0.99

NS-NS 8.71 1.00 7.82 1.00 1.28 0.96

aApproximate initial parameters of the geodesic model based on
the initial orbital energy and angular momentum of the
simulation.
bInitial parameters of the geodesic model that best fit the
simulation data.
cAmplitude enhancement applied to the waveform from the best-
fit geodesic model.
dOverlap between simulation and the best-fit geodesic model.
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FIG. 2 (color online). Comparison of the ‘ ¼ 2, m ¼ 2 com-
ponent of �h for fly-by waveforms from equal mass BH-BH (top
panel) and NS-NS (bottom panel) simulations (solid lines) and
our model (dotted lines) with best-fit parameters. The approxi-
mate effective geodesic orbital parameters of the simulated
systems are ðrp; eÞ ¼ ð8:7; 1:0Þ for both cases. The fit parameters

are given in Table I. The feature in the waveform after the peak
in the NS-NS simulation is from f-mode excitation that occurs
during the close encounter.
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Here b ¼ 2Q=!QNM is determined by the quality factor

and frequency of the final BH, and 	 and c are free
parameters of the model. The amplitude is given, up to
an overall factor A0, by

A ¼ A0

!ðtÞ
� j _̂fj
1þ 
ðf̂2 � f̂4Þ

�
1=2

; (8)

where
_̂f ¼ df̂=dt, and 
 is a free parameter. We find that


 ¼ 72:3=Q2 provides a reasonably good fit to our
numerical simulations.

In Fig. 3 we show a comparison between simulation
results of BH-NS mergers and the best-match IRS model
waveforms, where we let 	 and c be fitting parameters. In
Fig. 4 we show the same thing for equal mass NS-NS
and BH-BH mergers. This simple model will not capture

disruption or other matter effects, and best-fit values for 	
and c will have some dependence on the parameters of the
binary, such as the impact parameter preceding merger.
However, when studying signal detectability we fix
	 ¼ 0:64 and c ¼ 0:26, which empirically provides rea-
sonably good fits to a large number of simulated wave-
forms, and therefore provides an adequate representation
of a generic eccentric merger. We attach the IRS part of the
waveform to the model from Sec. II Awhen the separation
reaches the light ring of the effective Kerr spacetime.

D. Model properties and comparison
to post-Newtonian

Combining the inspiral and merger models allows us
to generate complete waveforms for dynamical capture
binaries. In Fig. 5 we show one such example for a
4:1 mass ratio system with initial orbital parameters
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FIG. 3 (color online). Comparison of the merger GW strain
from a 4:1 BH-NS simulation (solid lines) and the IRS model
(dotted lines) with best-fit parameters. The top panel shows a
case where the initial BH was nonspinning. The bottom panel
shows a case with aBH ¼ 0:5, which results in more whirling
behavior and tidal disruption of the NS. The best-fit parameters
in (7) are ð	; cÞ ¼ ð0:66; 0:28Þ (top) and (0.46, 0.18) (bottom),
and the matches are 0.98 and 0.96, respectively. The match is
weighted based on the ‘‘whitened’’ waveforms as described in
Sec. III assuming a total mass of 10M�.
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FIG. 4 (color online). Comparison of merger waveforms from
an equal mass BH-BH simulation (top panel) and NS-NS simu-
lation that forms a BH (bottom panel) with the IRS model
(dotted lines) with best-fit parameters. The best-fit parameters in
(7) are ð	; cÞ ¼ ð0:31; 0:03Þ (top) and (0.36, 0.19) (bottom), and
the matches are 0.98 and 0.97, respectively. The match is
weighted based on the ‘‘whitened’’ waveforms as described in
Sec. III assuming a total mass of 20M� and 2:8M� for the
BH-BH and NS-NS binaries, respectively.
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corresponding to rp ¼ 8M and e ¼ 1. The waveform

shows the decreasing time interval between bursts from
close encounters as rp and e decrease due to gravitational

radiation. The number and timing of the bursts is a sensi-
tive function of the amount of energy and angular momen-
tum radiated in each close encounter. In Fig. 6 we show
how rp and e evolve according to this model for some

example binaries. It can be seen that the binaries consid-
ered here, which begin on parabolic orbits with rp � 10M,

still have non-negligible eccentricity all the way to merger.
We can also compare this model to that given by the 2.5

and 3.5 order PN approximation as used in Ref. [7]. In
Fig. 7 we show how the difference in the energy and
angular momentum radiated away in a close encounter
for 2.5 or 3.5 PN relative to our model changes with the
initial impact parameter. The geodesic model predicts less
energy and momentum loss than 2.5 PN but more than the
3.5 PN. At large impact parameters the three different
models converge. At smaller impact parameters the 2.5
and 3.5 PN approximations begin to diverge. As shown
in Ref. [71], the PN approximation fails to converge
(or even to provide physically sensible results in the case
of 3.5 PN) for rp & 10M.
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FIG. 5 (color online). GW strain generated with our model and
initial conditions rp ¼ 8M and e ¼ 1. The top panel shows the

entire waveform, while the bottom panel shows a zoomed-in
view of the end of the waveform.
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FIG. 6 (color online). Evolution of orbital parameters for a 4:1
(top panel) and an equal mass ratio (bottom panel) binary. The
effective eccentricity is calculated from successive apoapse and
periapse distances as e ¼ ðra � rpÞ=ðra þ rpÞ.
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FIG. 7 (color online). Relative difference in energy and angu-
lar momentum lost in a close encounter for the 2.5 and 3.5 PN
approximations versus our model. For this comparison the orbits
are chosen to initially have zero energy and the same value of
angular momentum which, for a geodesic with the same initial
conditions, corresponds to the value of rp indicated on the x axis.
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The gravitational wave model we have outlined in this
section is relatively simple and could be improved upon
by, for example, adding more sophisticated conservative
dynamics, including finite-size effects for NSs, as well as
going beyond the quadrupole approximation in determin-
ing gravitational radiation. However, given the decent
match between this model and the full numerical simula-
tions, as well as its consistency with the PN approximation
as described above, it can be used to investigate issues of
detectability, as we do in the next section.

III. DETECTABILITY

A. Detector modeling

Having developed a model for the gravitational wave-
forms emitted by high-eccentricity binaries, we can now
assess the detectability of these signals for different source
parameters and detectors. The measured strain h is
given by

h ¼ <½F �h� ¼ Fþhþ þ F	h	; (9)

where F � Fþ � iF	 is the sky-dependent detector
response. The signal-to-noise ratio (SNR) � using a per-
fectly matched filter is given by

�2 ¼ hhjhi; (10)

where h�j�i denotes a noise-weighted inner product
given by

hh1jh2i � 2
Z 1

0
df

~h�1 ~h2 þ ~h1 ~h
�
2

Sn
; (11)

where SnðfÞ is the power spectral density of the detector

noise, and ~h denotes the Fourier transform of the original h
time series. Because we limit our model to the quadrupole
component of the signal, and we focus on detectors (like
LIGO) for which the gravitational wavelength is much
longer than the detector’s armlength, we can trivially relate
the SNR of an optimally oriented and located source to the
SNR of an orientation- and sky-location-averaged source.
For such detectors, the response function to the two
waveform polarizations, Fþ and F	, is simply the root-
mean-squared (rms) average over the sky location and

polarization angles,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hF2þ;	i

q
¼ ffiffiffiffiffiffiffiffi

1=5
p

[72]. Likewise, the

rms average over source orientations is
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h�2Y2;
2i

q
¼ffiffiffiffiffiffiffiffi

1=5
p

, so that
ffiffiffiffiffiffiffiffiffih�2ip ¼ �opt=5. We can further define the

characteristic strain hc for both the signal and detector
noise. Given Eq. (11) and the typical practice of plotting
sensitivity curves logarithmically, it is useful to define

hc �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h�2Y2;
2i

q
f~hopt for signals and hc �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fSn=hF2ip

for detector noise, so that both signal and noise are char-
acterized as a dimensionless strain, and the ratio of
signal-hc to noise-hc is the square root of the integrand
for �2 when integrated over logarithmic frequency

intervals df=f. We show this characterization of signal
and noise in Fig. 8.
For assessing the relative contribution of different wave-

form segments to the SNR, it is often convenient to work in
the time domain by constructing ‘‘whitened’’ waveforms
[73], which weight the amplitude of the waveform as a
function of frequency to account for the presence of noise
in the detector,

h0 ¼
Z þ1

�1
df

~hffiffiffiffiffi
Sn

p e�i2�ft: (12)
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FIG. 8 (color online). The characteristic strain hc is shown for
the initial (thin dash-dotted line), Enhanced (dash-dotted line),
and Advanced LIGO (solid line) detectors, as well as for two
example signals at DL ¼ 1 Gpc. The first signal corresponds to
an orientation-averaged source with M ¼ 100M�, q ¼ 1, and
rp ¼ 5M (dashed line), and the second signal is from a source

with M ¼ 10M�, q ¼ 0:1, and rp ¼ 10M (dotted line). Both

signal spectra are smoothed to diminish fluctuations and make
the trend more clear. The system with q ¼ 0:1 has little con-
tribution from the merger, so the repeated burst phase dominates
the spectra, with hc /� f, whereas the q ¼ 1 system signal
comes largely from the merger, where hc � constant over a
small band of frequencies.
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FIG. 9 (color online). Whitened waveforms for a 10M� (top
panel) and a 100M� (bottom panel) binary with initial e ¼ 1 and
rp ¼ 5M, along with the (whitened) best-fit template among

sine-Gaussian and ringdown templates.
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With these whitened vectors, the noise-weighted inner
product (11) can be reexpressed in the time domain:

hh1jh2i �
Z 1

�1
dth0�1 ðtÞh02ðtÞ: (13)

Figure 9 shows portions of the whitened waveform for two
example cases with the same mass ratio and initial rp and

e, but different masses. The upper panel shows the burst
with the largest SNR contribution for a source with total
mass M ¼ 10M�, while the lower panel shows the loudest
burst for M ¼ 100M�. The different masses change the
frequency of the signal, so different bursts are emphasized
by the detector sensitivity; in particular, for larger masses
the final burst and merger are emphasized. We also show
best fits for two types of templates that are described
below.

B. Templates and detection strategies

While quasicircular sources are searched for using
matched filtering, eccentric systems are far more suscep-
tible to modeling errors in the relative timing and phase of
signal bursts, which is why we focus our attention on
alternative approaches to detection. For example, a small
modeling error in the energy lost during a particular
periapse passage 
E will induce a timing error in the

arrival time of the subsequent burst 
T given by 
T /

Eð1� eÞ�5=2. Therefore, dynamical capture binaries are
far more challenging to model with sufficient accuracy to
apply matched filtering due to their large eccentricities.

We assess detection prospects of GWs from capture
binaries for two currently used templates, sine-Gaussian
(SG) and ringdown (RD) templates, as well as an ideal-
ization of a third strategy based on combining an excess
power search with stacking. The SG and RD both take
the form

�h ¼ A exp

�
�
�
t� to
�

�
� þ i!ðt� toÞ � i�o

�
; (14)

where � ¼ 1 and t 
 to for the RD templates, and � ¼ 2
with �1< t <1 for the SG templates. Here A is the
overall amplitude, to and �o are the time and phase of
the template’s amplitude peak, � sets the e-folding of the
amplitude, and ! is the constant frequency.

In addition to assessing the performance of two burst
templates, we calculate a rough approximation of the
potential performance for an excess power search that
accumulates power from the entire signal [63], which we
will call a power-stacking search. Here, the data would be
transformed to a time-frequency (TF) tiling using a basis
suitable for capturing individual bursts within a tile, and
then power from different tiles corresponding to bursts, as
informed by our model, would be combined. Whereas in
most existing TF searches an individual element must have
enough power to exceed some threshold, with that thresh-
old being large enough to avoid many false alarms, the

approach we describe does not require that the signal be
detectable in any single TF element. In the case of a
monochromatic signal, the SNR from optimal filtering

will accumulate with the number of cycles N as
ffiffiffiffi
N

p
, while

the excess power in stacking TF elements (constructed
using any basis) overlapping the given frequency will

accumulate as N1=4. The signals from high-eccentricity
binaries are not monochromatic, but given the typically
large number of bursts occurring in band, and the relative
flatness of both the source spectrum and the detector
sensitivity across its most sensitive band, we expect the
aforementioned scalings to hold approximately for realistic
signals.
This search would be very similar to the stacked search

proposed for combining potential GW counterparts to
observed electromagnetic signals from soft gamma repeat-
ers [63]. There, TF elements were aligned in time based on

the observed bursts, and they demonstrated the N1=4 SNR
scaling when adding power for identical injected signals.
Since we do not have a separate observational trigger, our
proposed search would sum power along elements over-
lapping bursts as indicated by our waveform model. We
leave it to future work to fully investigate this, though here

we assume we can achieve the N1=4 SNR scaling, and thus
can estimate the performance of a power-stacking search
by noting that optimal filtering should outperform power

stacking by N1=4. Hence, we can approximate the effective

excess power SNR as �EP � N�1=4�. This simple estimate
will constitute our third search technique in our subsequent
analysis.
We do not employ quasicircular (QC) templates,

although they have thus far been the only tool employed
to search for long-lived signals. QC templates will generi-
cally fail to match the performance of any of the above
methods for the repeated burst phase of eccentric sources
for the following reasons. First, during the long intervals
between eccentric bursts a QC template will still be inte-
grating power from the data, which is predominantly noise.
Specifically, the ratio of the characteristic time scale of an
eccentric burst to the period between bursts is roughly

�GW
T

� ð1� eÞ3=2: (15)

In other words, there will be �ð1� eÞ�3=2 additional
cycles between bursts in a QC signal with the same peri-
apse. Moreover, even if the QC template is phase aligned to
a particular burst, since the time between bursts is much
larger than the GW period, the rest of the template will
effectively have random phase alignment with other bursts
in the sequence and, on average, no additional SNR will be
acquired. To summarize, typically the best-matched QC
template will only integrate signal about the loudest burst,
but even so, the performance will not be as good as a
single-burst search due to the larger integrated noise accu-
mulated over the period of the QC template (expect for the
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higher mass systems where only the final merger/ringdown
signal is in band).

C. Results

We calculate two useful quantities related to the SNR:
the detectability horizon and the detection probability.
Since h / D�1

L , where DL is the luminosity distance, we
can use (10) to calculate the distance (which we call
the detection horizon) at which a sky- and orientation-
averaged source could be observed with a SNR of 8 using
optimal filtering. The detection probability for a given
strategy is simply the ratio of the volume in which the
strategy could detect a source with some SNR to the
volume in which the source could be seen with the same
SNR using optimal filtering. In the remainder of this
section, we will calculate these quantities for various cases
of interest. We consider the following configurations:

(1) three detector sensitivities, corresponding to initial,
Enhanced, and Advanced LIGO;

(2) three detection strategies, including SGs, RDs, and
power stacking, and how they compare to optimal
filtering;

(3) three intrinsic system parameters:
(a) total system mass M, ranging from 1M� to

2000M�;
(b) mass ratio q of the binary components, ranging

from 0.01 to 1;
(c) initial rp, ranging from 5M to 10M [with initial

e ¼ 1; we exclude rp < 5M simply because, in

most cases, it is a direct collision qualitatively
similar to rp ¼ 5 (see Ref. [7] for a study of

rp > 10M)].

In Fig. 10, we show contours of constant horizon distance
as a function of q and rp for initial LIGO, assuming optimal

filtering, SG templates, and power stacking. Two contours
of note, at 0.77 and 3.6 Mpc, correspond to the distances of
GRB070201 [74] and GRB051103 [64], respectively.
These were two nearby gamma-ray bursts observed by
Swift during the S5 initial LIGO run, while two interfer-
ometers were actively collecting data at or near initial
LIGO’s design sensitivity. However, no signal was found
in the LIGO data using the methods applied (specifically,
various burst and quasicircular inspiral templates) for these
GRBs, nor for any of the 137 GRBs (35 with measured
redshifts) that occurred while initial LIGO was taking
science data during its S5 run at or near design sensitivity
[65,66]. Thus, in Fig. 10 we restrict the mass ratio to the
range 0.1–1, with one of the masses fixed at 1:35M�, to
focus on systems including a neutron star that are expected
to generate GRBs. In the case of a dynamical capture binary
source at 0.77 Mpc, the signal is sufficiently loud that even
suboptimal searches like SG templates would detect them.
However, for a source at 3.6 Mpc, whereas an optimal filter
would have detected a signal from a large region of the
parameter space, including all cases with q < 0:5 or

rp > 7:5M, and power stacking would recover signals

with q < 0:4, SG templates are far less effective, and would
only recover a small sliver of parameter spacewith q < 0:2.
This suggests the possibility that the searches applied to the
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FIG. 10 (color online). Contours of horizon distance (� ¼ 8)
as a function of mass ratio q and pericenter separation rp for

initial LIGO using an optimal filter (top panel), sine-Gaussian
templates (middle panel), and an estimate of a power-stacking
search (bottom panel) as described in the text. We fix one
component to be a 1:35M� neutron star and change the total
mass with mass ratio accordingly. We include a contour at
DL ¼ 0:77 Mpc and another at 3.6 Mpc, to show the region of
parameter space where existing LIGO searches would not have
seen a gravitational wave counterpart to GRB070201 [74] and
GRB051103 [64], respectively.
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LIGO data would not have found the gravitational wave
counterpart to GRB051103 if it was in the form of a
dynamical capture binary. Furthermore, across the full
parameter space explored, the difference in performance
among these three searches is substantial, with optimal
filtering detecting sources as far as DL ¼ 50–100 Mpc,
while power stacking only reaches DL � 30 Mpc, and
SG templates only reach DL � 15 Mpc.

Figures 11 and 12 show, for Enhanced and Advanced
LIGO, respectively, contours of detection horizon as a

function of mass and mass ratio at a fixed rp ¼ 6M using

an optimal filter and SG and RD templates. The primary
difference in both cases is the degradation of performance
for higher mass ratios (smaller q), with the SG performing
as well as or better than the RD templates across much of
the parameter space, with the exception of comparable
mass ratios, where the ringdown signal is most emphasized.
For each search, Enhanced LIGO could detect an equal
mass binary with M ¼ 100M� out to DL ¼ 1 Gpc, and
Advanced LIGO will see the same sources beyond 10 Gpc.

10
0

10
1

10
2

10
−2

10
−1

10
0

1 3 10 30 100 300 1000

10
0

10
1

10
2

10
−2

10
−1

10
0

1 3 10 30 100 300 1000

10
0

10
1

10
2

10
−2

10
−1

10
0

1 3 10 30 100 300 1000

FIG. 11 (color online). Contours of horizon distance as a
function of rest mass M and mass ratio q for Enhanced LIGO
using an optimal filter (top panel), sine-Gaussian templates
(middle panel), and ringdown templates (bottom panel) for an
initial pericenter separation of rp ¼ 6M.
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FIG. 12 (color online). Contours of horizon distance as a
function of rest mass M and mass ratio q for Advanced LIGO
using an optimal filter (top panel), sine-Gaussian templates
(middle panel), and ringdown templates (bottom panel) for an
initial pericenter separation of rp ¼ 6M.
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The relative performance of SG and RD is further dem-
onstrated in Figs. 13 and 14, which show the detection
probabilities of each template (equivalently, the ratio of the
detectable volume using the templates to the volume using
optimal filtering). SG templates perform best for M �
200� systems using Enhanced LIGO and M � 1000M�
systems using Advanced LIGO, largely independent of the
mass ratio. Interestingly, RD templates perform best for
comparable mass binaries regardless of total mass for
Enhanced LIGO, whereas no such clear general behavior
is observed for Advanced LIGO. This can be understood
because Enhanced LIGO always has fewer cycles in band
than Advanced LIGO, so that the merger-ringdown con-
stitutes a larger fraction of the total SNR, with that fraction
further enhanced for comparable masses (since � / � ¼
m1m2=M

2 for inspirals, but � / ffiffiffiffi
�

p
for ringdowns [75]).

Advanced LIGO shows no such behavior because the
number of inspiral cycles is so large that the merger-
ringdown rarely dominates the total SNR.

Figures 15 and 16 again show contours of horizon
distance for Enhanced and Advanced LIGO, but as a
function of total mass and initial pericenter distance at
fixed q ¼ 1. Both q and M rather strongly affect the

detectability of sources over the range of masses consid-
ered. rp moderately affects the detectability for lower mass

systems (M & 20M�), though very little for higher mass
systems (which is expected since the number of bursts
varies significantly with rp in the range 5M< rp < 10M,

but as the mass increases fewer of the initial bursts are in
band). SG templates outperform RD templates for all but
the extremely high-mass systems, and a small region of
extremely low-mass systems with very small rp, that

merge after Oð1Þ orbit. This is also clear in Figs. 17 and
18, which show the corresponding detection probabilities.
In addition to SG and RD templates, Figs. 16 and 18 show
the relative performance of a stacked power search, which
readily outperforms burst template searches for the full
range of parameters. Since this is the case for q ¼ 1, it
will apply more so for cases with q < 1, as they experience
more cycles, so that we can conclude that a power-stacking
search will always outperform a burst search and is likely
to be the optimal search approach in the absence of a
matched-filter bank. SG and RD templates perform best
for M in the range 100M�–200M� for both Enhanced and
Advanced LIGO, with the range of horizon distances being
the same as in theM-q plots. This is as expected given that
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FIG. 13 (color online). Contours of detection probability p �
V=Vmax as a function of rest mass M and mass ratio q for
Enhanced LIGO for a source inside the optimal filtering distance
horizon, using sine-Gaussian (top panel) and ringdown (bottom
panel) templates for an initial pericenter separation of rp ¼ 6M.
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FIG. 14 (color online). Contours of detection probability p �
V=Vmax as a function of rest mass M and mass ratio q for
Advanced LIGO for a source inside the optimal filtering distance
horizon, using sine-Gaussian (top panel) and ringdown (bottom
panel) templates for an initial pericenter separation of rp ¼ 6M.
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setting q ¼ 1 maximizes the signal power at fixed M
and rp.

As shown in Fig. 18, all three search methods approach
optimal-filter performance for large masses, M * 500M�,
since all three methods benefit from having the SNR con-
centrated in a small number of cycles. However, for lower
masses and therefore a larger number of in-band cycles,
the SG and RD template performances degrade much
more rapidly than power stacking. Whereas SG and RD
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FIG. 15 (color online). Contours of horizon distance as a
function of rest mass M and pericenter separation rp for

Enhanced LIGO using an optimal filter (top panel), sine-
Gaussian templates (middle panel), and ringdown templates
(bottom panel). The mass ratio is q ¼ 1.
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FIG. 16 (color online). Contours of horizon distance as a
function of rest mass M and pericenter separation rp for

Advanced LIGO using, from top to bottom, an optimal filter,
sine-Gaussian templates, ringdown templates, and a power-
stacking search. The mass ratio is q ¼ 1.
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templates reach detection probabilities as low as 0.01%,
power stacking remains above 10% for the full parameter
space considered. Since our power-stacking estimate is an
idealization, uncertainties in the timing and frequencies of
eccentric bursts may degrade the performance of a true TF
power-stacked search. On the other hand, the results of
Ref. [63] suggest this method is rather robust to timing
uncertainties that are smaller than the characteristic time of
each burst.

IV. CONCLUSIONS

We have developed a novel waveform model for eccen-
tric binary gravitational waveforms which can be applied
for rp & 10M, where conventional post-Newtonian wave-

forms fail. Such binaries may form through dynamical
capture in dense stellar environments. Our model is not
sufficiently accurate to generate a matched-filter bank, and
doing so will be very challenging for large eccentricities.
However, the model is adequate to supply mock signals to
explore the performance of existing LIGO searches in
detecting highly eccentric binary systems. Of existing
search strategies, the ringdown and burst searches are
best adapted to these systems. However, we find that a
large fraction of the parameter space, where we included

the impact parameter 5 � rp � 10M (see Ref. [7] for a

complementary study of rp 
 10M), total mass M 2
½1; 2000�M� and mass ratio q 2 ½0:01; 1�, has a signifi-
cantly smaller horizon distance than what is, in principle,
achievable with a matched-filter search. This implies that a
corresponding volume of sources could have been missed
in prior searches and may be missed in future searches if
better adapted strategies are not employed.
Though it may be impractical to construct templates in

the near future (via numerical or analytical methods) for
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FIG. 17 (color online). Contours of detection probability as a
function of rest mass M and pericenter separation rp for

Enhanced LIGO for a source inside the optimal filtering distance
horizon, using sine-Gaussian (top panel) and ringdown (bottom
panel) templates. The mass ratio is q ¼ 1.
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FIG. 18 (color online). Contours of detection probability as a
function of rest mass M and initial pericenter separation rp for

Advanced LIGO for a source inside the optimal-filtering horizon
distance, using sine-Gaussian (top panel) and ringdown (middle
panel) templates and a power-stacking search (bottom panel).
The mass ratio is q ¼ 1. Note the different scale in the bottom
figure.
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these systems that are accurate enough for optimal
searches, a refinement of the waveform model presented
here should be adequate for informing a power-stacking
search. This method has the potential to increase SNR by

� N1=4 for an N-burst event compared to a single-burst

search. Though less than the effective N1=2 scaling of a full
template search, this would still be a significant improve-
ment. Note also that even for systems with larger impact
parameters that do evolve to an essentially quasicircular
inspiral following the burst phase, for most expected binary
parameters the burst phase will be within the band of
ground-based detectors. Thus, the quasicircular inspiral
phase will be truncated compared to a primordial quasi-
circular inspiral, and though such a system may still be
detectable with a quasicircular template, it would of course
be misidentified, and a bias would be introduced in the
estimation of the binary parameters.

For future work, we intend to implement a power-stack
search using this waveform model to fully explore the
efficacy of this method and its (in)sensitivity to timing
errors, as well as continue to refine the model to include
(for example) spin precession and finite body effects for

neutron stars. We mentioned that the standard PN equa-
tions are ill suited to studying the late stages of mergers, in
particular, for high-eccentricity binaries, motivating our
development of the effective Kerr with radiation-reaction
model described here. However, the EOB approach [67] is
an alternative to the PN expansion that is well behaved all
the way to merger for quasicircular orbits. This approach
has recently been extended to generic orbits [62], and it
will be interesting to explore EOB as the basis for a
repeated burst waveform model.
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[52] R. Gold and B. Brügmann, Classical Quantum Gravity 27,
084035 (2010).

[53] R. Gold, S. Bernuzzi, M. Thierfelder, B. Brügmann, and
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