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The global (i.e., spatially averaged) spectrum of the redshifted 21 cm line has generated much

experimental interest lately, thanks to its potential to be a direct probe of the epoch of reionization and

the dark ages, during which the first luminous objects formed. Since the cosmological signal in question

has a purely spectral signature, most experiments that have been built, designed, or proposed have

essentially no angular sensitivity. This can be problematic because with only spectral information, the

expected global 21 cm signal can be difficult to distinguish from foreground contaminants such as galactic

synchrotron radiation, since both are spectrally smooth and the latter is many orders of magnitude

brighter. In this paper, we establish a systematic mathematical framework for global signal data analysis.

The framework removes foregrounds in an optimal manner, complementing spectra with angular

information. We use our formalism to explore various experimental design trade-offs, and find that

(1) with spectral-only methods, it is mathematically impossible to mitigate errors that arise from

uncertainties in one’s foreground model; (2) foreground contamination can be significantly reduced for

experiments with fine angular resolution; (3) most of the statistical significance in a positive detection

during the dark ages comes from a characteristic high-redshift trough in the 21 cm brightness temperature;

(4) measurement errors decrease more rapidly with integration time for instruments with fine angular

resolution; and (5) better foreground models can help reduce errors, but once a modeling accuracy of a few

percent is reached, significant improvements in accuracy will be required to further improve the

measurements. We show that if observations and data analysis algorithms are optimized based on these

findings, an instrument with a 5� wide beam can achieve highly significant detections (greater than 5�) of

even extended (high �z) reionization scenarios after integrating for 500 h. This is in strong contrast to

instruments without angular resolution, which cannot detect gradual reionization. Ionization histories that

are more abrupt can be detected with our fiducial instrument at the level of tens to hundreds of �. The

expected errors are similarly low during the dark ages, and can yield a 25� detection of the expected

cosmological signal after only 100 h of integration.
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I. INTRODUCTION

Measurements of the highly redshifted 21 cm line are
thought to be the primary way to make direct observations
of the epoch of reionization and the preceding dark ages,
when the first luminous objects were formed from primor-
dial fluctuations [1]. Theoretical studies have shown that
observations of the 21 cm line will not only provide crucial
constraints on a relatively poorly understood period of
structure formation, during which a complex interplay of
dark matter physics and baryon astrophysics produced

large scale changes in the intergalactic medium [2–4];
eventually, the enormous volume probed by the 21 cm
line will also allow one to make exquisite measurements
of fundamental physics parameters [5–8]. It is thus no
surprise that numerous experimental groups are making
concerted efforts to arrive at the first positive detection of
the cosmological 21 cm signal.
To date, most observational efforts have focused on

understanding the fluctuations in the 21 cm line by mea-
suring the 21 cm brightness temperature power spectrum
(although there have also been theoretical proposals to
capture the non-Gaussianity of the signal [9–12]). These
include the Murchison Widefield Array (MWA) [13], the*acliu@berkeley.edu
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Precision Array for Probing the Epoch of Reionization
(PAPER) [14], the Low Frequency Array (LOFAR) [15],
and the Giant Metrewave Radio Telescope Epoch of
Reionization [16] projects. These experiments are difficult:
high sensitivity requirements dictate long integration times
to reach the expected amplitude of the faint cosmological
signal, which is dominated by strong sources of foreground
emission (such as galactic synchrotron radiation) by sev-
eral orders of magnitude in all parts of the sky [17–19].
While lately these experiments have made much progress
towards a detection of the cosmological signal, the chal-
lenges remain daunting.

As an alternative way to detect the 21 cm cosmological
signal, there have recently been attempts to measure the
global 21 cm signal, where one averages the signal over all
directions in the sky and focuses on extracting a globally
averaged spectrum, probing the evolution of the mean signal
through cosmic history [20]. These observations are comple-
mentary to the power spectrummeasurements, and have been
shown to be an incisive probe of many physical parameters
during reionization [21]. Examples of global signal experi-
ments include the Experiment to Detect the Global EoR
Signature (EDGES) [22], the Large Aperture Experiment to
Detect the Dark Ages[23], the Long Wavelength Array [24],
and if funded, the Dark Ages Radio Explorer [25].

Compared to power spectrum measurements, global
signal experiments are in some ways easier, and in other
ways more difficult [26]. A rough calculation of the ther-
mal noise reveals that global signal experiments need far
less integration time to reach the required sensitivities for a
detection of the cosmological signal. However, the prob-
lem of foreground mitigation is much more challenging. In
a power spectrum measurement, one probes detailed maps
of brightness temperature fluctuations in all three dimen-
sions. The maps are particularly detailed in the line-of-
sight direction, since for a spectral line like the 21 cm line
this translates to the frequency spectrum of one’s measure-
ment, and typical instruments have extremely fine spectral
resolution. The result is that the cosmological signal
fluctuates extremely rapidly with frequency, since one is
probing local structure. In contrast, the foregrounds are
spectrally smooth. This difference has formed the basis of
most foreground subtraction schemes that have been pro-
posed for power spectrum measurements, and theoretical
calculations have been encouraging [27–36]. Global signal
experiments cannot easily take advantage of this difference
in fluctuation scale, for the globally averaged spectrum
does not trace local structures, but instead probes the
average evolution with redshift. The resulting signals are
thus expected to be rather smooth functions of frequency,
which makes them difficult to separate from the smooth
foregrounds. Traditionally, experiments have attempted to
perform spectral separations anyway, and have thus been
limited to ruling out sharp spectral signatures such as those
that might arise from rapid reionization [22].

In this paper, we confront the general problem of
extracting the global 21 cm signal from measurements
that are contaminated by instrumental noise and fore-
grounds, placing the problem in a systematic mathematical
framework. We adopt the philosophy that one should take
advantage of every possible difference between the cos-
mological signal and contaminants, not just the spectral
differences. To do so, we first develop optimal data analy-
sis methods for cosmological signal estimation, using
angular information to complement spectral information.
Traditional spectral-only methods are a special case in our
formalism, and we prove that in such methods, foreground
subtraction simply amounts to subtracting a ‘‘best-guess’’
foreground model from the data and doing nothing to
mitigate possible errors in the model itself.
Additionally, we build on existing foreground models in

the literature, and use our improved model along with our
data analysis formalism to predict expected measurement
errors given various experimental parameters. Since our
formalism allows these measurement errors to be calcu-
lated analytically (given a foreground model), we are able
to explore parameter space efficiently to identify the best
experimental designs and the best data analysis methods.
We find that the most important such ‘‘lesson learned’’ is
that angular information is necessary to suppress fore-
grounds to a low enough level to differentiate between
different cosmological models.
Our paper therefore has two logically separate (but

closely related) goals. The first is to develop a robust signal
extraction formalism, and we fulfill this goal without
assuming a precise model for the cosmological signal,
thus immunizing ourselves to uncertainties in theoretical
modeling. The second is to build intuition for instrumental
design and to forecast the performance of different types of
instruments. This part does assume a theoretical form for
the cosmological signal.
In this paper our focus is on foreground removal, so for

simplicity we do not consider calibration errors. However,
we do note that an accurate bandpass calibration (or at least
a good estimate of the calibration error) is a prerequisite for
accurate foreground removal. It is for this reason that much
effort has been spent on better instrument characterization
recently [37]. We also do not include frequency-dependent
beam effects, although the formalism of this paper is
general enough to include them. Both calibration errors
and frequency-dependent beams are inevitably instrument-
specific issues, so we defer detailed investigations of them
to future work.
The rest of this paper is organized as follows. In Sec. II

we detail the properties of the cosmological signal and our
foreground and instrumental noise model. Readers that are
more interested in data analysis methods may wish to skim
this section (perhaps reading in detail only the summary in
Sec. II B 4), and skip ahead to Sec. III, where we establish
our mathematical framework for signal extraction and
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error computation. Those that are interested in experimen-
tal design may wish to focus on Secs. IV and V, where we
explore various experimental trade-offs for observations
targeting the dark ages and reionization, respectively.
Forecasts for the performances of some fiducial experi-
ments are presented in Sec. VI, and we summarize our
conclusions in Sec. VII.

II. THE COSMOLOGICAL GLOBAL SPECTRUM
AND SOURCES OF MEASUREMENT

CONTAMINATION

A. Model of the signal

We begin by sketching the ingredients of our 21 cm global
signal model. For more details there exist several good
reviews on the physics of the 21 cm signal [2–4]. The
21 cm signal arises from the physical properties of neutral
hydrogen in the intergalactic medium (IGM), specifically
from the density of neutral hydrogen and the 21 cm spin
temperature, which describes the relative number of hydro-
gen atoms with proton and electron spin aligned or antia-
ligned. These quantities respond to radiation from luminous
sources and so are expected to vary from place to place.

Fluctuations in the 21 cm signal are being targeted by
radio interferometers such as LOFAR, MWA, PAPER, and
Giant Metrewave Radio Telescope, as mentioned in Sec. I.
These fluctuation are scale dependent with most power on
the characteristic scale of ionized or heated regions, which
are believed to be tens of arc minutes across. When viewed
with a beam larger than this characteristic size these fluc-
tuations will average out, giving a measure of the mean or
‘‘global’’ 21 cm signal. In this paper, we concentrate on
measuring this isotropic part of the 21 cm signal and
consider the anisotropic fluctuations as a source of noise.
Studies by Bittner and Loeb [38] showed that during
reionization a beam size of a few degrees is sufficient to
smooth out most of the fluctuations. In this paper, any
contribution of the fluctuations left over after convolving
with the large beam will be considered as irreducible noise.

The basic dependence of the differential 21 cm bright-
ness temperature Tb on the average ionized fraction �xi and
spin temperature TS is

Tb � 27ð1� �xiÞ
�
TS � TCMB

TS

��
1þ z

10

�
1=2

mK; (1)

where we have used the WMAP7 cosmological parameters
to fix the baryon and mass abundances as �bh

2 ¼ 0:023
and �mh

2 ¼ 0:15 [39]. The key redshift dependence
comes via xiðzÞ and TSðzÞ, which we model following the
approach of Pritchard and Loeb [40], where the reader will
find technical details. This model incorporates (1) the
ionizing radiation from galaxies, (2) x-ray heating from
galaxies [41], and (3) Lyman-alpha emission from gal-
axies, and assumes a simple prescription linking the star
formation rate to the fraction of mass in collapsed structure
above a critical mass threshold required for atomic hydro-
gen cooling.
This model predicts a 21 cm signal that divides into

three qualitatively different regimes (see Fig. 1). The first,
a shallow absorption feature at 30 & z & 200, begins as
the gas thermally decouples from the cosmic microwave
background (CMB) and ends as our Universe become too
rarified for collisions to couple TS to Tgas. Next, a second

and possibly deeper absorption feature occurs as the first
galaxies form at z * 30. This is initiated as Lyman-alpha
photons illuminate the Universe, coupling spin and gas
temperatures strongly, and ends as increasing x-ray emis-
sion heats the IGM above the CMB, leading to a 21 cm
emission signal. This emission signal is the third key
feature, which slowly dies away in a ‘‘reionization step’’
as ionizing UV photons ionize the IGM. As described in
Refs. [21,42] there is considerable uncertainty in the exact
positions and details of these features, but the basic picture
seems robust.
The last two features—an absorption trough driven by

the onset of galaxy formation1 and an emission step
accompanying reionization—form the focus of this paper,
since these seemmost likely to be detectable (a fact that we
will explain and rigorously justify in Sec. IVB). The ear-
liest absorption trough seems unlikely to be detected in the

FIG. 1. Target 21 cm global signal as predicted by the model of Pritchard and Loeb [21]. The exact details of this signal are uncertain
and depend upon the nature of the first galaxies.

1For linguistic convenience, we will include the absorption
trough at z� 20 as part of the dark ages, even though it really
marks the very end of the dark ages.
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near future, since it occurs at frequencies � < 50 MHz that
are more strongly affected by the Earth’s ionosphere and
where galactic foregrounds are considerably brighter.

It is important to note that the data analysis methods
presented later in this paper do not depend on the precise
form of the cosmological signal. This differs from other
studies in the literature (such as Ref. [43]), which assume a
parametric form for the signal and fit for parameters. In
contrast, we use the theoretical signal shown in Fig. 1 only
to assess detection significance and to identify trade-offs in
instrumental design; our foreground subtraction and signal
extraction algorithms will be applicable even if the true
signal differs from our theoretical expectations, making
our approach quite a robust one.

B. Generalized noise model

We now construct our noise model. We define the
generalized noise (or henceforth just ‘‘noise’’) to be any
contribution to the measurement that is not the global
21 cm signal as described in the previous section. As
mentioned above, by this definition our noise contains
more than just instrumental noise and foregrounds. It also
includes the anisotropic portion of the cosmological signal.
In other words, the ‘‘signal’’ in a tomographic measure-
ment (where one measures angular anisotropies on various
scales) is an unwanted contaminant in our case, since we
seek to measure the global signal (i.e., the monopole).

If we imagine performing an experiment that images
Npix pixels on the sky over Nfreq frequency channels, the

noise contribution in various pixels at various frequencies
can be grouped into a vector n of length equal to the
number of voxels Nvox � NpixNfreq in our survey. It is

made up of three contaminants:

n�i � n
fg
�i þ ninst

�i þ ns
�i; (2)

where nfg, ninst, and ns signify the foregrounds, instrumen-
tal noise, and anisotropic cosmological signal, respec-
tively. Throughout this paper, we use greek indices to
signify the radial/frequency direction, and Latin indices
to signify the spatial directions. Note that n is formally a
vector even though we assign separate spatial and spectral
indices to it for clarity. In the following subsections we
discuss each of these three contributions to the noise, with
an eye towards how each can be mitigated or removed in a
real measurement. We will construct detailed models con-
taining parameters that are mostly constrained empirically.
However, since these constraints are often somewhat uncer-
tain, we will vary many of them as we explore parameter
space in Secs. IVand V. Our conclusions should therefore be
robust to reasonable changes in our assumptions.

Finally, we stress that in what follows, our models
are made up of two conceptually separate—but closely
related—pieces. To understand this, note that Eq. (2) is a
random vector, both because the instrumental noise is
sourced by random thermal fluctuations and because the

foregrounds and the cosmological signal have modeling
uncertainties associated with them. Thus, to fully describe
the behavior of n, we need to specify two pieces of
information: a mean (our ‘‘best guess’’ of what the fore-
grounds and other noise sources look like as a function of
frequency and angle) and a covariance (which quantifies
the uncertainty and correlations in our best guess). We will
return to this point in Sec. II B 4 when we summarize the
essential features of our model. Readers may wish to skip
directly to that section if they are more interested in the
‘‘designer’s guide’’ portion of the paper than the mathe-
matical details of our generalized noise model.

1. Foreground model

Given that foregrounds are likely to be the largest con-
taminant in a measurement of the global signal, it is
important to have a foreground model that is an accurate
reflection of the actual contamination faced by an experi-
ment, as a function of both angle and frequency. Having
such a model that describes the particular realization of
foregrounds contaminating a certain measurement is cru-
cial for optimizing the foreground removal process, as we
shall see in Sec. III. However, constructing such a model is
difficult to do from first principles, and is much more
difficult than what is typically done, which is to capture
only the statistical behavior of the foregrounds (e.g., by
measuring quantities such as the spatial average of a spec-
tral index). It is thus likely that a full foreground model will
have to be based at least partially on empirical data.
Unfortunately, the community currently lacks full-sky,

low noise, high angular resolution survey data in the low
frequency regime relevant to global signal experiments.
Foreground models must therefore be constructed via inter-
polations and extrapolations from measurements that are
incomplete both spatially and spectrally. One such effort is
the global sky model (GSM) of de Oliveira-Costa et al.
[19]. In that study, the authors obtained foreground survey
data at 11 different frequencies, and formed a series of
foreground maps, stored in the vector g. The maps were
then used to define a spectral covariance matrix G:

GGSM
�� � 1

N

XN
i¼1

g�ig�i; (3)

whereN is the number of pixels in a spectrally well-sampled
region of the sky, and, in accordance with our previous
notation, g�i denotes the measured foregrounds in the ith
pixel at the �th frequency channel. From this covariance, a
dimensionless frequency correlation matrix was formed:

~G�� � GGSM
��ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

GGSM
�� GGSM

��

q : (4)

By performing an eigenvalue decomposition of ~G into its
principal components, the authors found that the spectral
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features of the foregrounds were dominated by the first
three principal components, which could be used as
spectral templates for constructing empirically based fore-
ground models. The GSM approach was found to be accu-
rate to �10%.

Being relatively quick and accurate, the GSM has been
used as a fiducial foreground model in many studies of the
global 21 cm signal to date [21,43]. However, this may be
insufficient for two reasons. First, as mentioned above, the
GSM approach predicts the magnitude of foregrounds by
forming various linear combinations of three principal
component (i.e., spectral eigenmode) templates. Thus, if
the GSM is considered the ‘‘true’’ foreground contribution
in our models, it becomes formally possible to achieve
perfect foreground removal simply by projecting out just
three spectral modes from the data. This is too optimistic
an assumption.2 The other weakness of the GSM is that it
does not include bright point sources, which are expected
to be quite numerous at the sensitivities of most 21 cm
experiments.

In this paper, we use the GSM as a starting point, but add
our own spectral extensions to deal with the aforemen-
tioned shortcomings. The extensions come partly from the
phenomenological model of Liu and Tegmark [44], which
in our notation can be summarized by writing down a
matrix Gext that is analogous to GGSM defined above:

Gext � Gps þGsync þGff ; (5)

whereGps,Gsync, andGff refer to foreground contributions
from unresolved extragalactic point sources, galactic syn-
chrotron radiation, and galactic free-free emission, respec-
tively. Each contribution takes the generic form

G�� ¼ A2

�
����

�2�

���þ��2

2 ln

�
����

�2�

�
; (6)

where A ¼ 335:4 K, � ¼ 2:8, and �� ¼ 0:1 for the
synchrotron contribution; A ¼ 70:8 K, � ¼ 2:5, and
�� ¼ 0:5 for the unresolved point source contribution;
A ¼ 33:5 K, � ¼ 2:15, and �� ¼ 0:01 for the free-free
contribution; and �� is a reference frequency, which we
take to be 150 MHz. Our strategy is to perform a principal
component decomposition on this model, and to use its
higher order principal components to complement the three
components provided by the GSM, completing the basis.

We can check that our strategy is a sensible one by

forming ~G [Eq. (4)] for both the GSM and our phenome-
nological model. For this test, we form the matrices for a

set of observations over 70 frequency channels, each with
bandwidth 1 MHz spanning the 30–100 MHz frequency
range (relevant to observations probing the first luminous
sources). We then compute the eigenvalue spectrum of
both models, and the result is shown in Fig. 2. The GSM,
built from three principal components, contains just three
eigenvalues. The first three eigenvalues of the phenome-
nological model agree with these values quite well, with
the phenomenological model slightly more conservative. It
is thus reasonable to use the higher eigenmodes of the
phenomenological model to ‘‘complete’’ the foreground
model spectrally. We expect this completion to be neces-
sary because there are more than three eigenvalues above
the thermal noise limit for a typical experiment [44].
Spatially, we form an angular model by averaging the
GSM maps over all frequencies, and give all of the higher
spectral eigenmodes this averaged angular dependence.
While in general we expect the spatial structure to be
different from eigenmode to eigenmode, our simple
assumption is a conservative one, since any additional
variations in spatial structure provide extra information
which can be used to aid foreground subtraction.
Next, we add bright point sources to our model. The

brightnesses of these sources are distributed according to
the source count function

dn

dS
¼ ð4 sources mJy�1 sr�1Þ

�
S

880 mJy

��1:75
; (7)

and we give each source a spectrum of

Sð�Þ ¼ S0

�
�

150 MHz

���
; (8)

where the S0 is the brightness drawn from the source count
function, and � is the spectral index, drawn from a
Gaussian distribution with mean 0.5 and a standard devia-
tion of 0.25 [30]. Spatially, we distribute the bright point
sources randomly across the sky. This is strictly speaking

0 2 4 6 810 20

10 16

10 12

10 8

10 4

1

Eigenvalue number i

i

GSM

Our model

FIG. 2 (color online). Comparison with the global sky model
[19]. Our eigenvalues are represented by the blue circles, while
those of the GSM are denoted by the purple squares. The GSM
contains only three eigenvalues, which are in reasonable agree-
ment with our model.

2The reader should thus be cautious when comparing our
predictions to forecasts in the literature that use the GSM as
their only foreground model. For identical experimental parame-
ters, one should expect our work to give larger error bars.
However, our new signal extraction algorithms (particularly
those that make use of angular information) more than overcome
this handicap, and our conclusions will in fact be quite
optimistic.
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an unrealistic assumption, since point sources are known to
be clustered. However, a uniform distribution suffices for
our purposes because it is a conservative assumption—any
spatial clustering would constitute an additional fore-
ground signature to aid foreground removal.

Putting all these ingredients together, the result is a
series of foreground maps like that shown in Fig. 3, one
at every frequency. This model constitutes a set of ‘‘best-
guess’’ foreground templates. Now, while our model is
based on empirical data, it does possess uncertainties.
A robust method for foreground subtraction thus needs to
be able to account for possible errors in the generalized
noise model. To set the stage for this, we define our best-
guess model described above to be the mean (amidst
uncertainties in the construction of the model) of the nfg

vector in Eq. (2), i.e.,

m
fg
�i � hnfg

�ii; (9)

where mfg is our best-guess model. The covariance of the
foregrounds is defined as the error in our foreground
model:

N
fg
�i�j � hnfg

�in
fg
�ji � hnfg

�iihnfg
�ii ¼ "2m

fg
�im

fg
�jRijQ��;

(10)

where we have assumed that the error in our foreground
model is proportional to the model mfg itself, with a
proportionality constant " between 0 and 1. The matrices
R andQ encode the spatial and spectral correlations in our
foreground model errors, respectively.

With this form, we are essentially assuming that there is
some constant percentage error in every pixel and fre-
quency of our model. Note that the model error " will in
general depend on the angular resolution, for if we start
with a high resolution foreground model and spatially
downsample it to the resolution of our experiment, some
of the errors in the original model will cancel out. As a
simple, crude model, we can suppose that the errors in
different pixels average down as the square root of the

number of pixels. Since the number of pixels scales as the
inverse of �2, where � is some generic angular resolution,
we have

" ¼ "0
�fg

�b
; (11)

where �b is the angular resolution of our current experi-
ment, �fg is the ‘‘native’’ angular resolution of our fore-

ground model, and "0 is the fractional error in our model at
this resolution. Equation (11) implicitly assumes a separa-
tion of scales, where we deal only with instruments that
have coarser angular resolution than the correlation length
of modeling errors specified by R (described below). We
will remain in this regime for the rest of the paper. Our
foreground covariance thus becomes

Nfg
�i�j ¼ "20

�
�fg

�b

�
2
mfg

�im
fg
�jRijQ��: (12)

Since the angular structure of our foreground model is
based on that of the GSM, which conservatively has a
10% accuracy at 5� [19], we use "0 ¼ 0:1 and �fg ¼ 5�

as fiducial values for this paper.
To capture spatial correlations3 in our foreground mod-

eling errors, we choose the matrix R to correspond to the
continuous kernel

Rðr̂; r̂0Þ � 4�

Npix

expð��2r̂ � r̂0Þ
4��2 sinhð��2Þ : (13)

Aside from the constant 4�=Npix factor (which is needed to

make the discrete and continuous descriptions consistent
[45,46]), this is known as a Fisher function, the analog of a
Gaussian on a sphere. The quantity � measures the spread
of the kernel, and since the GSM’s spectral fits were
performed on pixels of roughly 5� resolution, we set
� ¼ 5� for this work.4

For the spectral correlation matrix Q, suppose we imag-
ine that our foreground model was constructed by spec-
trally fitting every pixel of a foreground survey to a power
law of the form

tð�Þ ¼ Að�=��Þ��; (14)

where A is a normalization constant that will later cancel
out, � is a spectral index, and �� is a reference frequency

FIG. 3 (color online). Foreground template at 79 MHz. The
color scale is linear and has been capped at 6000 K to bring out
visual contrast even though much of the sky is far brighter.

3We emphasize that the spatial correlations encoded by R are
spatial correlations in the foreground error, not correlations in the
spatial structure of the foreground emission itself. The spatial
structure of the foregrounds is captured by the mfg terms of
Eqs. (9) and (10), and will typically be correlated over much larger
scales than the errors. The data analysis formalism that we present
in Sec. III will take into account both types of correlation.

4Note that � does not necessarily have to be equal to �fg. For
instance, if one’s foreground model is based on a survey with
some instrumental beam size that is oversampled in an attempt to
capture all the features in the map, one would be in a situation
where �fg <�.

LIU et al. PHYSICAL REVIEW D 87, 043002 (2013)

043002-6



for the fits, which we take to be 150 MHz for the 30–
100 MHz observations targeting the first luminous sources,
and 50 MHz for the 100–250 MHz observations targeting
reionization. (The reference frequency is somewhat arbi-
trary, and in practice one would simply adjust it to get the
best possible fits when constructing one’s foreground
model.) The spectral index will have some error associated
with it, due in part to uncertainties in the foreground
survey and in part to the fact that foreground spectra are
not perfect power laws. We model this error as being
Gaussian distributed, so that the probability distribution
of spectral indices is given by

pð�Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
2��2

�

p exp

�
� 1

2

ð�� �0Þ2
�2

�

�
; (15)

where �0 is a fiducial spectral index for typical
foregrounds, which in this paper we take to be 2.5. The
parameter �� controls the spectral coherence of the fore-
grounds, and we choose the rather large value of �� ¼ 1 to
be conservative.

With this, the mean spectral fit to our foreground
survey is

htð�Þi ¼ A
Z �

�

��

���
pð�Þd�: (16)

Sampling this function at a discrete set of frequencies
corresponding to the frequency channels of our global
signal experiment, we can form a mean vector hti.
A covariance matrix Csurvey of the power law fits is then
given by

Csurvey � httti � htihtit; (17)

where t is a discretized version of tð�Þ, and
httti�� ¼ A2

Z �
����

�2�

���
pð�Þd�: (18)

Finally, we take the covariance Csurvey and insert it into the
left-hand side of Eq. (4) (just as we did with GGSM earlier)

to form our spectral correlation matrix Q. Note that the
normalization constant A cancels out in the process, as we
claimed.
In Fig. 4, we show the eigenvalues of Q, and in Fig. 5,

the first few eigenmodes. Just as with the foregrounds
themselves, the roughly exponential decay of the eigenval-
ues shows that the foreground correlations are dominated
by the first few eigenmodes, which are smooth functions of
frequency.

2. Instrumental noise

We model the instrumental noise ninst
i� in every pixel and

every frequency channel as uncorrelated. Additionally, we
make the assumption that there are no systematic instru-
mental effects, so that hninst

i� i ¼ 0. What remains is the
random contribution to the noise. Assuming a sky-noise
dominated instrument, the amplitude of this contribution is
given by the radiometer equation. In our notation, this
gives rise to a covariance of the form5

Ninst
�i�j ¼ hninst

�i n
inst
�j i ¼

m
fg
�im

fg
�j�ij���

�t��
; (19)

where �t is the integration time per pixel and �� is the
channel width.
The instrumental noise is different from all other signal

sources in an experiment (including the cosmological
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FIG. 4 (color online). First few eigenvalues of the spectral
correlation matrix Q. The eigenvalues decay roughly exponen-
tially, which means that the foreground correlations are domi-
nated by the first few eigenmodes.
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FIG. 5 (color online). First few eigenvectors of the spectral
correlation matrix Q. These spectral eigenmodes are seen to be
quite smooth, and have increasing structure as one goes to higher
modes. In conjunction with Fig. 4, this shows that the frequency
correlations in the foreground are dominated by smooth spectral
eigenmodes.

5In principle, the cosmological signal also contributes to the
sky noise, and so there is in fact some cosmological information
in the noise. For the noise term only, we make the approximation
that the cosmological signal contributes negligibly to the sky
temperature, since the foregrounds are so much brighter. For any
reasonable noise level, this should be an excellent assumption,
and in any case a conservative one, as extra sources of cosmo-
logical information will only serve to tighten observational
constraints.
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signal and all other forms of generalized noise) in that it is
the only contribution to the measurement that is added
after the sky has been convolved by the beam of an
instrument. All the ‘‘other’’ contributions should be
convolved with the beam. For instance, if an instrument
has a Gaussian beam with a standard deviation �b, then
these contributions to the covariance are multiplied by
exp½��2b‘ð‘þ 1Þ� in spherical harmonic space [46,47].

However, since the instrumental noise is the only part of
our measurement that does not receive this correction, it is
often convenient to adopt the convention that all measured
maps of the sky are already deconvolved prior to the main
data analysis steps. This allows us to retain all of the
expressions for the cosmological signal and the foregrounds
that we derived above, and to instead modify the instrumen-
tal noise to reflect the deconvolution. In this paper, we will
adopt the assumption of already-deconvolved maps.

If the instrumental noise contribution were rotation
invariant on the sky (as is the case for many cosmic
microwave background experiments), modifying the noise
to reflect deconvolution would be simple. One would
simply multiply the instrumental noise covariance by
exp½�2b‘ð‘þ 1Þ� in spherical harmonic space [46,47].

Unfortunately, since we are assuming a sky-noise domi-
nated instrument, the assumption of rotation invariance
breaks down, thanks to structures such as the galactic
plane, which clearly contributes to the sky signal in an
angularly dependent way. The simple prescription of mul-
tiplying by exp½�2b‘ð‘þ 1Þ� thus becomes inadequate, and

a better method is required.
Suppose we work in a continuous limit and let bðr̂; r̂0Þ be

an integration kernel that represents a Gaussian instrumen-
tal beam, so that

Tconvðr̂Þ ¼
Z

bðr̂; r̂0ÞTðr̂0Þd�0

¼ X
‘;m

Y‘mðr̂Þe��2
b
‘ð‘þ1Þ=2 Z Y�

‘mðr̂0ÞTðr̂0Þd�0; (20)

where Tconvðr̂Þ is the convolved version of the original sky
Tðr̂Þ and Y‘m are the spherical harmonics. With this, our
effective (i.e., deconvolved) instrumental noise covariance
is given by

Neffðr̂; r̂0Þ /
Z

b�1ðr̂; r̂1Þmfgðr̂1Þ�ðr̂1; r̂2Þ
	mfgðr̂2Þb�1ðr̂2; r̂0Þd�1d�2; (21)

where mfg is the continuous version of mfg, and b�1 the
deconvolution kernel (given by the operator inverse of b),
which in spherical harmonic space simply multiplies by

e�
2
b
‘ð‘þ1Þ=2. For notational simplicity, we have omitted con-

stants and suppressed the frequency dependence (since it
has nothing to do with the spatial deconvolution). Now,
suppose we make the approximation that the foregrounds
are spatially smooth and slowly varying. In real space,

b�1ðr̂; r̂0Þ is a rapidly oscillating function that is peaked
around r̂ ¼ r̂0. We may thus move the two copies of mfg

outside the integral, setting r̂ ¼ r̂1 and r̂ ¼ r̂2:

Neffðr̂; r̂0Þ / mfgðr̂Þmfgðr̂0Þ
Z

b�1ðr̂; r̂1Þb�1ðr̂1; r̂0Þd�1

¼ mfgðr̂Þmfgðr̂0ÞX
‘m

e�
2
b
‘ð‘þ1ÞY�

‘mðr̂ÞY‘mðr̂0Þ: (22)

If the mfgðr̂Þmfgðr̂0Þ terms were not present, this would be
equivalent to the ‘‘usual’’ prescription, where the effective
noise kernel involves transforming to spherical harmonic

space, multiplying by e�
2
b
‘ð‘þ1Þ=2, and transforming back.

Here, the prescription is similar, except the kernel is
modulated in amplitude by the sky signal.
In conclusion, we can take instrumental beams into

account simply by replacing Ninst with an effective instru-
mental noise covariance of the form

Ninst;eff ¼ DNdecD; (23)

where D�i�j � m�i����ij, and Ndec is a deconvolved

white noise covariance (i.e., one that is multiplied by

e�
2
b
‘ð‘þ1Þ in spherical harmonic space) with proportionality

constant 1=�t��.
In deriving our deconvolved noise covariance, we made

the assumption that the sky emission is spatially smooth
and slowly varying. This allowed us to treat the deconvo-
lution analytically even in the case of nonwhite noise and,
in Sec. III B, will allow us to analytically derive an optimal
estimator for the cosmological signal. While our assump-
tion of smooth emission is of course only an approxima-
tion, we expect it to be a rather good one for our purposes.
The only component of the sky emission where smooth-
ness may be a bad assumption is the collection of bright
point sources. However, we will see in Sec. III B that the
optimal estimator will heavily down-weight the brightest
regions of the sky, so extremely bright point sources are
effectively excluded from the analysis anyway.

3. Cosmological anisotropy noise

In measuring the global signal, we are measuring the
monopole contribution to the sky. As mentioned above,
any anisotropic contribution to the cosmological power is
therefore a noise contribution as far as a global signal
experiment is concerned. By construction, these nonmono-
pole contributions have a zero mean after spatially averag-
ing over the sky, and thus do not result in a systematic bias
to a measurement of the global signal. They do, however,
have a nonzero variance, and therefore contribute to the
error bars.
Although it is strictly speaking nonzero, we can safely

ignore cosmological anisotropy noise because it is negli-
gibly small compared to the foreground noise. Through a
combination of analytic theory [48] and simulation analy-
sis [38], the cosmological anisotropies have been shown to
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be negligible on scales larger than �1� to 2�, which is a
regime that we remain in for this paper.

4. Generalized noise model summary

In the subsections above, we have outlined the various
contributions to the generalized noise that plagues any
measurement of the global signal. Of these contributions,
only foregrounds have a nonzero mean, so the mean of our
generalized noise model is just that of the foregrounds:

m�i � hni ¼ mfg
�i: (24)

Foregrounds therefore have a special status among the
different components of our generalized model, for they
are the only contribution with the potential to cause a
systematic bias in our global signal measurement. The
other contributions appear only in the total noise covari-
ance, taken to be the sum of the foreground covariance and
the effective instrumental noise covariance:

N�i�j � N
fg
�i�j þNinst;eff

�i�j ; (25)

where as noted above, we are neglecting the cosmological
anisotropy noise.

In the foreground subtraction/data analysis scheme that
we describe in Sec. III, we will think of the mean m as a
foreground template that is used to perform a first sub-
traction. However, there will inevitably be errors in our
templates, and thus our scheme also takes into account the
covariance N of our model. In our formalism, the mean
term therefore represents our best guess as to what the
foreground contamination is, and the covariance quantifies
the uncertainty in our guess. We note that this is quite
different from many previous approaches in the literature,
where either the foreground modeling error is ignored
(e.g., when the foreground spectra are assumed to be
perfect polynomials) or the mean is taken to be zero and
the covariance is formed by taking the ensemble average of
the outer product of the foreground template error. The
former approach is clearly unrealistic, while the latter
approach has a number of shortcomings. For example, it
is difficult to compute the necessary ensemble average,
since foregrounds are difficult to model from first
principles, and empirically the only sample that we have
for taking this average is our Galaxy. As a solution to
this, ensemble averages are often replaced by spatial
(i.e., angular) averages. But this is unsatisfactory for our
purposes, since in Sec. III B we will be using the angular
structure of foregrounds to aid with foreground subtraction,
and this is impossible if the information has already been
averaged out. Even if an ensemble average could somehow
be taken (perhaps by running a large suite of radiative
transfer foreground simulations), a foreground subtraction
scheme that involved minimizing the resulting variance
would be nonoptimal for two reasons. First, in such a
scheme one would be guarding against foreground power

from a ‘‘typical’’ galaxy, which is irrelevant—all that
matters to an experiment are the foregrounds that are
seen in our Galaxy, even if they are atypical. In addition,
foregrounds are not Gaussian distributed, and thus a mini-
mization of the variance is not necessarily optimal.
Our approach—taking the mean to be an empirical fore-

ground template and the covariance to be the errors in this
template—solves these problems. Since the covariance
arises from measurement errors (which can usually be
modeled to an adequate accuracy), taking the ensemble
average is no longer a problem. And with the mean term
being a template for the foregrounds as seen by our ex-
periment, our foreground model is tailored to our Galaxy,
even if our Galaxy happens to be atypical. Finally, while
the foregrounds themselves are certainly not Gaussian, it is
a much better approximation to say that the uncertainties in
our model are Gaussian, at least if the uncertainties are
relatively small. Constructing our foreground model in this
way thus allows us to take advantage of the optimal data
analysis techniques that we introduce in Sec. III.

C. Why it is hard

Before we proceed to describe how the global 21 cm
signal can be optimally extracted, we pause to describe
the challenges ahead.6 As an initial ‘‘straightforward’’
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FIG. 6 (color online). A comparison of the absolute value of
the expected theoretical signal spectrum (blue circles) and the
mean foreground contamination (purple squares). This high-
lights the difficulty of global 21 cm signal experiments: the
foregrounds are many orders of magnitude brighter than the
signal we seek to measure.

6Not included in this paper is the fact that an instrument might
have a nontrivial frequency response that needs to be calibrated
extremely well. In principle, if one has (1) sufficiently good
instrumental calibration and (2) an exquisitely accurate fore-
ground model, then it will always be able to pick out a small
cosmological signal from beneath the foreground sources, how-
ever bright they might be. In this paper we concentrate on
lessening the second requirement by proposing reliable fore-
ground subtraction algorithms. Tackling the problem of calibra-
tion is beyond the scope of this paper, but encouraging progress
has recently been made in engineering tests [37].
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approach, one can imagine measuring the global 21 cm
signal by taking a simple spatial average of a measured sky.
The corresponding foreground contamination would be
obtained by spatially averaging our model, which is shown
in Fig. 6 along with our expected theoretical signal from
Fig. 1. A straightforward measurement would thus be
completely dominated by the bright foregrounds. In addi-
tion, both the foreground contamination and the theoretical
signal are smooth as a function of frequency, making
it difficult to use foreground subtraction techniques that
have been proposed for tomographic maps, where the
cosmological signal is assumed to vary much more rapidly
as a function of frequency than the foregrounds. It is there-
fore crucial that optimal foreground cleaning methods are
employed in the analysis, and in the following section we
derive such methods.

III. A FRAMEWORK FOR GLOBAL SIGNAL
MEASUREMENTS

In this section, we develop the mathematical framework
for analyzing data from global signal experiments. We
begin with a measurement equation. For an experiment
with both spectral and angular sensitivity, we have

y ¼ Axs þ n; (26)

where y is a vector of length Nvox � NpixNfreq containing

the measurement, n is the generalized noise contribution of
Sec. II B, xs is a vector of lengthNfreq containing the global

signal that we wish to measure, and A is a vertical stack of
Npix identity matrices of size Nfreq 	 Nfreq. The effect of

multiplying the global signal byA is to copy the theoretical
spectrum to every pixel on the sky before the noise and
foregrounds are added. The term Axs therefore represents
a data ball7 that contains ideal (noiseless and foreground-
less) data that depend only on the radial distance from the
center, and not on the direction. To every voxel of this data
volume the combined noise and foreground contribution n
is added, giving the set of measured voxel temperatures
that comprise y. Note that by thinking of the measurement
vector as a set of voxel temperatures, we have implicitly
assumed that a prior mapmaking step has been performed
on the raw time-ordered data. This step should ideally take
into account instrumental complications such as instru-
mental beam sidelobes.

For measurements with no angular sensitivity, we can
define z � 1

Npix
Aty to be the globally averaged measure-

ment. In this notation, our measurement equation becomes

z ¼ xs þ 1

Npix

Atn ¼ xs þ c; (27)

where c � 1
Npix

Atn is the angularly averaged noise and

foreground contribution, with mean

hci ¼ 1

Npix

Athni ¼ 1

Npix

Atm; (28)

where in the last step we used the definition in Eq. (24), and
covariance

C � hccti � hcihcti ¼ 1

N2
pix

AtNA: (29)

Our goal is to derive a statistically optimal estimator
x̂s for the true global signal xs. With an eye towards
optimizing experimental design, we will construct optimal
estimators for both measurement equations, treating the
spectral-only measurements in Sec. III A and the spectral-
plus-angular measurements in Sec. III B. We will prove
that beyond simply subtracting a best-guess model for the
foregrounds, there is formally nothing that can be done to
mitigate foreground residuals by using spectral informa-
tion only. In contrast, adding angular foreground informa-
tion partially immunizes one from errors in the best-guess
model, and allows the final error bars to be reduced.

A. Methods using only spectral information

For methods that use only spectral information, we write
down an arbitrary linear estimator of the form

x̂s ¼ Mz� d; (30)

where M is an Nfreq 	 Nfreq matrix and d is a vector of

lengthNfreq, whose forms wewill derive by minimizing the

variance of the estimator.
Taking the ensemble average of our estimator and insert-

ing Eq. (27) gives

hx̂si ¼ Mxs þMhci � d; (31)

which shows that in order for our estimator to avoid having
a systematic additive bias, one should select

d � Mhci: (32)

With this choice, we have hx̂si ¼ Mxs. The variance of
this estimator can be similarly computed, yielding

� ¼ hx̂sx̂
t
si � hx̂sihx̂t

si ¼ MCMt: (33)

We can minimize this variance subject to the normalization
constraint M�� ¼ 1 by using Lagrange multipliers. To do
so we minimize

ðMCMtÞ�� � 	�M�� (34)

with respect to the elements of M. Taking the necessary
derivatives and solving for the Lagrange multiplier 	 that
satisfies the normalization constraint, one obtains

M�� ¼ ðC�1Þ��
ðC�1Þ��

: (35)

Inserting this into our general form for the estimator,
we find

7Or perhaps a ‘‘data shell,’’ since there is a lower limit to the
redshift of the experiment.
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x̂�
s ¼ 1

ðC�1Þ��
½C�1ðz� hciÞ��: (36)

In words, this prescription states that one should take the
data, subtract off the known foreground contamination, and
then inverse variance weight the result before reweighting to
form the final estimator. The inverse variance weighting
performs a statistical suppression/subtraction of instrumen-
tal noise and foreground contamination. Loosely speaking,
this step corresponds to the subtraction of polynomial modes
in the spectra as simulated in Refs. [21,42] and implemented
in Ref. [22]. The final reweighting by C�1

�� rescales the
modes so that the previous subtraction step does not cause
the estimatedmodes to be biased high or low. For instance, if
a certain mode is highly contaminated by foregrounds, it
will be strongly down-weighted by the inverse variance
weighting, and thus give an artificially low estimate of the
mode unless it is scaled back up.

The corresponding measurement error covariance for
this estimator is given by

��� � hx̂�
s x̂

�
s i � hx̂�

s ihx̂�
s i ¼ ðC�1Þ��

ðC�1Þ��ðC�1Þ��
: (37)

It is instructive to compare this with the errors predicted by
the Fisher matrix formalism. By the Cramer-Rao inequal-
ity, an estimator that is unwindowed (i.e., one that has
hx̂si ¼ xs) will have a covariance that is at least as large
as the inverse of the Fisher matrix. Computing the Fisher
matrix thus allows one to estimate the best possible errors
bars that can be obtained from a measurement. In the
approximation that fluctuations about the mean are
Gaussian, the Fisher matrix takes the form

F�� ¼ 1

2
Tr½C�1C;�C

�1C;�� þ hziy;�C�1hzi;�; (38)

where commas denote derivatives with respect to the
parameters that one wishes to measure. In our case,
the goal is to measure the global 21 cm spectrum, so the
parameters are the values of the spectrum at various fre-
quencies. Put another way, we can write our mean mea-
surement equation as

hzi ¼ X
�

x�
s e� þ hci; (39)

where e� is a unit vector with zeros everywhere except
for a 1 at the �th frequency channel. The derivative hzi;�
with respect to the �th parameter (i.e., the derivative
with respect to the mean measured spectrum x�

s in the
�th frequency channel) is therefore simply equal to e�.
Since the measurement covariance C does not depend on
the cosmological signal xs, our Fisher matrix reduces to

F�� ¼ e�C
�1e�; (40)

which shows that the Fisher matrix is simply the inverse
covariance i.e., F ¼ C�1. This implies that the covariance

of the optimal unwindowed method is equal to the original
noise and foreground covariance, which means that the
error bars on the estimated spectrum are no smaller than
if no line-of-sight foreground subtraction were attempted
beyond the initial removal of foreground bias [Eqs. (31)
and (32)]. In our notation, an unwindowed estimator would
be one with M ¼ I [from Eq. (31) plus the requirement
that the estimator be unbiased, i.e., Eq. (32)]. But this
means our optimal unwindowed estimator is

x̂s ¼ z� hci; (41)

which says to subtract our best-guess foreground spectrum
model and to do nothing more.
To perform just a direct subtraction on a spectrum that

has already been spatially averaged and to do nothing else
[as Eq. (41) suggests] is undesirable, because the error
covariance in our foreground model is simply propagated
directly through to our final measurement covariance. This
would be fine if we had perfect knowledge of our fore-
grounds. Unfortunately, uncertainties in our foreground
models mean that residual foregrounds can result in rather
large error bars. As an example, suppose we plugged our
foreground covariance from Sec. II B 1 into the spatially
averaged covariance C [Eq. (29)]. If we optimistically
assume completely uncorrelated foreground model errors
(so that they average down), one obtains an error bar of
11 K at 79 MHz. This is far larger than the amplitude of the
cosmological signal that one expects.
If one uses the minimum variance estimator [Eq. (36)]

instead, one can reduce the error bars slightly (by giving up
on the unwindowed requirement, the estimator can evade
the Cramer-Rao bound). However, this reduction is purely
cosmetic, for Eqs. (36) and (41) differ only by the multi-
plication of an invertible matrix. There is thus no differ-
ence in information content between the two estimators,
and the minimum variance estimator will not do any better
when one goes beyond the measured spectrum to constrain
theoretical parameters.
Intuitively, one can do no better than a ‘‘do nothing’’

algorithm because the global signal that we seek to
measure is itself a spectrum (with unique cosmological
information in every frequency channel), so a spectral-
only measurement provides no redundancy. With no redun-
dancy, one can only subtract a best-guess foreground
model, and it is impossible to minimize statistical errors
in the model itself.
The key, then, is to have multiple, redundant measure-

ments that all contain the same cosmological signal. This
can be achieved by designing experiments with angular
information (i.e., ones that do not integrate over the entire
sky automatically). Because the global signal is formally a
spatial monopole, measurements in different pixels on the
sky have identical cosmological contributions, but differ-
ent foreground contributions, allowing us to further distin-
guish between foregrounds and cosmological signal.
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B. Methods using both spectral
and angular information

For an experiment with both spectral and angular infor-
mation, the relevant measurement equation is Eq. (26), and
the minimum variance, unwindowed estimator for the
signal can be shown [49] to take the form

x̂s ¼ ½AtN�1A��1AtN�1ðy �mÞ: (42)

With this estimator, the error covariance can also be shown
to be

� � hx̂sx̂
t
si � hx̂sihx̂t

si ¼ ½AtN�1A��1: (43)

These equations in principle encode all that we need to
know for data analysis, and even allow for a generalization of
the results that follow in the rest of this paper. For example,
frequency-dependent beams (a complication thatwe ignore, as
noted earlier) can be incorporated into the analysis by making
suitable adjustments to N. Recall from Sec. IIB2 that our
convention is to assume that all data sets have already been
suitablydeconvolvedprior to our analysis. Taking into account
a frequency-dependent beam is therefore just a matter of
including the effects of a frequency-dependent deconvolution
in the generalized noise covariance. For the Gaussian beams
considered in this paper, for instance, we can simplymake the
�b parameter [in Eq. (22)] a function of frequency.

Despite their considerable flexibility, we will not be using
Eqs. (42) and (43) in their most general form. For the rest of
the paper, we will make the approximation of frequency-
independent beams, which allows us to make some analytical
simplifications. Doing so not only allows us to build intuition
for what the matrix algebra is doing, but also makes it com-
putationally feasible to explore a wide region of parameter
space, aswe do in later sections. In its current form, Eq. (42) is
too computationally expensive to be evaluated over and over
again because it involves the inversion of N, which is an
Nvox 	 Nvox matrix. Given thatNvox is likely to be quite large
for a 21 cm survey with full spectral and angular information,
it would be wise to avoid direct matrix inversions.

We thus seek to derive analytic results for � �
½AtN�1A��1 and AtN�1, where N is given by Eq. (25).
We begin by factoring out the foreground templates from

our generalized noise covariance, so that N ¼ D~ND,
where8 D�i�j � m�i����ij, just as we defined in

Sec. II B 2. This is essentially a whitening procedure,9

making the generalized noise independent of frequency
or sky pixel. Since both � � ½AtN�1A��1 and AtN�1

involve N�1, we proceed by finding N�1 ¼ D�1 ~N�1D�1,
and to do so we move into a diagonal basis. The matrixD is
already diagonal and easily invertible, so our first step is to
perform a similarity transformation in the frequency-

frequency components of ~N in order to diagonalize Q
(which, recall from Sec. II B, quantifies the spectral
correlations of the foregrounds). In other words, we can

write ~N as

~N�i�j ¼ ðV �NVtÞ�i�j
¼ X

�	km

V�i�k

�
"20

�
�fg

�b

�
2
	�Rkm þNdec

km

�
��	V�j	m;

(44)

whereV�i�k � ðv�Þ��ik, with ðv�Þ� signifying the value of

the �th component (i.e., frequency channel) of the �th
eigenvector ofQ. The �th eigenvalue is given by 	�. Note

also that V�1 ¼ Vt.
Our next step is to diagonalizeR, the spatial correlations

of the foregrounds, as well as Ndec, which as the whitened
instrumental noise covariance is spatially correlated after
the data have been deconvolved. If we assume that the
correlations are rotationally invariant,10 these matrices will
be diagonal in a spherical harmonic basis. For computa-
tional convenience, we will now work in the continuous
limit. As discussed above and shown in Refs. [45,46], this
is entirely consistent with the discrete approach provided
one augments all noise covariances with a factor of
4�=Npix. In the continuous limit, the spatial correlations

of the foregrounds therefore take the form

Rðr̂; r̂0Þ ¼ 4�

Npix

expð��2r̂ � r̂0Þ
4��2 sinhð��2Þ ; (45)

which (except for our 4�=Npix factor) is known as a

Fisher function, the analog of a Gaussian on a sphere.
For � 
 1 rad, this reduces to the familiar Gaussian:

Rðr̂; r̂0Þ � 4�

Npix

1

2��2
exp

�
� 1

2

�2

�2

�
; (46)

where � � arccosðr̂ � r̂0Þ is the angle between the two
locations on the sphere. Switching to a spherical harmonic
basis, we have

8Recall that throughout this paper, we use greek indices to
signify the spectral dimension (or spectral eigenmodes) and
Latin indices to signify angular dimensions.

9In what follows, N, ~N, �N, and N̂ all refer to the same matrix,
but use different unit conventions and/or are expressed in differ-
ent bases. The original generalized noise N is assumed to be in
‘‘real space,’’ i.e., frequency and spatial angles on the sky; ~N is in
the same basis, but is in units where the foreground model has
been divided out; �N is the same as ~N, but in a spatial angle and
spectral eigenforeground basis; N̂ is the same as ~N, but in a
spherical harmonic and spectral eigenforeground basis.

10Recall that R encodes the spatial correlations in the errors of
our foreground model. It is thus entirely possible to break
rotation invariance, for instance by using a foreground model
that is constructed from a number of different surveys, each
possessing different error characteristics and different sources of
error. For this paper we ignore this possibility in order to gain
analytical intuition, but we note that it can be corrected by
finding the eigenvectors and eigenvalues of R, just as we did
with Q.
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R̂‘m‘0m0 � 4�

Npix

Z
d�d�0Y�

‘mðr̂ÞRðr̂; r̂0ÞY‘0m0 ðr̂0Þ

� 4�

Npix

exp

�
� 1

2
�2‘ð‘þ 1Þ

�
�‘‘0�mm0 ; (47)

where Y‘m denotes the spherical harmonic with azimuthal
quantum number ‘ and magnetic quantum number m, and
the last approximation holds if � 
 1 rad.

For the instrumental noise term, we saw in Sec. II B 2
that after dividing out the instrument’s beam, we have

N̂dec
‘m‘0m0 ¼ 4�

Npix

e�
2
b
‘ð‘þ1Þ

�t��
�‘‘0�mm0 ; (48)

and adding this to the foreground contribution gives us the
equivalent of �N but in spherical harmonic space:

N̂‘m�‘0m0	 ¼ 4�

Npix
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�‘‘0�mm0��	: (49)

The diagonal nature of N̂ in this equation allows a straight-
forward inversion:

ðN̂�1Þ‘m�‘0m0	 ¼ Npix

4�

�
"20

�
�fg
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�
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2‘ð‘þ1Þ
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‘ð‘þ1Þ

�t��

��1
�‘‘0�mm0��	; (50)

thus allowing us to write the inverse matrix in the original
spatial basis as

ð �N�1Þ�i�j ¼ ðFyN̂�1FÞ�i�j
¼ Npix

4�

X
�	‘‘0mm0

Fy
�i�‘m

�
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�fg
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�t��

��1
�‘‘0�mm0��	F	‘0m0�j; (51)

where F�‘m�i � ���Y‘mi and Y is a unitary matrix that

transforms from a real-space angular basis to a spherical

harmonic basis. Obtaining the inverse of ~N from here is

done by evaluating ~N�1 ¼ V �N�1Vt.
We are now ready to assemble the pieces to form � �

½AtN�1A��1 which, in the notation of our various changes
of basis, can be written as ½AtD�1FyV �N�1VtFD�1A��1.
We first compute

ðVtFD�1Þ�‘m�j ¼ Y‘mjðv�Þ�ðm�jÞ�1 � Y‘mjðv�Þ�u�j;

(52)

where u�i � 1=m�i is the reciprocal temperature (in units
of K�1) at the �th frequency and the ith pixel of our
foreground templates. Note that in the above expression,
there is no sum over j yet. This is accomplished by the
angular summation matrix A�i� ¼ ���, giving

ðVtFD�1AÞ�‘m� ¼ ðv�Þ�
X
j

Y‘mju�j ¼ ðv�Þ�û�‘m; (53)

where there is similarly no sum over �, and û signifies our
reciprocal foreground templates in spherical harmonic
space. The inverse covariance ��1 is thus given by

ð��1Þ�� ¼ Npix

4�
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ðv�Þ�ðv�Þ�
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�t�� e
�2
b
‘ð‘þ1Þ :

(54)

Defining tint � Npix�t to be the total integration time over

the survey,11 and making the substitution Npix ¼ 4�=�2b,

gives

ð��1Þ�� ¼ 1
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X
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:

(55)

At this point, notice that the angular cross-power spec-

trum C��
‘ between two reciprocal maps u�i and u�i at

frequencies � and �, respectively, is given by

Cu;��
‘ � 1

2‘þ 1

X‘
m¼�‘

û�‘mû�‘m; (56)

where the ‘‘u’’ superscript serves to remind us that Cu;��
‘

is the cross-power spectrum of the reciprocal maps, not
the original foreground templates. With this, our expres-
sion for the inverse measurement covariance ��1 can be
written as

ð��1Þ�� ¼ 1
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ðv�Þ�ðv�Þ�
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2
b
‘ð‘þ1Þ

Cu;��
‘ :

(57)

Permuting the sums and recalling that 	� and v� are the

�th eigenvalue and eigenvector of our foreground spectral
correlation matrix Q, respectively, this expression can be
further simplified to give

11That is, �t refers to the amount of integration time spent by a
single beam on a small patch of the sky with area equal to our
pixel size, and tint refers to the total integration time of a single
beam scanning across the entire sky. An experiment capable of
forming Nbeams independent beams simultaneously would re-
quire one to replace tint with Nbeamstint in our formalism.
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‘ð‘þ1Þ

��1
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: (58)

This provides a fast prescription for computing � �
½AtN�1A��1. One first inverts a series of relatively small
matrices (each given by the expression in the square brack-
ets). These inversions do not constitute a computationally
burdensome load, for � and � are frequency indices, so the
matrices are of dimension Nfreq 	 Nfreq. One then uses

publicly available fast routines for computing the angular
cross-power spectrum, multiplies by ð2‘þ 1Þ=4� and the
inverted matrices, and sums over ‘. The resulting matrix is
then inverted, a task that is much more computationally
feasible than a brute-force evaluation of �, which would
involve the inversion of an Nvox 	 Nvox matrix.

Using essentially identical tricks, we can also derive
a simplified version of our estimator x̂s [Eq. (42)]. The
result is

x̂�
s ¼ X

�

���

Z d�

mðr̂; ��Þ
X
‘m

Y‘mðr̂Þ
4�

X
�

ðv�Þ�w‘�

X



ðv�Þ


	
Z

d�0Y�
‘mðr̂0Þ

�
yðr̂0; �
Þ
mðr̂0; �
Þ � 1

�
; (59)

where y andm are continuous versions of the measured sky
signal y and the foreground modelm, respectively, and the
weights w are defined as

w‘� �
�"20�2fg
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2
b
‘ð‘þ1Þ

��1
: (60)

In words, this estimator calls for the following data
analysis recipe:

(1) Take the measured sky signal yðr̂; �Þ and subtract
the best-guess foreground model mðr̂; �Þ.

(2) Down-weight regions of the sky that are believed to
be heavily contaminated by foregrounds by dividing
by our best-guess model mðr̂; �Þ. [This and the
previous step of course simplify to give y=m� 1,
as we wrote in Eq. (59)].

(3) Express the result in a spherical harmonic and spec-
tral eigenmode basis.

(4) Take each mode (in spherical harmonic and
frequency eigenmode space) and multiply by
weights w‘�.

(5) Transform back to real (angle plus frequency) space.
(6) Divide by mðr̂; �Þ to down-weight heavily contami-

nated foreground regions once more.
(7) Sum over the entire sky to reduce the data to a single

spectrum.
(8) Normalize the spectrum by applying � �

½AtN�1A��1 [the inverse of Eq. (58)] to ensure
that modes that were heavily suppressed prior to

our averaging over the sky are rescaled back to their
correct amplitudes. (Note that the error bars will
also be correspondingly rescaled so that heavily
contaminated modes are correctly labeled as lower
signal-to-noise measurements.)

The recipe outlined here takes full advantage of spectral
and angular information to mitigate foregrounds and pro-
duce the smallest possible error bars under the constraint
that there be no multiplicative or additive bias, i.e., under
the constraint that hx̂si ¼ xs. To see how this recipe works
intuitively, we can plot the weights w‘� to see how our

optimal prescription uses various spherical harmonic ‘ and
eigenforeground � modes. This is shown in Fig. 7. At low
spherical harmonic ‘, the first few (i.e., smoothest) eigen-
modes are dominated by foregrounds, so they are severely
down-weighted. At high ‘, the limited angular resolution of
our instrument means that the instrumental noise dominates
regardless of spectral eigenmode, so all eigenmodes are
weighted equally in an attempt to average down the instru-
mental noise. At high � (spectrally unsmooth eigenmodes),
the foreground contamination is negligible, so theweightings
are dictated entirely by the instrumental noise, with the only
trend being a down-weighting of the noisier high ‘ modes.
It is important to emphasize that these weights are

applied to whitened versions of the data, i.e., data where
the best-guess foreground model was divided out in step 2
above. If this were not the case, the notion of weights as a
function of ‘ would be meaningless, for our goal is to
estimate the monopole (in other words, the global signal),
so all that would be required would be to pick the ‘ ¼ 0
component. The monopole in our original data is a linear
combination of different ‘ modes in the whitened units,
and the weights tell us what the optimal linear combination
is, taking into account the interplay between foreground
and instrumental noise contamination. In contrast, the
spectral-only methods are a ‘‘one size fits all’’ approach
with no whitening and a simple weighting that consists
solely of the ‘ ¼ 0 row of Fig. 7, ignoring the fact that at
some ð‘; �Þ the foregrounds dominate, whereas at others
the instrumental noise dominates.
The rest of this paper will be dedicated to examining the

error properties of our optimal estimator. The goal is to
gain an intuitive understanding for the various trade-offs
that go into designing an experiment to measure the global
21 cm spectrum.

C. Making the cosmological signal more apparent

In Secs. IVB and V, we will find that despite our best
efforts at foreground mitigation, the resulting error bars on
our measured signal can sometimes still be large, particu-
larly for instruments that lack angular resolution. These
errors will be dominated by residual foregrounds at every
frequency, and are unavoidable without an exquisitely
accurate foreground model. The resulting measurements
will thus look very much like foreground spectra.
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Often, we will find that this happens even when the
detection significance is high. This apparent paradox can
be resolved by realizing that often the large errors are due
to a small handful of foreground modes that dominate at
every single frequency channel. Put another way, the con-
taminants are fundamentally sparse in the right basis, since
there are a small number of modes that are responsible for
most of the contamination. Plotting our results as a func-
tion of frequency is therefore simply a bad choice of basis.
By moving to a better basis (such as one where our mea-
surement covariance � is diagonal, as we will discuss in
Sec. IVB), it becomes apparent that the cosmological
signal can be detected to high significance.

Still, it is somewhat unfortunate that the frequency basis
is a bad one, as the cosmological signal is most easily
interpreted as a function of frequency. It would thus be
useful to be able to plot, as a function of frequency, a
measured spectrum that is not dominated by the largest
amplitude foreground modes, even if we are unable to
remove them. Essentially, one can arrive at a measurement
that is closer to the ‘‘true’’ cosmological signal by simply
giving up on certain modes. This means resigning oneself
to the fact that some modes will be forever lost to fore-
grounds, and that one will never be able to measure those
components of the cosmological signal. As discussed for
an analogous problem in Ref. [44], this can be accom-
plished by subjecting our recovered signal to a Wiener
filter W:

x̂Wiener
s ¼ S½Sþ���1x̂s � Wx̂s; (61)

where S is the signal covariance matrix and x̂s is our
estimator from Eq. (59). Roughly speaking, this amounts

to weighting the data by ‘‘signal over signal plus noise,’’
which means well-measured (low noise/foreground)
modes are given a weight of unity, whereas poorly mea-
sured modes are down-weighted and effectively excluded
from our estimate.
The Wiener-filtered result has the desirable property of

minimizing the quantity hj"ij2i, where " � x̂s � xs is the
error vector. It thus represents our ‘‘best guess’’ as to
what the cosmological signal looks like, at the expense of
losing the information in highly contaminated modes. Since
these modes are irretrievably lost (without better foreground
modeling), one must also Wiener filter the theoretical mod-
els in order to make a fair comparison. We show such
Wiener-filtered theoretical spectra in Sec. IV.
In contrast to the Wiener filter, our previous

estimator minimized hj"ij2i only under the constraint that
hx̂si ¼ xs. It also had the property that it minimized
�2 � ðy �Ax̂sÞtN�1ðy �Ax̂sÞ [49], and so the estimator
constructed an unbiased model that best matched the
observations. The model will thus include modes that are
so contaminated that there is no hope of measuring the
cosmological signal in them, since these modes, however
contaminated and error prone they might be, are in fact part
of the observation. The result is a foreground contaminated
spectrum, which the Wiener-filtered result avoids.
It must be emphasized, however, that because the Wiener

filter W is an invertible matrix, there is no change in
information content. The information about the cosmologi-
cal signal was always there, and moving to a different basis
or Wiener filtering simply made it more apparent. Wiener
filtering is simply a convenient postprocessing visualization
tool for building intuition, and will not change our ability to
constrain the physics in our theoretical models.
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FIG. 7 (color online). Weights [Eq. (60)] in spherical harmonic ‘ and eigenmode � space for combining data in our optimal
estimator of the global signal [Eq. (59)]. Low � and high ‘ modes are down-weighted because of contamination by foregrounds and
instrumental noise, respectively.
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IV. A DESIGNER’S GUIDE TO EXPERIMENTS
THAT PROBE THE DARK AGES

Having established a general framework for analyzing data
from global signal experiments, we now step back and tackle
the problem experimental design. In this section, we will
consider experiments that are designed to target the trough
in brightness temperature between 30 and 100 MHz (i.e.,
probing the dark ages). In Sec. V wewill discuss experiments
that target the reionization window from 100 to 250 MHz.

Our guide to experimental design will be the quantity
��1, given by Eq. (57) [or equivalently, Eq. (58)]. As an
inverse covariance, this quantity represents an information
matrix. Our goal in what follows will be to design an
experiment that maximizes the information. One approach
to maximizing the information would be a brute-force ex-
ploration of parameter space. However, this is a computa-
tionally intensive, ‘‘black box’’ method that does not yield
intuition for the various trade-offs that go into experimental
design. Instead, we take the following approach. We first
rewrite our information matrix by separating out the mono-
pole (‘ ¼ 0) term in our spherical harmonic expansion:

��1
�� ¼

�
1

Tð��Þ
	�

1

Tð��Þ
	�"20�2fg

4�
Qþ I

tint��

��1
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tint��
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(62)

where we have taken advantage of the fact that when ‘ ¼ 0,
the power spectrum takes the value Cu

‘ ¼ 4�huðr̂Þi2 ¼
4�h1=Tðr̂Þi2, with expectation values h� � �i denoting a spa-
tial average in this case. In the next few subsections we will
interpret each piece of Eq. (62) individually, using quantita-
tive arguments to arrive at qualitative rules of thumb for
global signal experiment design.

Unless otherwise stated, in what follows wewill perform
calculations with tint ¼ 100 h and assume an instrument
with a channel width of �� ¼ 1 MHz. As stated in
Sec. II B 1, we will imagine that our foreground model
has roughly the same accuracy as that of the global sky
model of de Oliveira-Costa et al. [19], and thus set "0 ¼
0:1 at a resolution of �fg ¼ 5�. Since this is also the

‘‘native’’ resolution of the GSM, we assume that the errors
are correlated over � ¼ 5�. Because we do not possess
angular foreground models that have much finer resolution
than this (the GSM can at most be pushed to a 1� resolution
by locking to the Haslam map [50] at 408 GHz), we will
not be analyzing experiments with beams that are smaller
than 5�. The 5� figure that will be referenced repeatedly in
the following sections thus does not represent some opti-
mized beam size, but should instead be thought of as a
fiducial value chosen to highlight the advantages of having
a small beam. We do note, however, that thanks to the
cosmological anisotropy noise described in Sec. II B 3, an

instrument with finer beams than a few degrees will likely
be suboptimal.

A. How much does angular information help?

We begin by providing intuition for the role of angular
information in a global signal experiment where such
information is available. In general, angular information
can potentially help one’s measurement by
(i) Allowing regions of the sky that are severely con-

taminated by foregrounds to be down-weighted or
discarded in our estimate of the global signal.

(ii) Providing information on the angular structure of
the foregrounds, which can be leveraged to perform
spatial foreground subtraction.

In what follows we will assess the effectiveness of each of
these strategies.

1. Down-weighting heavily contaminated regions

We begin by addressing the first point. Consider the first
term of Eq. (62), the information matrix, which contains
two factors of h1=Ti. Since 1=T is a convex function for
T > 0 (almost always the case for our foregrounds12), we
know from Jensen’s inequality that�

1

T

	
� 1

hTi ; (63)

where equality holds only in the limiting case of uniform
foregrounds over the entire sky. Put another way, equality
holds only when an experiment has no angular sensitivity,
which is mathematically equivalent to an experiment
that measures the same value in all pixels of the sky.
With angular sensitivity, h1=Ti rises above 1=hTi, increas-
ing the information content via the monopole term of
Eq. (62). More intuitively, we can define the quantity

Teff �
�
1

T

	�1
; (64)

which can be thought of as the effective foreground
temperature of the sky after we have taken advantage of
our angular sensitivity to down-weight heavily contami-
nated regions. In Fig. 8 we show this quantity as a function
of angular resolution at 79 MHz (the behavior at different
frequencies is qualitatively similar). This is shown along
with the spatially averaged foreground temperature, which
is the relevant temperature scale for experiments with no
angular sensitivity, and the foreground temperature in the
coolest pixel of the sky, which will be useful later in
Sec. IVA3. As one expects from the preceding discussion,
the effective foreground temperature is strictly less than the
averaged temperature, demonstrating that residual fore-
ground errors can be reduced by down-weighting heavily

12Foregrounds that can be negative, such as those from the
Sunyaev-Zel’dovich effect, are completely negligible compared
to the sources considered in this paper.
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contaminated regions of the sky in our analysis, which is
only possible if one has sufficiently fine angular resolution.
The benefits become increasingly pronounced as one goes
to finer and finer angular resolution. Intuitively, this occurs
because the finer the angular resolution, the more ‘‘surgi-
cally’’ small regions of heavy contamination (e.g., bright
point sources) can be down-weighted.

2. Using spatial structure to perform angular
foreground subtraction

Now consider the second potential use of angular infor-
mation, namely, to perform spatial foreground subtraction
by taking advantage of the angular structure or correlations
of foregrounds. The extra information content that would
be provided by such a procedure is represented by the
second term of Eq. (62), where the detailed spatial prop-
erties of the foregrounds enter in the quantity Cu

‘ .

To quantify the added benefit of including angular
correlations, we compute the quantity


 � ðxt
s�

�1xsÞ12; (65)

which can be thought of as the ‘‘number of sigmas’’ with
which the cosmological signal xs can be detected. Since
Eq. (62) gives us ��1 in a form that is decomposed both in
angular scale ‘ and foreground mode number �, we can
express 
2 in the same decomposition. This is shown in
Fig. 9 for instrumental beams with FWHMs of 5� (top panel),
30� (middle panel), and 90� (bottom panel). Several trends
are immediately apparent. First, in all cases the detection
significance is concentrated in the low ‘ modes, in particular
the ‘ ¼ 0 mode (note the logarithmic color scale). As

expected, the use of higher ‘ information to boost detection
significance is more prevalent when the instrumental beam is
narrow. It is also more prevalent for the first few (i.e., spec-
trally smoother) foreground eigenmodes.
To gain intuition for this we can examine the second

term of Eq. (62). At high ‘, this term is exponentially
suppressed by the exp½�2b‘ð‘þ 1Þ� factor in the denomi-

nator, a result of our instrument having finite angular
resolution. At low ‘, this behavior is counteracted by the
other term in the denominator, which has the opposite
behavior with ‘ and is proportional to the strength of the
�th foreground mode as quantified by the eigenvalue 	�.

A conservative estimate for ‘max, the largest ‘ mode for
which there may be significant information content, can be
obtained by equating these two terms, since at higher ‘ the
noise term suppresses the information content. This esti-
mate is a conservative one, for the foreground correlations
themselves (encapsulated by Cu

‘) are almost always a

decreasing function of ‘, pushing the peak of useful infor-
mation content to lower ‘. Ignoring this complication to
obtain our rough estimate, we have

‘max �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
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2
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�"20�2fgtint��
4�
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�
þ 1

4

vuut � 1

2
: (66)

Several conclusions can be drawn from this. First, we see
that quantities such as "0 appear under the square root of
the logarithm. Thus, the dependence of ‘max on most model
parameters is extremely weak, and so our qualitative
conclusion that most of the detection significance comes
from low ‘ should be quite robust. The exception to this
is the dependence on 	�, which we saw from Fig. 4

decays exponentially. We therefore expect a non-negligible
decrease in ‘max as one goes to higher and higher foreground
eigenmodes, a trend that is visually evident in Fig. 9.
Intuitively, the higher foreground eigenmodes are an intrinsi-
cally small contribution to the contamination, so they are
difficult to measure with high enough signal-to-noise to be
deemed sufficiently ‘‘trustworthy’’ for foreground mitigation
purposes. In contrast, the first few foreground eigenmodes
are easy to measure, but this is of course only because they
were a large contaminating influence to begin with. From
Eq. (66), we can see that extra integration time does allow the
weak foreground modes to be measured sufficiently well for
their fine angular features to be used in foreground removal,
but as we suggested above, the logarithmic dependence on
tint makes this an expensive strategy for experiments with
coarse (high �b) beams.
Based on our discussion so far, one might be tempted to

conclude that it is unnecessary for 21 cm global signal
experiments to take advantage of angular resolution at all.
Another argument for this is presented in Fig. 10, where
we once again compute our significance statistic 
, but
this time vary the number of ‘ modes used in our angular
foreground subtraction. In other words, to produce Fig. 10
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FIG. 8 (color online). Effective foreground temperature Teff ¼
h1=Ti�1 (purple squares), average foreground temperature hTi
(gold diamonds), and minimum foreground temperature Tmin

(blue circles) in the sky as a function of the angular resolution
at 79 MHz. In each case, a high resolution foreground map was
convolved with a Gaussian beam with a full width at half
maximum given by values on the horizontal axis. When inter-
preted with the information matrix [Eq. (62)], this shows that
having angular sensitivity allows an optimal down-weighting of
regions heavily contaminated by foregrounds, reducing the ef-
fective foreground contamination in the global signal. The effect
is particularly pronounced with fine angular resolution.
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we took Eq. (62) and performed the sum of ‘ only to some
cutoff to produce a truncated information matrix. One sees
that taking advantage of angular correlations in our fore-
ground model does very little to boost the detection signifi-
cance. As far as this statistic is concerned, most of the gain in
having angular information comes from the effect discussed
in Sec. IVA1, namely, the down-weighting of heavily con-
taminated regions to suppress foregrounds beforewe average.
This is responsible for the way the finer angular resolution
experiments have higher 
 in Fig. 10 even if the higher ‘
modes are not used for angular foreground mitigation at all.

The simple down-weighting of contaminated regions,
however, is a strategy that is of limited power. Figure 8
tells us that even with 5� beams, we can expect at most a
factor of 2 mitigation in foreground contamination (com-
pared to an experiment with no angular resolution at all).
Thus, one may argue that angular resolution is simply not
worth the financial cost or the instrumental challenges,
since Fig. 10 shows that a statistically comfortable detec-
tion can be made even without angular resolution. As we
shall see in Sec. IVB, the high statistical significance seen
in Fig. 10 is the result of spectralmethods, which may lead
one to abandon angular methods entirely.

Such a conclusion, however, would be a misguided one.
For while 
 (the ‘‘number of sigmas’’ of our detection) is a

useful and commonly quoted statistic, it is somewhat crude
in that it only tells us whether we are seeing a significant
departure from our residual noise and foreground models.
In other words, it tells us that if the emission from the sky
did in fact take the form of foregrounds plus the fiducial
global signal assumed in Sec. II A, we would be able to
detect something above pure foregrounds and noise in our
measurements. It does not tell us what global signal has
been detected, or whether our final result is indeed correct.
More precisely, suppose that in addition to Fig. 10 we also

consider the error bars ð���Þ1=2 on our measured frequency
spectrum. This is shown in Fig. 11, where we show the error
bars at 79MHz, again as a function of the maximum ‘mode
used for angular foreground mitigation.13 In this case, we
see large changes as we vary our ‘ cutoff. In all cases, the

FIG. 9 (color online). Contributions to the detection significance statistic 
2, as a function of the foreground spectral eigenmode
number � (vertical axis, increasing downwards) and spherical harmonic ‘ (horizontal axis, increasing to the right). Top panel,
instrumental beam with FWHM of 5�; middle panel, 30�; bottom, 90�. The plots are normalized to give unity when summed over all �
and ‘. In all three cases, almost all of the detection significance comes from the ‘ ¼ 0 modes beyond the first few � modes (note the
logarithmic color scale). As expected, the dominance of low ‘modes is more pronounced for experiments with low angular resolution.

13For Figs. 11 and 21 only, we make the approximation that the
angular cross-power spectrum between frequency channels �
and �, Cu;��

‘ , is a separable function of the two frequencies.
There is no a priori reason to expect this to be the case, but we
find that it is an excellent approximation. We make use of this
approximation for purposes of numerical stability. In any case, it
is a conservative assumption, for a nonseparable cross correla-
tion (which might occur, for instance, if different foreground
sources dominate at different frequencies) only provides more
information with which to subtract foregrounds.
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errors go down as more and more angular correlation infor-
mation is used. At the lowest ‘, the finer angular resolution
experiments do better because they are able to down-weight
foreground contaminated regions in a more spatially precise
way (as we discussed in Sec. IVA1). Going to moderate ‘
cutoffs, the coarser experiments do better because they
sampled a blurred version of the sky to begin with, and
thus do not need to go to as high ‘ in their data analysis to
make the most of their angular correlation information.
However, the blurry measurements do not possess the fine
details needed perform a high-precision angular foreground
subtraction, so at higher ‘ cutoffs, the fine angular resolution
experiments give the lowest errors.

Figures 10 and 11 together tell us that even though we do
not need angular correlation information to tell that our
measurement contains something more than just pure noise
and foregrounds, the error bars are large enough (being in
the 5 to 10 K range at ‘ ¼ 0) for our results to be consistent
with a wide variety of theoretical spectra. Since we expect
the cosmological signal to have a maximum amplitude of
�0:1 K, such error bars make it impossible to use our
measurements to distinguish between different models.

In short, we conclude that the use of angular correlations
is crucially necessary, not for the purposes of a mere
detection of something above the noise and foreground
model, but to further reduce error bars to the point where
interesting constraints can be placed on theoretical models.

3. Excluding heavily contaminated regions from
observations

While we argued in the previous section that making use
of angular correlations is crucial for bringing down

residual foregrounds in one’s error bars, in this section we
briefly consider an alternative: selectively discarding heav-
ily contaminated foregrounds from one’s analysis entirely
(or equivalently, simply not observing the dirtiest portions of
the sky, such as the galactic plane). By excluding the dirtiest
foreground pixels one can reduce the effective foreground
temperature below h1=Ti�1, bringing one closer to the
minimum foreground temperature in the sky, plotted as the
Tmin curve in Fig. 8. In this section, we examine whether
the exclusion of dirty sky regions does indeed produce
smaller error bars in one’s final measurement.
We begin by considering just the ‘ ¼ 0 term in our

expression for the information matrix [Eq. (62)]. Again,
this is equivalent to omitting angular correlation informa-
tion from our analysis.14 Discarding all but the first term in
the sum over ‘, we can simplify our expression for the
information matrix using the spectral coherence matrix Q:
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FIG. 10 (color online). Detection significance 
 for experi-
ments of different levels of angular resolution, plotted as a
function of various ‘ cutoffs, beyond which the angular corre-
lation information is not used for foreground mitigation. In all
cases, the detection significance is high, which we shall see in
Sec. IVB is a result of spectral signatures. Since the curves in
this figure are essentially flat, one may initially conclude that
there is little added benefit to using angular information when
dealing with foregrounds. However, as Fig. 11 shows, this
conclusion is incorrect.
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FIG. 11 (color online). Error bars on the measured spectrum at
79 MHz, shown as a function of various ‘ cutoffs, beyond which
the angular correlation information is not used for foreground
mitigation. Excluding any information of angular correlations in
the analysis, the errors are highest for the experiments with
coarse angular resolution, because such experiments are less
able to down-weight heavily contaminated regions of the sky,
as discussed in Sec. IVA1. The situation reverses at moderate
cutoffs in ‘, and the coarser experiments have an advantage
because higher ‘ modes of the foregrounds were never measured
in the first place. However, information in these unmeasured
modes are lost forever, and cannot be used for angular subtrac-
tion, unlike in experiments with fine angular resolution.
At high cutoffs in ‘, where one is using all available information,
fine angular resolution once again wins, giving the smallest
error bars.

14In this section we are considering a scenario where angular
correlations are not used. One could imagine alternatively a
situation where we not only discard (or do not observe) the
most heavily contaminated regions, but in addition also take
advantage of angular correlations between the remaining pixels.
For the purposes of this paper, we do not analyze this scenario,
for the necessary correlation models that this would entail
involves additional experiment-specific details such as an experi-
ment’s scanning strategy.
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��1
mono ¼ T�1

� "20�
2
fg

fsky�sky

Qþ I

tint��

��1
T�1; (67)

where we have used the fact thatQ�� ¼ P
�ðv�Þ�ðv�Þ�	�,

and have made the substitution 4� ! fsky�sky (that this is

an appropriate step can be verified by a more detailed
derivation of ��1 that assumes incomplete sky coverage
from the beginning). We have also defined T�1 as a diago-
nal matrix containing the h1=Ti values, i.e.,

T�1
�� � ���

�
1

Tð��Þ
	
: (68)

From all this, we can easily compute the error bars at a

specific frequency, which are given by �1=2
�� . Expressing

this in terms of our definition of the effective foreground
temperature [Eq. (64)], we have

ð�mono
�� Þ1=2 � Teffð��Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
"20�

2
fg

fsky�sky

þ 1

tint��

vuut ; (69)

where we have taken advantage of the fact that Q�� ¼ 1.
This equation reveals that our measurement error consists
of two terms added in quadrature. The first is from residual

foregrounds, and scales as 1=
ffiffiffiffiffiffiffiffi
fsky

p
, since using more pix-

els allows us to average down the error in our foreground
model. The second is from instrumental noise. It depends
on the bandwidth �� and the total integration time tint, but
not on the number of pixels fsky. This is because our goal is

to measure a cosmological monopole, which means the
instrumental noise is averaged down at the same rate
regardless of whether all the time is spent integrating on
a small patch of the sky or the observation time is spread
over the entire sky. The entire expression is modulated by
the effective foreground temperature.

Armed with Eq. (69), we can answer the question of
whether it is wise to spend our integration time observing
only the cleanest regions in the sky. Suppose we took the
pixels in our sky and sorted them from least foreground
contaminated to most foreground contaminated. One can
then imagine (excluding practical logistics such as scan-
ning strategy) observing in only the fsky cleanest portions

of the sky. The effective foreground temperature Teff is
an increasing function of fsky, since it increases from Tmin

to h1=Ti�1
full sky. Thus, if the measurement errors were deter-

mined by Teff alone, it would be best to spend all our
integration time on the single cleanest pixel of the sky.
However, we can see in Eq. (69) that there is a competing

influence: the

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
"2
0
�2
fg

fsky�sky
þ 1

tint��

r
is a decreasing function of

fsky, because sampling more of the foreground sky allows

one to average down the errors in our foreground model.
In Fig. 12 we examine this trade-off, where we show the

expected error bars on a global signal measurement at
79 MHz, as a function of the fraction of the sky observed.
The observations are assumed to include only the cleanest

parts of the sky. For instance, a coverage fraction of 0.3
means the observations include only the cleanest 30% of
pixels. From the plot, one can see that for any reasonable
level of fiducial foreground modeling error "0, the errors
are minimized by including as much of the sky as possible,
even if that means sampling some highly contaminated
foreground regions. In words, this is a statement that the
foreground modeling errors average down more quickly
than the foreground amplitudes rise as we go to dirtier parts
of the galaxy. Mathematically, the instrumental noise term
turns out to be negligible compared to the residual fore-
ground error term. The second piece of Eq. (69) therefore

ends up scaling as 1=
ffiffiffiffiffiffiffiffi
fsky

p
, which happens to decay more

quickly than Teff grows with fsky. The net result is that

overall measurement error is reduced by covering as much
of the sky as possible, although in practice the gains appear
to be minimal beyond a 30% coverage of the sky. The trend
of decreasing error with increasing sky coverage changes
only if the foreground modeling error is unphysically low
(e.g., the "0 ¼ 0 curve in Fig. 12). Only then is it advanta-
geous to avoid observing the dirtier parts of the sky.15
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FIG. 12 (color online). Expected error bars on a global signal
measurement at 79 MHz, as a function of the fraction of the sky
observed. The observations are assumed to be of the cleanest
parts of the sky (e.g., a fraction of 0.3 means observing the
cleanest 30% of pixels, even if they are not contiguous) and are
simulated at a resolution of 5 degrees. Different curves denote
different values of the fiducial foreground model error parameter
". At any realistic level of foreground modeling error, it is
advantageous to cover as much of the sky as possible to reduce
the modeling error, even if it means dealing with a higher
effective foreground temperature.

15While Fig. 12 was produced using simulations at a 5�
resolution, we expect our conclusion—that one should cover
as much of the sky as possible, even if it means observing
regions that are highly contaminated by foregrounds—to hold
at other relevant resolutions. Finer resolutions are unlikely to be
achievable at such low frequencies, and at coarser resolutions the
act of discarding pixels does not reduce the effective foreground
temperature by very much (as one can see from Fig. 8). The
benefits from going to higher sky coverage fraction are thus even
more pronounced.

LIU et al. PHYSICAL REVIEW D 87, 043002 (2013)

043002-20



B. The role of spectral information

In the previous section, we examined the extent to which
angular information can reduce the error bars on a global
signal measurement. In this section, we highlight the cru-
cial role that spectral information plays.

Recall from Fig. 10 that even an experiment with a
FWHM instrumental beam that is as wide as 90� can
make a statistically significant (�14�) detection of a
signal above residual noise and foregrounds. Since a 90�
beam is essentially equivalent to having no angular infor-
mation at all, it follows that the statistical significance of
such a detection must come from spectral information. To
see this clearly, let us express our measurement covariance
and the cosmological signal in a basis where the covariance
is diagonal. Intuitively, this can be thought of as a ‘‘residual
noise and foregrounds eigenbasis.’’ Such a basis is conve-
nient because without off-diagonal elements, the error bars
(given by the square root of the diagonal elements of the
covariance) can be directly compared to the signal to arrive
at a signal-to-noise ratio.

In the bottom panel of Fig. 13, we show the absolute
amplitude of the theoretical signal in our residual noise and
foreground basis for an instrument with a 90� beam. Also
on the plot is the square root of the (now diagonal) covari-
ance, i.e., the error bars on our measurement in this basis.
Still focusing on just the bottom panel for now, we note
several features. As expected, the error bars show an
exponential decay over the first few modes, corresponding
to an error budget that is dominated by residual fore-
grounds. In such a regime, the cosmological signal is
completely subdominant. As one goes to higher modes,
the errors are determined by a more balanced mixture and
noise and foregrounds, and the decay is less rapid. From
this figure, we have a simple explanation for why it is
possible to have a high detection significance in spite of
large error bars in our frequency spectrum—plotting our
measurement as a function of frequency represents a bad
choice of basis, with foregrounds dominating every fre-
quency channel. With a better basis choice, it is clear that
there are a small number of modes (eigenmodes �25 to
�50) that can be measured with signal-to-noise ratio greater
than unity, and it is these modes that are providing all the
detection significance. However, our inability to measure
any of the other modes limits our ability to accurately
constrain the shape of the global signal spectrum.

The difficulty in constraining the shape of the spectrum
can be further understood by examining the eigenvectors
corresponding to our residual noise and foreground eigen-
modes. In Fig. 14 we show the first few eigenmodes, which
from Fig. 13 we know are essentially unmeasurable. These
eigenmodes are all spectrally smooth, and thus any such
patterns in the measured spectrum will be lost in the
measurement. In the language of our residual noise and
foreground basis, these modes are very poorly constrained,
and so our experiment will be unable to tell the difference

between two cosmological scenarios that differ only in
these unmeasurable modes. Given that the cosmological
signal is expected to be reasonably smooth spectrally,
being unable to measure these smooth modes is problem-
atic, for it means that there will be a wide class of reason-
able cosmological models that our experiment will not be
able to tell apart. Mathematically, this is why we found that
the error bars on the final measured spectrumwere large for
experiments with no angular resolution. Such experiments
rely too heavily on spectral information for their fore-
ground subtraction, and since both the foregrounds and
global cosmological signal are rather smooth, a sharp
constraint on the signal is very difficult.

5  beam

90  beam

o

o

FIG. 13 (color online). Absolute value of the theoretical cos-
mological signal (blue circles) and predicted error bars (purple
squares), shown in a residual foreground and noise eigenmode
basis for an experiment with a FWHM instrumental beam of 5�
(top panel) and a FWHM of 90� (bottom panel). In the 90� case,
high signal-to-noise detections of the cosmological signal are
possible in a small handful of modes, and it is these modes that
provide all the detection significance. However, the inability to
constrain any other modes results in large error bars in the final
measured global signal spectrum. With a 5� beam, our angular
foreground subtraction methods allow more spectral modes to be
measured at high signal-to-noise, contributing to a more faithful
reconstruction of the shape of the global spectrum, with smaller
error bars. Note that the cosmological signal in the two panels of
this figure look slightly different because the measurement
covariances change when one changes the beam size, which in
turn changes our eigenbasis.
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In Fig. 15, we show several of the eigenmodes that in
contrast can be reasonably well measured. Immediately
striking is the fact that these eigenmodes are all localized in
the trough in the cosmological signal between 50 and
80 MHz. It is therefore information from the trough that
is providing most of the detection significance. Next, we
notice that many of the eigenmodes have a double-peaked
structure, with one peak positive and one negative. With
such a structure, each eigenmode is probing differences
between neighboring frequencies. Looking at differences
rather than raw values has the advantage of being
more immune to foreground contamination, since the fore-
grounds are monotonically decreasing functions of fre-
quency, so differencing neighboring frequency channels
will cancel out some of the foregrounds. An alternative
but equivalent way to understand this heuristic argument is
to think of these ‘‘difference modes’’ as finite-difference
versions of derivatives. Measuring these modes is thus
equivalent to measuring the derivative of the spectrum.
The algorithm is simply taking advantage of the fact that
even though the foreground spectrum may be larger than

the cosmological signal in amplitude, the reverse may be
true of the derivatives.16 Of course, here the modes are only
approximately derivative-like, since it is clear from Fig. 15
that there is an asymmetry in height and width between the
positive and negative peaks. This is an indication that the
algorithm is doing a little more than just taking the deriva-
tive, but in any case, all its behaviors can be captured by
calculating the eigenvectors as we have done.
Figure 15 may seem to suggest a strategy for extracting

useful cosmological information out of an experiment that
has insufficient angular resolution to produce small error
bars in a measured spectrum. Since the (relatively) high
signal-to-noise eigenmodes are all concentrated in the trough
of the cosmological signal, perhaps one can simply give up
on information from the low signal-to-noise modes, and
limit oneself to constraining properties of the trough.
Unfortunately, the trough itself is quite smooth, and thus
much of its amplitude comes from the unmeasurable low
signal-to-noise modes. To see this quantitatively, we can use
the Wiener filtering technique described in Sec. IIIC, which
(as we discussed above) is designed to automatically exclude
poorly measured modes by appropriately weighting the data.
In the bottom panel of Fig. 16, we show the expected
cosmological signal, as well as the same signal after it has
been Wiener filtered appropriately for an instrument with a
90� FWHM beam. The filtered result represents the best we
can possibly do after down-weighting the heavily contami-
natedmodes.We see from this that in our attempt to eliminate
heavily contaminated modes, we have also inadvertently
destroyed a good portion of the cosmological signal.
By now, it should be clear that in the presence of fore-

grounds, angular information is necessary for suppressing
error bars to an acceptable level. We now turn to analyzing
an experiment with angular information. In the top panel
of Fig. 13 we show the signal and the errors in a residual
noise and foreground eigenbasis for an instrument with a
FWHM beam of 5�. Comparing this the bottom panel, we
see that many more modes can be measured at high signal-
to-noise, including some of the smoothest (lowest eigen-
mode number) modes. We thus expect to be able to be able
to mitigate foreground contamination without destroying
as many features in the cosmological power spectrum,
and indeed we can see in the top panel of Fig. 16 that
the Wiener-filtered cosmological signal more accurately
reflects the shape of the fiducial spectrum.

1. Summary: The role of spectral information

It is important to stress that in discussing the role of
spectral information in this section, the result from
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FIG. 15 (color online). The 30, 35, 40, 45, and 50th eigen-
modes of the measurement covariance �, all of which are modes
that can be measured with signal-to-noise ratio greater than one.
The computations were performed for an experiment with a
FWHM instrumental beam of 90�. Shown in dotted black is our
fiducial cosmological signal, arbitrarily rescaled in amplitude.

30 40 50 60 70 80 90 100

0.4

0.2

0.0

0.2

Frequency MHz

A
m

pl
itu

de

FIG. 14 (color online). First few (foreground-residual domi-
nated) eigenmodes of the measurement covariance � for an
experiment with an instrumental beam of FWHM 90�.

16The fact that measurements seem to be quite sensitive to the
derivative of the global signal is intriguing, for it has been
suggested [51] that the derivative could be a way to distinguish
between the x-ray heating from dark matter annihilations and
that from more conventional astrophysical sources.
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Sec. III A remains true: aside from a direct subtraction of a
foreground model spectrum, purely spectral methods
are formally unable to reduce errors from residual
foregrounds. Without angular information to help with
foreground subtraction, one must simply hope that
the foreground spectra look sufficiently different from the
cosmological signal that interesting constraints on theo-
retical models can be placed without using modes that are
known to be heavily contaminated. Unfortunately, these
modes also contain a significant fraction of the cosmologi-
cal signal, and in the bottom panel of Fig. 16 we saw that
this meant that many of the interesting features of the
cosmological signal would be washed out along with the

foregrounds. This also manifested itself in Fig. 11, where
we saw that with no angular resolution, the error bars on
the final measurement ended up being unacceptably high.
In order to get small error bars (and subsequently put
constraints of theoretical scenarios), one must use angular
information to aid with foreground subtraction.

C. Instrumental noise and integration time

In this section, we consider the effects of varying the
integration time. Increasing the integration time decreases
the instrumental noise in our measurement, and we now
examine exactly how this affects our detection significance
and error bars.
In Fig. 17, we show the ‘‘number of sigmas’’ 
 with

which the cosmological signal can be detected, as a func-
tion of time. The plot is for an experiment with a 5�
instrumental beam, but apart from a simple rescaling of
the amplitude, the plot is essentially identical for wider
beams. As expected, the detection significance increases with
extra integration time, although not as

ffiffi
t

p
, as would be the

case if our experiment were limited only by instrumental
noise. A power law fit to the curve reveals that 
 scales
roughly as t0:4, suggesting that residual foregrounds cannot
be perfectly sequestered into a few eigenmodes, and affect
even those high signal-to-noise spectral modes that are
responsible for giving us most of our detection significance.
Turning to the error bars, we find that the behavior is

different for experiments with angular sensitivity com-
pared to those without. In Fig. 18 we show the measure-
ment error at 79 MHz as a function of time, normalized to
the error of each experiment after 50 h of integration.
Performing fits to the curves reveals a t�0:4 scaling for
the 5� case and a t�0:24 scaling for the 90� case. Thus, in
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FIG. 17 (color online). A plot of 
 � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xt
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�1xs

p
, the ‘‘number

of sigmas’’ with which our fiducial cosmological signal can be
detected, as a function of integration time. The detection sig-
nificance is seen to rise with greater integration, but because the
errors involve residual foregrounds in addition to instrumental
noise, the rise is less rapid than what would be expected from a
simple

ffiffi
t

p
scaling. A fiducial foreground model error of "0 ¼ 0:1

and an instrumental beam with FWHM of 5� were used to make
this plot.
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FIG. 16 (color online). Comparisons between the true global
signal and ones that have been Wiener filtered. The top panel is
for an experiment with an instrumental beam of 5� width, while
the bottom panel is for one with a 90� beam. The Wiener filter
eliminates modes that cannot be measured without an extremely
accurate foreground model. The filtered curves in this figure thus
encapsulate the best spectra that one can expect to measure,
given some of the unavoidable similarities between the signal
and foregrounds, as viewed by an experiment with different
beam widths. With a 90� resolution, many of the measured
spectral modes are heavily contaminated, and in eliminating
them from our final result, we have also washed out a non-
negligible fraction of the cosmological signal. In comparison,
foregrounds can be cleaned more aggressively using angular
information from a 5� resolution experiment, and fewer features
in the cosmological signal are washed out.
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neither case do we have the t�1=2 scaling that one would
expect from pure instrumental noise, but the errors are
integrated down more rapidly when there is angular infor-
mation. Intuitively, integrating for longer without angular
information allows us to reduce our errors in the high
signal-to-noise eigenmodes that we can already access,
but does not provide us with the ability to measure new
spectral modes that were limiting our ability to constrain
the shape of the global signal. The situation is different
when there is angular information, because in that case the
foreground residuals are sufficiently well controlled for
instrumental noise reduction to produce an appreciable
improvement in the error budget.

In summary, then, we find that extra integration helps to
increase the detection significance whether there is angular
information or not. However, the decrease in the error bars
is more pronounced when the angular resolution is fine.
This is because in such an experiment, the spectral eigen-
modes that are the most useful for constraining the shape of
the global signal are not completely residual foreground
dominated, and so a reduction in instrumental noise has a
more significant effect on the errors.

D. Reference foreground survey uncertainty

To further our understanding of how the residual fore-
grounds affect our measurement, we now consider the
effects of varying "0, the fractional error in our foreground
model. In Fig. 19, we plot, as a function of "0, the error bars
on the measured global signal at 79 MHz. At unrealistically
low foreground modeling error, the observations are domi-
nated not by residual foregrounds, but instead by instrumen-
tal noise. The errors are therefore roughly independent of "0.

Once "0�fg=
ffiffiffiffiffiffiffiffiffiffi
�sky

q
� 1=tint��, the errors become increas-

ingly dominated by residual foregrounds, and therefore rise

with "0. Note that the rise occurs much more rapidly when
the angular information is poor. This can be understood
through the lens of our result from Sec. IIIA, which stated
that with only spectral information nothing can be formally
done to mitigate errors in the foreground model. As "0 rises,
larger errors must simply be accepted by those experiments
without angular resolution.
The transition from a noise dominated experiment to a

foreground-residual dominated experiment can also be
seen in Fig. 20, where we show the detection significance

 as a function of "0. There are several regimes of interest.
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FIG. 18 (color online). Errors at 79 MHz as a function of
integration time, normalized to the error after 50 h of integration.
The error bars are integrated down more rapidly for the
experiment with the 5� beam than the one with the 90� beam,
but both scalings are slower than t�1=2, which would be the case
if the measurements were instrumental noise dominated.
A fiducial foreground model error of "0 ¼ 0:1 was assumed to
make this plot.
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FIG. 19 (color online). A plot of the error at 79 MHz in the
extracted global 21 cm signal, shown as a function of the frac-
tional error in our foreground model "0. At unrealistically low
"0, instrumental noise is the dominant source of error, and the
final errors do not vary with "0. As we increase the foreground
model errors, residual foregrounds dominate and the errors
increase with "0. An integration time of 100 h was assumed to
make this plot.
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FIG. 20 (color online). The detection significance 
 of the
fiducial global 21 cm signal, plotted against the fractional error
in our foreground model "0. At extremely low "0, foreground
residuals are a negligible source of error and the detection
significance is constant. At higher "0, foregrounds become
more important, and 
 drops until the detection is driven by
the trough feature between 30 and 80 MHz. At the highest "0, 

drops further as foreground modeling errors become so high that
even the trough is difficult to detect. An integration time of 100 h
was assumed to make this plot.
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At very low "0, the foreground contribution to the covari-
ance is negligible, and the information matrix [Eq. (58)]
is diagonal to a good approximation. Its eigenvectors
(our residual noise and foreground basis vectors) are thus
delta functions in frequency, and every frequency band can
be measured easily. As "0 increases beyond �10�4 (i.e.,
beyond the noise dominated regime), the detection signifi-
cance drops, and an examination of the eigenmodes reveals
the double-peaked structure seen in Fig. 15. Intuitively, the
residual foregrounds are becoming more of a contaminat-
ing influence, and precautions (such as differencing neigh-
boring frequency channels, which is what the double peaks
do) need to be taken. As one approaches "0 � 0:05 and
beyond, the detection significance drops more sharply
because one ceases to be able to make statistically signifi-
cant measurements beyond the 50 to 80 MHz trough.

As with any experiment that is plagued by foreground
contamination, the better one can model the foregrounds,
the better the final results. However, Fig. 20 reveals an
interesting result—unless fractional errors in foreground
models can be suppressed beyond the �10�2 level to the
�10�3 level, the improvements in detection significance
are not dramatic.

V. A DESIGNER’S GUIDE TO EXPERIMENTS
THAT PROBE REIONIZATION

We now turn to examining experiments that target the
reionization regime, from 100 to 250 MHz. The analysis
formalism remains essentially the same as that in the
previous section, and most results remain unchanged. We
therefore focus on highlighting the differences. We will
find that whereas a significant detection (but not a well-
constrained measurement) could be achieved without
angular resolution for the dark ages, for reionization there
are scenarios where a positive detection simply cannot be
made without angular information.

Consider first the predicted error bars. In Fig. 21 we
show the projected errors during reionization as a function
of the maximum ‘mode used in the analysis, just as we did

for the dark ages in Fig. 11. Like before, the errors are seen
to be relatively large if angular correlations are not used in
the analysis (for comparison, recall that the signal is now
�30 mK and gradually decaying to zero). With angular
correlations, the error bars can be suppressed to a level that
allows different theoretical models to be distinguished
from each other, exactly as we saw for the dark ages.
However, when we consider the statistical significance

of our detection, the story departs from what we found
previously. In particular, we will find here that the ability to
make a statistically significant detection of a signal above
noise and foregrounds is dependent on the duration of
reionization �z. This parameter enters into a general
form of the reionization global signal that we adopt:

TbðzÞ ¼ T21

2

�
1þ z

10

�
1=2

�
tanh

�
z� zr
�z

�
þ 1

�
; (70)

where T21 ¼ 27 mK and zr is the redshift at the midpoint
of reionization [21]. Comparing this to Eq. (1), we see that
this arises from assuming that the mean ionized fraction
takes the form

�xiðzÞ ¼ 1

2

�
1þ tanh

�
zr � z

�z

��
: (71)

This parametrization is identical to the one adopted by
[21,22], and differs from that employed by WMAP [39]
and the CAMB software package [52] only in that their
tanh parametrization is in conformal time rather than red-
shift. Some sample brightness temperature signals with
differing �z but fixed zr (equal to 10) are shown in Fig. 22.
Intuitively, one would expect reionization histories with

larger �z to be more difficult to detect, since they give rise
to cosmological signals that monotonically decrease in
smooth, gradual ways with frequency that are very similar
to typical foreground spectra such as that shown in Fig. 6.
This is exactly what one sees in Fig. 23. As reionization
becomes more and more abrupt, its signature in the global
signal becomes increasingly distinct from that of the
smooth foregrounds, and becomes easier to detect. For
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abrupt reionization, using higher ‘ modes in the analysis
improves the error bars, but does not increase the detection
significance, just as we found for the dark ages. As we
move to more gradual reionization scenarios, however, we
see that the foregrounds become so difficult to distinguish
from the cosmological signal that it becomes necessary to
use angular correlations simply to obtain a detection.

The necessity of angular information for probing extended
reionization histories is further demonstrated in Fig. 24,
where we show the contribution to 
2 as a function of ‘
and foreground eigenmode �, for an experiment with a
FWHM beam of 5�. The assumed reionization scenario has
a midpoint zr ¼ 10 and duration�z ¼ 4. Unlike for the dark
ages, where fine angular correlations certainly helped—but
did not dominate—the statistical significance of our detec-
tion, we see that for extended reionization most of our ability
to detect a signal above noise and foregrounds comes from
high ‘ information. Angular information is thus crucial.

VI. EXPECTED PERFORMANCE OF FIDUCIAL
EXPERIMENTS

In Secs. IV and V, we considered the various trade-
offs in the experimental design of global 21 cm signal

experiments. Having gained an intuition for the best types
of experiments to build, we now consider some fiducial
experiments and analyze their expected performance.

A. A fiducial dark ages experiment

As our fiducial dark ages experiment, we imagine an
instrument with a FWHM beam of 5� and a channel width
of �� ¼ 1 MHz. We assume a total integration time of
100 h over the entire sky. For our foreground model, we
assume that current constraints are accurate to the 10%
level at an angular resolution of 5�.
In Fig. 25 we show the expected measurement errors, as

well as our fiducial cosmological model. With the error
suppressed below the cosmological signal in the 50 and
80 MHz trough region, it is likely that detailed constraints
can be placed. (The errors can be further suppressed by
binning the data points shown in the figure, although there
do exist non-negligible correlations between the errors, so

the improvement does not quite scale as 1=
ffiffiffiffi
N

p
, where N is

the number of data points.) The results shown in Fig. 25
represent a 25� detection of our fiducial cosmological
signal.

B. A fiducial reionization experiment

As our fiducial reionization experiment, we also imagine
an instrument with FWHM beam of 5�. We assume a
channel width of �� ¼ 2 MHz and an integration time
of 500 h. Unlike the dark ages where the trough signature
aided one’s detection, for reionization we find that it is
necessary to integrate for longer to be able to detect
extended reionization scenarios.
In Fig. 26 we show the measurement errors along with

several reionization scenarios. The errors are seen to be
well below the signal in all cases, suggesting that it should
be possible detect a wide variety of reionization scenarios.
This is further illustrated in Fig. 27, where we show 

[recall from Eq. (65) that this is the ‘‘number of sigmas’’ of
the detection] as a function of the reionization midpoint zr
and duration �z of our fiducial model from Eq. (70). As
expected, sharper reionization histories (small �z) are
more easily distinguishable from smooth foregrounds,
and thus are more easily detectable. Above �z� 2,
however, we see that this no longer applies, and one must
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FIG. 23 (color online). Detection significance 
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FIG. 24 (color online). Same as Fig. 9, except for an experiment probing an extended reionization scenario with zr ¼ 10 and
�z ¼ 4. Whereas most of the detection significance comes from the ‘ ¼ 0 information in experiments that target the dark ages, an
extended reionization scenario has a spectrum that is so similar to a typical foreground spectrum that most of the detection significance
comes from using high ‘ modes to aid foreground mitigation.
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simply hope that reionization took place at lower redshifts,
where the overall amplitude of foregrounds is lower. In any
case, we see from the figure that a positive (3� or above)
detection can be made over a wide region of parameter
space, including rather extended reionization scenarios at
high redshift.

We emphasize that angular information is the key to
making positive detections of the global 21 cm signal even
when reionization is extended. To see this, consider
Fig. 28, where we show the detection significance contours
for an instrument with a 90� beam. With very little angular
information available, the detection significance 
 goes
down throughout parameter space. In addition, the rather
horizontal orientation of the contours suggests that without

angular information, 
 is driven primarily by the duration
of reionization, with abrupt reionization scenarios more
easily distinguishable over foreground spectra. Only with
angular information is it possible to detect extended reio-
nization scenarios.
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FIG. 26 (color online). Measurement errors and several fidu-
cial reionization scenarios. The fiducial experiment has a chan-
nel width of 2 MHz and a FWHM beam of 5� and covers the full
sky over a 500 h integration. In all cases the measurement error
is far below the signal, ensuring a positive detection. The results
have not been Wiener filtered, since this is unnecessary with
small errors.
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contour. A positive detection is possible over a wide range of
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trough between 50 and 80 MHz can clearly be measured accu-
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ground subtraction. The horizontal orientation of the contours in
this figure indicate that foreground separation in spectral-only
experiments relies primarily on reionization happening in an
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As a further demonstration of this, suppose one were to
fit the data from an experiment to Eq. (70), with T21, zr,
and �z as free parameters. To estimate the precision
with which the parameters can be constrained, we use the
Fisher matrix formalism. Starting with our equation for the
Fisher matrix [Eq. (38)] we simply select T21, zr, and �z
as our parameters and use our measurement covariance �
in place of the noise covariance C. The inverse of the
Fisher matrix then provides us with the best possible
covariance on our three parameters. Performing the calcu-
lation for our fiducial experiment assuming a reionization
model with Tb ¼ 27 mK, zr ¼ 11, and�z ¼ 3 yields error
bars of 8.9 mK, 0.67, and 0.51 for those parameters,
respectively. Pairwise projections of the error ellipsoid
(obtained by marginalizing over the unplotted third vari-
able) are shown in Fig. 29. While in this case of rather
extended reionization the detection is perhaps not as sta-
tistically significant as one might hope, it is at least pos-
sible, which is not the case if only spectral methods are
employed. In addition, extra integration time results in
tighter constraints, since the angular foreground subtrac-
tion techniques allow one to access some of the smooth
spectral modes.

C. Comparisons to cosmic microwave background
constraints

Constraints on reionization can also be derived from
CMB experiments, and in this section we compare current
and upcoming CMB constraints to those that can be
expected from global signal measurements. As CMB pho-
tons travel from the surface of last scattering to us, they are
Thomson scattered by free electrons from reionization,
giving rise to an optical depth �. In particular, the optical
depth is given by

� ¼ �T

Z zrec

0

�neðzÞ
1þ z

ds

dz
dz; (72)

where �T is the Thomson cross section, zrec is the recom-
bination redshift, �neðzÞ is the mean free electron number
density, and ds is the comoving line element. The reioni-
zation history is encoded in the functional form of �neðzÞ,
which is proportional to the mean ionization fraction �xiðzÞ:

�ne ¼ �xiðzÞ �bðzÞ
�emp

; (73)

where b is the mean baryon density, �e ¼ 1:22 is the
mean mass per free electron in atomic units, and mp is the

proton mass. Equations (72) and (73) relate the reioniza-
tion model [in our case, Eq. (71)] to the optical depth.
A measurement of the optical depth from the temperature
and polarization power spectra of the CMB will thus con-
strain reionization.
Unfortunately, optical depth measurements have a major

shortcoming: as integrated line-of-sight measurements,
their dependence on the duration of reionization �z is
extremely weak, since all that matters is the column den-
sity of free electrons to the last scattering surface. Optical
depth constraints are therefore primarily constraints on zr.
This is certainly true for WMAP, and Mukherjee and
Liddle [53] finds the same to be true for Planck. The latest
WMAP fits find zr ¼ 10:5� 1:2 [39].
More recently, the South Pole Telescope (SPT) has used

limits on the kinetic Sunyaev-Zel’dovich (kSZ) effect to
place constraints on the duration of reionization. The kSZ
effect refers to the Doppler shifting of CMB photons as
they scatter off coherently streaming free electrons, and
contributes to the CMB anisotropy because reionization is
not spatially homogeneous (i.e., it is ‘‘patchy’’). By com-
bining reionization simulations with SPT measurements of
the high ‘ portions of the CMB power spectrum, a tentative
2� constraint of ð�zÞSPT < 7:9 was obtained [54], where
the SPT team defined ð�zÞSPT to mean the difference in
redshift between xi ¼ 0:2 and 0.99. If one assumes the
reionization model of Eq. (71), this translates to an upper
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third variable. Experimentally, an angular resolution of 5� and an integration time of 500 h are assumed.

LIU et al. PHYSICAL REVIEW D 87, 043002 (2013)

043002-28



limit of �z < 2:64 with our parametrization.17 We use this
SPT constraint for illustration purposes, but note that it is
nontrivial to convert a measurement of the kSZ contribu-
tion to the CMB into a reionization constraint. Allowing
for more general reionization models may weaken the
constraint on �z [55].

In Fig. 30, we show the constraints set by the WMAP
optical depth measurement (in purple), along with the
SPT kSZ constraint (in orange), both at 2�. From obser-
vations of the Gunn-Peterson trough, we also know that
reionization is complete by z ¼ 6:5 [56], so we include a
prior that xiðz ¼ 6:5Þ> 0:95 (in red). The Planck satellite
is expected to improve on the WMAP measurements of �,
potentially capable of achieving a precision of�� ¼ 0:005
[57]. This translates to a tighter set of limits on zr, which
we also show in Fig. 30 as a set of dashed lines.

Finally, the EDGES global signal experiment has ruled
out very rapid (�z < 0:06) reionization [22]. Being a
single-dipole experiment, EDGES does not have sufficient
angular resolution to provide constraints on more extended
reionization scenarios, as we discussed in Secs. Vand VIB.
On the other hand, an experiment with a 5� instrumental
beam and an integration time of 500 h (i.e., our fiducial
reionization experiment from Sec. VIB) can mitigate fore-
grounds much more effectively, leading to the white (1�)
and yellow (2�) likelihood contours in Fig. 30. In comput-
ing these contours, we assumed �z ¼ 2:2 in order to
examine a reasonably extended—and therefore quite
observationally pessimistic—reionization scenario that
has not yet been ruled out by the current SPT observations.
Encouragingly, we see that even under these conservative
assumptions, global signal experiments can improve on the
projected Planck zr constraints, and in addition provide
tight limits on �z. This holds true even if the SPT limits
become less stringent with future analyses, as we can see in
Figs. 27 and 29. In any case, a global signal measurement
should provide an interesting independent cross-check on
all the aforementioned probes of reionization.
It must be noted that the quantitative details in this

subsection hinge on the specific parametric form of the
ionization fraction that we assumed [Eq. (71)]. A different
parametrization would affect all of the limits in Fig. 30
except for the WMAP and Planck constraints (since optical
depth measurements are insensitive to ionization history).
However, we expect the overall message—that a global
signal experiment with good angular resolution can sig-
nificantly improve our constraints—to be a robust one.

VII. CONCLUSIONS: LESSONS LEARNED

In this paper, we have considered the general problem of
extracting the global 21 cm signal from measurements that
are buried in foreground and instrumental noise contami-
nants. We developed a mathematical formalism that
extends the spectral-only signal extraction methods exist-
ing in the literature to incorporate angular methods for
separating the cosmological signal from foregrounds.
Crucially, our proposed data analysis algorithms do not
require a priori information about the form of the cosmo-
logical signal. This makes our methods immune to possible
mismatches between theoretical expectations and observa-
tional reality, complementing other approaches in the
literature that assume a parametric form for the signal.
One might imagine using our methods to make a first
measurement of cosmological signal, which would allow
a theoretical parametrization to be confirmed or revised;
then, one could make use of the parametrization to pre-
cisely determine reionization parameters.
We also used our formalism in conjunction with a fore-

ground model that was constructed from a combination of
empirical data and analytical extensions to explore the
various trade-offs that one encounters when designing a
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FIG. 30 (color online). A comparison between CMB con-
straints on reionization and the projected performance of our
fiducial global signal experiment, which assumes an angular
resolution of 5� and an integration time of 500 h. Projected
Planck constraints are given by the dashed lines. Existing
WMAP constraints [39] are given by the dark purple bands.
SPT measurements of the kSZ effect disfavor extremely long
duration reionization scenarios, whereas EDGES rules out
the most rapid scenarios. Also included is the constraint
(from quasar measurements of the Gunn-Peterson trough) that
reionization is completed by z ¼ 6:5. Assuming a reasonably
pessimistic reionization duration of �z ¼ 2:2, our fiducial reio-
nization experiment gives tight 1� (white) and 2� (yellow) error
ellipses. Again, we caution that the SPT constraint here is both
aggressive and model dependent, and so may prove weaker
when more general models of inhomogeneous reionization are
considered.

17This is a smaller number than the SPT figure because z ¼
zr � �z=2 and z ¼ zr þ �z=2 correspond to ionization fractions
of xi ¼ 0:269 and 0.731, respectively, giving a narrower time
period than the one the SPT team used in their parametrization.
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global 21 cm signal experiment. The following is list of
‘‘lessons learned’’ from our exploration:

(i) The simplest use of angular information is to down-
weight a heavily contaminated region in the sky.
This can reduce the effective foreground contamina-
tion by as much as a factor of 2 (Fig. 8).

(ii) Focusing on just the cleanest parts of the sky and
simply excluding the dirtiest pixels from observa-
tions/analysis has two effects. On one hand, the
average amplitude of foreground contamination is
lower. On the other hand, having fewer pixels makes
it harder to average down the errors in one’s fore-
ground model, as well as to take advantage of
angular correlations in the foregrounds to mitigate
their influence. Numerically, we find that the second
effect dominates, which suggests that one should
cover as much of the sky as possible.

(iii) Most of the statistical significance in one’s detec-
tion comes from the ‘ ¼ 0 angular mode, as
opposed to higher ‘ modes in our whitened (i.e.,
foreground model predivided) data. However, this
significance comes mostly from high signal-to-noise
measurements of certain spectral modes that alone
are insufficient to accurately constrain the shape of
the cosmological spectrum. To get small enough
error bars to faithfully reconstruct the shape of the
spectrum, it is necessary to take advantage of angu-
lar information to clean foreground-contaminated
modes that would be inaccessible using spectral-
only methods.

(iv) The most easily measurable feature during the dark
ages is (as expected) the trough between 50 and
80 MHz.

(v) Errors integrate down more quickly with time for
experiments possessing fine angular sensitivity than
those that do not. In the latter case, the extra inte-
gration time allows one to achieve even higher
significance measurements of spectral modes that
were already measured, without having a substantial
effect on the detectability of the spectral modes
that were not measurable due to large foreground
contamination. As mentioned above, these were the
modes that were previously limiting the accuracy of
the extracted global signal, and since their measur-
ability was limited by foregrounds and not instru-
mental noise, extra integration time does little to
help. For experiments with angular resolution, an-
gular foreground mitigation methods allow the re-
sidual foregrounds in those modes to be sufficiently
suppressed for instrumental noise to be an important
contribution to the errors, and so extra integration
time has a larger effect.

(vi) Reducing the error in foreground modeling reduces
the final measurement error. However, unless the

fractional foreground modeling error "0 can be
reduced significantly beyond 0.01, dramatic gains
are unlikely.

Taking advantage of these lessons, we examined some
fiducial experiments in Sec. VI. Incorporating the various
recommendations listed above, we showed that small
errors could be achieved for both the dark ages and reio-
nization. With reionization in particular, our angular meth-
ods allow extended reionization scenarios to be detected,
which is encouraging since there are reasonable expecta-
tions that the duration of reionization �z > 2 [58].
Crucially, we point out that the angular resolution and
integration time requirements that are needed to utilize
the methods of this paper are modest compared to those
of large interferometric arrays such as LOFAR, MWA,
PAPER, or GMRT. Thus, while it is necessary to go beyond
a traditional single-dipole experiment if one is to make full
use of angular information, it should be possible to do so
using a midscale experiment without incurring the expense
and technical difficulties of a large experiment [38]. If time
(and autocorrelation information) is available on the large
interferometers, they can of course be used to attempt a
global signal measurement (such as that being currently
pursued by the LOFAR team [59]), but this may be an
unnecessarily expensive option unless the relevant data has
already been taken for other purposes.
Aside from instrumental noise and foreground contami-

nation, global 21 cm signal experiments have many other
issues to contend with before becoming an experimental
reality. For example, instrumental calibration remains a
challenge [37], although the accuracy requirements may
be reduced by the results of this paper, since one no longer
needs to rely solely on an exquisite spectral measurement
for foreground subtraction. In any case, it is encouraging to
see that by suitable experimental design and optimal data
analysis, the potential showstopper of instrumental noise
and foreground contamination appears to be a controllable
problem, paving the way for global 21 cm signal experi-
ments to make some of the first direct measurements of a
mostly unconstrained era of cosmic evolution.
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