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Transition form factors of �0, �, �0 mesons are investigated by means of the anomaly sum rule—an

exact nonperturbative relation which follows from the dispersive representation of the axial anomaly.

Considering the problem of contributions of operators originated from a non-(local) operator product

expansion, we found that they are required by the available set of experimental data, including the most

recent data from the Belle Collaboration (which, if taken alone, can be described without such contribu-

tions, although are compatible with them). In this approach, we analyzed the experimental data on � and �0

meson transition form factors and obtained the constraints on the decay constants and mixing parameters.
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I. INTRODUCTION

The phenomenon of the axial anomaly [1,2] plays an
important role in nonperturbative QCD and hadronic phys-
ics. The axial anomaly is known to govern the two-photon
decays of the �0, �, and �0 mesons and is usually consid-
ered for a case of real photons. However, the dispersive
form of it [3] can be considered for virtual photons also
[4–6], leading to a number of interesting applications.

One of the consequences of the dispersive approach to
the axial anomaly is a so-called anomaly sum rule (ASR)
[5]. It gives, in particular, a complementary way to describe
the �0 [7] and the �, �0 [8,9] transition form factors (later
developed also in Refs. [10,11]) at all Q2, even beyond the
QCD factorization. This is especially important in view of
the recent experimental studies of the ��� ! �0ð�;�0Þ
transitions [12–14]. In particular, the pion transition form
factor, measured by the BABAR Collaboration [12],
revealed unexpectedly large values in the range of Q2 ¼
10–35 GeV2, resulting in an excess of the pQCD predicted

limit [15] Q2F�� ! ffiffiffi
2

p
f�, f� ¼ 0:1307 GeV. This strik-

ing result attracted a lot of interest and motivated extensive
theoretical investigations. As a result, the transition form
factors were (re)investigated using the framework of light
cone sum rules [16–20], including the flatlike modifications
of the distribution amplitude [21–23], the light cone holog-
raphy approach [24,25], and various model approaches, like
a chiral quark model [26] (see also Refs. [27–30]), a vector
meson dominance model, and its modifications [31,32].
Some other approaches can be found in Refs. [33–42].

In this paper we extend and develop the anomaly sum
rule approach [7,8] to the transition form factors with a
systematic account of the effects of mixing of�,�0 mesons
and quark-hadron duality. Also, we performed a new

analysis of the anomaly sum rule for �0 using available
experimental data, including the most recent ones from the
Belle Collaboration [14].
The paper is organized as follows. In Sec. II we give an

overview of the anomaly sum rule approach and apply it to
analyze the pion (isovector channel of the ASR) and �, �0
(octet channel of the ASR) transition form factors. We pay
special attention to the seemingly controversial data from the
BABAR [12] and Belle [14] collaborations. The analysis of
different sets of data show that inclusion of the BABAR data
requires a non-(local) operator product expansion (OPE)
correction to the spectral density, while the Belle data alone
neither require nor exclude it. In Sec. III we develop and
reformulate the description of mixing, which plays a special
role for the �, �0 mesons, in a way which does not require
the introduction of intermediate nonphysical states. The
problem of compatibility of different mixing schemes is
also discussed. In Sec. IV we perform a numerical analysis
of the mixing parameters of the �-�0 system based on the
obtained sum rule for the transition form factors. The pos-
sibility of the non-OPE correction to the spectral density in
the octet channel is investigated as well. The summary is
presented in Sec. V.

II. ANOMALY SUM RULE APPROACH

The axial anomaly in QCD results in a nonvanishing
divergence of axial current in the chiral limit. It is common

to consider an octet of axial currents JðaÞ�5¼
P

q �q�5��
�affiffi
2

p q,

(a ¼ 1; . . . 8; the sum is over u, d, s flavors; �a are

Gell-Mann matrices) and a singlet axial current Jð0Þ�5 ¼
1ffiffi
3

p ð �u���5uþ �d���5dþ �s���5sÞ. The singlet axial cur-

rent acquires both electromagnetic and gluonic anomalous
terms:

@�Jð0Þ�5 ¼
1ffiffiffi
3

p ðmu �u�5uþmd
�d�5dþms �s�5sÞ

þ �em

2�
Cð0ÞNcF ~Fþ

ffiffiffi
3

p
�s

4�
NcG ~G; (1)
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where F and G are electromagnetic and gluonic strength

tensors, respectively; ~F and ~G are their duals; and Nc¼3 is
the number of colors. On the contrary, diagonal components

of the octet of axial currents, i.e., Jð3Þ�5¼ 1ffiffi
2

p ð �u���5u�
�d���5dÞ and Jð8Þ�5¼ 1ffiffi

6
p ð �u���5uþ �d���5d�2�s���5sÞ,

acquire an electromagnetic anomalous term only:

@�Jð3Þ�5 ¼
1ffiffiffi
2

p ðmu �u�5u�md
�d�5dÞ þ �em

2�
Cð3ÞNcF ~F; (2)

@�Jð8Þ�5 ¼
1ffiffiffi
6

p ðmu �u�5uþmd
�d�5d� 2ms �s�5sÞ

þ �em

2�
Cð8ÞNcF ~F: (3)

The electromagnetic charge factors CðaÞ are

Cð3Þ ¼ 1ffiffiffi
2

p ðe2u � e2dÞ ¼
1

3
ffiffiffi
2

p ;

Cð8Þ ¼ 1ffiffiffi
6

p ðe2u þ e2d � 2e2sÞ ¼ 1

3
ffiffiffi
6

p ;

Cð0Þ ¼ 1ffiffiffi
3

p ðe2u þ e2d þ e2sÞ ¼ 2

3
ffiffiffi
3

p : (4)

In short, in what follows, we call Jð3Þ�5 and Jð8Þ�5 the

isovector and octet current, respectively.
The calculation of the matrix elements of exact operator

equations (2) and (3), associated with the photon-meson
transitions, leads to the triangle graph amplitude,
composed of the axial current J�5 with momentum p ¼
kþ q and two vector currents with momenta k and q
[vector-vector-axial (VVA) amplitude]

T���ðk; qÞ ¼
Z

d4xd4yeðikxþiqyÞh0jTfJ�5ð0ÞJ�ðxÞJ�ðyÞgj0i:
(5)

This amplitude can be decomposed [43] (see also
Refs. [44,45]) as

T���ðk; qÞ ¼ F1"����k
� þ F2"����q

�

þ F3k�"���	k
�q	 þ F4q�"���	k

�q	

þ F5k�"���	k
�q	 þ F6q�"���	k

�q	; (6)

where the coefficients Fj ¼ Fjðp2; k2; q2;m2Þ, j¼1; . . . ;6

are the corresponding Lorentz invariant amplitudes con-
strained by current conservation and Bose symmetry. Note
that the latter includes the interchange � $ �, k $ q in
the tensor structures and k2 $ q2 in the arguments of the
scalar functions Fj.

In what follows, we consider the case when one of the
photons is real (k2 ¼ 0) while the other is real or virtual
(Q2 ¼ �q2 � 0).

For the isovector and octet currents, using the dispersive
treatment of the axial anomaly [3], one can derive the
ASR [5]:

Z 1

4m2
AðaÞ
3 ðs;Q2;m2Þds ¼ 1

2�
NcC

ðaÞ; a ¼ 3; 8; (7)

where A3 ¼ 1
2 Imp2ðF3–F6Þ and m is a quark mass.

The ASR (7) has a remarkable property—both perturba-
tive and nonperturbative corrections to the integral are
absent [46]. The perturbative corrections are excluded
because of the Adler-Bardeen theorem [47], while the
nonperturbative corrections are also absent, as is expected
from ’t Hooft’s principle. ’t Hooft’s principle in its original
form [48] implies that the anomalies of the fundamental
fields are reproduced on the hadron level. In the dispersive
approach, this means the absence of the corrections to the
dispersive sum rules.

Let us stress that the spectral density AðaÞ
3 ðs; Q2;m2Þ

can have both perturbative and nonperturbative cor-
rections (however, the first-order correction / �s is
zero in the massless limit [49]), while the integralR1
4m2A

ðaÞ
3 ðs;Q2;m2Þds equals exactly 1

2�NcC
ðaÞ.

Saturating the lhs of the three-point correlation function
(5) with the resonances and singling out their contributions
to the ASR (7), we get (an infinite [7]) sum of resonances
with appropriate quantum numbers

�
X

faMFM� ¼
Z 1

4m2
AðaÞ
3 ðs; Q2;m2Þds ¼ 1

2�
NcC

ðaÞ: (8)

Here the projections of the axial currents JðaÞ5� onto one-

meson states Mð¼ �0; �; �0Þ define the coupling (decay)
constants faM

h0jJðaÞ�5ð0ÞjMðpÞi ¼ ip�f
a
M; (9)

while the form factors FM� of the transitions ��
� ! M are

defined by the matrix elementsZ
d4xeikxhMðpÞjTfJ�ðxÞJ�ð0Þgj0i ¼ 
���	k

�q	FM�:

(10)

The relation (8) expresses the global duality between had-
rons and quarks.

A. Isovector channel (�0)

For a case of the isovector channel, the first contri-
bution is given by �0, while the higher contributions
can be absorbed by the ‘‘continuum’’ contributionR1
sð3Þ
0

Að3Þ
3 ðs;Q2;m2Þ, so the ASR (8) takes the form

�f�F��ðQ2;m2Þ ¼ 1

2�
NcC

ð3Þ �
Z 1

sð3Þ
0

Að3Þ
3 ðs; Q2;m2Þds;

(11)

where we assume for simplicity m ¼ mu ¼ md.

The lower limit sð3Þ0 of the integral we will refer to as a

‘‘continuum threshold,’’ bearing in mind that in a local
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quark-hadron duality hypothesis it means the interval of
the duality of a pion. Also, it can be determined directly
from the ASR, as we will later demonstrate.

The contribution to the spectral density Að3Þ
3 ðs; Q2;m2Þ

for a given flavor q can be calculated from the VVA
triangle diagram [5],

AðqÞ
3 ðs; Q2;m2

qÞ ¼
e2q
2�

1

ðQ2 þ sÞ2
�
Q2Rþ 2m2

q ln
1þ R

1� R

�
;

(12)

where Rðs;m2
qÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4m2

q

s

q
.

From (11) and (12) a straightforward calculation gives
an expression for the pion transition form factor,

F��ðQ2;m2Þ ¼ 1

2
ffiffiffi
2

p
�2f�

sð3Þ0

sð3Þ0 þQ2

�
�
1� 2m2

sð3Þ0

�
2

R0 þ 1
þ ln

1þR0

1�R0

��
; (13)

where R0 ¼ Rðsð3Þ0 ; m2Þ. This expression (to our best

knowledge, for the first time) takes into account the con-
tribution of quark mass.

Let us note that the quark mass term in (13) (for m ’
7 MeV, and s0 ’ 0:7 GeV2) gives only ’ 0:15% contribu-
tion and can be neglected.

In the massless limit, the spectral density (12) is propor-
tional to �ðsÞ atQ2 ¼ 0, so the continuum term in the ASR
(11) goes to zero. This corresponds to the fact that con-
tributions of axial states are zero at Q2 ¼ 0, and contribu-
tions of higher pseudoscalar states should be suppressed in
order for the axial current to conserve in the chiral limit.

Relying on the local quark-hadron duality hypothesis,
the analysis of the two-point correlation function gives the

value for the continuum threshold sð3Þ0 ¼ 0:75 GeV2 [50].

Actually, sð3Þ0 can be determined directly from the high-Q2

asymptotic of ASR, where the QCD factorization predicts

the value of the transition form factor Q2Fas
�� ¼ ffiffiffi

2
p

f�
[15]. The high-Q2 limit of (13) (m ¼ 0) immediately leads

to sð3Þ0 ¼ 4�2f2� ¼ 0:67 GeV2. This expression, substi-

tuted in (13) with m ¼ 0, gives

F��ðQ2; 0Þ ¼ 1

2
ffiffiffi
2

p
�2f�

4�2f2�
4�2f2� þQ2

; (14)

so it proves the Brodsky-Lepage interpolation formula for
the pion transition form factor [51], which was later con-
firmed by Radyushkin [52] in the approach of local quark-
hadron duality. Let us stress that in this way we found that
it is a direct consequence of the anomaly sum rule (which is
an exact nonperturbative QCD relation).

It is interesting to note that by extending the expression
for the pion transition form factor (13) into the timelike

region, one immediately gets a pole at Q2 ¼ sð3Þ0 which is

numerically close to the mass of a � meson. This can be a
kind of interplay between anomaly and vector dominance.
Currently the data from the CELLO [53], CLEO [54],

BABAR [12], and Belle [14] collaborations cover the region
of Q2 ¼ 0:735 GeV2 (see Fig. 1). While at Q2 < 10 GeV2

they are consistent, at larger virtualities the BABAR and
newly released Belle data are quite different. In this situ-
ation we will consider two sets of data: CELLOþ
CLEOþ Belle (I) and CELLOþ CLEOþ BABAR (II).
When compared to the experimental data set (I), Eq. (14)

gives a reasonable description consistent with the data
(�2=d:o:f: ¼ 1:01, d:o:f: ¼ 35; see the dashed line in
Fig. 1). For the data set (II), the description is worse
(�2=d:o:f: ¼ 2:29, d:o:f: ¼ 37). So, if the data of the
BABAR Collaboration are correct, we come to a violation
of the ASR-based expression for F�� (14).

This means that the spectral density (12) must have
a substantial correction �A3, which results in corrections

to the continuum �Icont¼
R1
sð3Þ
0

�A3ds and pion �I�¼Rsð3Þ
0

4m2�A3ds contributions. At the same time, as the full

integral remains constant, the corrections can be related:

�I� þ �Icont ¼ 0: (15)

It is important that the main terms of the continuum Icont
and the pion I� contributions have essentially different Q2

behavior

Icont ¼
Z 1

sð3Þ
0

Að3Þ
3 ðs;Q2Þds ¼ 1

2
ffiffiffi
2

p
�

Q2

sð3Þ0 þQ2
; (16)

I� ¼
Z sð3Þ

0

0
Að3Þ
3 ðs; Q2Þds ¼ 1

2
ffiffiffi
2

p
�

sð3Þ0

sð3Þ0 þQ2
; (17)

so the 1=Q2 power correction to the continuum con-
tribution is of the order of the main term of the pion
contribution.

FIG. 1 (color online). Pion transition form factor (multiplied
by Q2) with correction [Eq. (20), solid curve] and without
correction [Eq. (14), dashed curve] as a function ofQ2 compared
with experimental data.
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Let us now discuss the sources of possible corrections to
the spectral densities which in our approach are the coun-
terparts of the nonlocal operator and higher twist correc-
tions in the accurate pQCD fits [18]. Note that one-loop
corrections to the spectral densities of all structures in the
VVA correlator in the massless case are zero, which can be
easily deduced from the results of Shifman et al. [49]. If
this nullification is due to conformal invariance [55,56],
one may expect the two-loop and higher corrections to be
nonzero due to the beta-function effects, which have re-
cently been observed in the soft-photon approximation
[57]. Nevertheless, these higher �s corrections, as well as
the local OPE-induced corrections, are small enough to
produce an enhancement in the pion transition form factor
shown by BABAR: �F��� logðQ2Þ=Q2. Clearly, from di-

mensional arguments, such a term cannot appear from the
local OPE [7]. Let us note also that even if some larger
effective quark mass, instead of its current value, is taken in
Eq. (13), the mass term worsens the experimental data
description because of its negative sign. Thus, to comply
with the ASR, the correction should be of a non-(local) OPE
origin, simulating the contribution of the operator of dimen-
sion 2. Among the possible sources of such correction are
nonlocal condensates, instantons, and short strings [58].

Although the exact form of such a correction is not yet
known, we can construct the simplest form of it relying on
general requirements. Namely, the correction should van-

ish at sð3Þ0 ! 1 (the continuum contribution vanishes), at

sð3Þ0 ! 0 (the full integral has no corrections), at Q2 ! 1
(the perturbative theory works at large Q2) and at Q2 ! 0
(the anomaly perfectly describes the pion decay width).
Therefore, the correction satisfying those limits can be
written as

�I� ¼ sð3Þ0 Q2

ðsð3Þ0 þQ2Þ2 f
�
Q2

s0

�
; (18)

where f is a dimensionless function of Q2, s0, and some
parameters. Expecting the log ðQ2Þ=Q2 behavior, we can
suggest the simplest (although not unique) form of the
correction

�I� ¼ 1

2
ffiffiffi
2

p
�

�sð3Þ0 Q2

ðsð3Þ0 þQ2Þ2
�
ln

Q2

sð3Þ0

þ 	

�
; (19)

where � and 	 are dimensionless parameters. Then the
pion transition form factor with this correction reads

F��ðQ2Þ¼ 1

�f�
ðI�þ�I�Þ

¼ 1

2
ffiffiffi
2

p
�2f�

sð3Þ0

sð3Þ0 þQ2

�
1þ �Q2

sð3Þ0 þQ2

�
ln
Q2

sð3Þ0

þ	

��
:

(20)

For the continuum threshold we will use sð3Þ0 ¼ 4�2f2� ¼
0:67 GeV2, which implies that at very high Q2 the facto-
rization restores. Nevertheless, if the factorization is vio-

lated at all Q2, one can use a different value for sð3Þ0 .

Moreover, one can even consider the dependence of sð3Þ0

on Q2 [38], which can lead to an effective change of 	.
The fit of (20) to the data set (II) gives � ¼ 0:14, 	 ¼

�2:36 with �2=d:o:f: ¼ 0:94 (d:o:f: ¼ 35). The plot of
Q2F�� for these parameters is depicted in Fig. 1 as a solid

curve. Note that the proposed correction changes its sign at
Q2 ’ 8 GeV2, improving the description in both regions:
atQ2 & 8 GeV2 and atQ2 * 8 GeV2. Also, F�� (20) with

these parameters �,	 [obtained from the fit to the data (II)]
describes well also the data set (I) with �2=d:o:f: ¼ 0:84
(d:o:f: ¼ 35).
The summary of the fitting results for F�� with [Eq. (20)]

and without [Eq. (14)] correction for different sets of data
is shown in Table I. One can see that the data sets involving
the BABAR data require taking into account the correction.
The data sets which do not involve the BABAR data may be
described without such a correction, although the correc-
tion may improve the description of the data.
Let us emphasize that the correction (19) requires a

logQ2 term in �A3 itself. This form of the correction is
different from the one proposed in Ref. [10] and could
match it only if the prelogarithmic factor in (19) did not

depend on sð3Þ0 . However, such a factor would violate the

above mentioned requirement of nullification of the cor-

rection [in the limit sð3Þ0 ! 0].
Also, there is a clear distinction with the natural emer-

gence of the logQ2 term in the triangle amplitude (which
was used for the description of the BABAR data), where the
triangle amplitude itself is used as a model for the pion
transition form factor [26]. Such an approach applies the

TABLE I. �2=d:o:f: obtained for Eq. (14) (�I� ¼ 0) and the best fits of Eq. (20) (�I� � 0) to
different data sets.

�I� ¼ 0: �2=d:o:f: �I� � 0: �2=d:o:f: � 	

CELLOþ CLEOþ BABARþ Belle 1.86 0.91 0.12 �2:50
CELLOþ CLEOþ Belle (set I) 1.01 0.46 0.07 �3:03
CELLOþ CLEOþ BABAR (set II) 2.29 0.94 0.14 �2:36
BABAR 3.61 0.99 0.20 �2:39
Belle 0.80 0.40 0.14 �2:86
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partially conserved axial current relation for the matrix
elements involving large virtualities. In our opinion this
procedure is not justified to the same degree of rigor as for
the soft processes. In our approach, the logQ2 term appears
in the spectral density which is translated to a transition
form factor by an integral relation. Nevertheless, we cur-
rently also cannot justify it by strict theoretical arguments.

B. Octet channel (�, �0)
In this subsection we consider the ASR for the octet

channel, where, like for the isovector case, only the elec-
tromagnetic anomaly gives a contribution and the gluonic
anomaly is absent. However, in comparing to the isovector
channel, here we have some differences.

First, due to significant mixing in the �-�0 system, the
�0 meson contributes to the octet channel. Since �0 decays
into two real photons, it should be taken into account
explicitly along with the � meson.

Second, the spectral density in the octet channel

Að8Þ
3 ¼ 1ffiffi

6
p ðAðuÞ

3 þ AðdÞ
3 � 2AðsÞ

3 Þ gets a more significant (in

comparison to the isovector case) mass contribution due to
the strange quark. Also, there can be direct instanton con-
tributions to the spectral density, which, however, should
vanish in the massless limit as the singlet-octet transition is
forbidden in the exact SUð3Þ limit [59]. This is in agree-
ment with the consideration of the instanton contributions
to the two-point correlators [60], where such contributions
are /m2

s in the singlet-octet correlator and are absent in the
octet-octet correlator.

In this paper we restrict ourselves to the leading approxi-
mation, where the quark mass corrections [both from tri-
angle diagram (12) and direct instantons] to the spectral

density Að8Þ
3 are neglected. Then treating the ASR in the

same way as for the isovector channel gives

f8�F��ðQ2Þ þ f8
�0F�0�ðQ2Þ ¼ 1

2
ffiffiffi
6

p
�2

sð8Þ0

sð8Þ0 þQ2
; (21)

where f8�, f
8
�0 are the decay constants defined in (9), and

sð8Þ0 is a continuum threshold in the octet channel.

As soon as this approximation provides a reasonable
description of the experimental data (see Sec. IV), this
may possibly indicate a partial cancellation of the instanton
and mass effects in the VVA correlation function.

Note also that the discrepancy with the two-photon
decay width of the � meson, considered in Ref. [61] as a
possible signal of instantons, is in fact eliminated when the
mixing is taken into account [62], leading to specific values
of f8�, f

8
�0 . This may also be interpreted as a partial ab-

sorption of the instanton contributions to the two-point
correlation function by the values of f8�, f

8
�0 .

At the same time, the reliable estimation of sð8Þ0 from

such a two-point correlator by the usual QCD sum rule
method meets difficulties (see, e.g., discussion in Ref. [9]).

Fortunately, the ASR approach allows us to determine sð8Þ0

in the octet channel from the high-Q2 asymptotic, just the
same way as in the isovector channel. Generalization of the
pion case gives the asymptotes for the �, �0 transition form
factors [63,64] (M ¼ �, �0):

Q2Fas
M� ¼ 6ðCð8Þf8M þ Cð0Þf0MÞ: (22)

So, the Q2 ! 1 limit of the ASR (21) gives

sð8Þ0 ¼ 4�2ððf8�Þ2 þ ðf8
�0 Þ2 þ 2

ffiffiffi
2

p ½f8�f0� þ f8
�0f0�0 �Þ: (23)

In the Q2 ¼ 0 limit the transition form factors are ex-
pressed in terms of the two-photon decay widths of me-
sons, so the ASR (21) takes the form

f8�F��ð0Þ þ f8
�0F�0�ð0Þ ¼ 1

2
ffiffiffi
6

p
�2

; (24)

where

FM�ð0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4�M!��

��2m3
M

s
:

Solving Eqs. (23) and (24) with respect to sð8Þ0 and one of

the decay constants faM and substituting them into general
ASR (21), we can relate the transition form factors
F�0�ðQ2Þ and the decay constants faM.

Actually, the four decay constants faM can be related
based on a particular mixing scheme. In Ref. [8] the ASR
was analyzed for several sets of parameters and mixing
schemes. The more general consideration of mixing
schemes and extraction of the mixing parameters are per-
formed in the next sections.

III. MIXING

The problem of mixing in the �-�0 system is usually
addressed either in the octet-singlet [SUð3Þ] or quark-
flavor mixing scheme (see, e.g., Refs. [65,66] and refer-
ences therein). Basically, meson mixing implies that the
‘‘nondiagonal’’ decay constants fM, M ¼ �, �0 in Eq. (9)
are nonzero. The �0 and the isovector current can be
decoupled from the �-�0 system and octet and singlet
currents because of a very small mixing.
Let us recall the common approach to the mixing, when

physical states are represented as a linear combination of
states with definite SUð3Þf quantum numbers or quark-

flavor content. But, since these states do not have definite
masses, one cannot write the analogue of Eq. (9) with
these states instead of physical states �, �0. Indeed, if a
state has a definite momentum p� it also has a definite
mass m2 ¼ p�p

�.

One can avoid this problem by formulating the mixing in
terms of the fieldsi related to the physical states jii by the
matrix elements h0jijji ¼ �ij.

It is well known that the field of the pion � is defined
from the divergence of the isovector component of the axial
channel as a partially conserved axial current relation,
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@�J
ð3Þ
�5 ¼ fð3Þ� m2

��: (25)

To consider the � and �0 mixing, one can write down a
straightforward generalization of this relation,

@�J�5 ¼ FM�; (26)

where we introduced the matrix notations:

J�5 �
J��5

J��5

0
@

1
A; F �

f�� f��0 f�G . . .

f�� f�
�0 f�G . . .

0
@

1
A;

� �

�

�0

G

..

.

0
BBBBBB@

1
CCCCCCA; M � diagðm2

�;m
2
�0 ; m2

G; . . .Þ: (27)

The vector J�5 in the lhs consists of the components of

the axial current of definite SUð3Þ symmetry, a so-called
octet-singlet basis (� ¼ 8,� ¼ 0), or of the components of
the axial current with the decoupled light and strange quark
composition, a so-called quark-flavor basis (�¼q, �¼ s):

Jq�5¼
1ffiffiffi
2

p ð �u���5uþ �d���5dÞ; Js�5¼ �s���5s: (28)

The elements of matrix F are the meson decay constants
defined in (9). The vector � of physical fields contains the
fields of � and �0 mesons � and �0 and the fields of

higher mass states, which we denote as G; . . . .
It is possible and common to get an additional model

constraint for the matrix F which is fulfilled by applying
the respective mixing scheme. Let us first introduce the

new vector of fields ~� relating the SUð3Þ symmetry prop-
erty or the quark-flavor contents of currents and meson

fields. The first two components of ~� are labeled with the
same indices � and � as the currents and correspond to the
same symmetry (� ¼ 8, � ¼ 0) or quark content (� ¼ q,

� ¼ s). The relation between � and ~� is provided by the
orthogonal transformation U

~� ¼ U�; ~� �

~�

~�

~G

..

.

0
BBBBBBB@

1
CCCCCCCA: (29)

In terms of these fields, Eq. (26) can be rewritten as

@�J�5 ¼ ~F ~M ~�; (30)

where ~F ¼ FU, ~M ¼ UTMU.
In our notations the octet-singlet (quark-flavor) mixing

scheme implies that the matrix ~F has a (rectangular) di-
agonal form in the respective octet-singlet (quark-flavor)
basis,

~F ¼ f� 0 0 . . .

0 f� 0 . . .

 !
: (31)

This relation can be obtained from the effective

LagrangianL which contains an interaction term �Lint ¼
1
2
~�T ~M ~� ¼ 1

2

P
i;j ~m

2
ij
~i

~j:

@�J
a
�5 ¼ fa

�L

� ~a

¼ fa
X
k

~m2
ak

~k; a ¼ �;�: (32)

Note that from the requirement that matrix FU has a
(rectangular) diagonal form (31) immediately follows that
FFT is a diagonal matrix. So, imposing the mixing scheme
is equivalent to imposing the constraint for the decay
constants:

f��f
�
� þ f��0f

�
�0 þ f�Gf

�
G þ � � � ¼ 0: (33)

Here the sum is over all physical meson states included in
the vector �.
If we restrict ourselves to consideration of the � and �0

mesons only, then the decay constants form a 2� 2 matrix
and in the octet-singlet and quark-flavor bases satisfy the
respective diagonality constraints,

f8�f
0
� þ f8

�0f0�0 ¼ 0; (34)

fq�fs� þ fq
�0fs�0 ¼ 0: (35)

For instance, in the case of the octet-singlet mixing
scheme (34), the matrix of decay constants can be ex-
pressed in terms of one mixing angle � and two parameters
f8, f0, forming the well-known one-angle mixing scheme:

F80 ¼
f8� f8

�0

f0� f0
�0

0
@

1
A ¼ f8 cos � f8 sin �

�f0 sin� f0 cos�

 !
: (36)

Similarly, if the quark-flavor mixing scheme restriction
(35) is applied, then it is common to express the decay
constants in terms of parameters , f8, f0,

Fqs ¼
fq� fq

�0

fs� fs�0

0
@

1
A ¼ fq cos fq sin

�fs sin fs cos

 !
: (37)

While either of the mixing schemes (octet-singlet or
quark-flavor) is self-consistent, they are incompatible
[9,65]. Indeed, octet-singlet and quark-flavor bases of axial
currents are related by means of a rotation matrix:

J8�5

J0�5

0
@

1
A ¼ Vð�Þ Jq�5

Js�5

 !
; Vð�Þ ¼ cos� � sin�

sin� cos�

 !
;

(38)

where tan� ¼ ffiffiffi
2

p
. Then, as follows from (26), the matri-

ces of decay constants F�� � F (27) in the octet-singlet

(36) and quark-flavor (37) bases are related as
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F80 ¼ Vð�ÞFqs; (39)

and so

F80F
T
80 ¼ Vð�ÞFqsF

T
qsVð�ÞT: (40)

We see that in the general case, the decay constants
cannot follow the octet-singlet and quark-flavor mixing
scheme simultaneously (since the matrices F80F

T
80 and

FqsF
T
qs cannot be diagonal simultaneously). The bases

are compatible only if f8 ¼ f0 (fq ¼ fs), i.e., in case of

the exact SUð3Þf symmetry.

Although the octet-singlet mixing scheme is more con-
venient for the anomaly sum rule relations, which are exact
in the cases of isovector and octet channels, there are
arguments from chiral perturbation theory against it
[67,68] (see also Refs. [65,69]).

The mixing scheme-independent extraction of the decay
constants from the experimental data can finally tell us
which basis is more adequate for describing the mixing in
the �-�0 system. This problem will be addressed in the
next section.

IV. OCTET CHANNEL: NUMERICAL ANALYSIS

In Sec. II, as a consequence of the ASR in the octet
channel, we obtained the relation between transition form
factors and decay constants of � and �0 mesons. In this
section we use this relation to analyze the decay constants
in different mixing schemes, described in Sec. III.

First, let us consider the octet-singlet mixing scheme. In
order to determine the mixing parameters of this scheme,
we employ the mixing scheme constraint (34) and the ASR
relations (21), (23), and (24). In terms of the parameters

(36), Eq. (23) reads sð8Þ0 ¼ 4�2f28. Then, the regions in f8,
� parameter space which are constrained by the fit of
Eq. (21) (�2=d:o:f: < 1) to the BABAR data [13] and by
Eq. (24) [the experimental errors of ��ð�0Þ!2� are taken

into account] are shown in Fig. 2. The yellow intersection
determines the parameters, which can be estimated as f8 ¼
ð0:88	 0:04Þf�, � ¼ �ð14:2	 0:7Þ
.

In order to determine the constant f0 [which does not
enter Eqs. (21), (23), and (24) in the case of the octet-
singlet mixing scheme], we need an additional constraint.

As an additional constraint, it is convenient to use the
ratio of radiative decays of J=� for which the more
cumbersome contribution of the gluonic anomaly is under
control. Indeed, according to Novikov et al. [70], the
radiative decays J=� ! �ð�0Þ� are dominated by the
nonperturbative gluonic matrix elements, and the ratio of
the decay rates RJ=�¼ð�ðJ=�Þ!�0�Þ=ð�ðJ=�Þ!��Þ
is given by

RJ=� ¼
��������h0 j G ~G j �0i
h0 j G ~G j �i

��������2
�
p�0

p�

�
3
; (41)

where p�ð�0Þ ¼ MJ=�ð1�m2
�ð�0Þ=M

2
J=�Þ=2.

Taking matrix elements of the divergencies of the singlet
(1) and octet (3) currents between vacuum and �ð�0Þ states
and neglecting the u, d quark masses and electromagnetic
anomaly term, the ratio (41) can be expressed [71] in terms
of the decay constants (9) as follows:

RJ=� ¼
0
@f8�0 þ

ffiffiffi
2

p
f0
�0

f8� þ ffiffiffi
2

p
f0�

1
A2�

m�0

m�

�
4
�
p�0

p�

�
3
: (42)

The current experimental value of this ratio is RJ=� ¼
4:67	 0:15 [72].
Employing this ratio for the octet-singlet mixing scheme

and taking into account Eqs. (21) and (24) one can deter-
mine the singlet constant: f0 ¼ ð0:81	 0:07Þf�. So, the
full set of constants of the octet-singlet scheme is

f8 ¼ ð0:88	 0:04Þf�; f0 ¼ ð0:81	 0:07Þf�;
� ¼ �ð14:2	 0:7Þ
: (43)

For the quark-flavor mixing scheme we can perform a
similar analysis, using the constraint of the scheme (35);
Eqs. (23), (24), and (42); and fitting the ASR (21) to the
BABAR data [13]. The decay constants of the quark-flavor
basis fq;s

�;�0 are expressed in terms of those of the octet-

singlet basis f8;0
�;�0 by means of Eq. (39). In terms of the

mixing parameters fq, fs,  (37), Eqs. (23) and (42) read

sð8Þ0 ¼ ð4=3Þ�2ð5f2q � 2f2s Þ; (44)

RJ=� ¼ ðtanÞ2
�
m�0

m�

�
4
�
p�0

p�

�
3
: (45)

Equation (45) determines the parameter  ¼ ð38:1	
0:5Þ
. Then the other two parameters fs, fq can be esti-

mated from Eqs. (24) and (21). The plot of the regions

25 20 15 10 5 0

0.6

0.8

1.0

1.2

1.4

1.6

, degree

f 8
f

FIG. 2 (color online). Octet-singlet mixing scheme parameters
f8, �. Dark blue region: Constraint of Eq. (21) (�2=d:o:f: < 1).
Light red region: Constraint of Eq. (24). (Experimental uncer-
tainties are taken into account).
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constrained by these equations is shown in Fig. 3. The light
red band indicates the constraint of Eq. (24) [experimental
errors of RJ=�, ��ð�0Þ!2� are taken into account] and the

dark blue band indicates the fit of Eq. (21) to the BABAR
data at the �2=d:o:f: < 1 level. One can observe two re-
gions where both equations are compatible. We have
chosen the physically motivated one, where fq, fs > f�.

So, the yellow intersection in Fig. 3 determines the pa-
rameters for the quark-flavor mixing scheme, which give
the following ranges for them:

fq ¼ ð1:20	 0:15Þf�; fs ¼ ð1:65	 0:25Þf�;
 ¼ ð38:1	 0:5Þ
: (46)

The obtained mixing parameters (46) are in agreement
with those obtained in other approaches [65,73,74].

It is interesting also to get the mixing scheme indepen-
dent constraints on the decay constants. Equations (24) and
(42) allow us to exclude two of the four decay constants

which enter the ASR (21). The continuum threshold sð8Þ0 is

excluded using (23). In Fig. 4, the levels of the �2=d:o:f:
function of Eq. (21) in the space of constants f8�, f

0
� are

shown [BABAR experimental data on F��ð�0ÞðQ2Þ and mean

values of RJ=�, ��ð�0Þ!2� are used]. One can see that the

�2=d:o:f: < 1 requirement (black curve) allows a rather
wide range of the parameters. However, the minimum of
�2 is reached at the point f8� ¼ 1:11f�, f0� ¼ 0:16f�
(�2=d:o:f: ¼ 0:84, indicated by a red dot). Then (24) and
(42) allow us to determine the other two constants: f8

�0 ¼
�0:42f�, f

0
�0 ¼ 1:04f�. Therefore, the full set of decay

constants of the mixing-scheme-independent extraction is

f8� f8
�0

f0� f0
�0

0
@

1
A ¼ 1:11 �0:42

0:16 1:04

 !
f�: (47)

The constraints of the octet-singlet (green solid curve)
(34) and quark-flavor (orange dashed curve) (35) are also
depicted in Fig. 4. We see that both considered mixing
schemes are consistent with the scheme-independent
analysis based on the ASR at the level of �2=d:o:f: < 1,
even if other experimental errors are not taken into ac-
count. However, the least �2 is reached in the region lying
outside of both mixing scheme curves. Further improve-
ment of the experimental data can clear up the question of
the validity of different schemes and give more precise
values of the mixing parameters.
One can expect that the possible non-OPE correction

to the spectral density, discussed for the isovector channel,
will manifest in the same way in the octet channel also.
Although the BABAR data [13] do not show such a sturdy
growth of Q2F�� and Q2F�0� as they do for Q2F��,

the octet combination of the transition form factors
Q2ðf8�F��þf8

�0F�0�Þ does reveal a possible growth [75].

Expecting the similarity of the correction to the spectral
density in the isovector and octet channels, we suppose that
the correction in the octet channel has the same form as (19),

�I8 ¼ �
Z 1

sð8Þ
0

�Að8Þ
3 ds ¼ 1

2
ffiffiffi
6

p
�

�sð8Þ0 Q2

ðsð8Þ0 þQ2Þ2
�
ln

Q2

sð8Þ0

þ 	

�
:

(48)

This correction results in an additional term �I8=� in the rhs
of (21),

f8�F��ðQ2Þ þ f8
�0F�0�ðQ2Þ ¼ 1

2
ffiffiffi
6

p
�2

sð8Þ0

sð8Þ0 þQ2
þ 1

2
ffiffiffi
6

p
�2

� �sð8Þ0 Q2

ðsð8Þ0 þQ2Þ2
�
ln

Q2

sð8Þ0

þ 	

�
:

(49)

0.6 0.8 1.0 1.2 1.4
0.0

0.5

1.0

1.5

2.0

2.5

fq f

f s
f

FIG. 3 (color online). Quark-flavor mixing scheme parameters
fq, fs. Dark blue region: Constraint of Eq. (21) (�2=d:o:f: < 1).

Light red region: Constraint of Eq. (24). (Experimental uncer-
tainties are taken into account).

0.0 0.5 1.0 1.5 2.0
0.0

0.1

0.2

0.3

0.4

0.5

f 8 f

f
0

f

FIG. 4 (color online). Independent (of mixing scheme) estima-
tion of decay constants. The black thin curve is a �2=d:o:f: ¼ 1
level; the red dot is a minimum of �2 of Eq. (21). The green solid
and orange dashed lines indicate the constraints of the octet-
singlet (34) and quark-flavor (35) mixing schemes, respectively.
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The plots of Eq. (49) (solid line) and Eq. (21) (dashed
line) for different mixing schemes are shown in Figs. 5–7.
The parameters � ¼ 0:14, 	 ¼ �2:36 are taken to be the
same as those obtained for the pion case (data set II); the
decay constants (central values) for different mixing
schemes are employed from (43), (46), and (47). We see
that the current precision of the experimental data on the �
and �0 transition form factors could accommodate the
same correction as in the pion case but does not require it.

Finally, let us make the following remark. In this paper
we developed the approach which does not rely on intro-
duction of the nonphysical states which have no definite
masses. At the same time, a hypothesis is widely discussed
in the literature (see, e.g., Refs. [13,76]) that the transition
form factor of the nonphysical state jqi� 1ffiffi

2
p ðj �uuiþj �ddiÞ is

related to the pion form factor as Fq�ðQ2Þ¼ð5=3ÞF��ðQ2Þ
[where the numerical factor comes from the quark charges
ðe2u þ e2dÞ=ðe2u � e2dÞ ¼ 5=3]. The states jqi and jsi � j�ssi
are assumed to be expressed in terms of the physical states
j�i, j�0i via the quark-flavor mixing scheme [77],

jqi ¼ cosj�i þ sinj�0i;
jsi ¼ � sinj�i þ sinj�0i: (50)

Then one can relate the form factors:

5

3
F�� ¼ F�� cosþ F�0� sin: (51)

Let us now try to incorporate this hypothesis into our
approach. For this purpose, combining (21) and (51) and
using (13) and (39), we can express the �, �0 transition
form factors in terms of the constants fq, fs, ,

F��ðQ2Þ ¼ 1

4�2fsf�

sð3Þ0 ð ffiffiffi
2

p
fs cos� fq sinÞ
sð3Þ0 þQ2

þ 1

4�2fs

sð8Þ0 sin

sð8Þ0 þQ2
; (52)

F�0�ðQ2Þ ¼ 1

4�2fsf�

sð3Þ0 ð ffiffiffi
2

p
fs sinþ fq cosÞ
sð3Þ0 þQ2

þ 1

4�2fs

sð8Þ0 cos

sð8Þ0 þQ2
; (53)

where sð3Þ0 ¼ 4�2f2�, s
ð8Þ
0 ¼ ð4=3Þ�2ð5f2q � 2f2s Þ.

The plot of Eqs. (52) and (53) with constants from our
analysis (46) fq ¼ 1:20f�, fs ¼ 1:65f�,  ¼ 38:1
 in

comparison with experimental data is shown in Fig. 8.
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FIG. 6 (color online). ASR with correction [(49), solid line]
and without correction [(21), dashed line] for the quark-flavor
mixing scheme parameters (46) compared with experimental
data.
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FIG. 5 (color online). ASR with correction [(49), solid line]
and without correction [(21), dashed line] for the octet-singlet
mixing scheme parameters (43) compared with experimental
data.
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FIG. 7 (color online). ASR with correction [(49), solid line]
and without correction [(21), dashed line] for the mixing-
scheme-independent parameters (47) compared with experimen-
tal data.
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FIG. 8 (color online). Combinations F��Q
2 (blue solid line)

and F�0�Q
2 (red dashed line) from Eqs. (52) and (53), respec-

tively, as functions of Q2 compared with experimental data.
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One can observe a reasonably good agreement with the
experimental data. For the decay constants of Ref. [65],
one also gets a good description.

The agreement with the experimental data may indicate
that the effect of a strong anomaly for the 1ffiffi

2
p j �uuþ �ddi

state is small and the strong anomaly predominantly ap-
pears in the �ss channel. This statement can be rigorously
checked by means of the anomaly sum rule for the singlet
channel, which we postpone to future work.

V. SUMMARYAND DISCUSSION

The exact anomaly sum rule allows us to derive an
expression for the pion transition form factor at arbitrary
Q2, giving the proof for the Brodsky-Lepage interpolation
formula. At Q2 ¼ 0 it is related to the pion decay width,
while at large Q2, basing on the factorization approach, it
allows us to define the pion interval of duality which
numerically appears to be close to the value defined from
the two-point correlator sum rule analysis. However, the
proposed approach may be applied even when the factori-
zation is broken. It was exactly the situation supported by
BABAR data requiring a small nonperturbative correction
[7] to the continuum spectral density. Having dimension 2,
it cannot appear in (a local) OPE and should be attributed
to, say, instantons or short strings.

In this work we included in our analysis the recent Belle
Collaboration data. The main conclusions are the following.
Although the Belle data themselves may be described with-
out the mentioned correction, they do not also exclude its
possibility. Unless the BABAR data is disproved, the need for
the correction remains. This is supported by Table I, where
the fits for various combinations of the data are shown.

The search for the discussed correction can be per-
formed also by means of lattice simulations, which already
provided evidence (see, e.g., Ref. [78] and references
therein) for non-OPE vacuum condensates. In our case
one may study the three-point VVA correlator on the lattice
in a way similar to Ref. [79]. To be sensitive to the
discussed correction, one should consider moderately large
momentum transfer in one of the vector channels.

The corrections in the VVA correlator can be also
studied analytically by generalization of the approach
used in Ref. [58] to the case of the three-point correlation
function. Some indications of dimension 2 corrections can
also be obtained by the refined analysis [80] of eþe�
annihilation data.

In the generalization of our approach to the � and �0
mesons, the data may be described without such a correc-
tion. However, the possibility of the correction, similar to
that discussed for the pion case, is not excluded by the
current experimental data and is even supported by the
slight growth of the octet combination of transition form
factors. So we can conclude that the correction to the
spectral density, first introduced in Ref. [7], seems to be
universal for both isovector and octet channels. This con-
clusion is in agreement with a recent discussion in Ref. [11].
The mixing plays a special role in the octet channel.

There are two mixing models on the market now: the octet-
singlet and quark-flavor mixing schemes. We reformulate
these models without introducing the nonphysical states
with indefinite masses. Each scheme implies a certain
constraint for the meson decay constants (34) and (35).
Both mixing models are compatible only in the exact
SUð3Þf limit.

Using the data on the transition form factors of the �, �0
mesons, the ASR allows us to extract the set of decay
constants in the octet-singlet and quark-flavor schemes,
as well as in the mixing-scheme-independent way, if we
add an additional constraint of the ratio of radiation decays
of the J=c meson (42). It is shown that the current data
precision permits both the octet-singlet and quark-flavor
mixing schemes. Future improvements to experimental
data on transition form factors of �, �0 mesons and the
ratio RJ=c , expected from the Belle and BES-III collabo-

rations, can determine which scheme is more suitable for
the description of mixing in the �-�0 system.
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