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We analyze the nucleon’s Compton scattering amplitude in the Dyson-Schwinger/Faddeev approach.

We calculate a subset of diagrams that implements the nonperturbative handbag contribution as well as all

t-channel resonances. At the quark level, these ingredients are represented by the quark Compton vertex

whose analytic properties we study in detail. We derive a general form for a fermion two-photon vertex

that is consistent with its Ward-Takahashi identities and free of kinematic singularities, and we relate its

transverse part to the on-shell nucleon Compton amplitude. We solve an inhomogeneous Bethe-Salpeter

equation for the quark Compton vertex in rainbow-ladder truncation and implement it in the nucleon

Compton scattering amplitude. The remaining ingredients are the dressed quark propagator and the

nucleon’s bound-state amplitude which are consistently solved from Dyson-Schwinger and covariant

Faddeev equations. We verify numerically that the resulting quark Compton vertex and nucleon Compton

amplitude both reproduce the ��� transition form factor when the pion pole in the t channel is

approached.
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I. INTRODUCTION

For several decades, Compton scattering has been an
important tool to analyze the internal structure of the
nucleon. At low energies, Compton scattering allows us
to probe the nucleon’s ability to change its size and shape
under the influence of an external electromagnetic field.
These properties are encoded in the nucleon’s polarizabil-
ities for the case of real Compton scattering (RCS) and
their generalized version for the case of a virtual incoming
photon (VCS). Low-energy Compton scattering thus
provides information on global as well as spatially resolved
electromagnetic properties of the nucleon and, with
increasing energy, allows us to study the effects of its
excitation spectrum. In contrast, Compton scattering at
large energies probes the fundamental quark and gluon
degrees of freedom. Here, real and virtual photons provide
important information on the quark and gluon distributions
and allow us to extract the spatial distribution of the
partons inside the nucleon. Consequently, Compton scat-
tering is pursued at many experimental facilities around the
world including MAMI (Mainz), JLab and HI�S at Duke;
see e.g., Refs. [1–8] for overviews.

In addition, much can be learned from Compton-like
processes where two virtual photons are exchanged
between a charged source and the nucleon [9]. Such pro-
cesses are particularly important in lepton-hadron scatter-
ing where they contribute to form-factor measurements
and serve to explain the difference between polarization-
transfer measurements and results using a Rosenbluth
separation of the proton’s electric to magnetic form-factor
ratio. Furthermore, the Compton scattering amplitude in
the forward limit contributes to the electromagnetic mass
shifts in the nucleon system [10] and encodes the nucleon

structure functions. Its relevance for the proton radius
puzzle has been under recent debate as well [11–13].
From a theoretical perspective, Compton scattering has

been studied extensively in effective theories [8,14–18]
and from dispersion relations [2,7], with many important
results in both approaches. Effective theories are a natural
tool in the low-energy region, where constraints due to
chiral symmetry and its breaking pattern play a key role.
Dispersion relations offer an alternative, reliable approach
for the analysis of experimental data without a priori
limitations for the respective scales.
While approaches built on explicit quark and gluon

degrees of freedom are mandatory in the high-energy
region, their use in the low-energy regime has been limited
so far. First lattice calculations of polarizabilities have been
performed (see e.g., Refs. [19,20] and references therein),
but they still suffer from large pion masses and the
omission of disconnected diagrams. Model calculations
for the nucleon polarizabilities are available (see e.g.,
Refs. [21–23] and references therein), but often lack a
transparent relation to the underlying quantum field theory.
In this work we begin to explore another approach to

low-energy Compton scattering. It is based on the Dyson-
Schwinger equations (DSEs) of motion for QCD’s Green
functions at the quark-gluon level. In combination with
Bethe-Salpeter (BSEs) and Faddeev equations, they
provide a comprehensive framework for the study of
nonperturbative properties of hadrons from QCD at all
momenta and quark masses [24–27]. In this framework
the masses of baryons have been determined from the
covariant three-body Faddeev equation [28,29], and
electromagnetic as well as axial form factors have been
calculated [30–32]; see Ref. [33] for a brief overview. In a
recent work, we generalized the framework to incorporate
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the coupling of two external currents to the nucleon
[34], which opens the possibility to describe a variety of
processes such as pion photo- and electroproduction, pion-
nucleon scattering or Compton scattering in terms of their
quark and gluon substructure. Here, the important con-
straint of electromagnetic gauge invariance dictates the
appearance of well-defined classes of additional diagrams
besides the Born terms, which naturally accommodates
effects of resonances in s-, u- as well as t-channel ex-
change diagrams. We now apply the general framework of
Ref. [34] to the specific case of Compton scattering. We
work out the technical details of the representation of the
Compton vertex on the quark level and consider first
applications in the low-energy region.

The paper is organized as follows. In Sec. II we briefly
recapitulate our derivation of the nucleon Compton scatter-
ing amplitude and discuss the relevant diagrams that appear
in the description at the quark-gluon level. We isolate the
handbag contribution and show that it is closely related to
the quark Compton vertex. In Secs. III, IV, and V we
investigate the general properties of a fermion Compton
vertex: in Sec. III we introduce our notation and discuss the
Compton-scattering phase space; in Sec. IV we present the
orthogonal tensor basis that we will use in our calculations;
and in Sec. V we derive a construction for the fermion
Compton vertex that respects its Ward-Takahashi identity
(WTI) and is free of kinematic singularities. In Sec. VI
we present first results for the nucleon Compton amplitude
and its �0�� pole contribution, and we conclude in
Sec. VII. The detailed techniques for solving the inhomo-
geneous BSE for the quark Compton vertex and for
computing the nucleon Compton amplitude are given in
Appendices B and C, respectively.

II. NUCLEON COMPTON SCATTERING
AMPLITUDE

A. Construction of the scattering amplitude

In Ref. [34] we have derived the following combined
result for the electromagnetic current matrix element and
the Compton scattering amplitude of a baryon:

J� ¼ ��fG0�
�G0�i; (1)

~J�� ¼ ��fG0½�f�G��g �����G0�i: (2)

We use a condensed notation where all Dirac, color and
flavor indices are suppressed and loop-momentum integra-
tions are implicit. The Lorentz indices � and � belong to
the external currents, and the curly brackets denote a
symmetrization in these indices.�i and�f are the incom-

ing and outgoing bound-state amplitudes, where a bar
denotes charge conjugation. G0 ¼ S � S � S is the discon-
nected product of three dressed quark propagators S, and
G ¼ G0 þG0TG0 is the full three-quark (i.e., six-point)

Green function, with T being the three-quark scattering
matrix. The quantities �� and ��� are given by

�� ¼ ½�� � S�1 � S�1 � �� � Kð2Þ�perm
� ½S�1 � K�

ð2Þ�perm � K�
ð3Þ; (3)

���¼½����S�1�S�1�����Kð2Þ�perm
þ½�f����g �S�1�perm
�½�f��K�g

ð2ÞþS�1�K
��
ð2Þ �perm�K

��
ð3Þ : (4)

Here, �� and ��� are the dressed quark-photon and
quark-two photon vertices; Kð2Þ and Kð3Þ are the two- and

three-quark irreducible kernels; and K�
ðiÞ, K

��
ðiÞ are those

kernels with one or two external photon lines attached. The
subscript ‘‘perm’’ indicates that each bracket has in total
three permutations with respect to the quark lines. The
Compton scattering amplitude is visualized in Fig. 1 for
the special case of a rainbow-ladder truncation which is
given in Eq. (6) below.
We note that Eqs. (1) and (2) are completely general.

Their derivation is based on the formalism of Refs. [35–37]
which is neither restricted to baryons nor to electromag-
netic currents and Compton scattering but holds for any
type of current or hadron. In principle it can also be applied
to pion electroproduction, nucleon-pion scattering, ��
scattering, etc. If the currents describe photons, Eqs. (1)
and (2) are consistent with the hadron’s Bethe-Salpeter or
Faddeev equation so that electromagnetic gauge invariance
is satisfied. This is only valid as long as all underlying
ingredients (the quark propagator, the two- and three-body
kernels and the one- and two-photon vertices) are also
consistent with one another, in the sense that they satisfy
Dyson-Schwinger and Bethe-Salpeter equations and
respect the appropriate Ward-Takahashi identities.
We can extract several features of the scattering ampli-

tude from analyzing the structure of Eq. (2) as follows:
(a) The scattering amplitude is invariant under s-u crossing
since the Lorentz indices are symmetrized. (b) The first

term in (2) with �f�G��g generates the characteristic
handbag diagrams via the three-quark disconnected term
in G ¼ G0 þG0TG0. (c) The same term also yields a
cat’s-ears diagram, where the photons couple to different
quark lines; such diagrams are also generated by ��� via
the second line in Eq. (5). (d) The three-quark T matrix in
the interacting term of G contains all baryon poles and
therefore reproduces all s- and u-channel nucleon reso-
nances, starting with the nucleon’s Born term. The scatter-
ing amplitude at the respective pole becomes

G ! G0� ��G0

P2 þM2
i

) ~J�� ! J
f�
f J�gi

P2 þM2
i

: (5)
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(e) Finally, t-channel meson exchange is implemented as
well via the quark two-photon vertex ��� that appears in
the first line of Eq. (4); it involves a quark-antiquark
scattering matrix in the t channel. We will elaborate on
this in the following subsection.

For our practical calculations we will study Eq. (2) by
neglecting three-body irreducible interactions (Kð3Þ ¼ 0)
and using a rainbow-ladder kernel Kð2Þ ¼ KRL. That kernel

describes a dressed gluon exchange with a quark-gluon
vertex Ansatz that is proportional to �� and only depends
on the gluon momentum. Its main advantage despite its
simplicity is that it satisfies the vector and axial-vector
Ward-Takahashi identities, which in turn guarantee elec-
tromagnetic current conservation for form factors and
the Goldstone nature of the pion in the chiral limit.
Furthermore, it has been shown to describe many properties
of ground-state pseudoscalar and vector mesons as well as
nucleon and � baryons reasonably well [26–33,38–42].
Nevertheless, the approximation is certainly too simplistic
to capture all relevant details of the quark-gluon interaction.
From a phenomenological point of view, the main missing
structure comes from the pion cloud. Pion-cloud effects are
known to be important for electromagnetic properties of
hadrons such as form factors at small momenta or the
magnitude of polarizabilities. First efforts to include these
effects have been made in the meson sector [43,44] along
with the discussion of other nonperturbative, gluonic cor-
rections beyond rainbow-ladder truncation [45–48]. In the
baryon sector, such extensions have been computationally
too demanding up to now. Consequently, in this exploratory
work we also restrict ourselves to a rainbow-ladder kernel.

In rainbow-ladder truncation, the structure of Eqs. (3)
and (4) becomes

�� ¼ ½�� � S�1 � S�1 � �� � KRL�perm;
��� ¼ ½��� � S�1 � S�1 � ��� � KRL�perm

þ ½�f� � ��g � S�1�perm:
(6)

To maintain all features described above, including elec-
tromagnetic gauge invariance, we must obtain the dressed
quark propagator S from its DSE, the quark-photon and
two-photon vertices from their inhomogeneous BSEs,
the nucleon’s Faddeev amplitude � from its covariant
Faddeev equation, and the three-body scattering matrix T
from its Dyson equation—all within a rainbow-ladder
truncation.
Especially the last part, i.e., calculating the three-body

scattering matrix T, is a huge endeavor that is not easily
accomplished with current computational resources. In this
paper we will focus exclusively on the handbag and
t-channel structure, i.e., we will ignore the part involving
the T matrix as well as all cat’s-ears-type diagrams. We are
aware that electromagnetic gauge invariance cannot be
realized with this subset of diagrams but only by taking
into account the full structure of Eqs. (2) and (6).
Consequently, information on the low-energy behavior of
the nucleon’s scattering amplitude and the generalized
polarizabilities it contains will be limited, at least in these
initial studies.

B. Handbag and t-channel diagrams

Our goal in the following is to isolate the nonperturba-
tive ‘‘handbag’’ content in the scattering amplitude (2). It
comprises all diagrams where the two photons couple to
the same quark line which is, in addition, disconnected
from the two remaining quarks. For the derivation we
temporarily suppress all occurrences of the quark propa-
gator in our notation. In turn, we include the quark-line
permutations a ¼ 1, 2, 3 explicitly, so that the rainbow-
ladder truncated current is given by

J� ¼ ��f

�X
a

�
�
a ð1� KaÞ

�
�i; (7)

and the combination of Eqs. (2) and (6) becomes

(b) (c)(a)

FIG. 1 (color online). Graphical representation of the nucleon Compton scattering amplitude in rainbow-ladder truncation,
Eq. (2) with Eq. (6). All propagators are dressed, and permutations in the quark lines and symmetrizations of the photon legs are
not displayed. Diagram (a) corresponds to the term with �f�G��g and diagrams (b)–(c) to ���. In terms of Eq. (8), diagram
(a) illustrates the sum of the first and third lines, diagram (b) the second and diagram (c) the fourth line. The kernels that connect the
spectator quarks, i.e., the factors (1� Ka) in Eq. (8), have been absorbed in the hatched amplitudes. Diagram (b) contains the 1PI
quark two-photon vertex and diagram (a) provides the Born parts, i.e., the pure handbag diagrams, to the full quark Compton vertex.
Note that the electromagnetic current of Eq. (1) in rainbow-ladder truncation has the same form as diagram (b) if the two-photon vertex
is replaced by the quark-photon vertex.
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~J�� ¼ ��f

�X
a

ð1� KaÞ�f�
a G��g

a ð1� KaÞ
�
�i

� ��f

�X
a

���
a ð1� KaÞ

�
�i

þ ��f

�X
a�a0

ð1� KaÞ�f�
a G��g

a0 ð1� Ka0 Þ
�
�i

� ��f

1

2

�X
a�a0

�f�
a ��g

a0

�
�i: (8)

��
a and ���

a are the one- and two-photon vertices that act
on quark a, and Ka is the kernel that connects the remain-
ing two quarks. The handbag structure we are interested in
can only emerge from the first two lines of Eq. (8) whereas
cat’s-ears contributions (a � a0) appear in the third and
fourth lines. The three-quark Green function becomes
in this notation G ¼ 1þ T, and the T matrix satisfies
Dyson’s equation:

T ¼ Kð1þ TÞ; K ¼ X3
a¼1

Ka: (9)

To isolate the handbag structure, we extract the
two-quark contribution with respect to the spectator quark
a from the three-quark T matrix:

T ¼ Ta þ T0; Ta ¼ Kað1þ TaÞ; (10)

where T0 is the remainder that connects quark a with either
of the remaining two quarks, or all three quarks via itera-
tion of Eq. (9). The last equation entails

ð1� KaÞð1þ TaÞ ¼ 1; (11)

and inserting this together with G ¼ 1þ Ta þ T0 into
Eq. (8) yields

~J�� ¼ ��f

X
a

½�f�
a ��g

a � �
��
a �ð1� KaÞ�i

¼: � ��f

�X
a

~���
a ð1� KaÞ

�
�i (12)

plus further diagrams where photons couple to different
quark lines, including those with T-matrix insertions that
connect quark a with its companions. Therefore, Eq. (12)
constitutes the handbag part of the Compton scattering
amplitude. Comparison with the electromagnetic current
(7) shows that both equations have an identical structure:
both include only one factor (1� Ka) and the vertices in
both equations act on quark a only. The quark-photon
vertex �� in the first expression is replaced by a quark
Compton vertex

~��� :¼ �
��
B þ ��� ¼ ��f���g þ ��� (13)

in the second; cf. Fig. 2. It is the sum of the one-particle-
irreducible (1PI) part ��� plus a Born contribution �

��
B at

the quark level. We will discuss this separation and its

implications in more detail in Sec. V. We note that the
nucleon Compton amplitude from Eq. (12) is diagrammati-
cally represented by Fig. 1(b), with the 1PI vertex replaced
by the full quark Compton vertex from Fig. 2. The respec-
tive diagrams including all kinematic dependencies are
also illustrated in Fig. 10 in the Appendix C.
At this point the question remains how the quark

Compton vertex can be obtained in practice. A suitable
starting point is the inhomogeneous BSE for the quark-
photon vertex ��:

�� ¼ �
�
0 þ KG0�

�; (14)

where ��
0 ¼ Z2i�

� is the tree-level vertex, G0 ¼ S � S is

now the disconnected product of a dressed quark and
antiquark propagator, K is the quark-antiquark kernel,
and the second term involves a momentum-loop integral.
‘‘Gauging’’ the quark-photon vertex with an additional
photon leg yields the 1PI part of the quark Compton vertex:

��� :¼ ð��Þ� ¼ ð��
0 þ KG0�

�Þ�
¼ K�G0�

�|fflfflfflffl{zfflfflfflffl}
¼:�

��
R

þ KG�
0�

�|fflfflffl{zfflfflffl}
¼:KG0�

��
B

þ KG0�
��: (15)

The second term yields the Born contribution because

G�
0�

� ¼ S��S� þ S���S

¼ Sð���S�� � ��S��ÞS
¼ S���

B S ¼ G0�
��
B : (16)

The remainder ���
R involves K� and does not contribute in

rainbow-ladder truncation but we keep it for completeness.
We have therefore

��� ¼ ���
R þ KG0ð���

B þ ���Þ: (17)

Adding the Born term on both sides of the equation and
using Eq. (13), with ���

0
:¼ ���

B þ ���
R , one finds an

inhomogeneous BSE for the full vertex:

= + +

= + +

FIG. 2 (color online). Upper panel: Separation of the fermion
Compton vertex into Born terms and a 1PI part. Lower panel:
Inhomogeneous BSE for the quark Compton vertex in rainbow-
ladder truncation, where the q �q kernel K additionally simplifies
to a dressed gluon exchange.
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~��� ¼ �
��
0 þ KG0

~���: (18)

In rainbow-ladder truncation, the driving term ���
0

simplifies to the Born contribution. The inhomogeneous
BSE in that case is illustrated in Fig. 2. Equations (14) and
(18) determine the one- and two-photon vertices for a given
quark-antiquark kernel and quark propagator so that
their respective Ward-Takahashi identities are automati-
cally satisfied; cf. Sec. V. Implementing the vertices in
Eqs. (7) and (12) yields the nucleon’s electromagnetic cur-
rent and the nonperturbative handbag part of the Compton
scattering amplitude in a rainbow-ladder truncation.

By virtue of the 1PI part in the quark Compton vertex,
Eq. (12) contains more than just the usual quark Born
diagrams with two spectator quarks. Using Dyson’s equa-
tion in the quark-antiquark channel, T ¼ K þ KG0T, we
can express the Compton vertex as the projection of the full
Green function onto the driving term �

��
0 :

~��� ¼ ���
0 þ TG0�

��
0 ¼ G�1

0 G���
0 : (19)

The q �q Green function G (or, equivalently, the scattering
matrix T) includes all meson bound-state poles. If the
respective meson Bethe-Salpeter wave functions overlap
with �

��
0 , these poles will appear in the quark Compton

vertex, and consequently also in the Compton scattering
amplitude of the nucleon. In fact, the quark Compton
vertex is the sole origin of t-channel poles in the nucleon
Compton amplitude. The remaining cat’s-ears diagrams
merely contain �-meson resonances in Q2 and Q02 from
each quark-photon vertex [which is the projection of G
onto the tree-level vertex ��

0 ; cf. Eq. (14)], and the

three-quark scattering matrix produces additional s- and
u-channel baryon poles. Consequently, the nonperturbative
handbag content of Eq. (12) contains also the full t-channel
meson resonance structure.

The explicit form of the inhomogeneous BSE (18)
for the quark Compton vertex and the handbag part of
the nucleon Compton amplitude (12) are given in
Appendices B and C, respectively. For the moment we
note that the nucleon’s Compton amplitude ~J�� and the

quark Compton vertex ~��� have completely identical fea-
tures. They are both fermion two-photon vertices with a
rich Dirac-Lorentz and momentum structure. Both can be
decomposed into a Born part and a 1PI remainder and
are partially determined by a Ward-Takahashi identity.
Therefore, before proceeding with the explicit numerical
calculation, we will use the next three sections for studying
the general properties of a fermion Compton vertex.

III. KINEMATICS AND NOTATION

A. Kinematic variables

A fermion Compton vertex depends on three
independent four-momenta which can be chosen as the

four-momentum transfer �, the average photon momen-
tum �, and the average fermion momentum p; cf. Fig. 3.
They are related to the incoming and outgoing fermion and
photon momenta via

p ¼ 1
2 ðpi þ pfÞ;

� ¼ 1
2 ðQþQ0Þ; � ¼ Q�Q0 ¼ pf � pi; (20)

with the inverse relations

pi ¼ p� �

2
; Q ¼ �þ �

2
;

pf ¼ pþ �

2
; Q0 ¼ ���

2
:

(21)

Depending on the features we want to study, we will
alternately express the Compton vertex in terms of
���ðp;�;�Þ or ���ðp;Q;Q0Þ. The first choice is more
convenient for investigating the general symmetry proper-
ties of the vertex and for constructing orthogonal tensor
bases (cf. Sec. IV); it is also highly advantageous for
numerical calculations. It resembles the kinematics of the
one-photon vertex and nucleon form factors, where �
would be the photon momentum and � ¼ 0. The second
choice is more natural for exploring the Ward-Takahashi
identity for the vertex, and for constructing bases that are
transverse with respect to both photon momenta and free of
kinematic singularities; see Sec. V. From any set of three
independent momenta one can form six Lorentz invariants,
for example

fp2; Q2; Q02; p �Q;p �Q0; Q �Q0g or

fp2;�2;�2; p ��; p � �;� � �g:

In the case of the nucleon Compton scattering ampli-
tude, i.e., when the vertex is taken on shell, we rename the
fermion momenta p, pi, pf ! P, Pi, Pf; otherwise all

relations remain unchanged. Here we have the additional
constraint P2

i ¼ P2
f ¼ �M2, whereM is the nucleon mass,

which entailsP � � ¼ 0 andP2 ¼ �M2 ��2=4. It is most
convenient to work with the variables constructed from
�, �, and P:

FIG. 3 (color online). Kinematics in the fermion Compton
vertex.
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�2

4M2
¼: t;

P2

M2
¼ �ð1þ tÞ; P �� ¼ 0; (22)

where t is the (dimensionless) momentum transfer variable
and the limit t ¼ 0 corresponds to forward scattering.
The remaining variables involve the average photon
momentum � and we denote them by X, Y and Z:

�2

M2
¼: � ¼ tX; P̂ � c�T ¼: Y; �̂ � �̂ ¼: Z:

(23)

Here, a hat denotes a normalized four-momentum and the
subscript T refers to a transverse projection with respect to
the total momentum �, i.e.,

��
T ¼ �� �� � �

�2
�� ¼ ð��� � �̂��̂�Þ��: (24)

The Lorentz invariants t and X correspond to radial and Y,
Z to angular hyperspherical variables. Y and Z satisfy
simple relations under photon crossing and charge conju-
gation; cf. Sec. IVA.Oð4Þ symmetry suggests that, kindred
to other Euclidean bound-state calculations where hyper-
spherical angles can often be treated via the first few terms
in a Chebyshev expansion, the dependencies of the
Compton amplitude on the angular variables Y and Zmight
be small. In this work we consider only spacelike momenta
to avoid difficulties associated with complex continuations
in the nucleon Faddeev amplitude and singularity restric-
tions in the quark propagator; in that case we have

t; X > 0; Y; Z 2 ð�1; 1Þ: (25)

This is illustrated by the colored regions in Fig. 4, which
also makes clear that Eqs. (22) and (23) describe the
‘‘natural’’ variables for Compton scattering in Euclidean
kinematics. Specifically, we work in the frame where

�

M
¼ 2

ffiffi
t

p
0

0

0

1

0BBBBB@
1CCCCCA; �

M
¼ ffiffiffiffi

�
p

0

0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Z2

p

Z

0BBBBB@
1CCCCCA; (26)

P

M
¼ i

ffiffiffiffiffiffiffiffiffiffiffi
1þ t

p
0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� Y2
p

Y

0

0BBBBB@
1CCCCCA: (27)

Notwithstanding that, all subsequent equations will
be written in a Lorentz-covariant (or, if applicable,
Lorentz-invariant) manner. This is also mandatory as we
will frequently switch reference frames when calculating
invariant dressing functions of the various ingredients that
enter the scattering amplitude.

When considering the quark Compton vertex instead of
the nucleon Compton amplitude, we must again lift the

on-shell constraints. We can arrange the six (now indepen-
dent) Lorentz invariants of Eqs. (22) and (23) in two sets

! :¼ fp2; z ¼ p̂ � �̂; y ¼ cpT � c�Tg;

� :¼
�
t ¼ �2

4M2
; � ¼ �2

M2
; Z ¼ �̂ � �̂

�
:

(28)

This distinction will be practical in the context of the
quark Compton-vertex BSE in Appendix B, where the
momentum variables in the set � appear only as external
parameters whereas those in ! will be solved for dynami-
cally. Since we replaced the nucleon momentum by an off-
shell fermion momentum, we have now

FIG. 4 (color online). Sketch of the Compton scattering
phase space in the variables 	 and 	0 at fixed t (upper panel)
and in the variables X and Z for arbitrary t � 0 (lower panel).
The abbreviations RCS, VCS, VVCS, and TCS denote real,
virtual, doubly virtual and timelike Compton scattering. The
colored area describes the spacelike region.
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p ¼
ffiffiffiffiffiffi
p2

q 0ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� y2

pffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

p
y

z

0BBBBB@
1CCCCCA: (29)

The definitions for t and � in Eq. (28) anticipate knowl-
edge of the nucleon’s mass; however, that requirement can
be easily removed.

B. Phase space in nucleon Compton scattering

Next, we want to investigate the phase space in nucleon
Compton scattering and the applicability of our methods to
the relevant kinematic limits. To this end we first relate the
on-shell variables ft; X; Y; Zg of Eqs. (22) and (23) to the
incoming and outgoing photon virtualities

Q2

4M2
¼ 	;

Q02

4M2
¼ 	0 (30)

and the Mandelstam variables. The latter are obtained from
the squares of the total momenta

Pþ� ¼ Pi þQ ¼ Pf þQ0;

P�� ¼ Pi �Q0 ¼ Pf �Q
(31)

in the s and u channels; see Fig. 5. In analogy to our
definition of the momentum transfer t, it is convenient to
define modified Mandelstam variables s and u that are
dimensionless and positive in the physical region:

ðPþ �Þ2
M2

¼ �ð1þ sÞ; ðP��Þ2
M2

¼ �ð1þ uÞ: (32)

s, t and u are related to the conventional Mandelstam
variables ~s, ~t, ~u by

~t¼�4M2t; ~s¼M2ð1þsÞ; ~u¼M2ð1þuÞ; (33)

where the extra minus signs in Eqs. (32) and (33) originate
from the Euclidean description. The limits s ¼ 0 and
u ¼ 0 correspond to the location of the nucleon pole in
each channel, and nucleon resonances in the Compton
amplitude appear at s > 0 or u > 0. Photon crossing sym-
metry (s $ u) is expressed by the dimensionless crossing
variable �, conventionally defined as

� ¼ �� � P
M2

¼ ~s� ~u

4M2
¼ s� u

4
: (34)

The two sets of variables ft; 	; 	0; �g and ft; X; Y; Zg are
then related via�
	

	0

�
¼ t

4
ð1þ X � 2

ffiffiffiffi
X

p
ZÞ;

�
s

u

�
¼ tð1� XÞ � 2�;

(35)

with � ¼ ffiffiffiffi
X

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Z2 � 1

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tð1þ tÞp

Y, or vice versa:

X ¼ 2ð	þ 	0Þ
t

� 1;

Y ¼
ffiffiffiffiffiffiffiffiffiffiffi
t

1þ t

r
�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið	þ 	0 � tÞ2 � 4		0

p ;

Z ¼ 1ffiffi
t

p 	� 	0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð	þ 	0Þ � t

p :

(36)

Y plays the role of the crossing variable since it is propor-
tional to �, and Z� 	� 	0 is the skewness variable. As
required, the Mandelstam sum sþ u ¼ 2tð1� XÞ leads to
Q2 þQ02 þ ~sþ ~tþ ~u ¼ 2M2.
We can now investigate various kinematic limits in

the phase space defined by the variables ft; 	; 	0; �g or
ft; X; Y; Zg (cf. Fig. 4):

(i) Real Compton scattering (RCS) (	 ¼ 	0 ¼ 0)
implies Z ¼ 0 and X ¼ �1. The remaining indepen-
dent variables t and Y constitute the Mandelstam

plane, with fs; ug ¼ 2t� 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tð1þ tÞp

Y. The physical
region corresponds to t > 0 and Y > 1, with t ¼ 0
forward scattering and Y ¼ 1 backward scattering.
The nucleon polarizabilities are defined in the real
forward limit (t ¼ 0).

(ii) Virtual Compton scattering (VCS) (	0 ¼ 0): Here
only the outgoing photon is real. The skewness
variable becomes a function of X:

Z ¼ 1þ X

2
ffiffiffiffi
X

p � 1; (37)

and the remaining variables are t, X and Y, with

	 ¼ t

2
ð1þ XÞ; � ¼ � 1� X

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tð1þ tÞp

Y:

(38)

FIG. 5 (color online). Separation of the fermion Compton vertex into Born terms and a 1PI part.
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(iii) Timelike Compton scattering (TCS) (	 ¼ 0) is the
reverse process with an incoming real photon:

Z ¼ � 1þ X

2
ffiffiffiffi
X

p � �1; 	0 ¼ t

2
ð1þ XÞ: (39)

(iv) The generalized polarizabilities are defined at the
intersection of the VCS condition Q02 ¼ 0 with the
limitQ �Q0 ¼ 0, which implies Z ¼ X ¼ 1. In this
case, the spacelike region reduces to � ¼ 0 since
the dependence on Y decouples [cf. Eq. (35)], and
the only remaining variable is t ¼ 	. This is the
Born limit s ¼ u ¼ 0 which exhibits the on-shell
nucleon pole in both s and u channels.

(v) Forward doubly virtual Compton scattering (VVCS)
(t ¼ 0, 	 ¼ 	0): The VVCS limit corresponds to the
line 	 ¼ 	0 , Z ¼ 0 in Fig. 4. In the forward limit
t ¼ 0 the spacelike region shrinks to the VVCS line
since the dependence on Z decouples. For forward
scattering we must work with the variable � ¼ tX
from Eq. (23) since X is no longer well defined.
Because of t ¼ 0 and Z ¼ 0 the four-vector ��

vanishes, and hence Q� ¼ Q0� ¼ ��. The remain-
ing independent variables are � and Y (or, equiv-
alently, 	 and xB) with

	 ¼ 	0 ¼ �

4
;

�
s

u

�
¼ �

�
�1� 1

xB

�
; (40)

where the Bjorken scaling variable is

xB ¼ � �2

2P �� ¼ �

2�
¼ i

ffiffiffi
	

p
Y

: (41)

In the physical region Y must become imaginary;
we have chosen sign conventions so that xB ! 0þ
corresponds to Y ! þi1. The forward VVCS
amplitude encodes the nucleon structure functions
fT , fL, gTT and gLT .

It is clear from these considerations that many of the
interesting physical applications with available experimen-
tal data correspond to phase space regions outside the
‘‘spacelike’’ domain that is defined by Eq. (25) and illus-
trated in Fig. 4. Directly accessible are

(i) the generalized polarizabilities at � ¼ 0, including
the usual polarizabilities in the real forward limit,

(ii) forward VVCS for � & jQj=M , xB *
ffiffiffi
	

p
, e.g.,

through a Chebyshev expansion to complex Y,
(iii) and two-photon exchange processes with a charged

source where the full spacelike region is integrated
over.

Access to the remaining limits (real and deeply virtual
Compton scattering, Bjorken regime) is in principle pos-
sible but requires higher numerical effort and sophisticated
methods for dealing with complex singularities. For the
time being, we will restrict ourselves to those applications

which can be obtained from the spacelike calculation and,
if necessary, perform extrapolations to the inaccessible
phase space domains.

IV. TENSOR BASIS FOR A FERMION
COMPTON VERTEX

In this section we investigate the general properties of a
fermion Compton vertex and construct a simple, orthonor-
mal tensor basis that is useful for numerical calculations.
The analysis can be applied to the nucleon’s Compton
amplitude as well as the quark Compton vertex. For the
former, the incoming and outgoing nucleons are on shell
which simplifies the structure considerably. We begin with
the analysis of the general off-shell case and return to the
on-shell simplification in Sec. IVB.

A. General Compton vertex

We start by constructing the general Lorentz-Dirac basis
for a fermion Compton vertex ���ðp;�;�Þ. The vertex is a
matrix in Dirac space and depends on three four-vectors p,
� and �; cf. Fig. 3 for the momentum routing. We work
with the kinematic variables defined in Eq. (28): the photon
variables t, � and Z and the fermion variables p2, z and y.
To facilitate the analysis we want to express the vertex in

an orthonormal basis. We can achieve this by orthogonal-
izing the three momenta �, � and p, so that

d� :¼ �̂�; s� :¼ c�T

�
; r� :¼ bpt

� (42)

are three covariant unit vectors. The hats denote
normalized four-vectors, and the subscript T stands
for a transverse projection with respect to the external
momentum �, e.g.,

�
�
T ¼ T

��
� �� ¼ ð��� � �̂��̂�Þ��: (43)

In addition, the subscript t indicates a transverse projection
with respect to both � and �T , i.e.,

p
�
t ¼ p

�
T � pT ��T

�2
T

�
�
T ¼ p

�
T � ðpT � sÞs�: (44)

The resulting vectors r, s and d satisfy d2 ¼ s2 ¼ r2 ¼ 1
and d � s ¼ d � r ¼ s � r ¼ 0.
Furthermore, instead of using �� or some transverse

combination thereof, the dependence of the vertex on three
independent momenta allows us to work with the axial
vector

v� ¼ "�
��r
s�d� (45)

as the remaining independent four-vector. vmust appear in
combination with �5 to transform like a vector under
parity, which allows us to construct a complete and
orthogonal tensor basis from all possible combinations of

�5v
�; r�; s�; d�; 1; r; s; 6d; (46)

with 6v ¼ �5rs6d. For example, we can now write
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�� ¼ v� 6vþ r�rþ s�sþ d� 6d: (47)

The structure ��� no longer appears in the basis since it is
linearly dependent:

��� ¼ v�v� þ r�r� þ s�s� þ d�d�: (48)

Similarly, the commutator ½��; ��� can be expressed as

1

2
½��; ��� ¼ 6vrðv�r� � r�v�Þ þ rsðr�s� � s�r�Þ

þ 6vsðv�s� � s�v�Þ þ r6dðr�d� � d�r�Þ
þ 6v6dðv�d� � d�v�Þ þ s6dðs�d� � d�s�Þ;

(49)

and one can write

"��
�s
d� ¼ v�r� � r�v�: (50)

In the Lorentz frame defined by Eqs. (26) and (29), v, r, s,
and d become the Euclidean unit vectors in R4:

v¼

1

0

0

0

0BBBBB@
1CCCCCA; r¼

0

1

0

0

0BBBBB@
1CCCCCA; s¼

0

0

1

0

0BBBBB@
1CCCCCA; d¼

0

0

0

1

0BBBBB@
1CCCCCA; (51)

and the covariant relations (47), (48), and (50) can be read
off immediately.

The vertex ���ðp;�;�Þ consists of 128 independent
Lorentz-Dirac basis elements. With the relations above it
is straightforward to construct a basis whose elements are

(i) orthonormal,
(ii) symmetric or antisymmetric in the Lorentz indices,
(iii) have a nonvanishing Lorentz trace or are traceless,
(iv) have definite transformation properties under pho-

ton crossing and charge conjugation,
(v) fully factorize the Lorentz from the Dirac structure.

The result is collected in Table I and involves 16 Lorentz
structures X��

i (i ¼ 1 . . . 16) and eight Dirac structures 	a
(a ¼ 1 . . . 8). The general basis element is constructed as

	��
i;a ðr; s; dÞ ¼ X��

i ðr; s; dÞ 1

�5

" #
i

	aðr; s; dÞ; (52)

where the bracket means that the negative-parity elements
which involve only one instance of the axial vector v�

(i.e., those with i ¼ 3, 4, 10, 12, 14, 16) must be equipped
with a factor �5 to restore positive parity. The decom-
position of the fermion Compton vertex can then be
written as

���ðp;�;�Þ ¼ X16
i¼1

X8
a¼1

fi;að!;�Þ	��
i;a ðr; s; dÞ; (53)

where the 128 dressing functions fi;a depend on the six

Lorentz invariants that appear in the sets ! and �, and the
basis elements depend on the three orthonormal momenta
r, s, d. The advantage of this construction is that Lorentz-
invariant relations between the basis elements become
very simple: all inherent scalar products are either zero
or one, and Lorentz traces can be conveniently separated
from Dirac traces.
The column labels S and T in Table I define orthogonal

subspaces with respect to the Lorentz indices: the elements
withS ¼ � are symmetric or antisymmetric in the Lorentz
indices, those with T ¼ 	 have a nonvanishing Lorentz
trace, and the ones with T ¼ 
 are traceless. We show in
Appendix B 3 that the three possible fS;Tg combinations
define different subspaces which decouple in the inhomo-
geneous BSE for the quark Compton vertex. In fact, all
operations on the Lorentz indices and/or external momenta
s� and d� leave the relative-momentum integration

TABLE I. Tensor basis for a fermion Compton vertex. The
labels S and T indicate whether the respective basis element is
symmetric or antisymmetric in the Lorentz indices and whether
it has a Lorentz trace or not. B and C denote the Bose and
charge-conjugation symmetries for each element. The full basis
is constructed according to Eq. (52). All basis elements must be
additionally equipped with a factor 1ffiffi

2
p to ensure orthonormality

in the sense of Eq. (59).

ST BC

X��
1 v�v� þ r�r� þ	 þþ

X��
2 v�v� � r�r� þ
 þþ

X��
3 v�r� þ r�v� þ
 ��

X��
4 v�r� � r�v� �
 þþ

X��
5 s�s� þ d�d� þ	 þþ

X��
6 s�s� � d�d� þ
 þþ

X��
7 s�d� þ d�s� þ
 ��

X��
8 s�d� � d�s� �
 þþ

X��
9 r�s� þ s�r� þ
 �þ

X��
10 v�s� þ s�v� þ
 þ�

X��
11 r�s� � s�r� �
 þ�

X��
12 v�s� � s�v� �
 �þ

X��
13 r�d� þ d�r� þ
 þ�

X��
14 v�d� þ d�v� þ
 �þ

X��
15 r�d� � d�r� �
 �þ

X��
16 v�d� � d�v� �
 þ�

BC BC

	1 1 þþ 	5 rs ��
	2 r þþ 	6 r6d þþ
	3 s �þ 	7 s6d �þ
	4 6d þ� 	8 rs6d �þ
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unchanged, and the basis in Table I leads to the maximum
number of decoupled equations, namely 11.

The remaining columns labeled B and C correspond to
the Bose and charge-conjugation symmetry properties of
the basis elements. The full vertex must be Bose symmetric
(i.e., invariant under photon crossing) and invariant under
charge conjugation:

���ðp;�;�Þ¼! ���ðp;��;�Þ; (54)

����ðp;�;�Þ ¼ C���ð�p;��;��ÞTCT

¼! ���ðp;�;��Þ: (55)

The basis elements in Table I are either symmetric
or antisymmetric under either of these operations.
(For example, the element X��

9 is Bose antisymmetric but

symmetric under charge conjugation.) The symmetry of
the full basis element 	

��
i;a of Eq. (52) is the combination of

the individual symmetries for X��
i and 	a (e.g., 	

��
9;3 is both

Bose and charge-conjugation symmetric). An exception
are the opposite-parity elements which carry an additional
factor �5: when combined with any of the spin structures
a ¼ 2, 3, 4, 8, they switch C parity because �5 has to be
permuted back through an odd number of � matrices.

Furthermore, the momentum variables y and Z from
Eq. (28) flip their sign under photon crossing, and z and
Z switch sign under charge conjugation. The variables p2, t
and � are invariant under both. The invariance of the full
Compton vertex under both operations implies that each
basis element in Table I with symmetry BC must be
matched by an appropriate dressing function fi;a with the

same symmetry. This yields the following symmetry prop-
erties for the dressing functions fi;a for given B;C 2 f�1g:

fðz; y;�ZÞ ¼ Bfðz;�y; ZÞ ¼ Cfð�z; y; ZÞ; (56)

where we omitted the labels i, a and the momentum
dependencies in p2, t and �. Equation (56) entails that
the dressing functions can be factorized into angular
prefactors which carry the symmetry and remainders
which are completely symmetric in all variables. For
each BC combination there are two possible choices for
these prefactors:

BC ¼ þþ , 1 or yzZ;

BC ¼ �þ , y or zZ;

BC ¼ þ� , z or yZ;

BC ¼ �� , Z or yz:

(57)

Finally, the basis has the advantage of being ortho-
normal. The orthonormality relation depends on the
charge-conjugated basis elements, defined by

�	
��
i;a ðr; s; dÞ ¼ C	

��
i;a ð�r;�s;�dÞTCT

¼ X��
i ðr; s; dÞC	að�r;�s;�dÞTCT

1

�5

" #
i

¼ X��
i ðr; s; dÞ �	aðr; s; dÞ

1

�5

" #
i

: (58)

The relation is given by

1

4
Trf �	��i;a 	��

j;b g ¼ X��
i X��

j

1

4
Tr

8<: �	a
1

�5

" #
i

1

�5

" #
j

	b

9=;
¼ �ij

1

4
Trf �	a	bg ¼ �ij�ab: (59)

Since the Xi are orthogonal by themselves, X��
i X��

j ¼ �ij,

the product of the square brackets is the unit matrix.
As the basis vectors are normalized to unity and contain

transverse projectors with respect to � and �T , one will
encounter kinematic constraints in the limits �2 ¼ 0,
�2

T ¼ 0 and p2
t ¼ 0. This is just the boundary of the space-

like region where any of the variables t,� or p2 vanishes or
Z, z or y becomes �1. Hence, the dressing functions in
those limits are interrelated and/or can have kinematical
zeros. This is not a problem in the practical numerical
calculation as long as we avoid working in these exact
kinematical limits but rather approach them from the inte-
rior of the spacelike region. Nevertheless, it may affect the
numerical accuracy in their vicinity.
So far we have not worked out the transversality of the

photon at the level of the basis elements of the Compton
vertex. This is an important issue since electromagnetic
gauge invariance entails that the on-shell nucleon Compton
amplitude is fully transverse, i.e., transverse with respect to
Q0 in the index � and Q in the index �. Moreover, the
quark Compton vertex can also be split into a piece that
satisfies its Ward-Takahashi identity (containing longitudi-
nal and transverse parts) plus a remainder that is purely
transverse; cf. Sec. V. Since the complete dynamics of the
system is encoded in the transverse pieces, it is in principle
sufficient to work with a transverse basis only. The dis-
tinction between transverse and longitudinal remains intact
when the quark Compton vertex is implemented in the
nucleon Compton diagrams, and electromagnetic gauge
invariance requires that the sum of all longitudinal dia-
grams must cancel at the nucleon level.
In Sec. VE we will construct a fully transverse basis that

is free of kinematic singularities; unfortunately that basis is
no longer orthogonal and therefore cumbersome in the
numerical calculation. Here we will pursue a different
goal and construct a transverse basis from Table I. Since
those basis elements factorize the Dirac from the Lorentz
structure, it is sufficient to analyze the transversality rela-
tions at the level of the 16 Lorentz structures. The trans-
verse part satisfies the conditions Q0���� ¼ 0 and
Q���� ¼ 0 which can be worked out to construct a fully
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transverse, orthonormal basis that consists of nine elements
(see Appendix D):

Y1 ¼ X1;

Y2 ¼ X2;

Y3 ¼ ð1� XÞðX5 þ X6Þ � 2bðX8 � aX7 � bX6Þffiffiffiffiffiffiffiffiffiffiffiffiffi
2n1n2

p ;

Y4 ¼ X4;

Y5 ¼ X3;

Y6 ¼ 1ffiffiffiffiffi
n1

p ðX11 þ aX9 � bX13Þ;

Y7 ¼ 1ffiffiffiffiffi
n2

p ðX9 þ aX11 � bX15Þ � 2aY6ffiffiffiffiffiffiffiffiffiffi
n1n2

p ;

Y8 ¼ 1ffiffiffiffiffi
n1

p ðX12 þ aX10 � bX14Þ;

Y9 ¼ 1ffiffiffiffiffi
n2

p ðX10 þ aX12 � bX16Þ � 2aY8ffiffiffiffiffiffiffiffiffiffi
n1n2

p :

(60)

We have abbreviated

a ¼ ffiffiffiffi
X

p
Z; b ¼ ffiffiffiffi

X
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� Z2
p

(61)

and

n1 ¼ 1þ X; n2 ¼ n1 � 4a2

n1
:

The new basis elements Yi can now have kinematic
singularities if n1 ¼ 0 or n2 ¼ 0. From Eq. (37) we see
that n2 ¼ 0 in virtual and timelike Compton scattering
while n1 vanishes for real Compton scattering; cf. Fig. 4.
The respective dressing functions must have nodes in these
limits so that the singular basis elements decouple. For
example, the elements Y3;7;9 would decouple in the VCS

limit, so that only six independent (Lorentz) basis elements
survive.

The BC symmetries for the Yi are inherited from the
Xi; note that the variable a switches sign both under charge
conjugation and photon crossing. The full transverse
basis is then constructed in complete analogy to
Eqs. (52) and (53), namely by multiplying the Yi with
the Dirac structures 	a from Table I and with appropriate
�5 insertions for the elements i ¼ 4, 5, 8, 9. Therefore, we
arrive in total at 9� 8 ¼ 72 independent transverse
Lorentz-Dirac elements. For completeness, the remaining
7� 8 ¼ 56 longitudinal and transverse-longitudinal basis
elements Y��

10...16 are worked out in Appendix D. The full

vertex is expressed as

~���ðp;�;�Þ ¼ X16
i¼1

X8
a¼1

~fi;að!;�ÞY��
i

1

�5

" #
i

	aðr; s; dÞ;

(62)

with �5 insertions for i ¼ 4, 5, 8, 9, 15, 16.

B. Nucleon Compton amplitude

Next, we apply our general considerations to the special
case of the nucleon’s Compton amplitude. To this end we
replace the relative momentum p again by the average
nucleon momentum P and the variable y by Y. The
on-shell constraints P2

i ¼ P2
f ¼ �M2 entail

P2 ¼ �M2ð1þ tÞ; z ¼ P̂ � �̂ ¼ 0; (63)

so that there are four instead of six independent Lorentz-
invariant relations. P is now already transverse to �, i.e.,
PT ¼ P. Sandwiching the vertex between on-shell spinors
is equivalent to applying the positive-energy projectors

�f
þ :¼ 1þ ^6Pf

2
; �iþ :¼ 1þ ^6Pi

2
(64)

from left and right, so that the matrix-valued nucleon
Compton amplitude has the structure

~J ��ðP;�;�Þ ¼ �f
þ���ðP;�;�Þ�iþ; (65)

with Eq. (63) inserted.
Acting with the projectors on the Dirac basis elements

	aðr; s; dÞ leaves only two independent structures, namely
1 and s (or, equivalently, 1 and �), whereas the remaining
ones are either zero or become linearly dependent via the
Dirac equations

�f
þ6Pf ¼ iM�f

þ; 6Pi�
iþ ¼ iM�iþ: (66)

From Table I, this leaves 16� 2 ¼ 32 independent tensor
structures. In contrast to a general fermion Compton ver-
tex, the on-shell nucleon Compton amplitude is fully trans-
verse; cf. Eq. (105) below. The transversality condition
reduces this number to 9� 2 ¼ 18, and it is sufficient to
work with the Yi given in Eq. (60) and Table II. The
resulting Compton amplitude assumes the form

~J��ðP;�;�Þ ¼ X9
i¼1

Y��
i �f

þ
1

�5

" #
i

ðFi þGisÞ�iþ; (67)

where the Fi and Gi are functions of t, X, Y and Z. All
other symmetry relations are maintained, and Eq. (56)
simplifies to

fðY;�ZÞ ¼ Bfð�Y; ZÞ ¼ CfðY; ZÞ (68)

for f 2 fFi;Gig. The possible symmetry prefactors of
Eq. (57) become

BC ¼ þþ , 1; BC ¼ �þ , Y;

BC ¼ þ� , YZ; BC ¼ �� , Z:
(69)

These relations have also been studied in the context of
dispersion relations to determine the low-energy behavior
of the individual dressing functions of the Compton
amplitude [2,49–51]. (Note that from Eqs. (34) and (36)
Z�Q2 �Q02 and Y � P � � ¼ P �Q ¼ P �Q0.)
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V. WARD-TAKAHASHI IDENTITYAND
TRANSVERSALITY

The basis construction of the previous section is conve-
nient for studying the general properties of the Compton
vertex and also for the numerical implementation.
However, it is less useful for working out the properties
related to electromagnetic gauge invariance, i.e., the Ward-
Takahashi identity, the transversality conditions and re-
lated analyticity constraints. We will deal with these issues
in the following and decompose the Compton vertex into a
‘‘gauge part,’’ i.e., the contribution that is fixed by its
Ward-Takahashi identity, and further transverse pieces
that are free of kinematic singularities and constraints.

A. Fermion-photon vertex

We start with a discussion of the fermion-photon vertex
as it provides the template for the two-photon case. It
satisfies the Ward-Takahashi identity

Q���ðk;QÞ ¼ S�1ðkþÞ � S�1ðk�Þ; (70)

where Q is the photon momentum, k is the relative
momentum of the quark, and k� ¼ k�Q=2 are the quark
momenta. The inverse dressed quark propagator reads

S�1ðkÞ ¼ i6kAðk2Þ þ Bðk2Þ; (71)

and the renormalization-point independent mass func-
tion of the fermion is given by Mðk2Þ ¼ Bðk2Þ=Aðk2Þ.
Equation (70) is solved by the Ball-Chiu vertex [52]

�
�
BCðk;QÞ ¼ i���A þ 2k�ði6k�A þ �BÞ; (72)

where the functions

�Aðk;QÞ :¼ Aðk2þÞ þ Aðk2�Þ
2

;

�Aðk;QÞ :¼ Aðk2þÞ � Aðk2�Þ
k2þ � k2�

;

�Bðk;QÞ :¼ Bðk2þÞ � Bðk2�Þ
k2þ � k2�

(73)

are completely determined by the dressed fermion propa-
gator and free of kinematic singularities.
The full vertex is then the sum of the Ball-Chiu part and

a transverse piece that is not constrained by the WTI:

��ðk;QÞ ¼ �
�
BCðk;QÞ þ �

�
T ðk;QÞ: (74)

��
T consists of eight independent tensor structures.

Analyticity at vanishing photon momentum requires �
�
T

to vanish in the limit Q� ¼ 0, either via appropriate
momentum dependencies of the basis elements, vanishing
dressing functions, or kinematic relations between the
dressing functions in that limit. In order to find eight
kinematically independent dressing functions, we want to
express ��

T in a basis that is free of kinematic singularities
and ‘‘minimal’’ with respect to its powers in the photon
momentum. Since the construction of the two-photon ver-
tex is closely related to the one-photon case, we illustrate
the problem here in detail.
The general fermion-photon vertex with quantum num-

bers JPC ¼ 1�� consists of 12 tensor structures which can
be chosen as

ðþÞ �� ðþÞ k� ð�ÞQ�

ð�Þ ½��; 6k� ðþÞ k�6k ð�ÞQ� 6k
ðþÞ ½��; 6Q� ð�Þ k� 6Q ðþÞQ� 6Q
ðþÞ ½��; 6k; 6Q� ðþÞ k�½6k; 6Q� ð�ÞQ�½6k; 6Q�:

(75)

To ensure definite charge-conjugation symmetry (indicated
by the signs in the brackets) we have used the commutator
for the product of two � matrices and the totally antisym-
metric combination

½A;B; C� :¼ ½A; B�Cþ ½B;C�Aþ ½C; A�B (76)

for three � matrices. If the odd basis tensors are multiplied
with a factor k �Q, the full vertex satisfies

�� �ðk;QÞ ¼ �C��ð�k;�QÞTCT ¼ ��ðk;�QÞ (77)

with scalar dressing functions that are even in k �Q.
The transverse part of the vertex consists of eight tensor

structures that are constructed from Eq. (75). The two
elements ½��; 6Q� and ½��; 6k; 6Q� are transverse by them-
selves. In principle one could apply the transverse projector

T��
Q ¼ ��� �Q�Q�

Q2
(78)

to the remaining elements from the first two columns of
Eq. (75) to obtain the basis decomposition

�i��
T ¼ g1�

�
T þ g2k �Q i

2
½��

T ; 6k� þ g3
i

2
½��; 6Q�

þ g4
1

6
½��; 6k; 6Q� þ k

�
T ðig5 þ g66k

þ g7k �Q 6Qþ g8
i

2
½6k; 6Q�Þ; (79)

where

TABLE II. Transverse, orthonormal tensor basis for the on-
shell nucleon Compton amplitude, together with the photon-
crossing and charge-conjugation symmetries for each element.
The tensor structures Yi correspond to the dressing functions Fi

in Eq. (67) and the structures Yis to the functions Gi.

BC BC BC

Y1 þþ Y1s �þ Y6 þ�
Y2 þþ Y2s �þ Y8�5s þ�
Y3 þþ Y3s �þ Y9�5 þ�
Y7s þþ Y7 �þ Y6s ��
Y4�5 þþ Y8�5 �þ Y4�5s ��
Y5�5s þþ Y9�5s �þ Y5�5 ��
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��
T ¼ T��

Q ��; k�T ¼ T��
Q k�: (80)

We have attached prefactors so that the scalar dressing
functions giðk2; k �Q;Q2Þ are even in k �Q and real
for k2 > 0, Q2 2 R. However, since the projector (78)
contains a kinematic singularity at Q2 ! 0, the resulting
dressing functions are kinematically dependent: the four
combinations

g1 þ ðk �QÞ2g7; g2 � g8; g5; g6 (81)

must vanish with Q2 for Q2 ! 0. Instead of the projector
(78) one could equally apply Q2T

��
Q which has no

kinematic singularity; unfortunately this overcompensates
for the problem since g1, g2, g7, g8 do not need to vanish
individually when Q2 goes to zero.

A basis decomposition where all dressing functions are
truly kinematically independent is given by [53–55]

�i�
�
T ¼ f1Q

2�
�
T þ f2k �QQ2 i

2
½��

T ; 6k� þ f3
i

2
½��; 6Q�

þ f4
1

6
½��; 6k; 6Q� þ if5Q

2k�T þ f6Q
2k�T 6k

þ f7k �Qðk �Q�� � k� 6QÞ
þ f8

i

2
½k �Q�� � k� 6Q; 6k�: (82)

It satisfies the requirements of Eq. (81) since

f1Q
2 ¼ g1 þ ðk �QÞ2g7; f5Q

2 ¼ g5;

f2Q
2 ¼ g2 � g8; f6Q

2 ¼ g6;

f3 ¼ g3; � f7 ¼ g7;

f4 ¼ g4; f8 ¼ g8:

(83)

Apart from global factors k �Q, the four tensor structures
corresponding to f3;4;7;8 are linear and the remaining four

are quadratic in the photon momentum.
The question remains whether Eq. (82) can be obtained

from a systematic construction principle. To this end we
define the quantities

t
��
ab

:¼ a � b��� � b�a�; "
��
ab

:¼ �5"
��
�a
b�;

(84)

with a�, b� 2 fk�;Q�g. They are both regular in the limits
a ! 0 or b ! 0. t

��
ab is transverse to a� and b�,

a�t��
ab ¼ 0; t��

ab b
� ¼ 0; (85)

whereas "��
ab is transverse to a and b in both Lorentz

indices. The usual transverse projectors can thus be written
as T��

Q ¼ t��
QQ=Q

2 and T��
Q0 ¼ t��

Q0Q0=Q02.
With the help of these definitions one can generate the

basis (82) as follows. Take the four tensor structures that
are independent of the photon momentum:

��; ½��; 6k�; k�; k� 6k: (86)

Contract them with t
��
QQ, t

��
Qk and "

��
Qk to generate eight

transverse basis elements that are kinematically indepen-
dent and linear or quadratic in the four-momentum Q�:

t��
QQ

8>>>><>>>>:
��

½��; 6k�
k�

k� 6k

9>>>>=>>>>; ¼ Q2

8>>>><>>>>:
��
T

½��
T ; 6k�
k�T

k�T 6k

9>>>>=>>>>;;

t��
Qk

(
��

½��; 6k�

)
¼
(

k �Q�� � k� 6Q
½k �Q�� � k� 6Q; 6k�

)
;

"
��
Qk

(
��

½��; 6k�

)
¼
( 1

6 ½��; 6k; 6Q�
t
��
Qk ½��; 6k� � k2½��; 6Q�

)
:

(87)

Instead of using t��
Qk and "��

Qk , one could contract the four

elements in Eq. (86) also with t��
Q� ¼ 6Q��� � ��Q� and

use commutators where necessary. However, this does not
generate any new elements:

1

2
½t��
Q�; �

�� ¼ �½��; 6Q�;
1

2
½t��
Q�; �

�; 6k� ¼ ½��; 6k; 6Q�;
t��
Q�k

� ¼ �4t��
Qk�

�;

½t��
Q�k

�; 6k� ¼ �t��
Qk ½��; 6k�:

(88)

Finally, attach appropriate factors k �Q to ensure charge-
conjugation invariance of the dressing functions.
We will henceforth use Eq. (82) as our reference basis

for the transverse part of the fermion-photon vertex. We
write it in a compact way:

	
�
1 ¼ t

��
QQ�

�; 	
�
5 ¼ t

��
QQik

�;

	
�
2 ¼ t

��
QQk �Q

i

2
½��; 6k�; 	

�
6 ¼ t

��
QQk

� 6k;

	�3 ¼ i

2
½��; 6Q�; 	�7 ¼ t��

Qkk �Q��;

	
�
4 ¼ 1

6
½��; 6k; 6Q�; 	

�
8 ¼ t

��
Qk

i

2
½��; 6k�:

(89)

The full vertex is thus given by Eq. (74), with the
transverse part

� i�
�
T ðk;QÞ ¼ X8

i¼1

fiðk2; k �Q;Q2Þ	�i ðk;QÞ: (90)

The dimensionful dressing functions fiðk2; k �Q;Q2Þ are
again even in k �Q. They are kinematically independent
and can remain constant at vanishing photon momentum.
The basis (89) is essentially identical to Eq. (A.8) in
Ref. [53] and Eq. (A2) in Ref. [55]. The relations between
our 	�i and the transverse tensor structures T�

i in those
papers are
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	1 ¼ �T3; 	5 ¼ T1;

	2 ¼ � 1

2
k �QT4; 	6 ¼ 1

2
T2;

	3 ¼ T5; 	7 ¼ � 1

2
k �QT6;

	4 ¼ T8; 	8 ¼ 1

2
T7:

(91)

The dressing functions associated with 	3 and 	4 contribute
to the on-shell anomalous magnetic moment [cf. Ref. [48]
and Eq. (96) below], and 	7 constitutes the transverse part
of the Curtis-Pennington vertex [56].

Finally, to obtain a connection with the nucleon’s on-
shell current, we investigate the limit where the incoming
and outgoing fermion lines are taken on the mass shell,
i.e., k2� ¼ �m2 or

k2 ¼ �m2 �Q2=4; k �Q ¼ 0: (92)

The on-shell vertex

J�ðk;QÞ ¼ �f
þ��ðk;QÞ�iþ; (93)

with Eq. (92) inserted, is sandwiched between Dirac spin-
ors that are eigenvectors of the positive-energy projectors

�f
þ ¼ �þðkþÞ;

�iþ ¼ �þðk�Þ;
�þðpÞ ¼ 1þ ^6p

2 : (94)

By virtue of the projectors, only two of the basis elements
in Eq. (89) remain independent, and the vertex can be
written in the standard form

J�ðk;QÞ ¼ i�f
þ
�
F1�

� þ iF2

4m
½��; 6Q�

�
�iþ; (95)

where F1, F2 are dimensionless functions of Q2 only. Via
Eq. (74) they consist of Ball-Chiu parts and transverse
components which are related to the functions �A, �A,
�B and fj in the on-shell limit:

F1ðQ2Þ ¼ Að�m2Þ þ 2m½B0ð�m2Þ �mA0ð�m2Þ�
þQ2

�
f1 �mðf5 þmf6Þ � f4 �mf8

2

�
;

F2ðQ2Þ
2m

¼ f3 �mf4 � ½B0ð�m2Þ �mA0ð�m2Þ�

þQ2

2

�
f5 þmf6 � f8

2

�
; (96)

with Eq. (92) inserted.
Here we have exploited the fact that �A, �A, �B sim-

plify on the mass shell to Að�m2Þ, A0ð�m2Þ and B0ð�m2Þ,
respectively. Since m is defined via Eq. (92), i.e., m2 ¼
�k2þ ¼ �k2�, all relations hold even in the case where the
fermion propagator has no timelike pole [although in that
case Eq. (93) cannot be derived from a pole condition but is
merely a definition]. On the other hand, if a mass shell
exists where the propagator behaves like a free particle,

we have in addition Mð�m2Þ ¼ m, M0ð�m2Þ ¼ 0 and
Að�m2Þ ¼ 1, and the square brackets B0 �mA0 in
Eq. (96) vanish. The dressing functions f3 and f4 contrib-
ute to the fermion’s anomalous magnetic moment.

B. Compton vertex, Born terms and WTI

We proceed by generalizing our findings to the
two-photon case. The 1PI part of the fermion Compton
vertex satisfies the following Ward-Takahashi identity
(see Ref. [57] and references therein):

Q0����ðp;�;�Þ ¼ ��ðpþ
f ;QÞ � ��ðp�

f ;QÞ;
Q����ðp;�;�Þ ¼ ��ðpþ

i ;�Q0Þ � ��ðp�
i ;�Q0Þ:

(97)

Here, ��ðk;QÞ is the dressed fermion-photon vertex that
depends on a relative momentum k and a total photon
momentum Q. The relative momenta that appear in the
fermion-photon vertices are

p�
f ¼ p�Q0

2
; p�

i ¼ p�Q

2
; (98)

and p is the relative momentum in the Compton vertex.
The second equation in Eq. (97) follows from the first
one via Bose symmetry [replace � $ �, Q $ �Q0 and
thus � $ ��, and use Eq. (54)]. The full Compton

vertex ~��� :¼ �
��
B þ ��� is the sum of the 1PI part and

a one-particle-reducible, Bose-symmetric and charge-
conjugation-invariant Born piece (cf. Fig. 5):

�
��
B ¼ ���ðpþ

i ;�Q0ÞSðpþ �Þ��ðpþ
f ; QÞ

� ��ðp�
f ; QÞSðp��Þ��ðp�

i ;�Q0Þ; (99)

where SðpÞ is the dressed fermion propagator.

To obtain the WTI for the full vertex ~���, we insert the
WTI for the fermion-photon vertex,

Q���ðk;QÞ ¼ S�1ðkþÞ � S�1ðk�Þ (100)

with k� ¼ k�Q=2, in Eq. (99):

Q0����
B ðp;�;�Þ

¼
�
S�1

�
pþ�

2

�
�S�1ðpþ�Þ

�
Sðpþ�Þ��ðpþ

f ;QÞ

þ��ðp�
f ;QÞSðp��Þ

�
S�1ðp��Þ�S�1

�
p��

2

��
:

We expressed the photon momenta Q and Q0 by the aver-
age photon momentum � and the momentum transfer �.
Adding Eq. (97) yields the result

Q0�~���ðp;�;�Þ
¼ þS�1

�
pþ �

2

�
Sðpþ�Þ��ðpþ

f ; QÞ

� ��ðp�
f ;QÞSðp� �ÞS�1

�
p��

2

�
: (101)

GERNOT EICHMANN AND CHRISTIAN S. FISCHER PHYSICAL REVIEW D 87, 036006 (2013)

036006-14



We can furthermore attach quark propagators from the left
and right to obtain

Q0�
�
S

�
pþ �

2

�
~���ðp;�;�ÞS

�
p� �

2

��
¼ Sðpþ�Þ��ðpþ

f ; QÞS
�
p��

2

�
� S

�
pþ�

2

�
��ðp�

f ;QÞSðp� �Þ; (102)

which can bewritten as aWTI for the vertices with external
(dressed) fermion lines attached:

Q0� ~���ðp;�;�Þ ¼ ��ðpþ
f ; QÞ � ��ðp�

f ; QÞ; (103)

where

~���ðp;�;�Þ :¼S

�
pþ�

2

�
~���ðp;�;�ÞS

�
p��

2

�
;

��ðp;QÞ :¼S

�
pþQ

2

�
��ðp;QÞS

�
p�Q

2

�
:

(104)

We see that the WTI for the 1PI part ��� has the same form
as the one for the full vertex ~��� with external fermion
legs. The remaining equation for Q� ~��� is again obtained
from photon-crossing symmetry.

Note that the right-hand side of Eq. (101) vanishes in the
case of the nucleon’s Compton amplitude ~J��: the inverse
nucleon propagators for the incoming and outgoing nu-
cleon are proportional to the negative-energy projectors
�i�, �f� and vanish on the nucleon’s mass shell, i.e., when
sandwiched between the positive-energy projectors of
Eq. (64). This is just the statement that the Compton
amplitude ~J�� ¼ J��

B þ J�� is transverse:

Q0�~J�� ¼ Q0�J��
B þQ0�J�� ¼ 0; (105)

where J
��
B is the analogue of the Born part (99) for the

nucleon. The two terms in Eq. (105) vanish individually in
the Born limit where both intermediate nucleons in
the Born term are on shell: ðP��Þ2 ¼ �M2. In that
case both nucleon-photon vertices reduce to the on-shell
currents [Eq. (95)] and become transverse by themselves.
However, Q0�J��

B also vanishes in general kinematics as
long as the nucleon-photon vertices in the Born part have
the specific on-shell form of Eq. (95), without positive-
energy projectors for the intermediate nucleon. The Born
term constructed in that way is fixed by the nucleon
electromagnetic form factors and usually subtracted from
the Compton amplitude. Since the corresponding 1PI part
must be transverse as well, one has a gauge-invariant
decomposition into ‘‘Born’’ and ‘‘residual’’ parts. We
will return to this point in Sec. VIA.

C. WTI-preserving Compton vertex

In the following we want to construct the analogue
of Eq. (72) for the two-photon case, i.e., the most
general fermion Compton vertex that is compatible with

its Ward-Takahashi identity (97) and free of kinematic
singularities. Constructions for similar seagull vertices
with external photon and meson/diquark legs have been
devised in Refs. [58–60]; however, the requirement of Bose
symmetry for the fermion Compton vertex does not permit
a direct generalization of these studies to the present case.
The structure of the scalar Compton vertex has also been
analyzed in Ref. [61], although without a discussion of
kinematic singularities.
In analogy to the Ball-Chiu construction, the WTI deter-

mines the fermion Compton vertex up to transverse parts
with respect to both photons. From inserting (74) in (97)
we see that it must have the schematic structure

��� ¼ ���
BC þ ���

T þ ���
TT ; (106)

where each term is Bose symmetric on its own. The first
two pieces are necessary to satisfy theWTI, whereas �

��
TT is

transverse with respect to both photons:

Q0����
TT ¼ 0; ���

TTQ
� ¼ 0: (107)

The Ball-Chiu part �
��
BC is obtained from (72) via

Q0����
BC ¼ ��

BCðpþ
f ; QÞ � ��

BCðp�
f ; QÞ;

Q����
BC ¼ ��

BCðpþ
i ;�Q0Þ � ��

BCðp�
i ;�Q0Þ

(108)

and fixed by the dressed fermion propagator:

Q0����
BCQ

� ¼ S�1ðpþ �Þ þ S�1ðp� �Þ
� S�1

�
pþ �

2

�
� S�1

�
p��

2

�
: (109)

The remaining contribution ���
T is generated by the trans-

verse part of the fermion-photon vertex. It is not fully trans-
verse with respect to both photon legs but merely satisfies

Q0����
T Q� ¼ 0: (110)

In the following we will derive the Ball-Chiu part ���
BC and

return to the remaining pieces ���
T and ���

TT in Secs. VD and
VE, respectively.
We exemplify the derivation for a scalar vertex

��ðk;QÞ ¼ 2k��B; (111)

where we have set Aðk2Þ ¼ 0; the generalization to the
vertex (72) for a spin-1=2 fermion will be straightforward.
Evaluating the WTIs in that case yields

Q0����
BC ¼ Q0�½�Bðpþ

f ; QÞ þ �Bðp�
f ;QÞ�

þ 2p�½�Bðpþ
f ; QÞ ��Bðp�

f ; QÞ�;
Q��

��
BC ¼ Q�½�Bðpþ

i ;�Q0Þ þ �Bðp�
i ;�Q0Þ�

þ 2p�½�Bðpþ
i ;�Q0Þ � �Bðp�

i ;�Q0Þ�: (112)

The difference quotients that appear here were defined in
Eq. (73). Their differences can have zeros in several var-
iables, and our goal is to disentangle those zeros and
express the remainders in terms of quantities that are free
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of kinematic singularities. The arguments of the function B

in the last equation are the momenta p� Q
2 � Q0

2 , and we

must study the following momentum dependencies:

B

�
p2 þ 1

4
ðQ2 þQ02Þ � p �Q� p �Q0 � 1

2
Q �Q0

�
:

(113)

We simplify the notation by abbreviating1

u ¼ p �Q; u0 ¼ p �Q0; w ¼ 1

2
Q �Q0 (114)

and x0 ¼ p2 þ 1
4 ðQ2 þQ02Þ. Generalizing from the

one-dimensional case, we define appropriate difference

quotients via the linear terms (with respect to each
variable) in a Taylor expansion:

Bðx0 þ uþ u0 þ wÞ ¼ B0 þ u�u þ u0�u0 þ w�w

þ uu0�uu0 þ uw�uw þ u0w�u0w

þ uu0w�uu0w: (115)

Including the signs 
, �, � 2 f�1g, we can write

B
�� :¼ Bðx0 þ 
uþ �u0 þ �wÞ; (116)

so that these difference quotients are obtained from the
inverse relations

B0

u�u

u0�u0

w�w

uu0�uu0

uw�uw

u0w�u0w

uu0w�uu0w

26666666666666666664

37777777777777777775
¼ 1

8

þ þ þ þ þ þ þ þ
þ þ þ þ � � � �
þ þ � � þ þ � �
þ � þ � þ � þ �
þ þ � � � � þ þ
þ � þ � � þ � þ
þ � � þ þ � � þ
þ � � þ � þ þ �

26666666666666666664

37777777777777777775

Bþþþ
Bþþ�
Bþ�þ
Bþ��
B�þþ
B�þ�
B��þ
B���

26666666666666666664

37777777777777777775
:

Inserting Eq. (115) for each instance of the function B in
Eq. (112) yields

Q0����
BC ¼ 2Q0�F1 þ 4p�ðu0F2 � wuF3Þ;

Q����
BC ¼ 2Q�F0

1 þ 4p�ðuF0
2 � wu0F0

3Þ;
(117)

where F1, F2 and F3 are defined by

F1 ¼ u2�u � w2�w

u2 � w2
� uu0w

�uu0 ��u0w

u2 � w2
;

F2 ¼ u2�uu0 � w2�u0w

u2 � w2
; F3 ¼ �u ��w

u2 � w2

(118)

and their Bose conjugates (u $ �u0) are given by

F0
1 ¼

u02�u0 � w2�w

u02 � w2
� uu0w

�uu0 ��uw

u02 � w2
;

F0
2 ¼

u02�uu0 � w2�uw

u02 � w2
; F0

3 ¼
�u0 � �w

u02 � w2
:

(119)

We have achieved an intermediate goal: the difference
quotients defined by Eq. (115) are regular in the limits
u ! 0, u0 ! 0 and w ! 0; the Fi and F

0
i are also regular in

the limits u2 ! w2 and u02 ! w2; and their prefactors
in (117) are linear in the respective photon momentum
Q or Q0.
To proceed, it will be convenient to work with Bose-

symmetric combinations of Fi, F
0
i:

�Fi :¼ Fi þ F0
i

2
; �Fi :¼ Fi � F0

i

u2 � u02
: (120)

The �Fi are also regular in the limit u2 ! u02. They are not
all independent: contracting the first equation in (117) with
Q�, the second with Q0� and equating both yields the
relation

�F1 ¼ �F3 þ u2 þ u02

2
�F3 � uu0

�F2

w
: (121)

Note that from Eqs. (118) and (119), �F2=w is also regular
in the limit w ! 0. If we now define

G1¼2 �F1þðu�u0Þ2�F1;

G2¼4 �F2�4w

�
�F3þðu�u0Þ2

2

�
�F2

w
þ�F3

��
;

G3¼2ðu�u0Þ�F1;

(122)

we can express Eq. (117) in terms of G1, G2 and G3:

Q0����
BC ¼ Q0�ðG1 þ u0G3Þ þ p�ðu0G2 � 2wG3Þ;

Q��
��
BC ¼ Q�ðG1 � uG3Þ þ p�ðuG2 þ 2wG3Þ:

(123)
1We will use these abbreviations only in the present and the

following subsection; u should not be confused with the
Mandelstam variable that we defined in Sec. III B.
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Up to transverse terms inQ0� andQ�, this equation has the
solution

���
BC ¼ G1�

�� þG2p
�p� þG3ðp�Q0� �Q�p�Þ: (124)

This is the resulting vertex for a scalar particle; it is Bose
symmetric and free of kinematic singularities. If the vertex
is taken on shell, one has u ¼ u0 [because p � � ¼ 0;
cf. Eq. (22)] and hence �Fi ¼ Fi ¼ F0

i, and the Gi

simplify to

G1 ¼ 2F1; G2 ¼ 4ðF2 � wF3Þ; G3 ¼ 0: (125)

The generalization to the full Ball-Chiu vertex (72),
which includes also the vector dressing functions �A and
�A, proceeds along the same lines. After repeating the
steps (112) and (115)–(121) for the fermion dressing
function Aðk2Þ, we obtain the final result

���
BC ¼ X3

j¼1

ði 6pGA
j þGB

j Þ	��
j þX8

j¼5

iGA
j 	

��
j ; (126)

where we temporarily define the Bose-(anti-)symmetric
tensor structures

	
��
1 ¼ ���; 	

��
5 ¼ p��� þ ��p�;

	
��
2 ¼ p�p�; 	

��
6 ¼ p��� � ��p�;

	��
3 ¼ p�Q0� �Q�p�; 	��

7 ¼ ��Q0� þQ���;

	��
8 ¼ ��Q0� �Q���: (127)

The functions G1...3 are defined in Eq. (122); we have
attached the superscripts A and B to distinguish the two
fermion dressing functions they are based upon. The vector
dressing function A entails four additional functions G5...8

which depend on the previous ones:

G5 ¼ 2 �F1;

�G6 ¼ ðu2 � u02Þ�F1;

8G7 ¼ ðuþ u0ÞG2;

�8G8 ¼ ðu� u0ÞðG2 þ 8w�F1Þ:

(128)

Altogether there are six independent tensor structures
associated with GA

1;2;3 and GB
1;2;3 which contribute to �

��
BC.

Note that the kinematic prefactors in Eqs. (122) and (128),

uþ u0 ¼ 2p ��� zZþ y
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Z2

p
;

u� u0 ¼ p ��� z;
(129)

compensate the Bose and charge-conjugation symmetries
of the basis elements [cf. Eq. (57)]: 	1, 	2 and 	5 are
symmetric (BC ¼ þþ ), whereas appropriate prefactors
must be attached to 	6 (BC ¼ �� ), 	7 (BC ¼ �þ ),
and 	3, 	8 (BC ¼ þ� ) to ensure invariance of the full
vertex, Eqs. (54) and (55).

To conclude this section, we note that the resulting
structure of the vertex ~��� from Eq. (104), where the
Born terms are included and external propagator legs are
attached, is completely identical to Eq. (126). The WTI for
the fermion-photon vertex with external propagator legs is
given by

Q���ðk;QÞ ¼ Sðk�Þ � SðkþÞ; (130)

which, compared to (70), merely amounts to a replacement
A ! �v and B ! ��s, i.e., the dressing functions of the
inverse fermion propagator are replaced by those of the
propagator itself:

�vðk2Þ ¼ 1

Aðk2Þ
1

k2 þMðk2Þ2 ;

�sðk2Þ ¼ Mðk2Þ
Aðk2Þ

1

k2 þMðk2Þ2 :
(131)

The complete analysis carries then through to the Compton
vertex ~���

BC.

D. Partially transverse terms

We still need to work out the contribution �
��
T in

Eq. (106) that is needed to satisfy the Compton WTI and
depends on the transverse part ��

T of the fermion-photon
vertex. With the basis decomposition of Eq. (90) one can
construct the contributions ���

T;i to the Compton vertex

���
T ðp;�;�Þ ¼ X8

i¼1

���
T;i ðp;�;�Þ (132)

for each basis element in Eq. (89) separately. The right-
hand side of the Compton WTI will contain differences of
basis elements 	

�
i as well as sums and differences of the

dressing functions fi. For the former, we isolate the relative
momentum k� in each basis element:

	
�
i ðk;QÞ ¼

8>><>>:
	�i ðQÞ i ¼ 1; 3

k
	
�

i ðQÞ i ¼ 4; 5

k
k�	
�
�
i ðQÞ i ¼ 2; 6; 7; 8:

(133)

For the elements that are linear in k
, the k-independent
remainders are

	�

4 ¼ 1

6
½��; �
; 6Q�; 	�


5 ¼ it�

QQ; (134)

where we exploited the definitions in Eqs. (76) and (84).
For the k-quadratic basis elements one obtains
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	�
�
2 ¼ t��

QQ

i

4
½��;Q
�� þQ��
�;

	
�
�
6 ¼ 1

2

	
t
�

QQ�

� þ t
��
QQ�





;

	�
�
7 ¼ Q
Q��� � 1

2
ð��
Q� þ ���Q
Þ 6Q;

	
�
�
8 ¼ i

4
½��;Q
�� þQ��
�

� i

4
½ 6Q;��
�� þ ����
�;

(135)

where we symmetrized in the indices 
 and �.
The dressing functions

fiðk;QÞ ¼ fiðk2; k �Q;Q2Þ
depend on three Lorentz-invariant relations, so that the
following combinations appear in the WTIs:

fiðp�
f ; QÞ ¼ fi

�
p2 þ 1

4
Q02 � u0; u� w;Q2

�
;

fiðp�
i ;�Q0Þ ¼ f0iðp�

f ; QÞ

¼ fi

�
p2 þ 1

4
Q2 � u;�u0 � w;Q02

�
: (136)

They are related by Bose exchange Q $ �Q0, u $ �u0.
In analogy to Eq. (115) we define difference quotients by

fi
� :¼ fi

�
p2 þ 1

4
Q02 þ 
u0; uþ �w;Q2

�
¼ ½f0 þ 
u0 ~�u0 þ �w~�w þ 
�u0w~�u0w�i;

ðfiÞ0
� ¼ fi

�
p2 þ 1

4
Q2 � 
u;�u0 þ �w;Q02

�
¼ ½f00 � 
u~�u þ �w~�w � 
�uw~�uw�i; (137)

where 
, � 2 f�g and f0 ¼ fðp2 þ 1
4Q

02; u; Q2Þ. The

tilde is here merely a reminder that the functions differ
from those in Eq. (115). The difference quotients are
obtained from the fi
� via

f0

u0 ~�u0

w~�w

u0w~�u0w

2666664
3777775

i

¼ 1

4

þ þ þ þ
þ þ � �
þ � þ �
þ � � þ

2666664
3777775

fþþ
fþ�
f�þ
f��

2666664
3777775

i

: (138)

The following combinations appear in the WTIs:

fiðpþ
f ; QÞ � fiðp�

f ; QÞ ¼ fiþþ � fi�� ¼ Q0�H�
i ;

fiðpþ
f ; QÞ þ fiðp�

f ; QÞ ¼ fiþþ þ fi�� ¼ 2Hi;

fiðpþ
i ;�Q0Þ � fiðp�

i ;�Q0Þ ¼ ðfi�� � fiþþÞ0 ¼ Q�H0�
i ;

fiðpþ
i ;�Q0Þ þ fiðp�

i ;�Q0Þ ¼ ðfi�� þ fiþþÞ0 ¼ 2H0
i;

where we can exploit Eq. (137) to obtain

H
�
i ¼ ð2p� ~�u0 þQ� ~�wÞi;

H0�
i ¼ ð2p� ~�u �Q0� ~�wÞi;
Hi ¼ ðf0 þ u0w~�u0wÞi;
H0

i ¼ ðf00 � uw~�uwÞi:

(139)

Evaluating the WTIs is now straightforward. For the two
basis elements i ¼ 1, 3 that are independent of the relative
momentum we arrive at

Q0����
T;i ¼ Q0�H�

i i	
�
i ðQÞ;

Q��
��
T;i ¼ Q�H0�

i i	
�
i ð�Q0Þ:

(140)

Since the 	
�
i are already transverse in their arguments,

we can simply add both contributions to obtain a
Bose-symmetric solution of both equations (up to fully
transverse terms):

� i�
��
T;i ¼ H

�
i 	

�
i ðQÞ þH0�

i 	
�
i ð�Q0Þ: (141)

For the elements i ¼ 4, 5 we obtain similarly

�i���
T;i ¼ H�

i 	
�
i ðp;QÞ þH0�

i 	
�
i ðp;�Q0Þ

þHi	
��
i ðQÞ þH0

i	
��
i ð�Q0Þ; (142)

and for the elements i ¼ 2, 6, 7, 8 we have

�i�
��
T;i ¼ H

�
i 	

�
i ðp;QÞ þH0�

i 	
�
i ðp;�Q0Þ

� 1

4
½H�

i 	
�
i ð�Q0; QÞ þH0�

i 	
�
i ðQ;�Q0Þ�

þ 2k
½Hi	
��

i ðQÞ þH0

i	
��

i ð�Q0Þ�: (143)

Note that for a scalar Compton vertex only �
��
T;5

contributes.
The final result for the WTI-preserving 1PI fermion

Compton vertex is the sum of Eq. (126), which is com-
pletely fixed by the dressed fermion propagator, plus the
eight �

��
T;i that constitute �

��
T in Eq. (132). The latter are

fixed by the transverse part of the fermion-photon vertex.
The full Compton vertex including the Born term is then
given by

~��� ¼ �
��
B þ �

��
BC þ �

��
T þ �

��
TT : (144)

The first three terms on the rhs are necessary to satisfy the
WTI of Eq. (101). The above construction can also be
useful in view of the nucleon Compton amplitude ~J��:
since the rhs of the WTI vanishes on shell, Eq. (144)
provides a gauge-invariant decomposition into a fully
transverse ‘‘generalized Born part’’ J��

B þ J��
BC þ J��

T

that depends on the (off-shell) nucleon propagator and
nucleon-photon vertex, and another fully transverse
remainder J

��
TT which must be determined dynamically.

E. Fully transverse part of the Compton vertex

The remaining part �
��
TT of the fermion Compton vertex

in the representation (144) is transverse with respect to
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both Q0� and Q�. Its structure is of particular importance
for the on-shell nucleon Compton amplitude: since the
rhs of the on-shell Compton WTI (105) vanishes, both
the full amplitude ~J�� and the residual part J�� (if a
suitable gauge-invariant Born term is subtracted) are fully
transverse and therefore subject to possible kinematic
constraints.

We recall from the analysis in Sec. IV that there are
9� 8 ¼ 72 independent transverse basis elements in the
general off-shell case and 9� 2 ¼ 18 transverse basis
elements on the mass shell. In order to study real or virtual
Compton scattering, we must find the analogue to Eqs. (89)
and (90). The tensor structures in the resulting basis should
be free of kinematic singularities in the relevant kinematic
limits so that the respective dressing functions are kine-
matically independent. For the on-shell Compton scatter-
ing amplitude, such a basis has been constructed by
Tarrach [62], with a later modification in Refs. [49,50].
In the following we attempt to build such a basis from a
systematic point of view.

Construction of the basis. One can generalize the
construction of Eqs. (84)–(89) to the Compton case in
the following way. We start with the ten basis elements
that are independent of the photon momenta:

�
�
1 ¼ �
�; �
�

2 ¼ �
� 6p;
�
�
3 ¼ 1

2
½�
; ���; �
�

4 ¼ 1

6
½�
; ��; 6p�;

�
�
5 ¼ p
�� þ �
p�; �
�

6 ¼ 1

2
½p
�� þ �
p�; 6p�;

�
�
7 ¼ p
�� � �
p�; �
�

8 ¼ 1

2
½p
�� � �
p�; 6p�;

�
�
9 ¼ p
p�; �
�

10 ¼ p
p� 6p; (145)

where the generalized commutator ½�; �; �� has been defined
in Eq. (76). Second, we want to contract them with all
possible tensor structures that are transverse with respect to
both photons and free of kinematic singularities. To this
end, we use the definitions from Eq. (84),

t��
ab ¼ a � b��� � b�a�; "��

ab ¼ �5"
��
�a
b�;

(146)

to define the quantities:

E�
;��
� ða; bÞ :¼ 1

2

	
"
�

Q0a0"

��
bQ � "

�

Q0b0"

��
aQ



;

F�
;��
� ða; bÞ :¼ 1

2

	
t�

Q0a0t

��
bQ � t�


Q0b0t
��
aQ



;

G�
;��
� ða; bÞ :¼ 1

2

	
"
�

Q0a0 t

��
bQ � t

�

Q0a0"

��
aQ



;

(147)

where a�, b� 2 fp�;Q�;Q0�g, and primed quantities are
obtained from

a ¼ p;Q;Q0 $ a0 ¼ p;Q0; Q: (148)

These tensors are symmetric or antisymmetric under Bose
and charge conjugation, transverse with respect to Q0� and
Q�, linear in all momenta Q, Q0, a and b, and free of
kinematic singularities. They are not all linearly indepen-
dent; for example, E�ða; bÞ and F�ða; bÞ vanish if a ¼ b.

In the last step we contract Eq. (147) with the �
�
i and

collect the resulting elements in subsets with increasing
powers in the photon momenta, in order to avoid kinematic
relations between the dressing functions. Since there are
only 72 independent transverse elements, one will encoun-
ter linear dependencies between the possible combinations

E�
;��
� ða; bÞ�
�

i ðpÞ;
F�
;��
� ða; bÞ�
�

i ðpÞ;
G�
;��

� ða; bÞ�
�
i ðpÞ:

(149)

The detailed analysis yields a maximum set of 16 inde-
pendent elements which carry two powers of the photon
momenta; they can be chosen as8>><>>:

E�
;��
þ ðp; pÞ

F�
;��
þ ðp; pÞ

G�
;��
þ ðp; pÞ

9>>=>>;� �
�
1...4ðpÞ: (150)

There are 40 further cubic elements8<: F�
;��
� ðp;QÞ

G�
;��
� ðp;QÞ

9=;� �
�
1...6ðpÞ;8<: F�
;��

� ðp;Q0Þ
G�
;��

� ðp;Q0Þ

9=;� �
�
3...6ðpÞ

(151)

and 16 that come with four powers of Q, Q0:

F �
;��
þ ðQ;QÞ�
�

1...8ðpÞ; G�
;��
� ðQ0; QÞ�
�

3...6ðpÞ:
(152)

This forms a complete 72-dimensional basis for the fully
transverse part of the vertex which is free of kinematic
singularities and constraints.
On the mass shell, only 72=4 ¼ 18 basis elements

remain by virtue of the positive-energy projectors defined
in Eq. (64). A possible choice for a linearly independent
on-shell basis is

�f
þ �

8>>>>>>>>>>>><>>>>>>>>>>>>:

E�
;��
þ ðp; pÞ

F�
;��
þ ðp; pÞ

G�
;��
� ðp; pÞ

F�
;��
� ðp;QÞ

G�
;��
� ðp;QÞ

F�
;��
þ ðQ;QÞ

9>>>>>>>>>>>>=>>>>>>>>>>>>;
�
8<:�
�

1 ðpÞ
�
�
4 ðpÞ

9=;��iþ: (153)

This subset is particularly convenient since, because of the
identities
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�f
þ�


�
4 ðpÞ�iþ ¼ �"
���p��f

þ�5�
��iþ;

�f
þ�5�


�
4 ðpÞ�iþ ¼ �"
���p��f

þ���iþ;
(154)

one only deals with the Dirac structures

�f
þ�iþ; �f

þ�5�
iþ; �f

þ���iþ; �f
þ�5�

��iþ: (155)

Except for potentially nontrivial relations induced by the
Levi-Civita symbol in Eq. (154), sandwiching with the on-
shell projectors should therefore not alter the powers in the
photon momenta. Consequently, one would have eight
quadratic, eight cubic and two quartic basis elements.

Scalar Compton vertex. Returning to our special case
of a scalar Compton vertex, we note that five spin-
independent combinations are encapsulated both in
Eqs. (150)–(153), namely those that are proportional to

�
�
1 ¼ �
� and do not depend on G�
;��

� :

E��
þ ðp; pÞ ¼ "

�

Q0p"


�
pQ ¼ p2t

��
Q0Q � t

�

Q0pt


�
pQ;

F��
þ ðp; pÞ ¼ t�


Q0pt

�
pQ;

F��
� ðp;QÞ ¼ 1

2

	
t
�

Q0pt


�
QQ � t

�

Q0Q0t
�pQ



;

F��
þ ðQ;QÞ ¼ t

�

Q0Q0 t
�QQ;

(156)

where we abbreviated the contraction of the indices 
 and
� by

F��
� ða; bÞ :¼ F�
;
�

� ða; bÞ ¼ F�
;��
� ða; bÞ�
�

1 ðpÞ: (157)

They describe Compton scattering on a scalar particle and
are identical to the T��

1...5 given in Eq. (15) in Ref. [63]:

�T��
1 ¼ t��

Q0Q; T��
2 ¼ F��

þ ðp; pÞ;
�T��

3 ¼ F��
þ ðQ;QÞ; T��

4 ¼ 2F��
þ ðp;QÞ;

T��
5 ¼ 2F��� ðp;QÞ:

(158)

For comparison with Ref. [63], note that on the mass shell
one has p �Q ¼ p �Q0, and in Euclidean conventions all
scalar products pick up a minus sign whereas g�� is
replaced by ����. We also swapped the indices � $ �.

Relation with other bases. Next, we would like to estab-
lish a connection with Tarrach’s basis for the on-shell
nucleon Compton amplitude [62] which has been fre-
quently used in the context of dispersion relations; see
e.g., Refs. [2,49,64]. We consider the modified version
by Drechsel et al. who write the on-shell scattering ampli-
tude as [Ref. [49], Eq. (A5)]:

~J�� ¼ X
i2j

BiðQ2; Q02; Q �Q0; p � �Þ�f
þT

��
i �iþ;

j ¼ f1 . . . 21g n f5; 15; 16g:
(159)

In comparison to Ref. [49], our scattering amplitude ~J��

is matrix valued since we contract with positive-energy pro-

jectors instead of nucleon spinors (�iþui ¼ ui, �uf�
f
þ ¼ �uf).

The T
��
i in the above equation correspond to those in

Ref. [49]: they are essentially Tarrach’s basis elements
except for the first four, which have been replaced by the
scalar structures of Ref. [63]; and the elements T5;15;16 were

swapped by T19;20;21 which can also be found in Tarrach’s

paper [62].
In principle, the T

��
i will be linear combinations of our

basis elements in Eq. (153); however, one might ask if our
construction from above can also be used to generate them
directly. To that end we extend Eq. (146) to accommodate
the � matrix:

t
��
a� :¼a������a�; "

��
a� :¼�5"

��
�a
��; (160)

and define similarly as before

F�
;��
þ ð�; �Þ :¼ ½t�


Q0�; t
��
�Q�;

F�
;��
� ð�; bÞ :¼ 1

2
ðt�

Q0�t

��
bQ � t

�

Q0b0t

��
�QÞ;

G�
;��
� ð�; bÞ :¼ 1

2
ð"�


Q0�t
��
bQ � t�


Q0b0"
��
�QÞ;

(161)

where again b� 2 fp�;Q�;Q0�g. While these combina-
tions do not yield any new basis elements, they provide a
relatively compact representation of the basis in Ref. [49]
which is given in Table III.
The authors of Ref. [49] note that in virtual Compton

scattering (Q02 ¼ 0) the elements T3;6;19 decouple from the

cross section when contracted with the photon polarization
vectors, and T8;9, T12;13, T20;21 become pairwise identical,

thus leaving 12 independent elements. Expressed in terms
of our Lorentz tensors with their inherent Q02 dependence,
the origin of this behavior is apparent in Table III. In our
basis of Eq. (153), the same argument entails that in virtual
Compton scattering FþðQ;QÞ decouples and, upon con-
traction with the photon polarization vectors, Fþðp;QÞ and
F�ðp;QÞ on the one hand and Gþðp;QÞ and G�ðp;QÞ on
the other hand become identical, which leaves again 12
independent tensor structures. We note that an alternative
representation of Table III in the VCS limit in terms of the
electromagnetic field-strength tensor has been given in
Ref. [51].
Forward VVCS. Finally, another interesting case is the

on-shell basis (153) in the case of forward VVCS, where
Q ¼ Q0: since � ¼ Q�Q0 ¼ 0, the incoming and out-
going nucleon momenta are identical, pf ¼ pi ¼ p, and

one has �f
þ ¼ �iþ ¼ �þ. This implies

�þ�5�þ ¼ 0; �þ�5�

�
4 ðpÞ�þ ¼ 0; (162)

so that the tensor structures with G� vanish as they
contain one instance of �5. In general, only four of the
18 elements remain linearly independent, and we call them
for the moment
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T ��
1 ¼ E��

þ ðp; pÞ�þ; T��
2 ¼ F��

þ ðp; pÞ�þ;

T��
3 ¼ E�
;��

þ ðp; pÞ�þ�

�
4 �þ;

T��
4 ¼ F�
;��

þ ðp; pÞ�þ�

�
4 �þ:

(163)

The coefficients of T��
1...4 are related to the structure func-

tions fT , fL, gTT and gLT in the forward limit. In the
literature (see, for example, Eq. (114) in Ref. [2]), the
two spin-independent tensors are typically chosen as T

��
Q

and p�
T p

�
T , where T��

Q ¼ t��
QQ=Q

2 is the usual projector

defined in Eq. (78) and p
�
T ¼ T

��
Q p�. One can work out

the relations

T��
Q �þ ¼ ðT1 þ T2Þ��

p2Q2
;

p
�
T p

�
T�þ ¼ 1

Q2

�
T��
2 � ðp �QÞ2

p2Q2
ðT1 þ T2Þ��

� (164)

with our basis elements above, and the spin-dependent
structures can be written as

T ��
3 ¼ �M2�þ"

��
Qp 6Q�þ;

T��
4 ¼ M2p �Q�þ"

��
Q��þ:

(165)

where we exploited the definitions (146) and (160). T��
4

and ðT3 þ T4Þ�� are proportional to the two spin-
dependent tensors in Ref. [2] if we define a covariant
‘‘spin vector’’ via

Si ¼ �i

2
¼ 1

4
"ijk�

jk ! S� ¼ 1

4
"�
��p̂��
� ¼ i

2
��
T �5

^6p;
(166)

where �
� ¼ � i
2 ½�
; ��� and �

�
T ¼ T

��
p ��. We used the

properties of the positive-energy projectors: ^6p�þ ¼ �þ
and �þ�5�

�
T�þ ¼ �þ�5�

��þ.

VI. NUCLEON HANDBAG DIAGRAMS

We have now gathered sufficient knowledge to proceed
with the calculation of the nucleon Compton scattering
amplitude. We focus exclusively on the handbag contri-
bution from Eq. (12) which is depicted in Fig. 10. Within
the rainbow-ladder truncation, the scattering amplitude
depends on the DSE solution for the dressed quark propa-
gator and the solution for the nucleon’s bound-state
amplitude from its covariant Faddeev equation. For these
ingredients we refer the reader to the literature [28,30].
We use the quark-gluon interaction of Ref. [39] with
the input parameters from Ref. [31], and we work with a
quark mass mu ¼ md ¼ 3:7 MeV at the renormalization
point � ¼ 19 GeV so that the resulting pion mass is
m� ¼ 138 MeV.
The remaining component is the quark Compton vertex

that is calculated from its inhomogeneous BSE (18), illus-
trated in Fig. 2. We compute the full vertex including its
128 components in general spacelike kinematics, i.e., for

p2; t; � > 0 and z; y; Z 2 ð�1; 1Þ; (167)

with the Lorentz-invariant variables defined in Eq. (28). It
turns out that the structure of the basis in Table I simplifies
the analysis enormously; the details of the calculation are
provided in Appendix B.
Combining all ingredients yields the handbag contribu-

tion to the nucleon’s Compton amplitude ~J��. Its explicit
Lorentz-Dirac, color-flavor and momentum structure is
worked out in Appendix C. The full Compton amplitude
can be spanned onto a transverse basis according to
Eqs. (60) and (67) or, alternatively, by using the regular
basis elements from Eq. (153). The corresponding dressing
functions are Lorentz invariant and can be expressed in
terms of the four variables ft; X; Y; Zg defined in Eqs. (22)
and (23), or the variables ft; �; 	; 	0g from Sec. III B, or any
other suitable combination thereof.

TABLE III. Representation of the basis of Ref. [49] with our definitions from Eqs. (145), (147), and (161). We have abbreviated
!� ¼ ðQ2 �Q02Þ=ð4M2Þ.
�T

��
1 ¼ t

��
Q0Q T

��
11 ¼ G��

þ ð�;Q0Þ
T
��
2 ¼ F��

þ ðp; pÞ T
��
12 ¼ 2iMF��

þ ð�;QÞ � 2F��
þ ðp;QÞ þM2!þF

��
þ ð�; �Þ

�T
��
3 ¼ F��

þ ðQ;QÞ T
��
13 ¼ 2iMF��� ð�;QÞ � 2F��� ðp;QÞ þM2!�F

��
þ ð�; �Þ

T��
4 ¼ 2F��

þ ðp;QÞ T��
14 ¼ 2

3 ð2iMG��
þ ð�;Q0Þ � ½F�
;��

þ ð�;Q0Þ; �
�
5 �Þ

T
��
6 ¼ 1

2F
�
;��
þ ðQ;QÞ�
�

3 �T
��
17 ¼ F��

þ ð�; �Þ
T
��
7 ¼ 4G��� ð�; pÞ T

��
18 ¼ 4G��� ð�;Q0Þ

T
��
8 ¼ G��� ð�;QÞ T

��
19 ¼ 2F�
;��

þ ðQ;QÞ�
�
9

T
��
9 ¼ G��� ð�;QÞ T

��
20 ¼ 4F�
;��� ðp;QÞ�
�

3 þ 4iMG��
þ ð�;QÞ

þ 2iM!�ðG��� ð�;QÞ �G��� ð�;Q0ÞÞ
T
��
10 ¼ 4iMð2F��

þ ð�; pÞ þG��� ð�;Q0ÞÞ
þ 2p:�F��

þ ð�; �Þ � 8F��
þ ðp; pÞ

T
��
21 ¼ 4F�
;��

þ ðp;QÞ�
�
3 þ 4iMG��� ð�;QÞ

þ 2iM!þðG��� ð�;QÞ �G��� ð�;Q0ÞÞ
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A. Born terms and gauge invariance

The extraction of nucleon polarizabilities is complicated
by the fact that the handbag part does not respect electro-
magnetic gauge invariance on its own. As a consequence, it
is not transverse with respect to the photon momenta and
the basis elements in Eq. (60) or (153) are not sufficient to
fully describe its structure. Unfortunately the lack of trans-
versality will also affect the transverse projection of the
handbag amplitude as it does not satisfy the analyticity
constraints that are manifest in Eq. (153).

According to their definition, the polarizabilities are
related to the Lorentz-invariant dressing functions of the
residual part J

��
R of the nucleon amplitude,

J
��
R ¼ ~J�� � J

��
B ; (168)

where the following specific form of the resonant nucleon
Born part is subtracted from the full amplitude:

J��
B ¼ ��f

þ�
�
Nð�Q0ÞSNðPþ�Þ��

NðQÞ�iþ
��f

þ��
NðQÞSNðP� �Þ��

Nð�Q0Þ�iþ: (169)

Here, SNðpÞ ¼ ð�i 6pþMÞ=ðp2 þM2Þ is the nucleon
propagator with nucleon mass M, and

�i��
NðQÞ ¼ F1ðQ2Þ�� þ iF2ðQ2Þ

4M
½��; 6Q� (170)

is the on-shell nucleon-photon vertex from Eq. (95) with
the Dirac and Pauli form factors F1 and F2. If the inter-
mediate nucleon momenta in Eq. (169) are on shell, we
have

SNðpÞ ���!p2!�M2 2M�þðpÞ
p2 þM2

; �þðpÞ ¼ 1þ ^6p
2

; (171)

and the positive-energy projectors ensure that the terms in
Eq. (169) are transverse for an arbitrary nucleon-photon
vertex, so that their sum is transverse in the Born limit s ¼
u ¼ 0. However, with the Ansatz for ��

N from above, the
sum of both terms for J��

B in (169) is also transverse in
general kinematics so that the remainder J

��
R is gauge

invariant as well. This is in general not true for other on-
shell-equivalent formulations of �

�
N ; see Ref. [57] for a

detailed discussion.
In order to obtain J��

R from a quark-level calculation
one would need to implement the full set of diagrams
from Eq. (8):

~J �� ¼ J��
Handbag þ J��

Cat0s ears
þ J��

G : (172)

The third term involves the quark six-point function G
minus the quark Born parts that we shuffled from the third
to the first term via Eq. (12). The sum of diagrams in
Eq. (172) satisfies electromagnetic gauge invariance by con-
struction and is therefore transverse. The residual part is then
obtained by subtracting Eq. (169), with nucleon electromag-
netic form factors calculated consistently. Thereby J��

B

cancels the nucleon pole encapsulated in J
��
G , and the trans-

verse remainder encodes the polarizabilities.
While the direct calculation of J

��
G might be feasible in

the long term, it is certainly beyond our present capacities.
Under the assumption of handbag dominance, a sensible
alternative would be the construction of a ‘‘gauge-invariant
completion’’ of the calculated handbag diagrams. If the
dynamics of J��

R are dominated by the handbag contribu-
tion, one can attempt to add a kinematic term

J��
R ¼ J��

Handbag þ J��
Kinematic (173)

whose sole purpose is to restore transversality (while
maintaining analyticity), so that all nontransverse contri-
butions in the sum cancel exactly. Such constructions are
possible and we will explore them in future work. For the
remaining part we will focus on a feature of the Compton
amplitude that is unhampered by such problems, namely,
the t-channel resonance structure.

B. Meson poles in the t channel

We recall from Eq. (19) that the quark Compton vertex
can be written as the contraction of the t-channel q �q Green
function G with the inhomogeneous term �

��
0 . If a

rainbow-ladder truncation is employed, the last quantity
simplifies to the quark Born diagrams �

��
B . The Green

function includes all meson-exchange poles at the respec-
tive location

t ¼ �2

4M2
! � m2

M

4M2
; (174)

where it factorizes into the structure

G ���!�2!�m2
M
G0

�M
��M

�2 þm2
M

G0: (175)

Here, �M defines the meson’s homogeneous bound-state
amplitude and mM the meson mass, and G0 is the discon-
nected product of a dressed quark and antiquark propaga-
tor. Via Eq. (19), these poles also appear in the quark
Compton vertex (cf. Fig. 6),

~��� ���!�2!�m2
M ! J��

M��

�2 þm2
M

�M; (176)

as long as the bound-state wave function �M ¼ G0�M has
nonvanishing overlap with the Born part �B, i.e.,

J
��
M��

:¼ Tr
Z
p

�XMðp;�Þ���
B ðp;�;�Þj�2!�m2

M
� 0:

(177)

The quantity J
��
M��ð�;�Þ defines the two-photon transition

current for a meson M with mass mM and given JPC

quantum numbers. If it is nonzero, the respective pole
will appear in the quark Compton vertex and consequently
also in the nucleon Compton amplitude. Since these con-
tributions are resonant and the on-shell transition currents
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are conserved, they are transverse by themselves and we can
extract them without concern for analyticity constraints.

It is interesting that the pole structure of the quark
Compton vertex can already be read off from the basis
decomposition in Table I. Consider, for example, a
scalar two-photon current J��

sc;��ð�;�Þ. Since the relative
momentum p is integrated out, we have only the two unit
vectors s� and d� from Eq. (42) for its construction at our
disposal, and a complete tensor decomposition consists of
the elements

���; s�s� � d�d�; s�d� � d�s�: (178)

With Eq. (48), they correspond to the elements X��
1 , X��

5 ,

X��
6 , X��

7 , and X��
8 . Implementing the transversality con-

straint with respect to the external photon legs leaves only
two possible transverse Lorentz structures, namely Y��

1

and Y��
3 from Eq. (60), for the on-shell current.2 Since

the Yi are orthogonal, scalar poles can only appear in the
dressing functions associated with these two basis ele-
ments in the quark Compton vertex, combined with those
Dirac structures in Table I that also contribute to the
bound-state amplitude of a scalar meson. The same obser-
vation holds also for the nucleon Compton scattering am-
plitude when expressed in the basis of Eq. (67).

Similarly, the only possible structure for a pseudoscalar
two-photon current is Y��

4 � "��
�s
d� [cf. Eq. (50)], so

that pseudoscalar poles in the Compton vertex can only
appear in the dressing functions associated with Y��

4 . The

same analysis for the axial-vector case, whose on-shell
current is transverse to all three external legs, entails that
the tensor structures Y��

4 , Y��
6 , Y��

7 , Y��
8 and Y��

9 contrib-

ute axial-vector-meson poles.

The dressing functions ~f1;1ðtÞ and ~f4;1ðtÞ of the quark

Compton vertex in the basis decomposition of Eq. (60) are
shown in Fig. 7. In principle, these functions depend on the
six momentum variables p2, z, y, t,� and Z. We performed
a Chebyshev expansion in the angular variables z and y and

show only the zeroth Chebyshev moments. Furthermore,
we set p2 ¼ Z ¼ 0 and � ¼ 1, so that the only remaining
variable is t ¼ �2=ð4M2Þ. In contrast to the nucleon
Compton amplitude, we can solve the inhomogeneous
BSE for the vertex at timelike (i.e., negative) values of t
directly since the only needed ingredients are the calcu-
lated quark propagator and the quark-photon vertex in the

complex plane. Both dressing functions ~f1;1ðtÞ and ~f4;1ðtÞ
diverge, as they should, at the respective scalar and pion
pole locations which are denoted by dotted lines. With our
rainbow-ladder input, the scalar meson mass is msc ¼
0:67 GeV and the pion mass is m� ¼ 0:14 GeV.
In order to check our numerical accuracy we can further

extract the residues at these poles and compare them with
known results from the literature. As discussed before, the
basis elements involving Y��

4 contain the pion t-channel
pole via the�0�� form factor. The respective current reads

J
��
���ð�;�Þ ¼ ig���

2�2f�
F���ð	; 	0Þ"��
��
��; (179)

where F���ð	; 	0Þ is normalized to unity at 	 ¼ 	0 ¼ 0. In

the chiral limit one has the exact result g��� ¼ 1=2. For

nonzero current-quark masses, the transition form factor
F��� in rainbow-ladder truncation has been calculated in

Ref. [65]. In order to compare with our Compton dressing
functions, we repeat that calculation without giving details.
The same phase-space considerations from earlier apply
here, and the accessible spacelike region in 	 and 	0 is
shown in Fig. 4. The result for the transition form factor in
the symmetric case 	 ¼ 	0 is plotted by the thick (red) lines
in Fig. 8.
Next, we want to reconstruct the same form factor from

the quark Compton vertex and the nucleon Compton am-
plitude. Although we calculate the latter only for spacelike
t, the pion mass is sufficiently small so that the extraction
of the pole residue is feasible. For �2 ! �m2

�, the
Compton vertex reduces to

~���ðp;�;�Þ ! J��
���ð�;�Þ
�2 þm2

�

��ðp;�Þ; (180)

FIG. 6 (color online). t-channel meson poles in the quark Compton vertex (left panel) and the nucleon Compton scattering amplitude
(right panel). At the pion pole, the four-point functions separate into the ��� transition current and the pion’s bound-state amplitude
(left panel) or the nucleon-pion current as the pole residue of the nucleon’s pseudoscalar current (right panel).

2Expressed in terms of the regular basis from Eq. (156), they
are linear combinations of t

��
Q0Q and t

�

Q0Q0 t
�QQ.
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where �� is the pion’s bound-state amplitude

��ðp;�Þ ¼
X
i

hð�Þi ðp2; zÞi�5	iðp;�Þ½�k�ab�AB; (181)

with four Dirac structures that can be chosen as 	i 2
f1; 6p; 6�; ½6p; 6��g. We have stated the color and flavor
factors explicitly (the �k are the Pauli matrices); with our
color-flavor convention one obtains in the chiral limit

hð�Þ1 ðp2; zÞ ¼ Bðp2Þ=f�, where Bðp2Þ is the scalar dressing
function of the inverse quark propagator [66]. Similarly,
the nucleon’s Compton amplitude at the pion pole becomes

~J��ðP;�;�Þ ! J��
���ð�;�Þ
�2 þm2

�

J�NNðP;�Þ; (182)

where J�NN is the residue of the nucleon’s pseudoscalar
current at the pion pole:

J�NNðP;�Þ ¼ G�NNð�2Þ�f
þi�5�

iþ
�
�k

2

�
ab
: (183)

The rainbow-ladder calculation of the pion-nucleon form
factor G�NN has been performed by us recently [31]. The
relations (180) and (182) are illustrated in Fig. 6.
With the bases of Eq. (62) for the quark Compton vertex

and (67) for the nucleon Compton amplitude, the tensor
structure of the pion transition form factor is proportional
to Y4:

Y��
4 ¼ 1ffiffiffi

2
p "��
�s
d� ¼ "��
��
��

2M2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�tð1� Z2Þp ; (184)

and the pion pole will appear in the respective dressing

functions ~f4;a and F4. If we work out Eqs. (180)–(184) and

define

H ðt; �; ZÞ ¼ 4�2f�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�tð1� Z2Þp �

tþ m2
�

4M2

�
; (185)

we can extract the form factor at the symmetric point
	 ¼ 	0 from the relations

g���F���ð	; 	Þ ¼ H ðt; �; ZÞ
~fv4;1ðp2; z; y; t; �; ZÞ

2hð�Þ1 ðp2; zÞ ;

g���F���ð	; 	Þ ¼ H ðt; �; ZÞF
v
4 ðt; �; Y; ZÞ
G�NNð�2Þ ;

(186)

which are valid in the limit 	 ¼ 	0 ) Z ¼ 0, � ¼ 4	� t
and t ! �m2

�=ð4M2Þ. We also set p2 ¼ z ¼ y ¼ 0 in the
quark Compton vertex and Y ¼ 0 in the nucleon Compton
amplitude. The superscript v denotes the flavor projection
to the isovector part. For the quark Compton vertex, flavor

0.0
0

2

4

6

0.2 0.4 0.6 0.8 1.0-0.2

FIG. 7 (color online). Dressing functions ~f1;1ðtÞ and ~f4;1ðtÞ of
the quark Compton vertex in the basis (62) at p2 ¼ 0, Z ¼ 0 and
� ¼ 1. We plot the zeroth Chebyshev moments in z and y. The
scalar and pion pole locations are shown by dotted vertical lines.
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FIG. 8 (color online). Reconstruction of F��� from the quark Compton vertex (left panel) and the nucleon Compton amplitude (right
panel) via Eq. (186). The thick (red) line in each panel is the result of the direct calculation for the ��� transition current. The thin
lines are the extrapolated values for various values of t, decreasing from bottom to top (left panel) or from right to left (right panel), as
indicated by the legend.
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is just an overall factor, namely the square of the quark
charge matrix in Eq. (C4), so that the isovector projection
is fv4 ¼ f4=3. For the nucleon Compton amplitude,
the Dirac-Lorentz and flavor parts are entangled
[cf. Eq. (C9)], and the isovector projection is

Fv
4 ¼ 3F11

4 � F22
4

3
¼ Fp

4 � Fn
4 : (187)

The extracted transition form factor is shown in Fig. 8
for various values of t. For t ! �m2

�=ð4M2Þ  �0:005,
the curves should converge toward the result from the
direct on-shell calculation of the current. In the case of
the quark Compton vertex, shown in the left panel, this
behavior is nicely realized as long is t is not too small. For
small values of t, the iteration of the vertex BSE becomes
unstable close to the pion pole.

The extraction of F��� from the scattering amplitude in

the right panel of Fig. 8 turned out to be more difficult. In
order to implement the quark Compton vertex dressing

functions ~f4;1 in the nucleon Compton amplitude, we are

so far restricted to zeroth Chebyshev moments in the
variables z and y. The reason is that the real relative
momentum p in the vertex is shifted to p3 ¼ pþ P=3
in the Compton amplitude (cf. Appendix C 3), where
P ¼ ðPi þ PfÞ=2 is the average nucleon momentum. The

vertex depends now on ���ðp3;�;�Þ, and p3 is complex
because P2 is negative. Therefore, we must calculate the
vertex for complex p2

3 and complex values of the new

variables z and y that are constructed from p3, � and �.
The first task is straightforward, but a Chebyshev expan-
sion in z and y is impractical because jzj and jyj are no
longer restricted to the interior of a unit circle. If the
angular dependencies were small, keeping only the zeroth
moments would be sufficient, but this is usually only true
in certain basis decompositions of the vertex.

For the purpose of generating the right panel of Fig. 8,
we transformed the eight Dirac basis elements 	a attached
to Y��

4 to the basis

1; 6p; 6�; ½6p; 6��;�t; ½6p;�t�; ½�t; 6��; ½6p;�t; 6��;
equipped with appropriate prefactors p � �, p �� and � �
� to ensure positive charge-conjugation and Bose sym-
metry. �t is chosen to be transverse to � and p so that
only the first four elements contribute to the pion pole,
as they are the only ones that appear in the pion’s
bound-state amplitude. In this basis the angular depen-
dencies close to the pion pole are weak and a zeroth
Chebyshev approximation is justified; however, the
same approximation in a different basis can lead to
large inaccuracies.

We note that the problem could be cured by a moving-
frame calculation of the quark Compton vertex, where its
inhomogeneous BSE is solved directly in the kinematics that
appear in the scattering amplitude. In that case all variables
are real and no complex continuation is necessary—at the

price, however, of a dependence on two further angular
variables. Such a course might turn out indispensable
for the extraction of polarizabilities where the full 128-
dimensional basis decomposition of the vertex is integrated
over. We will investigate this option in the future.

VII. CONCLUSIONS AND OUTLOOK

We have provided a theoretical analysis as well as first
numerical results for the nucleon’s Compton scattering
amplitude in the Dyson-Schwinger approach. We have
previously derived a decomposition of the scattering
amplitude at the quark-gluon level that satisfies electro-
magnetic gauge invariance by construction. However, its
full numerical calculation is complicated by the presence
of the six-quark Green function which includes the s- and
u-channel nucleon resonance terms.
In this paper we have calculated the nonperturbative

handbag contribution to the scattering amplitude. It is
microscopically represented by the quark Compton
vertex, which includes the quark Born terms and the
quark-antiquark Green function in the t channel that
comprises all t-channel meson resonances. Based on a
well-established rainbow-ladder Ansatz for the quark-
gluon interaction, we implemented the Dyson-Schwinger
solution for the dressed quark propagator and the covariant
Faddeev-equation solution for the nucleon’s bound-state
amplitude, and we solved the quark Compton vertex from
its inhomogeneous Bethe-Salpeter equation.
For the purpose of our calculations we have constructed

a 128-dimensional orthogonal tensor basis for the quark
Compton vertex and studied its symmetry properties.
The same basis can be used for the nucleon Compton
scattering amplitude, where the number of independent
elements reduces to 32 and further down to 18 if the
transversality conditions are implemented. Moreover, we
have constructed a fully transverse tensor basis that is free
of kinematic singularities in the relevant kinematic limits.
We have established its relation with bases used in the
literature, and we studied its simplification in the limits of
virtual and forward Compton scattering.
We have also generalized the Ball-Chiu construction to

the two-photon case and established the general form of the
fermion (and also scalar) Compton vertex that is compat-
ible with electromagnetic gauge invariance. This construc-
tion can be used for devising models for the scattering
amplitude at the quark level based on the dressed quark
propagator, the nucleon wave function, and meson pole
terms in the one- and two-photon vertices. On the other
hand, it can also be useful for model building on the
nucleon level, as it provides a gauge-invariant completion
of the nucleon Born terms in general kinematics with an
off-shell nucleon propagator and nucleon-photon vertex.
We have extracted the ��� transition form factor at the

t-channel pion pole, both from the calculated quark
Compton vertex and the nucleon scattering amplitude.
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We obtained reasonable agreement with the result from a
direct calculation. We found that the angular dependencies
in the quark Compton vertex are not negligible, and in view
of obtaining observables in other kinematic regions it
might be necessary to solve the vertex in a moving frame.
We note that an analogous analysis for the pion electro-
production amplitude, which is possible with the methods
devised here, can in principle yield input for the experi-
mental extraction of the pion’s electromagnetic form factor
from off-shell momenta.

We plan to continue our studies by extracting the
experimentally measured polarizabilities in virtual and
forward Compton scattering. This task has not been pos-
sible so far since the handbag contribution is not gauge
invariant by itself, and therefore not transverse, so that the
extracted polarizabilities would not satisfy the analyticity
constraints. In the long term, electromagnetic gauge in-
variance can be restored by taking into account the full set
of diagrams in the decomposition of the scattering ampli-
tude. As an alternative one can attempt to construct Ansätze
for the scattering amplitude that include the dynamics
of the calculated handbag diagrams while restoring
transversality and analyticity. With that in mind, we also
plan to investigate two-photon contributions to electro-
magnetic form factors that are determined from the nu-
cleon Compton amplitude at spacelike momenta.
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APPENDIX A: EUCLIDEAN CONVENTIONS

We work in Euclidean momentum space with the
conventions

p � q ¼ X4
k¼1

pkqk; p2 ¼ p � p; 6p ¼ p � �: (A1)

A vector p is spacelike if p2 > 0 and timelike if p2 < 0.
The Hermitian � matrices �� ¼ ð��Þy satisfy the anti-
commutation relations f��; ��g ¼ 2���, and we define

��� ¼ � i

2
½��; ���; �5 ¼ ��1�2�3�4: (A2)

In the standard representation one has

�k ¼ 0 �i�k

i�k 0

 !
; �4 ¼ 1 0

0 �1

 !
; �5 ¼

0 1

1 0

 !
;

where �k are the three Pauli matrices. The charge conju-
gation matrix is given by

C ¼ �4�2; CT ¼ Cy ¼ C�1 ¼ �C; (A3)

where T denotes a Dirac transpose. Four-momenta are
conveniently expressed through hyperspherical coordinates:

p� ¼
ffiffiffiffiffiffi
p2

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� y2

p
sinffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� z2
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� y2
p

cosffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

p
y

z

0BBBBBBB@

1CCCCCCCA; (A4)

and a four-momentum integration readsZ
p

:¼ 1

ð2�Þ4
1

2

Z 1

0
dp2p2

Z 1

�1
dz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

p Z 1

�1
dy

Z 2�

0
d:

APPENDIX B: INHOMOGENEOUS BSE FOR THE
QUARK COMPTON VERTEX

1. Inhomogeneous BSE

In this appendix we provide details on solving the
inhomogeneous Bethe-Salpeter equation (18) for the quark
Compton vertex. Reattaching indices and momentum
labels, it has the explicit form

½~�� �B���

�ðp;�;�Þ ¼

Z
p0
K

0�0� ~�

��

0�0 ðp0;�;�Þ;

~���ðp;�;�Þ ¼ SðpþÞ~���ðp;�;�ÞSðp�Þ;
(B1)

which is illustrated in Fig. 9. Sðp�Þ with p� ¼ p� �
2

denotes the dressed quark propagator from Eq. (71), and
the rainbow-ladder kernel is given by

K

0�0� ¼ 4

3
Z2
2

4�
ðk2Þ
k2

T��
k i��



0 i��
�0�: (B2)

Here, Z2 is the quark renormalization constant, 4=3 is the

color trace, T
��
k ¼ ��� � k̂�k̂� is the transverse projector

with respect to the gluon momentum k ¼ p� p0, and

ðk2Þ is the rainbow-ladder quark-gluon interaction from
Ref. [39]; see also Eqs. (13)–(14) in Ref. [34].
The rainbow-ladder BSE respects the WTI for the

Compton vertex: contracting the BSE with Q0� and insert-

ing the WTIs (97) and (103) for the Compton vertices ~���

and ~��� yields the condition

��

�ðpþ

f ; QÞ � ��

�ðp�

f ; QÞ
¼
Z
p0
K

0�0�ð��


0�0 ðpþ0
f ; QÞ � ��


0�0 ðp�0
f ; QÞÞ; (B3)

which is satisfied since the quark-photon vertex is calcu-
lated from its own BSE,

��

�ðp;QÞ ¼ Z2i�

�

� þ

Z
p0
K

0�0��

�

0�0 ðp0; QÞ; (B4)

and the rainbow-ladder kernel only depends on the
exchange momentum p� p0.
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2. Explicit form of the BSE

We work in the frame defined by Eq. (26) for the
external momenta � and �, Eq. (29) for the external
relative momentum p, and

p0 ¼
ffiffiffiffiffiffiffi
p02

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z02

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� y02

p
sinffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� z02
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� y02
p

cosffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z02

p
y0

z0

0BBBBBBB@

1CCCCCCCA (B5)

for the internal relative momentum. The unit vectors that
characterize the external momenta are then given by
Eq. (51). The unit vectors constructed from the internal
relative momentum p0 are defined in analogy to Eqs. (42)
and (45): d and s remain unchanged, but we have in
addition

r0� ¼ bp0
t

�
; v0� ¼ �
���r0
s�d�; (B6)

which yields

r0 ¼

sin

cos

0

0

0BBBBB@
1CCCCCA; v0 ¼

cos

� sin

0

0

0BBBBB@
1CCCCCA: (B7)

Lorentz-invariant relations that combine external and
internal basis elements, but otherwise involve no
further momentum, can therefore only depend on the vari-
able r � r0 ¼ v � v0 ¼ cos. Furthermore, in analogy to
the set ! ¼ fp2; z; yg of Eq. (28), we collect the loop
variables via

!0 :¼ fp02; z0 ¼ p̂0 � �̂; y0 ¼ cp0
T � c�Tg: (B8)

To start with, we express the vertices ��� and ��� by

their basis decomposition (53), where fi;a and ~fi;a denote

the Lorentz-invariant dressing functions in either case.
Second, we exploit the orthogonality relation (59) for the
basis elements by multiplying the equations with �	��i;a from

the left and taking traces. This yields

fi;að!;�Þ ¼ f0i;að!;�Þ þ
Z
p0
gðk2ÞKij;ab

~fj;bð!0; �Þ;
~fi;að!;�Þ ¼ Gij;abð!; tÞfj;bð!;�Þ;

(B9)

where

Kij;ab ¼ 1

4
Trf �	��i;a ðr; s; dÞ��	��

j;b ðr0; s; dÞ��gT��
k ;

Gij;ab ¼ 1

4
Trf �	��i;a ðr; s; dÞSðpþÞ	��

j;b ðr; s; dÞSðp�Þg;

gðk2Þ ¼ � 4

3
Z2
2

4�
ðk2Þ
k2

: (B10)

The simplicity of the rainbow-ladder kernel, which
depends only on the gluon momentum k ¼ p� p0 and
enters through the projector T

��
k ¼ ��� � k̂�k̂�, entails

that the kernel matrix Kij;ab only depends on the external

and internal relative momenta p and p0. The propagator
matrix Gij;ab does not involve any integration and thus

depends only onp, but now also on the external momentum
�, i.e., on the Lorentz-invariant variables! ¼ fp2; z; yg and
t. The remaining invariants � and Z enter the equation
merely as external parameters in the driving term f0i;a.

The typical strategy in an iterative solution of Eq. (B9)
would be to compute and store the kernel and propagator
matrices for given values of the external parameters t, �,
and Z in advance, i.e., before the actual iteration is per-
formed. Upon integrating the combination gðk2ÞKij;ab in

Eq. (B9) over the angle , which does not appear in the
dressing functions, we obtain a kernel of the form

~Kij;abðp2; p02; z; z0; y; y0Þ ! ~Kmm0;nn0
ij;ab ðp2; p02Þ: (B11)

The additional indices in the second step shall indicate that
we have employed further Chebyshev expansions in the
angular variables for efficiency, which is justified since the
angular dependencies are typically small. Unfortunately,
even with economical numerical accuracy, the above
expression requires several hundred GB of memory for
storage, and so we must look for better strategies.

3. Breaking down the kernel

Let us analyze the kernel in Eq. (B10) in more detail. We
can exploit the basis decomposition (52) for the quark
Compton vertex and write

FIG. 9 (color online). Inhomogeneous BSE for the quark Compton vertex, Eqs. (18) and (B1).
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Kij;ab ¼ X��
i X0��

j

1

4
Tr

�
�	a

1

�5

" #
i

�
�
T

1

�5

" #
j

	0b�
�
T

�
; (B12)

where we have abbreviated

X��
i ¼ X��

i ðr; s; dÞ; X0��
j ¼ X��

j ðr0; s; dÞ (B13)

and similarly for the 	’s. We have also contracted the �

matrices with the gluon projector, so that �
�
T ¼ �� � ^6kk̂�

is transverse to the gluon. The simple structure of the basis
elements, where Lorentz and Dirac parts are completely
factorized, should have consequences for the kernel as
well. X��

i X��
j ¼ �ij is diagonal in i, j, and the only com-

plication in X��
i X0��

j is the additional dependence on r0.
Thus, the only scalar product that can enter the Lorentz
trace is r � r0, which suggests near orthogonality as well.

The following Dirac traces can occur in Eq. (B12):

1� 1 ! 1

4
Trf �	a��

T	
0
b�

�
Tg ¼: Kab;

�5 � 1 ! 1

4
Trf �	a�5�

�
T	

0
b�

�
Tg ¼:

K0
abffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ðr � r0Þ2p ;

1� �5 ! 1

4
Trf �	a��

T�5	
0
b�

�
Tg ¼ � K0

abffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðr � r0Þ2p ;

�5 � �5 ! 1

4
Trf �	a�5�

�
T�5	

0
b�

�
Tg ¼ �Kab; (B14)

where we have pulled out the prefactor in K0
ab for later

convenience.
Combining this with the Lorentz traces, the result for the

kernel Kij;ab is given in Table IV. It is a 16� 16 matrix in

the indices i, j, where each entry is a further 8� 8 matrix
proportional to Kab or K0

ab. We abbreviated c ¼ r � r0 ¼
cos. With the basis of Table I, the kernel is indeed almost
diagonal in i, j (entries not shown are zero). We observe

that so far we have reduced the 128� 128 kernel elements
to 5� 64 independent entries

Kab; cKab; c
2Kab; K

0
ab; cK

0
ab (B15)

that appear in Table IV and have to be integrated over
separately. It is interesting to note that this structure is
quite general since it is merely the consequence of our
choice of basis. The actual Ansatz for the Bethe-Salpeter
kernel only enters via the Dirac traces K and K0 to which
we will turn now.
The 8� 8 matrices Kab and K0

ab defined in Eq. (B14)

depend on the momenta k̂, r, r0, s and d, and therefore only
on the Lorentz invariants

r � r0; k̂ � r; k̂ � r0; k̂ � s; k̂ � d: (B16)

Since the normalized gluon momentum enters through the

projector, k̂ can only appear quadratically. The explicit
calculation yields

Kab ¼

a1

a2 b1 b2

b01 a3 b3

b02 b3 a4

a5 b4 b2

b4 a6 �b1

b02 �b01 a7
a8

0BBBBBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCCCCA
;

(B17)

where an empty slot again means that the respective entry
is zero. Kab is characterized by 12 independent entries:

TABLE IV. Full kernel of the Bethe-Salpeter equation for the quark Compton vertex. The kernels K and K0 are given in Eqs. (B17)
and (B20), respectively.

Kij;ab ¼

0BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

K
ð2c2 � 1ÞK �2cK0
�2cK0 ð1� 2c2ÞK

�K
K

K
K

K
cK K0
K0 �cK

cK K0
K0 �cK

cK K0
K0 �cK

cK K0
K0 �cK

1CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

GERNOT EICHMANN AND CHRISTIAN S. FISCHER PHYSICAL REVIEW D 87, 036006 (2013)

036006-28



a1 ¼ 3; a2 ¼ �ðr � r0Þ � 2ðr � k̂Þðk̂ � r0Þ;
a3 ¼ �1� 2ðk̂ � sÞ2; a4 ¼ �1� 2ðk̂ � dÞ2;
a5 ¼ �a2 � ða1 þ a3Þðr � r0Þ;
a6 ¼ �a2 � ða1 þ a4Þðr � r0Þ;

(B18)

and

b1 ¼ �2ðs � k̂Þðk̂ � rÞ; b01 ¼ �2ðs � k̂Þðk̂ � r0Þ;
b2 ¼ �2ðd � k̂Þðk̂ � rÞ; b02 ¼ �2ðd � k̂Þðk̂ � r0Þ;
b3 ¼ �2ðd � k̂Þðk̂ � sÞ; b4 ¼ �b3ðr � r0Þ;

(B19)

with a7 ¼ �ða1 þ a3 þ a4Þ, a8 ¼ �ða2 þ a5 þ a6Þ. The
opposite-parity kernel K0

ab becomes

K0
ab ¼

�c00
�c01
�c02

c4 c3 c1

c03 �c4 c2

c01 c02
�c0 �c1 �c2

0BBBBBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCCCCA
;

(B20)

with

c0 ¼ 1þ a2r � r0 þ 2ðk̂ � r0Þ2;
c00 ¼ 1þ a2r � r0 þ 2ðk̂ � rÞ2; c1 ¼ b1r � r0 � b01;

c01 ¼ b01r � r0 � b1; c2 ¼ b2r � r0 � b02;

c02 ¼ b02r � r0 � b2;

c3 ¼ c0 � ða1 þ a4Þ � ða2 þ a6Þr � r0;
c03 ¼ c00 � ða1 þ a4Þ � ða2 þ a6Þr � r0;
c4 ¼ �ðb3 þ b4r � r0Þ:

(B21)

Since c3 � c03 ¼ c0 � c00, there are only eight independent

entries here, which yields 20 in total for Kab and K0
ab. In

combination with the five independent elements from
Eq. (B15), we arrive at 12� 3þ 8� 2 ¼ 52 entries for
the kernel Kij;ab and therefore have reduced memory

requirements by a factor �300.
The structure of Table IV owes its simplicity to our

chosen basis, in particular, to the definite properties with
respect to the columns S and T in Table I. Operations that
can be performed on the Lorentz indices alone do not affect
the inhomogeneous BSE (B1), so that each fS;Tg subspace
entails a decoupled equation. The same is true for opera-
tions that can be performed on the external momenta s and
d that enter the equation. (The remaining momenta v and r
can appear both outside and inside the loop integral, via v0
and r0, and therefore do not decouple.) This leads to 11

decoupled blocks in Table IVand 11 decoupled inhomoge-
neous BSEs which can be solved independently. Their only
difference is the projection of the driving term onto each
basis element, i.e., the f0i;a in Eq. (B9).

Analogous observations hold for simpler BSEs, for ex-
ample those for the vector and axial-vector vertices whose
12 basis elements decouple into transverse and longitudi-
nal BSEs with respect to the external total momentum
[30,31]. Another closely related example is the tensor
vertex where our analysis can be immediately applied
and yields six decoupled equations.
We can perform a similar dissection for the propagator

matrix Gij;ab in Eq. (B10). Evaluating Eq. (52), with p� ¼
p� �

2 , yields

Gij;ab ¼ �ij

1

4
Tr

8<: �	a
1

�5

" #
i

SðpþÞ
1

�5

" #
j

	bSðp�Þ
9=;

¼ �ij

1

4
Trf �	aSð�pþÞ	bSðp�Þg: (B22)

Since no integration is involved here, all basis elements
depend only on the external momenta r, s and d, and the
Lorentz trace is diagonal in i, j. This also means that only the
diagonal components1� 1 and�5 � �5 survive. The result-
ing two 8� 8 matrices in a, b are, however, more compli-
cated than their kernel counterparts because of themomentum
dependence of the quark propagators, and it is more conve-
nient to perform these traces numerically. Gij;ab carries an

explicit dependence on the external variable t, and a
Chebyshev expansion analogous to Eq. (B11) yields the form

Gij;abðp2; z; y; tÞ ! Gmm0;nn0
ij;ab ðp2; tÞ: (B23)

APPENDIX C: NUCLEON HANDBAG DIAGRAMS

In the following we detail the calculation of the handbag
contribution to the nucleon’s Compton scattering ampli-
tude, illustrated in Fig. 10. In rainbow-ladder truncation, it
is the sum of the impulse-approximation and spectator-
kernel diagrams. In principle one must add up all three
permutations a ¼ 1, 2, 3, where a is the label of the quark
that couples to the current. However, the symmetry prop-
erties of the nucleon amplitude relate the permuted dia-
grams among one another so that it is sufficient to consider
only one of the three permutations explicitly. In the follow-
ing we choose a ¼ 3, which corresponds to a coupling to
the upper quark line as shown in Fig. 10.

1. Nucleon bound-state amplitude

We first collect the properties of the nucleon’s covariant
bound-state amplitude that appears in the diagrams. The
nucleon amplitude including its full Dirac, flavor and color
dependence reads
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�ðp; q; PÞ ¼
�X2
n¼1

�nFn

�
"ABCffiffiffi

6
p ; (C1)

where ½�n�
���ðp; q; PÞ is the spin-momentum amplitude

and ½Fn�abcd are the two flavor tensors. They transform as
doublets under the permutation groupS3 so that the bracket in
Eq. (C1) is a permutation-group singlet. TheDirac amplitudes
�n carry three spinor indices 
, �, � for the quark legs and
one spinor index � for the nucleon, and they are mixed
antisymmetric (�1) or mixed symmetric (�2) under ex-
change of the indices 
, � and related quark momenta.
They can be decomposed in a basis of 64 orthonormal Dirac
structures Xi


��� which correspond to s-, p- and d-waves in

the nucleon’s rest frame (see Refs. [28,30,67] for details):

½�n�
���ðp; q; PÞ ¼
X64
i¼1

fni X
i

���ðp; q; PÞ: (C2)

The momentum-dependent dressing functions fni are the
Lorentz-invariant solutions of the covariant Faddeev equation.
They depend on the five Lorentz invariants that can be con-
structed from the momenta p, q and P (P2 ¼ �M2 is fixed).
The dressing functions for n ¼ 1, 2 are not independent but
related via permutation-group symmetry.

Similarly, the two isospin-1=2 flavor tensors Fn carry
three isospin indices a, b, c for the quarks and one for the
nucleon. They are mixed antisymmetric (F1) or mixed
symmetric (F2) with respect to a, b,

½F1�abcd ¼ 1ffiffiffi
2

p ½i�2�ab�cd;

½F2�abcd ¼ � 1ffiffiffi
6

p ½�i�2�ab�cd;

(C3)

where the �k are the Pauli matrices, and they are normal-

ized to unity: ½Fy
n0 �bad0c½Fn�abcd ¼ �n0n�d0d. To project onto

proton or neutron flavor states, the nucleon index dmust be
contracted with either of the two isospin vectors (1,0) or
(0,1), respectively. Finally, the antisymmetric tensor "ABC
in Eq. (C1) denotes the color part which is also normalized

to unity via the factor 1=
ffiffiffi
6

p
.

2. Flavor

We proceed by combining the ingredients to the Compton
scattering amplitude. Starting with the flavor traces, the
quark Compton vertex comes with a flavor factor

Q2 ¼ q2u 0

0 q2d

 !
¼ 5

9
�S þ 1

3
�V; (C4)

i.e., the squared quark charge matrix. We have also given the
isoscalar-isovector decomposition with isospin matrices
�s ¼ 1=2 and �v ¼ �3=2, where �3 ¼ diagð1;�1Þ is
the Pauli matrix. The rainbow-ladder kernel is flavor inde-
pendent; hence, the flavor trace in both a ¼ 3 diagrams is
given by

½Fð3Þ
n0n�d0d :¼ ½Fy

n0 �bad0c0Q2
c0c½Fn�abcd; (C5)

with d0 ¼ d ¼ 1 for the proton and d0 ¼ d ¼ 2 for the
neutron. We keep the doublet indices n0 and n for the out-
going and incoming nucleon amplitude general so we can
treat the Dirac and flavor parts in the scattering amplitude
separately. The above expression vanishes if n � n0, and for
n ¼ n0 it yields

Fð3Þ
11 ¼ q2u 0

0 q2d

 !
;

Fð3Þ
22 ¼ 1

3

q2u þ 2q2d 0

0 q2d þ 2q2u

 !
;

(C6)

where the matrices are again defined in isospin space. The
total scattering amplitude is then the sum over the three
permutations and the final and initial doublet configurations:

½~J��
�0�ðP;�;�Þ�d0d ¼ X3

a¼1

X
n0n

½JðaÞn0n���
�0�½FðaÞ

n0n�d0d; (C7)

where the first bracket includes the Dirac-Lorentz and color
parts to which we will return below. The permuted diagrams
for a ¼ 1, 2 can be inferred from the a ¼ 3 diagram by
applying the two-dimensional matrix representations M0,
M00 of the permutation group S3,

- 2
3

FIG. 10 (color online). Notation and kinematics for the handbag diagrams of Eq. (12) in the nucleon’s rainbow-ladder truncated
Compton scattering amplitude.
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M0 ¼ 1

2

�1 � ffiffiffi
3

pffiffiffi
3

p �1

 !
; M00 ¼ 1

2

�1
ffiffiffi
3

p

� ffiffiffi
3

p �1

 !
;

which act upon the doublet indices n0, n (here without
summation) via [30]

Jð1Þ
n0nF

ð1Þ
n0n ¼ ½M0Jð3ÞM0T�n0n½M0Fð3ÞM0T�n0n;

Jð2Þ
n0nF

ð2Þ
n0n ¼ ½M00Jð3ÞM00T�n0n½M00Fð3ÞM00T�n0n:

Inserting this together with (C6) into Eq. (C7) yields the
result for the total scattering amplitude:

½~J��
�0�ðP;�;�Þ�11 ¼

2

3
½2Jð3Þ11 þ Jð3Þ22 ���

�0�;

½~J��
�0�ðP;�;�Þ�22 ¼

1

3
½Jð3Þ11 þ 3Jð3Þ22 ���

�0�;

(C8)

where Jð3Þnn are the Dirac contributions to the a ¼ 3 dia-
grams. The first line in (C8) is the result for the proton
and the second corresponds to the neutron. Correspondingly,
the isoscalar-isovector decomposition reads

~J
��
�0�ðP;�;�Þ ¼

5

3
½Jð3Þ11 þ Jð3Þ22 ���

�0��s þ 1

3
½3Jð3Þ11 � Jð3Þ22 ���

�0��v;

(C9)

with the isospin matrices from Eq. (C4).

3. Dirac structure

The remaining task is to determine the Dirac-Lorentz and
color structure of the a ¼ 3 diagram. The color trace in the
impulse-approximation diagram equals 1 while the second
diagram involving the rainbow-ladder kernel picks up a color
factor �2=3. We can combine both diagrams and write

½Jð3Þ
n0n���

�0� ¼
Z
p

Z
q
½ ��n0 ��0
0�0�0 ðpf; qf; PfÞS
0
ðp1ÞS�0�ðp2Þ

� ½Sðpþ
3 Þ~���ðp3;�;�ÞSðp�

3 Þ��0�

�
�
�n � 2

3
�ð3Þ

n

�

���

ðpi; qi; PiÞ: (C10)

The momentum routing is illustrated in Fig. 10. P, � and �
are the external momenta according to their definition in
Sec. IIIA, with Pi and Pf the incoming and outgoing

nucleon momenta. pi, qi and pf, qf are the incoming and

outgoing relative momenta; p1, p2, p3 and p
�
3 ¼ p3 � �=2

are the quark momenta; and p and q are the (real)
loop momenta. For a symmetric momentum-partitioning
parameter 1=3 the relative momenta are explicitly given by

pf ¼ pþ�

3
; pi ¼ p��

3
; qf ¼ qi ¼ q (C11)

and the quark momenta by

p1 ¼ �q� p

2
þ P

3
; p2 ¼ q� p

2
þ P

3
(C12)

and p3 ¼ pþ P=3. ~��� is the quark Compton vertex and S
are the dressed quark propagators. Here we also see that it is

sufficient to know the nucleon bound-state amplitudes for
real values of p2

i and p
2
f as long as the four-vector � is real,

which is no longer the case for timelike values t < 0.
The second diagram with the kernel appears in

Eq. (C10) via

½�ð3Þ
n �
���ðpi; qi; PiÞ
¼
Z
k
K

0��0 ðkÞS
0
00 ðp1 � kÞS�0�00 ðp2 þ kÞ

� ½�n�
00�00��ðpi; qi þ k; PiÞ: (C13)

Since �ð3Þ
n is one of the three diagrams in the Faddeev

equation, it is not necessary to compute it anew in the form-
factor calculation. If we attach dressed quark propagators
to the third line of (C10) and denote the result by �n, we
can define a nucleon-quark four-point function

W n0n
�0���0 ðp; P;�Þ ¼

Z
q
½ ��n0 ��
�0�0 ðpf; qf; PfÞ

� ½�n�
���ðpi; qi; PiÞ (C14)

and write Eq. (C10) in a more compact form:

½Jð3Þ
n0n���

�0� ¼
Z
p
W n0n

�0���0 ½Sðpþ
3 Þ~���ðp3;�;�Þ��0�: (C15)

Note that we could have removed the appearance of Sðpþ
3 Þ as

well by absorbing the quark leg into the nucleon amplitude
��n0 . The quantityW is ‘‘universal’’ in the sense that it only
dependson thenucleon’s bound-state amplitude, and thequark
propagator and quark-gluon interaction that enter its calcula-
tion in the first place. If the quark Compton vertex is replaced
by a vector, pseudoscalar or axial-vector q �q vertex, Eq. (C15)
yields the nucleon’s electromagnetic, pseudoscalar or axial
current; cf. Appendix D in Ref. [30] and Appendix B in [31].
Nevertheless, we recall that Compton scattering requires fur-
ther diagrams beyond the handbag structure for a consistent
and electromagnetically gauge-invariant description.

4. Calculation of W

While a brute-force calculation of the integral in
Eq. (C14) is relatively straightforward, it represents also
the bottleneck in the numerical determination of the scat-
tering amplitude. We can break up the integral into smaller
pieces by choosing a suitable orthogonal basis decompo-
sition for the incoming and outgoing nucleon amplitudes.
Let us write Eq. (C2) in the form

½�n�
���ðp; q; PÞ ¼
X
kl!�

fnkl!�X
kl!�

���ðR; S; P̂Þ; (C16)

with vectors V, R and S defined similarly as in Eq. (42):

S� ¼ cpT
�; R� ¼ q̂�t ; V� ¼ "�
��R
S�P̂�:

(C17)

Orthogonal projection is here understood with respect to
the nucleon momentum P, so that in the nucleon’s rest
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frame the vectors V, R, S and P̂ would reduce to the
Euclidean unit vectors in analogy to Eq. (51). The
coefficients fnkl!r depend on the five Lorentz-invariant

momentum variables that can be formed from the three
momenta p, q and P, with P2 ¼ �M2 fixed.

The simplest 64-dimensional orthonormal basis for the
nucleon’s bound-state amplitude is defined by the elements

Xkl!�

���ðR; S; P̂Þ ¼ ½	��k�!�5C�
�½	��l�þ���;

k; l ¼ 1 . . . 4; � ¼ �; ! ¼ �:
(C18)

�! ¼ ð1þ! ^6PÞ=2 are the positive- and negative-energy
projectors that depend on the normalized total momentum;
	þ ¼ 1 and 	� ¼ �5; and the four Dirac structures are
given by

�0 ¼ 1; �1 ¼ �5 6V; �2 ¼ 6R; �3 ¼ S:

(C19)

The basis elements satisfy the orthonormality relation

1

4
�Xk0l0!0�0
�
�� Xkl!�


��� ¼ �kk0�ll0�!!0���0 ; (C20)

where the charge-conjugated elements are given by

�Xkl!�
�
�� ¼ ½CT�5�!

��k	���
½�þ ��l	����; (C21)

with ��1 ¼ ��1 and all other ��i ¼ �i. The charge-
conjugated nucleon amplitude is

½ ��n��
��ðp; q; PÞ ¼
X
kl!�

fnkl!�
�Xkl!�
�
��: (C22)

The decomposition for the amplitude �n in Eq. (C14) that
includes the spectator kernel is analogous.

When implemented in the form-factor diagrams, the
momentum dependence on fp; q; Pg becomes a depen-
dence on the incoming and outgoing momenta fpi; qi; Pig
or fpf; qf; Pfg. The orthogonal unit vectors must be

adapted accordingly so that one has fVi; Ri; Sig and
fVf; Rf; Sfg. Inserting (C16) and (C18) into (C14), the

function W becomes

W n0n
�0���0 ¼

Z
q

X
ll0��0

½�f
þ ��f

l0	�0 ��0�0 ½	��i
l�

iþ���

� X
kk0!!0

K��0kk0!!0fn
0

k0l0!0�0gnkl!�; (C23)

where the fn
0

k0l0!0�0 denote the dressing functions of ��n0 and

the gnkl!� those of �n, and the kernel is given by

K��0kk0!!0 ¼ Trf�f
!0 ��

f
k0	�0	��

i
k�

i
!g: (C24)

Since 	� ¼ 1 or �5, it will have the form

K��0kk0!!0 ¼ ���0KðþÞ
kk0!!0 þ ��;��0Kð�Þ

kk0!!0 ; (C25)

where the positive- and negative-parity contributions can
be calculated explicitly:

KðþÞ
kk0!!0 ¼

c0 0 c0R c0S
0 cVV ~cVR ~cVS

cR ~cRV cRR cRS

cS ~cSV cSR cSS

0BBBBB@
1CCCCCA; (C26)

Kð�Þ
kk0!!0 ¼

0 c0V 0 0

cV ~cVV cVR cVS

0 cRV ~cRR ~cRS

0 cSV ~cSR ~cSS

0BBBBB@
1CCCCCA; (C27)

with

c0 ¼ 2ðð1þ tÞ�!!0 � t�!;�!0 Þ;
ca ¼ !0ai � P̂f; c0b ¼ !bf � P̂i;

cab ¼ c0ðai � bfÞ �!!0ðai � P̂fÞðbf � P̂iÞ;
~cab ¼ �!!0"��
�a�i b

�
fP̂



i P̂

�
f ;

(C28)

and a, b 2 fV;R; Sg.
Going further and exploiting Eq. (C25), we write the

second line of Eq. (C23) as

F�
n0n;ll0;� ¼ X

kk0!!0
Kð�Þ

kk0!!0fn
0

k0l0!0;��g
n
kl!�: (C29)

The q dependence in the first line of Eq. (C23) appears only

in the Dirac structures �i
l and

��f
l0 . We can separate the Dirac

from the Lorentz parts by shuffling the momentum depen-
dencies from the first into the second line. If we perform the
sum over ll0 and the q integration, the resulting Lorentz
structures depend on the three momenta p, P and � and
have positive or negative parity. They carry zero, one or two
Lorentz indices, and as a consequence of Eq. (C17) they are
transverse to the incoming or outgoing nucleon momenta:

A�
Z
q
. . . ; A�

a �
Z
q
a�f . . . ; A��

ab �
Z
q
a�f b

�
i . . .

and so on, with a, b 2 fV; R; Sg. We can now apply our
findings from the Compton-vertex analysis in Sec. IVA to
construct orthonormal tensor bases for these quantities. In
the former case, we had to find transverse basis elements
with respect to the incoming and outgoing photon momenta;
here we consider transversality with respect to incoming and
outgoing nucleon momenta. Let us define another normal-
ized set of four-vectors, constructed from p, P and �:

d
�
f ¼ ffiffiffiffiffiffiffiffiffiffiffi

1þ t
p

�̂� þ i
ffiffi
t

p
P̂�;

d
�
i ¼ ffiffiffiffiffiffiffiffiffiffiffi

1þ t
p

�̂� � i
ffiffi
t

p
P̂�;

r� ¼ p̂�
t with p�

t ¼ T�

P T
�

� p�;

v� ¼ "�
��r
P̂��̂�:

(C30)

We will use the symbols v and r in this context only in the
remainder of this subsection; they should not be confused
with the quantities defined in Sec. IVA. The unit vectors
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fv; r; dig are by construction transverse to Pi ¼ P� �
2 , and

fv; r; dfg are transverse to Pf ¼ Pþ �
2 . (Since Pi and Pf

are linear combinations of P and�, v and r are transverse to
both.) Thus, one can immediately write down the complete
set of basis elements for these integrals:

A ! 1 A�
a ! r�; d�f A�

b ! r�; d�i

A
��
ab ! v�v�; r�r�; d

�
f r

�; r�d�i ; d
�
f d

�
i

(C31)

with coefficients that depend on the Lorentz invariants p2,
p � P, p �� and �2. Equation (C31) applies if the resulting
tensor has positive parity; for negative parity (induced by an
odd power of ai ¼ Vi or bf ¼ Vf) one has instead the

general form

A ! 0 A
�
a ! v�; A�

b ! v�;

A
��
ab ! v�r�; r�v�; d

�
f v

�; v�d�i :
(C32)

Since, with the exception of df � di � 0, the vectors in

Eq. (C30) are normalized and orthogonal, the coefficients
of these basis decompositions are obtained simply by
contracting A

�
a , A�

b and A
��
ab with each basis element.

If we work out these relations we arrive at the final result
for Eq. (C14):

W n0n
�0���0 ¼

X
kk0�

cn
0n

kk0�½�f
þ ��f

k0	���0�0 ½	��i
k�

iþ���; (C33)

where the new Dirac structures are given by

��f
0 ¼1; �i

0¼1; ��f
1 ¼ 6v�5; �i

1¼�5 6v;
��f
2 ¼ r; �i

2¼ r; ��f
3 ¼6df; �i

3¼6di:
(C34)

Note that one obtains 4� 4� 2 ¼ 32 independent basis
elements for the nucleon-quark four-point function

W n0n
�0���0 , as it should be for a spinor four-point function

with two on-shell legs. The coefficients are obtained from
the integral

cn
0n

kk0� ¼
Z
q

X
ll0
Ci
klC

f
k0l0F

P ðkÞP ðk0ÞP ðlÞP ðl0Þ
n0n;ll0;P ðkÞP ðlÞ� ; (C35)

where Ci
0l ¼ Cf

0l ¼ �0l, and for k, l ¼ 1, 2, 3 one has

Ci
kl ¼ ðukÞi � ðalÞi; Cf

kl ¼ ðukÞf � ðalÞf; (C36)

with ðukÞi2fv;r;dig, ðukÞf 2 fv; r; dfg and al 2 fV; R; Sg.
Positive parity for all coefficients leads to the signs P
which we define as

P ðkÞ ¼
�þ1 k ¼ 0; 2; 3;

�1 k ¼ 1:
(C37)

In precomputing the quantity W ðp; P;�Þ we have seen
that it does not depend on the average external momentum
� in the form-factor diagrams, so that its Lorentz-invariant

dressing functions cn
0n

kk0� are only functions of p2, p � P,
p �� and �2. This also means that the Lorentz frame

defined by Eqs. (26) and (27) is not the most economical
choice since the dependence on the external variable Y
becomes redundant. We compute these functions instead in
the following frame:

�

M
¼ 2

ffiffi
t

p
0

0

0

1

0BBBBB@
1CCCCCA; P

M
¼ i

ffiffiffiffiffiffiffiffiffiffiffi
1þ t

p
0

0

1

0

0BBBBB@
1CCCCCA; (C38)

p ¼
ffiffiffiffiffiffi
p2

q 0ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� y2

pffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

p
y

z

0BBBBB@
1CCCCCA; (C39)

with the integration momentum

q ¼
ffiffiffiffiffi
q2

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z02

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� y02

p
sin0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� z02
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� y02
p

cos0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z02

p
y0

z0

0BBBBBBB@

1CCCCCCCA: (C40)

The vectors v� and r� from Eq. (C30) are then the
Euclidean unit vectors in the 1 and 2 directions of R4

whereas Vi, Ri, Si and Vf, Rf, Sf are more complicated.

When reinserting the result (C33) for W ðp; P;�Þ into
the scattering amplitude (C15), we keep � and P from
above and introduce the average photon momentum � via

�

M
¼ ffiffiffiffi

�
p

0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Z2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Y2

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Z2

p
Y

Z

0BBBBB@
1CCCCCA: (C41)

The Lorentz-invariant definitions in Eqs. (22) and (23) remain
of course unaltered by this choice. In that way the scattering
amplitude depends on the external variables �, Y and Z only
through the quark Comptonvertex.p is now the loopmomen-
tum and we have an additional dependence on the angle :

p ¼
ffiffiffiffiffiffi
p2

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� y2

p
sinffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� z2
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� y2
p

cosffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

p
y

z

0BBBBBBB@

1CCCCCCCA: (C42)

Note that no interpolation for the coefficients ofW is required
when changing the frame from (C39) to (C42) since the
explicit form of all variables p2, p � P, p � � and�2 remains
the same. With the methods described in this appendix we
have reduced the original two- and three-loop integrals from
Fig. 10, which carry a dependence on four external variables,
to a successive calculation of intermediate one-loop diagrams
which depend only on a subset of these variables.
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5. Extraction of Compton dressing functions

In the final step we want to extract the Compton form
factors, i.e., the Lorentz-invariant dressing functions of the
nucleon Compton amplitude ~J��ðP;�;�Þ, from Eq. (C8).
For simplicity we use the basis decomposition of Eq. (67)
with the dressing functions Fi andGi; dressing functions in
other bases can be obtained by appropriate basis trans-
formations in the end. If we work in the frame defined by
Eqs. (C38) and (C41) instead of Eqs. (26) and (27), the
orthogonal unit vectors v, r, s and d for the external
momenta assume the form

v¼

�1

0

0

0

0BBBBB@
1CCCCCA; r¼

0

�Yffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Y2

p

0

0BBBBB@
1CCCCCA; s¼

0ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Y2

p

Y

0

0BBBBB@
1CCCCCA;

and d ¼ ð0; 0; 0; 1Þ as before. We exploit the orthonormal-
ity relations for the basis elements Y��

i to write

Ji :¼ Y��
i

~J�� ¼ �f
þ

1

�5

" #
i

ðFi þGisÞ�iþ; (C43)

where one has to pick �5 instead of 1 for the elements
i ¼ 4, 5, 8, 9. This yields

Fi ¼ 1

2tð1� Y2Þ Tr
��

t

1þ t
� Y2 þ Yffiffiffiffiffiffiffiffiffiffiffi

1þ t
p s

�
Ji

�
;

Gi ¼ 1

2tð1� Y2Þ Tr
��

Yffiffiffiffiffiffiffiffiffiffiffi
1þ t

p � s

�
Ji

�
(C44)

for the elements with i ¼ 1, 2, 3, 6, 7 and

Fi ¼ � 1

2t
Tr½�5Ji�;

Gi ¼ 1

2ð1þ tÞð1� Y2Þ Tr½s�5Ji�
(C45)

for the remaining ones. The functions Fi and Gi depend on
the four variables t, �, Y and Z.

To conclude, let us summarize the steps to arrive at the
Lorentz-invariant dressing functions that constitute the
handbag part of the nucleon’s Compton amplitude:

(i) Write the Faddeev-equation solution for the nucleon
bound-state amplitude �n, and for the combination
�n that absorbs the spectator kernel, in the basis
(C16) and extract their invariant dressing functions
fnkl!� and gnkl!�.

(ii) Combine them in the quantity F defined in
Eq. (C29), using the kernels (C26)–(C28).

(iii) Integrate over q to obtain the Lorentz-invariant
coefficients of the four-point function W in
Eq. (C35).

(iv) Contract W of Eq. (C33) with the Dirac structures
O��0 that are needed to extract the Compton form
factors. From Eqs. (C44) and (C45) we have O 2

f1; s; �5; s�5g. Contract the result with the precal-
culated quark Compton vertex according to (C15).

(v) Add up the permutation-group doublet contributions
according to Eq. (C8) and extract the Compton form
factors Fi and Gi for proton and neutron.

(vi) Apply appropriate transformation matrices to
obtain the dressing functions in other bases, for
example those defined in Eq. (153) or Table III.

APPENDIX D: BASIS DECOMPOSITION INTO
TRANSVERSE AND LONGITUDINAL PARTS

In Sec. V we have decomposed the fermion Compton
vertex into a part that satisfies its Ward-Takahashi identity
and a fully transverse part. Another possible decomposition
is the one into fully transverse, fully longitudinal and mixed
transverse-longitudinal parts. Both decompositions are not
congruent since the WTI-preserving contribution has com-
ponents in all three subspaces. The second decomposition is
useful for the numerical calculation of the quark Compton
vertex: when implemented in the nucleon Compton ampli-
tude, only its fully transverse part can contribute to physics
since the remainders must be canceled by analogous pieces
in the nonhandbag diagrams of the scattering amplitude.
We use the usual transverse projectors with respect to

the incoming and outgoing photon momentum:

T��
Q ¼ ��� �Q�Q�

Q2
; T��

Q0 ¼ ��� �Q0�Q0�

Q02 : (D1)

With their help, the three contributions to the Compton
vertex, which are independently Bose- and charge-
conjugation invariant, can be written as

��� ¼
�
T
�

Q0 þQ0�Q0


Q02

�
�
�

�
T��
Q þQ�Q�

Q2

�
¼ �

��
TT þQ0�Q�

Q02Q2
�LL þ

�
Q0�

Q02 �
�
LT þ �

�
TL

Q�

Q2

�
; (D2)

where �
��
TT , �

�
LT , �

�
TL and �LL have been defined in an

obvious way. Bose symmetry entails

��
LTð�Þ ¼ ���

TLð��Þ; �LLð�Þ ¼ �LLð��Þ: (D3)

We can now evaluate the WTI, either Eq. (97) for the 1PI
vertex or Eq. (101) for the full vertex, to obtain

Q0���� ¼ ��
LT þ

Q�

Q2
�LL ¼ W�

1 ;

���Q� ¼ ��
TL þ

Q0�

Q02 �LL ¼ W�
2 ;

(D4)

where W
�
1 and W

�
2 ¼ �W

�
1 ð��Þ generically denote the

right-hand side of the respective WTI. This yields

�LL ¼ W1 �Q ¼ W2 �Q0; ��
LT ¼ W�

1 T
��
Q ;

��
TL ¼ T��

Q0 W�
2 ;

(D5)
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and therefore all three parts are completely determined
from the fermion-photon vertices. Note that theW

�
i vanish

for the on-shell Compton amplitude [cf. Eq. (105)], so that
only the fully transverse piece survives there.

The basis elements in Table I can be rearranged to
correspond to either one of the three terms in Eq. (D2).
Since the basis factorizes the Dirac from the Lorentz
structure, it is sufficient to analyze the transversality rela-
tions at the level of the 16 Lorentz structures. To single out
the transverse part �

��
TT , we evaluate the condition

Q0���� ¼ 0 \Q���� ¼ 0: (D6)

With the auxiliary variables

a ¼ ffiffiffiffi
X

p
Z; b ¼ ffiffiffiffi

X
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� Z2
p

; (D7)

where X was defined in Eq. (23), and the orthonormal
momenta from Eq. (42) we can write

Q0�

Q�

)
¼ ffiffi

t
p ðbs� þ ða� 1Þd�Þ; (D8)

so that the transversality conditions become

ðbs� þ ða� 1Þd�Þ��� ¼ 0;

ðbs� þ ðaþ 1Þd�Þ��� ¼ 0:
(D9)

The resulting relations between the dressing functions
allow us to construct a fully transverse orthonormal
Lorentz basis which consists of nine elements and is given
in Eq. (60). We note that the 9� 2 ¼ 18 transverse
Lorentz-Dirac basis elements for the on-shell amplitude
(cf. Table II) are linear combinations of those in Eq. (153)
since both cover the same subspace.

The remaining longitudinal Lorentz structures are con-
structed analogously. One basis element corresponds to the
fully longitudinal part �LL and is obtained from

T
�

Q0 �
� ¼ 0 \ ��
T
�

Q ¼ 0; (D10)

namely,

Y10¼ð1�XÞðX5�X6Þ�2bðX8þaX7þbX6Þffiffiffiffiffiffiffiffiffiffiffiffiffi
2n1n2

p ; (D11)

where we used again

n1 ¼ 1þ X; n2 ¼ n1 � 4a2

n1
:

The remaining seven linear combinations satisfy

T�

Q0 �
�T
�

Q ¼ 0 \Q0
�
�Q� ¼ 0 (D12)

and are given by

Y11 ¼ ð1� XÞX7 þ 2bðbX7 � aX6Þffiffiffiffiffiffiffiffiffiffi
n1n2

p ;

Y12 ¼ ð1� XÞX8 þ 2bX5ffiffiffiffiffiffiffiffiffiffi
n1n2

p ;

Y13 ¼ 1ffiffiffiffiffi
n1

p ðX15 þ aX13 þ bX9Þ;

Y14 ¼ 1ffiffiffiffiffi
n2

p ðX13 þ aX15 þ bX11Þ � 2aY13ffiffiffiffiffiffiffiffiffiffi
n1n2

p ;

Y15 ¼ 1ffiffiffiffiffi
n1

p ðX16 þ aX14 þ bX10Þ;

Y16 ¼ 1ffiffiffiffiffi
n2

p ðX14 þ aX16 þ bX12Þ � 2aY15ffiffiffiffiffiffiffiffiffiffi
n1n2

p :

The complete 128-dimensional basis in Eq. (62), con-
structed from the 16 Yi and the 8 	a, is again orthonormal
in the sense of Eq. (59).
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