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We obtain the in-medium effective potential of the three-flavor Polyakov-quark-meson model as a real

function of real variables in the Polyakov loop variable, to allow for the study of all possible minima of the

model. At finite quark chemical potential, the real and imaginary parts of the effective potential, in terms

of the Polyakov loop variables, are made apparent, showing explicitly the fermion sign problem of the

theory. The phase diagram and other equilibrium observables, obtained from the real part of the effective

potential, are calculated in the mean-field approximation. The obtained results are compared to those

found with the so-called saddle point approach. Our procedure also allows the calculation of the surface

tension between the chirally broken and confined phase and the chirally restored and deconfined phase.

The values of surface tension we find for low temperatures are very close to the ones recently found for

two-flavor chiral models. Some consequences of our results for the early Universe, for heavy-ion

collisions, and for proto-neutron stars are discussed.
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I. INTRODUCTION

The determination of the properties of strongly interact-
ing matter at high temperatures and baryon densities is one
of the main goals of today’s high-energy physics. However,
not many tools are available for such a difficult task. Due to
the fermion sign problem of quantum chromodynamics
(QCD) at nonvanishing (real) quark chemical potential,
Monte Carlo calculations on the lattice are not feasible in
this regime due to the lack of an importance sampling
procedure that is free of ambiguities [1,2]. An alternative
approach is that of chiral effective models for QCD, which
have been successfully utilized for many decades [3,4]. In
this work, we shall adopt one such model, the three-flavor
Polyakov-quark-meson (PQM) model [5–8]. It has become
quite popular in the last years due to its close relationship
with the linear sigma model and its agreement with results
from lattice calculations of thermodynamical quantities at
zero baryon chemical potential.

As discussed for example in Refs. [9–11], not only
QCD, but also effective models that possess gauge degrees
of freedom, present the sign problem at finite chemical
potential �, even at the mean-field level. In such models,
this is manifest in the appearance of an imaginary part of
the in-medium effective potential in equilibrium at � � 0.
Since the resulting effective potential at finite chemical
potential is a complex function of complex variables,
special care must be taken with respect to the meaning

of a minimization procedure that leads to the state of
equilibrium of the system at any given nonzero tempera-
ture T and chemical potential �. Following an approach
similar to the one in Ref. [11] [in the context of the
Polyakov-loop extended Nambu-Jona Lasinio (PNJL)
model], we propose a change of variables, followed by a
simple approximation in the PQM model that renders the
in-medium effective potential a real function of real vari-
ables. As a consequence, the effective potential is, in this
approach, a real function that possesses minima, as
demanded by general field-theoretical arguments applied
to systems in equilibrium.
The implementation of such an approximation scheme

(that simply accounts for neglecting the imaginary part of
the effective potential) of course leads to differences in the
predictions made, for example, with the so-called saddle
point approach (see, e.g., Ref. [12]). In this approach, the
state of thermodynamical equilibrium is found by first
restricting the Polyakov loop variables to real variables.
Second, all the extrema of the effective potential (i.e.,
points in which the derivatives of the effective potential
with respect to all order parameters vanish) are determined.
At a third step, the state of equilibrium is chosen among the
extrema as the one with the lowest value of the effective
potential. It often happens that the chosen point is not a
minimum, but a saddle point of the effective potential.
In fact, in this approach, the effective potential often has
no minima, but only saddle points.
In this work, we show how the differences between the

two approaches are manifest in the T-� phase diagram
of the model. We also briefly discuss differences and
similarities between several parametrizations of the

*bruno.mintz.uerj@gmail.com
†r.stiele@thphys.uni-heidelberg.de
‡rudnei@uerj.br
§schaffner-bielich@uni-heidelberg.de

PHYSICAL REVIEW D 87, 036004 (2013)

1550-7998=2013=87(3)=036004(17) 036004-1 � 2013 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.87.036004


Polyakov loop potential found in the literature (see, e.g.,
Refs. [13–15]). The saddle point approach is particularly
troublesome for the computation of the surface tension in
the region of the phase diagram of the model where a first-
order phase transition exists. The computation of the sur-
face tension, and thus of nucleation rates, requires a precise
definition and location of the minima of the model. This
adds another important aspect to our suggested approach,
which is that it consistently allows the evaluation of the
surface tension between two phases of the model, which
are separated by a first-order phase transition. As discussed
for example in Refs. [16–25], the surface tension is a
crucial parameter for the dynamics of a first-order phase
transition in many scenarios of high-energy physics.
Roughly speaking, if the surface tension between the stable
and the metastable phases in a given phase transition is too
high, the phase conversion may be exceedingly slow. In
practical terms, a high surface tension can dynamically
suppress a first-order phase transition that would be other-
wise allowed if only the bulk equilibrium thermodynamics
were considered. For this reason, the evaluation of the
surface tension from effective models of QCD is a relevant
question about strongly interacting systems that can
undergo a first-order phase transition, such as the ones
produced in relativistic heavy-ion collisions at RHIC,
NICA and FAIR, and also in the interior of compact stars.
This evaluation, however, is not available from first-
principles QCD but can be performed in a relatively
straightforward manner using an effective model for
QCD (with or without Polyakov loop degrees of freedom),
such as the two-flavor quark-meson model [26], the
Nambu-Jona Lasinio (NJL) model [27], or the PQM
model, which we will be studying in this work. Another
goal in this work is to produce a result that at least over-
estimates the surface tension in the three-flavor PQM
model along the line of first-order phase transition in the
T-� plane. This is an interesting result by itself, but it is
also an interesting example of a calculation of the surface
tension in a theory with multiple order parameters. Notice
that the calculation of the surface tension explicitly
demands not only the localization of the minima of the
effective potential, but also the precise form of the poten-
tial between them. We argue that having a real effective
potential as a function of real order parameters is crucial
for the calculation of the surface tension, as well as for any
other quantity in full thermodynamical equilibrium.

The structure of the paper is as follows. After a brief
summary of the PQM model, in Sec. II, we will discuss
the necessary conditions on the effective potential for the
definiteness of thermodynamical equilibrium states and
how these apply to the model. We also show how the
sign problem explicitly appears in the PQM model at the
mean-field level and propose an approximation in order to
circumvent it. In Sec. III, for completeness, we start the
section by reviewing the general computation of surface

tensions in a first-order phase transition. After that, we
discuss how to obtain an overestimate of the surface ten-
sion of a phase interface in the PQM model. In Sec. IV we
show our results for the phase diagram for the PQM model
and the surface tension. The implications of these results
are also discussed. Finally, in Sec. V, we give our conclu-
sions and final discussions of the obtained results.

II. THE POLYAKOV-QUARK-MESON MODEL
AT FINITE T AND �

In order to incorporate aspects from the physics of chiral
symmetry breaking and restoration, as well as from the
confinement-deconfinement phase transitions, we adopt
an effective model that captures these main features of
quantum chromodynamics. In the last years, two such
models have gained much popularity, the PNJL model
[12,14,28,29] and the Polyakov-loop-extended quark-
meson (PQM) model [5–8]. These models may be consid-
ered as extensions of the well-known Nambu-Jona Lasinio
model [30–32] and the linear sigma model [19,33–37],
which provide an effective realization of the chiral sym-
metry breaking pattern. The physics of confinement is
expected to be taken into account by coupling the quark
and the meson degrees of freedom with the expectation
value of the Polyakov loop.
In this work, our choice will be a PQMmodel with 2þ 1

quark flavors, as in Refs. [6,8].

A. The Polyakov loop

Before discussing the model, we briefly introduce the
order parameter for (de)confinement with which the sign
problem enters in Polyakov-loop extended models.
The Polyakov loop operator is a Wilson loop in temporal

direction,

P ¼ P exp

�
i
Z �

0
dx0A0ðx0Þ

�
; (2.1)

where P denotes path ordering, � ¼ 1=T is the inverse of
the temperature and A0 is the temporal component of the
gauge field A� [38]. With a gauge that ensures the time

independence of A0, we can perform the integration trivi-
ally and the path ordering becomes irrelevant [39,40], so
that P ¼ expði�A0Þ. In this form, it is trivial to see that the
Polyakov loop variable,

� ¼ 1

Nc

trP ; (2.2)

is a complex scalar field � ¼ �þ i�. Furthermore,
we can rotate the gauge field in the cartan subalgebra

Ac
0 ¼ Að3Þ

0 �3 þ Að8Þ
0 �8 [41]. Within this diagonal represen-

tation, we see that the adjoint Polyakov loop variable

becomes simply �� ¼ �� i�.
Under gauge transformations concerning center

symmetry, the Polyakov loop operator and its variable
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are multiplied with a center element Z, � ! Z�. In pure
SUð3Þ gauge theory, that can be considered as QCD with
infinitely heavy quark masses, the confining phase is
center-symmetric and, therefore, h�i ¼ 0, while decon-
finement is characterized by a finite value of the
Polyakov loop expectation value, since center symmetry
gets broken spontaneously [38]. Real QCD with physical
quark masses adds an explicit symmetry breaking term.

B. Formulation of the model

Let us briefly recall a few aspects of the PQM model.
The interested reader may refer to e.g., Refs. [6,8,34,37]
for more details.

The starting point for our analysis of the equilibrium
states of the system is the in-medium effective potential of
the theory1 as a function of the relevant order parameters
and thermodynamical control parameters. This effective
potential is derived within a mean-field approximation to
a theory with constituent quarks minimally coupled to
gauge fields and coupled to mesons via a Yukawa-type
term. In the leading in-medium contribution from the
fermions, the coupling to the color fields effectively
becomes a coupling to the Polyakov loop field. The cou-
pling with the mesons is translated into the masses of the
quarks via spontaneous and explicit chiral symmetry
breaking terms in the self-interaction Lagrangian density
for the mesons. The self-interaction in the gauge sector is
modeled by a potential energy for the Polyakov loop
variable.

In the chiral sector of the theory, the natural choice of
order parameters for the Nf ¼ 2þ 1 pattern of chiral

symmetry breaking are the nonstrange (�x) and strange
(�y) chiral condensates [37]. In the Polyakov-loop sector,

the natural variables are the Polyakov loop itself,�, and its

conjugate, ��. With these choices, the effective potential is
given by the sum of three terms,

� ¼ Uð�x; �yÞ þUð�; ��Þ þ�q �qð�x; �y;�; ��Þ; (2.3)

where the dependence on the thermodynamical control
parameters (in this case the temperature T and the quark
chemical potential �) is implicit in the last two terms
of Eq. (2.3). Below, we describe in detail each of the
contributions appearing in the thermodynamical potential
Eq. (2.3).

The first term of the thermodynamical potential (2.3) is
the tree-level contribution from the mesonic degrees of
freedom and reads

Uð�x;�yÞ¼m2

2
ð�2

xþ�2
yÞþ�1

2
�2

x�
2
yþ1

8
ð2�1þ�2Þ�4

x

þ1

8
ð2�1þ2�2Þ�4

y� c

2
ffiffiffi
2

p �2
x�y�hx�x�hy�y:

(2.4)

Since we are studying isospin symmetric matter, we do
not distinguish the up and down quark sectors. The mes-
onic sector has six parameters, that are the mass and
couplingsm2, �1, �2 and c and the explicit chiral symmetry
breaking terms, hx and hy. They are adjusted to the pion

and kaon decay constants f� and fK and meson masses of
the scalar and pseudoscalar octet, m�, mK, m

2
� þm2

�0 and

m�. The mass of the sigma meson is still a poorly known
number, but the most recent compilation of the Particle
Data Group [42] considers that m� can vary between 400
and 550 MeV. Once given this set of masses and decay
constants, the model parameters are defined. For their
explicit expressions, please refer to Refs. [34,37]. The
values of the constants we use to calculate these parameters
are listed in Table I. We will be using frequently the value
m� ¼ 500 MeV for the sigma mass.
The second term in Eq. (2.3) is responsible for including

the physics of color confinement through the introduction
of a potential energy for the expectation value of the
Polyakov loop. The explicit functional form of the poten-
tial energy density for the Polyakov loop is still not known
directly from first-principle calculations. Instead, a com-
mon approach is to choose a functional form for the
potential that reproduces crucial features of pure gauge
theory and then adjust a set of free parameters to the results
for the Polyakov loop and the thermodynamical observ-
ables of Monte Carlo lattice calculations. A possible
parametrization of the Polyakov loop potential is the poly-
nomial parametrization [5,14],

Upolyð�; ��Þ
T4

¼ �b2ðTÞ
2

���� b3
6
ð�3 þ ��3Þ þ b4

4
ð ���Þ2;
(2.5)

with the temperature-dependent coefficient b2 defined as

b2ðTÞ ¼ a0 þ a1

�
T0

T

�
þ a2

�
T0

T

�
2 þ a3

�
T0

T

�
3
: (2.6)

TABLE I. Values of constants to which the parameters of the
mesonic potential are adjusted, according to Ref. [42] and value
of the constituent quark mass of the light (up and down) quarks
that we use to fix the quark meson Yukawa coupling in
Eq. (2.10).

Constant f� fK m� mK m� m�0 m� ml

Value [MeV] 92 110 138 495 548 958 400–550 300

1As long as we are interested in states of thermal equilibrium
of the system, which are described by homogeneous field con-
figurations, the in-medium effective action is reduced to an in-
medium effective potential. In the next section, where we study
nonhomogeneous states, we will have to consider the effective
action instead.
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An equivalent polynomial parametrization had been pre-
viously proposed in Ref. [13], with different definitions for
the coefficients in Eq. (2.5). A simple calculation allows
the translation from one set of coefficients to the other. As
far as the polynomial parametrization is concerned, we
shall stick to the form (2.5).

Another possible parametrization for the effective
potential of the Polyakov loop is provided by [15],

Ulogð�; ��Þ
T4

¼�1

2
AðTÞ ���þBðTÞ

� ln½1�6ð ���Þþ4ð�3þ ��3Þ�3ð ���Þ2�;
(2.7)

where both coefficients are temperature dependent,

AðTÞ ¼ A0 þ A1

�
T0

T

�
þ A2

�
T0

T

�
2
; (2.8a)

BðTÞ ¼ B3

�
T0

T

�
3
: (2.8b)

The form (2.7) of the Polyakov loop potential is called the
logarithmic parametrization. In Refs. [13–15] the parame-
ters of both the polynomial and of the logarithmic parame-
trizations (see next) were adjusted to the lattice simulation
of Ref. [43]. They are listed in Table II.

Originally, the parameterT0 was devised to correspond to
the transition temperature in pure Yang-Mills theory T0 ¼
270 MeV. However, in full dynamical QCD, fermionic
contributions and the matter backreaction modify the pure
gauge potential to an effective glue potential. Reference [5]
estimated this running coupling of QCD by consistency
with hard thermal loop perturbation theory calculations
[44,45]. They mapped this effect to anNf-dependent modi-

fication of the expansion coefficients of the Polyakov loop
potential that results in a Nf-dependence of T0. The actual

value of T0 for 2þ 1 quark flavors with a current strange
quark mass of 95 MeV [42] is T0 ¼ 182 MeV.

The authors in Ref. [5] also estimated the dependence of
the glue potential with the quark density and mapped it to a
quark chemical potential dependence of T0. Such a depen-
dence can be expected in view of a �-dependent color
screening effect due to quarks. The � dependence of T0

suggested in Ref. [5] is implemented as a small correction
to the running coupling. Here, we will simply take a more

simplistic approach, but without loss of generality, and
consider T0 as a constant parameter.
An improved mapping between the pure Yang-Mills

potential and the quark-improved glue effective potential
in full QCD is discussed and applied in Refs. [46,47] and
will be taken into account in a future work.
Finally, the last term of Eq. (2.3) represents the constitu-

ent quark sector coupled to the gauge field (represented by
the Polyakov loop variables) and to the mesons,

�q �qð�x;�y;�; ��Þ

¼�2T
X

f¼u;d;s

Z d3p

ð2�Þ3�fln½1þ3ð�þ ��e�ðEq;f��fÞ=TÞ

�e�ðEq;f��fÞ=Tþe�3ðEq;f��fÞ=T�
þ ln½1þ3ð ��þ�e�ðEq;fþ�fÞ=TÞ
�e�ðEq;fþ�fÞ=Tþe�3ðEq;fþ�fÞ=T�g; (2.9)

where �f is the quark chemical potential for each of the

quark flavors.
The constituent light and strange quark masses are,

respectively,

ml ¼ g

2
�x and ms ¼ gffiffiffi

2
p �y: (2.10)

To fix the Yukawa coupling, we choose the constituent
quark mass of the light (up and down) quarks to be
ml ¼ 300 MeV in the vacuum, where h�xi ¼ f�. This
results in ms ’ 417 MeV for the constituent strange
quarks.
Notice that the dependence of �q �q with the chiral

condensates �x and �y in Eq. (2.9) is implicit in the

quasiparticle dispersion relation for the constituent quarks,

Eq;f ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

f

q
: (2.11)

One last comment should be made about the vacuum
(or sea) terms of the in-medium effective potential. Many
comparative studies within the NJL and linear sigma mod-
els and comparisons with functional calculations [7,48,49]
have shown that vacuum terms can change qualitatively the
structure of the T-� phase diagram. In particular, if the
sigma meson mass is sufficiently large, the line of first-
order phase transition can eventually disappear due to the
effect of the fermionic vacuum contribution at one loop
[36,50,51]. In the present work, although we neglect the
vacuum terms from both fermionic and bosonic fields, we
adopt mainly a low value of the sigma mass, m� ¼
500 MeV. Such a low value has been shown to allow for
a first-order transition at low temperatures even with the
inclusion of fermionic vacuum contributions only (see for
instance Ref. [8] and references therein). Therefore, we
believe that the no-sea approximation does not spoil the
general conclusions of this work. Still, we agree with the
authors of Ref. [51] that all the contributions from all fields

TABLE II. Parameters of the gauge potential parametrizations
for fits to the lattice simulation [43].

Poly a0 a1 a2 a3 b3 b4

[13] 1.53 0.96 �2:3 �2:85 13.34 14.88

[14] 6.75 �1:95 2.625 �7:44 0.75 7.5

log A0 A1 A2 B3

[15] 3.51 �2:47 15.2 �1:75
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of a model should be consistently taken into account, that is
the case in functional calculations [48,49]. In this direction,
a full study of the renormalized one-loop contributions
from quarks and mesons in the PQM model will be taken
into account in a future work [52].

C. Thermodynamical equilibrium

Given the temperature T and the quark chemical poten-
tial �, the effective potential (2.3) is then given as a
function of the four order parameters of the model, �x,

�y, � and ��. In thermal equilibrium, the field configura-

tions that contribute the most to the partition function are
those that minimize the in-medium effective potential
(or the in-medium effective action, for nonhomogeneous
systems). All other extrema of the effective action are
exponentially suppressed and give negligible contributions
to the equilibrium thermodynamics of the system.

Even though this issue has already been addressed
before in the literature (e.g., in Refs. [9,11]), we believe
that it should be discussed more thoroughly, especially in
the context of the PQM model. Our main motivations for
pressing on this point are (1) theoretical consistency,
(2) the fact that the results from the two approaches (the
saddle point approach and the present one) are different,
and (3) that only with equilibrium states described by
minima of the effective potential can one calculate quasie-
quilibrium properties of the system, such as the surface
tension in a first-order phase transition, as we already
commented above in Sec. I.

The one-loop effective potential of the PQM model at
finite temperature and quark chemical potential, as defined
in Eq. (2.3), is a complex function of complex variables.
Therefore, it can have no minima and, as it stands, it cannot
provide a standard description for a thermodynamical sys-
tem in equilibrium. Finally, it makes sense to identify the
extrema of a function with maxima, minima and saddle
points only if it is a real function of real variables.

In order to make this statement clearer, let us explicitly
identify the real and imaginary parts of the effective
potential at finite T and �.2 Thus, we must write down
the effective potential in terms of these real variables only.

Let us start by making a change of variables in the
potential by introducing the real and imaginary parts of
the Polyakov loop variables as

� � �þ ��

2
and � � �� ��

2i
: (2.12)

The polynomial potential (2.5) and the logarithmic poten-
tial (2.7), respectively, can be both rewritten as functions of
the real variables � and � as

Upolyð�;�Þ
T4

¼ �b2
2
ð�2 þ �2Þ � b3

3
ð�3 � 3��2Þ

þ b4
4
ð�2 þ �2Þ2 (2.13)

and

Ulogð�;�Þ
T4

¼�AðTÞ
2

ð�2þ�2ÞþBðTÞlog½1�6ð�2þ�2Þ
þ8ð�3�3��2Þ�3ð�2þ�2Þ2�: (2.14)

We now turn to the contribution from the quarks at finite

temperature and chemical potential. Once � and �� are
complex-valued variables, the potential (2.9) can take
complex values. Let us rewrite it as a function of real
variables to make this statement explicit.
Dropping the flavor indexes to keep the notation simpler,

we define

zþ � 1þ 3ð�þ ��e�ðE��Þ=TÞe�ðE��Þ=T þ e�3ðE��Þ=T

(2.15)

and

z� � 1þ 3ð ��þ�e�ðEþ�Þ=TÞe�ðEþ�Þ=T þ e�3ðEþ�Þ=T;
(2.16)

such that (2.9) can now be written as

�q �q ¼ �2T
X
f

Z d3p

ð2�Þ3 log½zþz��: (2.17)

After using (2.12) and performing some straightforward
manipulations, one can see that the argument of the loga-
rithm in (2.17) is complex, that is,

zþz� ¼ Rþ iI; (2.18)

where

R � 1þ e�3ðE��Þ=T þ e�3ðEþ�Þ=T þ e�6E=T

þ 6�e�E=T

�
cosh

�
�

T

�
þ e�E=T cosh

�
2�

T

��

þ 6�e�4E=T

�
cosh

�
2�

T

�
þ e�E=T cosh

�
�

T

��

þ 9ð�2 þ �2Þð1þ e�2E=TÞe�2E=T

þ 18ð�2 � �2Þe�3E=T cosh

�
�

T

�
(2.19)

and

I � 6�e�E=T

�
sinh

�
�

T

�
� e�E=T sinh

�
2�

T

��

þ 6�e�4E=T

�
e�E=T sinh

�
�

T

�
� sinh

�
2�

T

��

� 36�� sinh

�
�

T

�
e�3E=T: (2.20)

2The following discussion will make it clear that at � ¼ 0, �
and �� are identical and real, so that there is no sign problem in
that case.
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The complex argument of the logarithm can be written
in polar form, Rþ iI ¼ �ei	, with

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ I2

p
and 	 � arctan

�
I

R

�
; (2.21)

so that the potential can be cast in a manifestly complex
form,

�q �q ¼ �R
q �q þ i�I

q �q; (2.22)

where

�R
q �q � �2T

X
f

Z d3p

ð2�Þ3 log½�� (2.23)

and

�I
q �q � �2T

X
f

Z d3p

ð2�Þ3 	: (2.24)

The imaginary part (2.24) is the manifestation of the
fermion sign problem in the context of the PQM model
already at the one-loop level. Note that it is very closely
related to the sign problem in the PNJL model as well
[2,9,10]. An important aspect of Eq. (2.24) is that it van-
ishes for � ¼ 0, so that the effective potential becomes
real and free of the sign problem. Furthermore, (2.24) is
odd in�, while the real part (2.23) is even in�. This means

that we must have h�i ¼ 0, i.e., h�i ¼ h ��i for � ¼ 0,
which is a well-known result.

D. A comment about the sign problem

In order to make the sign problem explicit in the PQM
model, let us write the grand partition function for the
model in the mean-field approximation,

Z ¼
Z
½D ~�� exp

�
�V

T
�ð ~�Þ

�
; (2.25)

where V is the volume of the space and ~� ¼
ð�x; �y; �; �Þ formally represents the (real) order

parameters.
Notice from Eqs. (2.20) and (2.24) that the imaginary

part of the quark contribution is odd in � and all the other
contributions are even in �. Let us then split the effective
potential in a �-odd part (that coincides with �I

q �q) and a

�-even part. The functional integral is to be performed for
every possible (real) value that � can assume. We can
organize the sum such that the contributions for a given
�0 and its negative��0 are assembled. After a few simple
manipulations, one finds

Z¼
Z
�2IR

½D ~��exp
�
�V

T
ð��-evenþ i�I

q �qÞ
�

¼
Z
½D ~��exp

�
�V

T
��-even

�
cos

�
�V

T
�I

q �q

�
: (2.26)

The integrand in the expression (2.26) for the partition
function is not positive defined, as a sound Boltzmann
factor should be. Recall that the integrand of the partition
function (the density matrix elements) corresponds to a sort
of probability density, which must be non-negative. This is
not true for the grand-partition function (2.26), and we
conclude that the PQM model has the sign problem at
the mean-field level for a finite chemical potential.
If we insist on writing the partition function (2.26) in the

same form as (2.25), we end up with

�̂ ¼ ��-even � T

V
log

�
cos

�
V
T

�I
q �q

��
; (2.27)

where V is the volume of space. This function is not
physically acceptable as an effective potential. First, it is
a volume-dependent effective potential (therefore, it is not
intensive), and second, it is not defined in the thermo-
dynamical limit V ! 1.
One possibility to circumvent the sign problem, as indi-

cated in Ref. [11], is to treat the imaginary part of the
effective potential perturbatively in an expansion in powers
of T=V . In the first order of the approximation (which the
authors of Ref. [11] identify with the mean-field approxi-
mation), one simply ignores the imaginary part (2.24) of
the effective potential at finite chemical potential.3

However, if one neglects �I
q �q, the expectation value of �

is zero due to the even parity of�R
q �q with respect to�. As a

consequence, the difference h ����i ¼ 0, which is in
disagreement with complex Langevin [53] and
Monte Carlo simulations [1,2]. In spite of this setback,
we understand that our approach is simply an approxima-
tion scheme that has the strong theoretical advantage of
dealing with the well-established minimization procedure
for finding the state of equilibrium.

E. Finding the minima of the effective potential

From now on, we shall neglect the imaginary part of the
effective potential, as explained before, i.e., consider

�� ¼ Uð�x;�yÞ þ �Uð�;�Þ þ�R
q �qð�x; �y; �; �Þ: (2.28)

Given the temperature T and the quark chemical poten-
tial �, the effective potential (2.28) is then given as a
function of the four order parameters of the model, �x,
�y, � and �. In equilibrium, the expected values for the

order parameters are given by minimizing the effective
potential (2.28) with respect to each of them. Therefore,
the first necessary condition is to find a point in the order
parameter space such that

3In this model, ignoring �I
q �q is equivalent to taking the

modulus of the Dirac determinant that is tacitly present in
(2.26).
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@ ��

@�x

¼ @ ��

@�y

¼ @ ��

@�
¼ @ ��

@�
¼ 0; (2.29)

when the derivatives are evaluated at the extrema.
The second condition is the positivity of all the eigen-

values of the 4� 4 Hessian matrix

H ij ¼ @2 ��

@Xi@Xj

; (2.30)

with (Xi ¼ �x, �y, �, �) evaluated at the points where

(2.29) is satisfied.
Hence, we must calculate the first and second derivatives

of the effective potential �� with respect to the order
parameters in order to find its minima.

Moreover, once we are interested in phase transitions,
our algorithm to find the minima considers the possibility
of multiple minima. It performs the following basic steps.
With a given starting position in the four-dimensional
space of order parameters, the algorithm looks for a point
with vanishing gradient (2.29). As a second step, the
eigenvalues of the Hessian matrix (2.30) are evaluated at
this point and their signs are checked: if they are all
positive, this point is a minimum and it is saved as such;
otherwise, it is either a saddle point or a maximum and,
therefore, it is discarded. Next, another starting position in
the order parameter space is tried, and the procedure is
repeated. If the point found is a minimum, it is compared to
the previous points: if all its four coordinates are suffi-
ciently close to any of the other points (within 1%), it is
discarded; otherwise, it is saved as a new minimum. By
sweeping a sufficiently wide window in the parameter
space, this is a simple algorithm able to find all the minima
of the effective potential.

The thermodynamical state of equilibrium for each
given T and � is given by the values of the order parame-
ters at the global minimum of the effective potential, found
after the prescription described above. This allows us to
describe any thermodynamical quantity of equilibrium.
Particularly, we can study the behavior of the order
parameters as functions of the temperature and chemical
potential, as well as the phase diagram of the model.
Moreover, finding the minima of the effective potential at
the vicinity of a first-order phase transition allows the
description of the dynamics of the transition. More specifi-
cally, one can calculate the surface tension between the two
phases, as we discuss in the next section. Our results will be
discussed in Sec. IV.

F. The saddle point approach

In the literature dedicated to the thermodynamics of
strongly interacting systems described by chiral models
coupled to the Polyakov loop, such as the PNJL and
PQM models, the most common method to determine the
state of thermodynamical equilibrium is sometimes called

the saddle point approach. It consists of finding the points
in which the in-medium effective potential of the theory
has vanishing derivatives with respect to the order parame-
ters, as in Eq. (2.29). These extrema, however, are not
usually required to be minima of the effective potential.
Actually, the effective potential often has no minimum
whatsoever as a consequence of one of the two following
reasons. Either the effective potential is considered in full,
so that it is a complex function of complex variables (as we
have discussed previously), or the Polyakov loop variables
are restricted to being real (instead of complex) numbers
(even before their expectation values are evaluated). In the
first case, no minimum can be defined because the effective
potential is complex valued. In the second case, it can be
easily seen that the effective potential is unbounded from
below [5].4

The approach we propose in this section leads to pre-
dictions that differ from those made by the saddle point
approach at � � 0. Some of these differences will be
briefly discussed later on in Sec. IV.

III. NUCLEATION IN THE PQM MODEL

A. Homogeneous thermal nucleation

The dynamics of a first-order phase transition at small
metastability can be described by phenomenological drop-
let nucleation models [16,54–57]. In such a family of
models, the transition between a metastable and a stable
phase takes place by the appearance and growth of
domains (droplets or bubbles) of the stable phase inside
the metastable phase. The phase conversion is finished
when these domains grow and coalesce completely. In
any case, a minimum-sized bubble is needed for the begin-
ning of the phase transition, as can be inferred from the
following heuristic argument. The bulk free energy density
of the metastable phase (often called ‘‘false vacuum’’) is,
by definition, higher than that of the stable phase (the ‘‘true
vacuum’’). Therefore, the conversion of a given fraction of
the system into the stable phase makes the bulk free energy
of the whole system lower. However, given that such a
conversion takes place within a connected domain of the
system (most likely in a spherical bubble [58]), an interface
is needed in order to separate the (stable) interior from the
(metastable) exterior of this domain. Once the creation of
an interface represents an energy cost, the mechanism of
phase conversion through bubble nucleation settles a com-
petition between the free energy gain from the phase
conversion of the bulk and the energy cost from the crea-
tion of an interface. Roughly, one can say that the free
energy shift due to the appearance of a spherical bubble of
the stable phase of radius R inside a metastable system is

4Just consider � ¼ 0 in Eq. (2.5) or in Eq. (2.7), and we can
realize that the Polyakov loop potential is unbounded from
below for �� ! 1.
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�Fb ¼
�
4�

3
R3fstable þ 4�R2fwall

�
�

�
4�

3
R3fmetastable

�

¼ 4�

3
R3�fþ 4�R2fwall; (3.1)

where fstable and fmetastable are, respectively, the bulk free
energy densities of the stable and metastable phases, and
fwall is the surface energy density of the bubble wall, that
is, the surface tension of the interface between the two
phases. This formula clearly shows the competition
between bulk (negative) and surface (positive) contribu-
tions. Notice that the shift in the bulk free energy
(�f � fstable � fmetastable < 0) is proportional to the vol-
ume of the bubble, while the surface free energy cost is
proportional to its area. For the nucleation of small bub-
bles, the energy cost is higher than the energy gain.
Therefore, small bubbles shrink. On the other hand, a
very large bubble represents a large bulk energy gain,
which is higher than the surface energy cost in creating
the bubble. As a consequence, large bubbles tend to grow
even more and to occupy the whole system, completing the
phase transition. Consequently, this energy competition
implies the existence of a so-called critical bubble: any
bubble smaller than the critical bubble will shrink and any
larger bubble will grow and drive the phase conversion. For
this reason, the critical bubble is the crucial object in the
theory of dynamical first-order phase transitions of slightly
metastable systems.

The appearance of a bubble (critical or not) of the stable
phase inside a metastable system is a natural consequence
of the never-ending thermal and quantum fluctuations of
any thermodynamical system sufficiently close to a first-
order phase transition. As we just discussed, each bubble
created by these fluctuations may grow or shrink, depend-
ing on its energy budget with regard to a homogeneous
metastable phase. One should also have in mind that larger
fluctuations (like a critical bubble) should be less common
than smaller ones. Although small bubbles are frequently
created, they rapidly disappear and do not contribute to the
process of phase conversion (with the exception in a weak
first-order phase transition, when coalescing subcritical
fluctuations [59,60] can complete the phase transition
without the nucleation of critical bubbles). Only those
that have a size equal to or larger than the critical bubble
have a decisive role. The smallest (and therefore the most
probable) among them is the critical bubble. This means
that the mean time that it takes for random fluctuations to
create a critical bubble is the shortest time scale for the
creation of a lasting domain of the stable phase, which is
the dynamical seed of the phase conversion.

Let us assume that the system is in a metastable state in
quasiequilibrium with a reservoir with intensive coordi-
nates generically represented by R (e.g., temperature,
chemical potential, etc). Being metastable, bubbles of
the stable phase with different sizes randomly appear and
subsequently disappear. This process keeps happening

until a critical bubble is nucleated and the phase conversion
effectively starts. It can be shown by different approaches
that the rate at which critical bubbles are nucleated per unit
time, per unit volume can be expressed in the form
[16,17,54,61–63]

�ðRÞ ¼ P ðRÞ exp
�
��FbðRÞ

T

�
; (3.2)

where T is the temperature of the system in equilibrium
with the reservoir. The pre-exponential factor (or
‘‘prefactor’’) P ðRÞ corresponds to the probability for a
critical bubblelike field fluctuation 
b to be generated and
grow [16–18]. The last factor in (3.2) is a Boltzmann factor
in which �FbðRÞ is the shift of free energy (as compared
to the homogeneous metastable phase) due to the forma-
tion of a critical bubble. It can be easily shown that
�FbðRÞ can be cast as in (3.1) for a small degree of
metastability, where the thin-wall approximation is valid
[64] and where it is proportional to f3wall=ð�fÞ2. In spite of
the general importance of the prefactor in (3.2), its specific
form is not crucial for the nucleation rate at a small degree
of metastability. Close to the coexistence of both phases, it

shows a proportionality to f7=2wall=�f, so that the nucleation

rate is strongly dominated by the exponential factor [17].
For this reason, it will be enough to focus on the free
energy shift in this work.
The process of bubble nucleation in an impurity-free

environment is called homogeneous nucleation. In this
work we shall only consider the process of homogeneous
nucleation, which is not the most common in natural
environments, such as in a boiling liquid. In such cases,
the presence of impurities can drastically accelerate the
nucleation of bubbles, and the process is called inhomoge-
neous nucleation (which is also the case when subcritical
thermal fluctuations can dominate [59,60]). The process of
inhomogeneous nucleation can be orders of magnitude
faster than homogeneous nucleation because impurities
(like dust) often reduce the free energy cost for the for-
mation of a critical bubble, raising the probability for its
formation [65,66]. We do not consider it in this work for
two reasons. First, we wish to underestimate the nucleation
rate and inhomogeneities could only increase this rate,
and second, we wish to keep the approach as simple as
possible.

B. The coarse-grained free energy
for a single scalar order parameter

As discussed in Refs. [18,64,67,68], the nucleation rate
of critical bubbles can be calculated from the microphysics
using semiclassical methods in Euclidean thermal field
theory. We stress the importance of considering the effec-
tive action in the problem of bubble nucleation, and not
simply the effective potential, once a critical bubble is
clearly a nonhomogeneous field configuration. For sim-
plicity, let us start with the Euclidean Lagrangian density
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for a single scalar order parameter field (which we generi-
cally call 
) of the form,

LE ¼ 1

2
ð@�
Þ2 þ Vð
Þ: (3.3)

In this simple model, one assumes that the order parameter
for a system in thermodynamical equilibrium is given by
the expectation value of 
. In general, it depends on the
properties of the reservoir, such as its temperature or
chemical potential, which we generally denote by R.
The (Euclidean) action is

SE½
;R� ¼
Z �

0
d�

Z
d3xLE½
ðx; �Þ�: (3.4)

In the high-temperature limit, � � 1=T ! 0, the imagi-
nary time dependence of the order parameter can be
neglected [67] and, therefore, we make the approximation

SE½
;R� � F½
;R�
T

; (3.5)

where one identifies

F½
;R� ¼
Z

d3x

�
1

2
ðr
Þ2 þ Veffð
;RÞ

�
; (3.6)

with the coarse-grained free energy of the system. Notice
that the coarse-grained free energy is a sort of dimension-
ally reduced effective action, so that the tree-level potential
Vð
Þmust be replaced by the medium-dependent effective
potential Veffð
;RÞ. In full thermodynamical equilibrium,
the minimization of the coarse-grained free energy (which
is equivalent to the minimization of the Euclidean action)
is achieved by a constant field configuration
ðxÞ ¼ 
0 so
that the gradient term vanishes, and Veffð
0;RÞ must be a
global minimum of Veff .

The possibility of a metastable state arises when Veff

develops some local minimum other than the global mini-
mum at 
 ¼ 
0. In this framework, a metastable state is
described by a constant field configuration 
f that is a

local minimum of Veff . For this reason, this second mini-
mum is often called a false vacuum of the potential, while
the global minimum is called the true vacuum of the theory,

t � 
0. A bubble is then represented as a nonhomoge-
neous, spherically symmetric field configuration 
ðrÞ,
such that [19,20,64]

lim
r!1
ðrÞ ¼ 
f and

d


dr
ð0Þ ¼ 0; (3.7)

where 
f is the value of the order parameter field at the

false vacuum. That is, away from the center of the bubble,
the system is in the metastable phase. But, in the vicinity of
its center, the field configuration should be close to the
stable minimum (but not necessarily exactly on it).

The critical bubble is a saddle point field configuration

b that extremizes the functional F, i.e., it solves the
Euler-Lagrange equation,

�F½
;T�
�
ðxÞ ¼ 0 ) r2
ðxÞ � @Veff

@

½
ðxÞ� ¼ 0: (3.8)

It can be shown [58] for a wide class of Lagrangians,
including (3.3), that the smallest value of F indeed corre-
sponds to a spherically symmetric solution of (3.8), 
ðrÞ,
so that the equation to be solved is now the nonlinear
ordinary differential equation,

d2
ðrÞ
dr2

þ 2

r

d
ðrÞ
dr

¼ @Veff

@

½
ðrÞ�; (3.9)

with the boundary conditions (3.7).
The coarse-grained free energy associated with a spheri-

cal bubble 
b is then

Fb ¼ 4�
Z 1

0
drr2

�
1

2

�
d
bðrÞ
dr

�
2 þ Veff½
bðrÞ�

�
; (3.10)

which directly follows from (3.6).
Once the solution for (3.9) and (3.7) is found, that is, the

critical bubble profile 
critðrÞ, the shift in the coarse-
grained free energy due to the appearance of a critical
bubble,

�FbðRÞ ¼ F½
crit;R� � F½
f;R�; (3.11)

needed in the nucleation rate (3.2), can be readily
calculated.
For a generic effective potential Veff , the solution of (3.9)

with boundary conditions (3.7) cannot be obtained analyti-
cally. However, an approximate solution can be found
when the system is very close to the coexistence line, so
that it is slightly metastable and the thin-wall approxima-
tion [61,64,67] is applicable. Within these limits, the
coarse-grained free energy shift (3.11) can be well approxi-
mated by the expression

�FbðRÞ ¼ 16�

3

�3

ð�VeffÞ2
; (3.12)

where

�ðTÞ �
Z 1

0
dr

�
d
critðrÞ

dr

�
2

(3.13)

is the surface tension of the critical bubble interface
between the phases. Notice that the surface tension is
calculated directly from the critical bubble solution 
crit.
It must be so because the surface tension must contain
information about how the system reacts to inhomogene-
ities (e.g., a wall). That is, any description of a critical
bubble has to take into account more than just the bulk
thermodynamics. This is the reason why the coarse-grained
free energy (3.6) is needed in the formalism for bubble
nucleation.
The quantity �Veff ¼ Veffð
tÞ � Veffð
fÞ is the differ-

ence between the bulk free energy in the two homogeneous
vacua. In the grand canonical potential, it can be identified
as �VeffðT;�Þ � ��pðT;�Þ, i.e., minus the difference of
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pressures between the two phases. Using the thin-wall
approximation, the surface tension integral (3.13) can be
calculated without solving for the profile. After changing
variables from r to 
, one finds

�ðRÞ ¼
Z 
f


t

d

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Veff½
;R�

q
; (3.14)

so that only the effective potential Veff½
;R� is needed to
calculate�ðRÞ in the thin-wall approximation. Notice that
Veff is normalized so that its global minimum is located at

 ¼ 
t ¼ 0. Exactly at the coexistence points, where the
thin-wall approximation is exact, the minima are degener-
ate with Veff ¼ 0.

As a last remark, let us notice that the surface tension
cannot be correctly defined unless 
t and 
f are actual

minima of the effective potential. This a further motivation
for the careful approach discussed in the previous Sec. II.

C. The coarse-grained free energy
for the Polyakov-quark-meson model

In order to calculate the free energy shift�FbðRÞ due to
the nucleation of a critical bubble within the PQM model,
we first need to define the coarse-grained free energy
functional and then identify an order parameter.

Just as in the case of a single order parameter, the coarse-
grained free energy of the PQM model has its origin in the
in-medium effective action of the theory. In the PQM
model, the Lagrangian density of the chiral fields �x and
�y directly leads to a kinetic term of the form jr
j2. The
kinetic term for the Polyakov loop variable, however, is not
determined a priori. For simplicity, once we consider the
Polyakov loop order parameters � and � as independent,
real variables at finite �, we assume the kinetic term

L kin½�;�� ¼ 2

2
ð@��Þ2 þ 2

2
ð@��Þ2; (3.15)

which is motivated by the Zð3Þ-line model of Ref. [69].
Effective models cannot do much more than estimate the

value of the kinetic parameter . From dimensional
arguments, it is estimated to be 2 ¼ NcT

2
0=g

2
s [13,69].

Assuming Nc ¼ 3 and �s ¼ g2s=4� ’ 0:3, we find
 ’ 0:9T0, which is of the order of magnitude of the only
scale in the pure glue model, the transition temperature T0.
Another consistent approach is to consider as an input the
surface tension of the pure gauge SUð3Þ theory calculated
through lattice Monte Carlo simulations [70,71]and in an
effective matrix model [72], �SUð3Þ ’ 0:016T3

0 . With a

given parametrization of the Polyakov loop potential, the
parameter  can be fitted from the value of the surface
tension at T ¼ T0, using Eq. (3.14). We adopt this second
approach here in order to fix the parameter  with the
implications discussed in Sec. IV.

The coarse-grained free energy for the PQM model can
be written as

F ½�x; �y; �; ��

¼
Z

d3x

�
1

2
ðr�xÞ2 þ 1

2
ðr�yÞ2 þ 2

2
ðr�Þ2

þ 2

2
ðr�Þ2 þ ��ð�x; �y; �; �Þ

�
; (3.16)

where ��ð�x;�y; �; �Þ is the effective potential defined in

Eq. (2.28).
As discussed previously, the critical bubble is a solution

of the four coupled Euler-Lagrange equations that arise
from the functional (3.16). There is no general procedure to
solve this set of coupled equations, even though some
ansatz solutions can be eventually tried for very simple
effective potentials [73].
There are two possible ways in which we can tackle the

problem. The first is, of course, to numerically solve the
four equations that follow from the extremization of F
simultaneously. The exact solution will define a path in the
four-dimensional space of order parameters. Notice, how-
ever, that this path is in general not in the ‘‘valley’’ that
connects the two minima, as can be intuitively seen from
the inverted potential mechanical analog.
Let us now argue that our approach will lead us to an

overestimate of the surface tension or, equivalently, to
an underestimate of the nucleation rate. According to
Eq. (3.2), the higher the free energy shift of the critical
bubble, the lower is the nucleation rate (at least as long as
the thin-wall approximation is valid). Now consider that
the exact critical bubble solution is found. Consider also a
small deviation from it that follows a different path in the
order parameter space. Once the true critical bubble is a
saddle point solution in a functional space, one expects that
the distorted path will have a higher value of �F as
compared with the true bubble. Hence, we can (artificially)
constrain the configuration path to a given arbitrary line
that connects the two vacua in the space of order parame-
ters. This path will give us an overestimate of the free
energy and, therefore, of the surface tension. The simplest
choice is, of course, a straight line that connects both

minima.5 For example, let �ð1Þ
x and �ð2Þ

x be the values of

the �x order parameter in the two minima of �� close to the
coexistence line. The interpolation

�x ¼ ��ð1Þ
x þ ð1� �Þ�ð2Þ

x (3.17)

is such that for 0 � � � 1, the value of �x varies from one
minimum to the other. If the same function � is used to
parametrize the path followed by the remaining order
parameters,

5In the whole range of interest in the T-� plane, we have
always found either one or two minima. The case of three or
more minima, which we have not encountered, would lead to a
much more complicated analysis.
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�y ¼ ��ð1Þ
y þ ð1� �Þ�ð2Þ

y ;

� ¼ ��ð1Þ þ ð1� �Þ�ð2Þ;

� ¼ ��ð1Þ þ ð1� �Þ�ð2Þ;

(3.18)

then this path is a straight line in the four-dimensional
order parameter space.

It is now natural to define the four-dimensional order
parameter for the PQM model as

~� ¼ ð�x; �y; �; �Þ: (3.19)

It can be easily shown from Eqs. (3.17) and (3.19) that if
we write the coarse-grained free energy (3.16) in terms of
the field �, it assumes the form

~F ð�Þ ¼
Z

d3x

�
h2

2
ðr�Þ2 þ ~�ð�Þ

�
; (3.20)

where

h2 ¼ ð ~�0 � ~�1Þ2
¼ ð��xÞ2 þ ð��yÞ2 þ ð��Þ2 þ ð��Þ2; (3.21)

and ~�ð�Þ is the projection of the effective potential ��ð ~�Þ
along the straight line defined by (3.17). Notice that the

coarse-grained free energy ~F is formally equivalent to the
single field coarse-grained free energy (3.6) and we can
now consider � as a scalar order parameter. As a result, the
surface tension in the PQMmodel can be overestimated by

�ðRÞ ¼ h
Z 1

0
d�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 ~�½�;R�

q
; (3.22)

where the domain of integration ranges from one minimum

of �� (and thus of ~�) to the other along a straight line path
in the four-dimensional order parameter space.

Notice that a path other than a straight line in the space
of order parameters would not lead to a simple coarse-
grained free energy with the same form as (3.20). In the
general case, even the definition of the surface tension
should be reformulated. This problem will be treated in a
separate work.

In the following section, we present our results for the
equilibrium thermodynamics as well as for the surface
tension in the PQM model.

IV. RESULTS AND DISCUSSION

We will now present our original results for the Nf ¼
2þ 1 PQMmodel for quantities in strict thermodynamical
equilibrium, as well as an overestimate of the surface
tension of a hadron-quark interface as described by this
model. We use the methods and approximations discussed
in the previous sections. Here, we call the polynomial
parametrization of Ref. [13] ‘‘Poly-I,’’ while that of
Ref. [14] is called ‘‘Poly-II.’’ The logarithmic parametri-
zation of Ref. [15] is referred to as ‘‘Log.’’

Notice that the imaginary part of the effective potential
(2.24) is zero for � ¼ 0, and our scheme has to be com-
pletely equivalent to the saddle point approach in this limit
(notice that� � � for� ¼ 0). Our numerical results show
that this is true indeed.
In an explicit crosscheck, we calculated the pseudocriti-

cal temperatures for deconfinement and chiral symmetry
restoration at � ¼ 0, with the same parameter set of
Ref. [6]. The chiral pseudocritical temperature is defined
as the peak in the chiral susceptibility �x � �@h�xi=@T,
while the deconfinement pseudocritical temperature takes
place at the peak of �P � @h�i=@T. We found the same
pseudocritical temperatures as those in Ref. [6] for the
Poly-I and the logarithmic parametrizations at � ¼ 0.
This shows numerically a consistency between our
approach and the saddle-point approximation in the regime
where both methods have to lead to the same results.6

However, we must stress, the two approaches do give
different predictions at finite quark chemical potential, as
expected. This difference is mainly due to the fact that we
are explicitly considering only the real part of the effective
potential at finite chemical potential. As we have already
discussed in Secs. I and II, this is a necessary condition in
order to fulfill the need of defining minima and for their
existence in the thermodynamical potential, which can
only be achieved through the reality of the effective po-
tential. In the following, we present our original results
alongside the corresponding calculations we performed
using the saddle point approach for comparison.
Let us first discuss our results for the behavior of the

order parameters for the model at � ¼ 0 for the logarith-
mic parametrization of the Polyakov loop potential. The
behavior for the polynomial parametrizations Poly-I and
Poly-II are very similar, and we do not display them here.
Our choice of parameters is shown in Table I, with m� ¼
600 MeV and T0 ¼ 270 MeV. In Fig. 1, we show our
results for the expectation value of the chiral condensates
�x and �y (normalized by the vacuum value of the non-

strange condensate h�xivac ¼ f�), as well as for the
Polyakov loop variable �. The steep change of the order
parameters at around T ¼ 205 MeV indicates the pseudo-
critical temperature of both the chiral and the deconfine-
ment crossovers. (For some other choices of parameters,
these pseudocritical temperatures may not coincide [6].)
The low-temperature behavior of h�xi and of h�yi shows

little sensitivity to the choice of the Polyakov loop poten-
tial, being dominated by the chemical potential-dependent
contribution from the mesonic sector.
Next, we observe that at low temperatures, the order

parameters have a discontinuity at some finite �. This
signals a first-order phase transition. In Fig. 2 we show

6We refer the interested reader to Ref. [6] for the actual values
of pseudocritical temperature found within the Nf ¼ 2þ 1 PQM
model.
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the behavior of the condensates �x and �y and the

Polyakov loop variable � (multiplied by a factor of ten)
as a function of the chemical potential for a very low
temperature T ¼ 2 MeV with sigma mass m� ¼
500 MeV. Notice that the Polyakov loop variable has a
very low expectation value, which grows very slowly at
such a low temperature, even at high densities.

Having found a crossover at � ¼ 0 and a first-order
transition at T ¼ 0, the next step is to calculate the

complete T-� phase diagram of the model. The phase
diagram is shown in Fig. 3 for m� ¼ 500 MeV and T0 ¼
182 MeV for the three parametrizations of the Polyakov
loop potential we have considered in this work.
As mentioned before, the saddle point approach leads to

different results to quantities in thermodynamical equilib-
rium. Comparing the phase diagrams obtained within the
two methods, we notice that they are equivalent at � ¼ 0
(where the sign problem does not exist) and at T ¼ 0
(where only the chiral fields are relevant and, again, the
sign problem does not exist). For this reason, the phase
diagrams can only differ between these two extrema and, in
particular, they can lead to different positions for the critical
end point (CEP). Table III shows the T-� coordinates of the
CEP found using the method we propose and the saddle-
point method. Depending on the parametrization and value
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FIG. 1 (color online). Normalized nonstrange condensate
(h�xi=f�, solid line) and strange condensate (h�yi=f�, dashed
line) and Polyakov loop variable (h�i, dotted line) as a function
of the temperature for � ¼ 0. The parameter set used is that of
Table I with m� ¼ 600 MeV and T0 ¼ 270 MeV together with
the logarithmic Polyakov loop potential.
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FIG. 2 (color online). Normalized nonstrange condensate
(h�xi=f�, solid line) and strange condensate (h�yi=f�, dashed
line) and Polyakov loop variable (h�i, dotted line) as a function
of the chemical potential for T ¼ 2 MeV. The parameter set
used is that of Table I with m� ¼ 500 MeV and T0 ¼ 182 MeV.
For the Polyakov loop potential the logarithmic parametrization
is chosen but at this low temperature its influence is negligible.
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FIG. 3 (color online). Lines of first-order phase transition of
the PQM model. The sigma meson mass is m� ¼ 500 MeV and
T0 ¼ 182 MeV. Parametrizations of the Polyakov loop poten-
tial: Poly-I (full black line), Poly-II (dashed red line) and Log
(dash-dotted blue line).

TABLE III. Temperature and quark chemical potential coor-
dinates of the critical end point (CEP) found with the minimi-
zation procedure of Sec. II, ðTC;�CÞ, and with the saddle point
approach, ðTC;�CÞS. We choose a sigma meson mass m� ¼
500 MeV and pure glue transition temperatures T0 ¼ 182 MeV
(with effective screening) or T0 ¼ 270 MeV (pure gauge). The
parameters not shown in this table are found in Table I.

Parametrization

T0

[MeV]

ðTC;�CÞ
[MeV]

ðTC;�CÞS
[MeV]

Log [15] 182 (143, 129) (143, 128)

270 (192, 88) (192, 84)

Poly-I [13] 182 (139, 99) (140, 92)

270 (171, 103) (175, 83)

Poly-II [14] 182 (146, 115) (152, 80)

270 (176, 129) (184, 103)
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of T0 the positions of the CEP foundwithin the twomethods
can differ significantly. The difference increases with a
larger value of the glue transition temperature T0 and is
most pronounced if using the Poly-II parametrization. Due
to the slope of the phase transition line around the CEP the
differences of the critical chemical potential is larger than
that of the temperatures.

The effective potential has always two degenerate min-
ima over the coexistence line of the phase diagram, each
onewith a different quartet of expected order parameters. In
Fig. 4, we show how the coordinates of theseminima evolve
along the first-order line of the phase diagram, starting from
T ¼ 0 and finite � up to the CEP. Notice that the two
minima smoothly merge at the CEP with diverging deriva-
tive with respect to the temperature. This signals the
expected second-order phase transition at the CEP.

The two minima of the potential that are degenerate on
the coexistence line persist as a global and a metastable
local minimum in some region of the phase diagram
around the phase transition line. Going away from the
coexistence line, the intervening maximum approaches
the local minimum until these two extrema meet and
form an inflection point that defines the spinodal line. In
Fig. 5 we show the extension of the metastable region of
the T-� phase diagram that is limited by the spinodal lines.
The extension is relatively independent of the parametri-
zation of the Polyakov loop potential. We find that the
degree of metastability that can be reached is relatively
modest.

Let us now study the behavior of the surface tension in
the PQM model along the coexistence line for different

parametrizations of the Polyakov loop potential U. The
surface tension was evaluated in the thin-wall approxima-
tion, according to Eq. (3.14). In Fig. 6, we show the
behavior of the surface tension along the first-order tran-
sition line for the Poly-I, Poly-II and the Log parametriza-
tions of the Polyakov loop potential. The surface tension
for the Poly-II potential is off scale to the other two ones
and, therefore, it is shown in the inset of Fig. 6.
Even though equilibrium observables like the behavior

of the order parameters and the phase diagram are quite
similar for the three parametrizations, there is a remarkable
difference between them regarding the surface tension, in
particular for the result obtained for the Poly-II parametri-
zation. We interpret this as an artifact of the Poly-II
parametrization. Although all parametrizations lead to
very similar descriptions of the thermodynamics of the
deconfinement transition in equilibrium, they offer differ-
ent behaviors for the order parameters. At the pure glue
transition temperature T0, the Polyakov loop potentials
present two minima, which correspond to the two coexist-

ing values of � ¼ �� at T ¼ T0. One of these minima is
always at � ¼ 0, representing the confined phase, while
the other sits at some nonzero value � ¼ �0. Using the
parameter sets shown in Table II, one can easily see that the
Poly-I parametrization possesses the second minimum at
�0 ’ 0:6, while �0 ’ 0:07 for the Poly-II parametrization
and�0 ’ 0:5 for the Log parametrization. A comparison to
the pure gauge SUð3Þ-lattice calculation of Refs. [74,75]
shows that one has �latt

0 ’ 0:4.
The reason why our results for the surface tension with

the Poly-II parametrization are so different can be under-
stood from the definition (3.21). The kinetic parameter  in
(3.15) is fitted from the value of the surface tension in pure
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FIG. 4 (color online). Degenerate values of the chiral conden-
sates �x and �y (upper part) and Polyakov loop variable �

(lower part) over the first-order line in the T-� plane as a
function of the coexistence temperature. Notice that the minima
merge smoothly at the critical end point. The parameter set used
is that of Table I with m� ¼ 500 MeV and T0 ¼ 182 MeV
together with the logarithmic parametrization of the Polyakov
loop potential.
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FIG. 5 (color online). Metastable regions of the PQM model
for the three considered parametrizations. We compare their
extension with respect to the coexistence line (�coex). The
temperature is given relative to the one of the critical end point
TC, see Table III. The sigma meson mass is m� ¼ 500 MeV and
T0 ¼ 182 MeV.
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gauge SUð3Þ-lattice simulations, using Eq. (3.14). After
some simple manipulations, one sees that the smaller the
barrier between the minima of the pure gauge potential, the
larger  has to be in order to reproduce the known value of
�SUð3Þ ’ 0:016T3

0 [70–72]. Once the Poly-II parametriza-

tion leads to a very short and narrow barrier, it gives the
large value  ’ 160T0. This is two orders of magnitude
larger than the values given by the Poly-I and Log parame-
trizations. As a result, a large value of  leads to a large
coefficient h (3.22) for the Poly-II parametrization and,
consequently, to the behavior of the surface tension seen
in the inset of Fig. 6. In the following, we only discuss
the surface tension derived from the Poly-I and Log
parametrizations.

Our results on the zero-temperature surface tension given
in Table IV and the temperature dependence of the surface
tension seen in Fig. 6 are very similar to those found in
Refs. [26,27],which considered the two-flavorQMandNJL
models, respectively. This means that the addition of the
strange sector does not change appreciably the dynamics of
the phase transition at low temperatures and high chemical
potentials. Notice that, given a point of phase coexistence in
the T-� plane, ��x is much larger than ��y, except for

conditions very close to the CEP. Therefore, the coefficient
h in Eq. (3.22) at low temperatures is barely changed with
the contribution from the strange sector. Actually, at low
temperatures, the Polyakov loop sector does not give any
sensible contribution to the surface tension either. The
temperature range in Fig. 6 where the profiles of the surface
tension with the Log and Poly-I parametrizations differ

indicates where Polyakov loop sector contributes to the
surface tension and the difference of the profiles can be
considered as an estimate of the uncertainty of the Polyakov
loop contribution.

A. Implications for proto-neutron stars,
the early Universe and heavy ion collisions

The values of surface tension for the Nf ¼ 2þ 1 PQM

model we found have interesting implications for several
physical scenarios. For example, compact stars can be
considered as laboratories for nuclear matter at low tem-
peratures and at such high densities that they may contain
quark matter [76]. Possible scenarios for the formation of
quark matter in compact stars are old accreting neutron
stars, proto-neutron stars after a supernova explosion or
during the early postbounce evolution of core collapse
supernovae [77]. Physical conditions and time scales in
these cases imply equilibrium with respect to weak inter-
actions and low electron fractions. Estimates from
Ref. [23] show that a hadron-quark phase transition during
the bounce phase of a core-collapse supernova can be
dynamically suppressed if the surface tension of this phase
interface is much larger than, say, 20 MeV=fm2. The esti-
mates from Refs. [26,27] and this work consistently point
towards low values of the surface tension, which would be
compatible with the formation of quark matter during the
bounce. An observable signal would be a second peak in
the neutrino signal dominated by the emission of antineu-
trinos and with a significant change in the energy of
emitted neutrinos [77]. However, none of these calcula-
tions really takes into account realistic equations of state
for supernova matter, which has to include not only scalar
mesons, but also vector mesons, nucleons and, very impor-
tantly, leptons. A calculation of surface tension in such a
complete model would be most welcome.
In the cosmological case, physical boundary conditions

to describe the QCD phase transition in the early Universe
include charge neutrality, equilibrium with respect to weak
interactions and baryon and lepton asymmetries consistent
with observations. Observations of the cosmic microwave
background radiation and constraints from primordial
nucleosynthesis require a tiny baryon asymmetry at rela-
tively low temperatures (T & 1MeV) [78]. In the standard
scenario this observational constraint is extrapolated up to
the scale of the QCD phase transition that is then a smooth
crossover. In the scenario of little inflation [24], the
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FIG. 6 (color online). Surface tension relative to its zero-
temperature value along the first-order transition line in the
T-� phase diagram as a function of the temperature relative to
the one of the critical end point. We use the Poly-I and Log
parametrizations with T0 ¼ 182 MeV. Inset: The Poly-II
parametrization is shown for comparison. The parameter set
used is that of Table I with m� ¼ 500 MeV. The other parame-
ters can be found in Tables III and IV.

TABLE IV. Low-temperature values of the surface tension at
T ¼ 2 MeV (in practice, similar to T ¼ 0). We choose a sigma
meson mass m� ¼ 500 MeV and pure glue transition tempera-
ture T0 ¼ 182 MeV. The parameters not shown in this table are
found in Table I.

Parametrization Log [15] Poly-I [13] Poly-II [14]

�0 [MeV=fm2] 13.0 13.0 28.2
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Universe enters the QCD erawith a very high quark density.
As a result, the quark-gluon plasma (QGP) that fills the
Universe cools down until it eventually crosses a first-order
line of the phase diagram, becoming metastable. While the
QGP is metastable, the conditions for a cosmic inflation can
be met and the extra quark density becomes very diluted.
Observational signals of this evolution include an enhance-
ment of primordial density fluctuations on stellar up to
galactic scales, production of galactic and extragalactic
magnetic fields and a modification of the gravitational
wave spectrum [25,79]. At some point of the expansion,
however, the phase transition from a QGP to hadronic
matter must happen, most likely through bubble nucleation.
In order to be effective, the baryon dilution required by the
little inflation scenario needs to be long enough. This
requires that the QGP remains metastable even for high
degrees of supercooling, something that requires a very low
nucleation rate and, therefore, a large value of surface
tension. As we have discussed, however, the values of
surface tension found with chiral models, including the
study we have performed in this work, are relatively small
and possibly do not allow the strong metastability required
by the scenario of little inflation. However, also a large
lepton asymmetry can drive the evolutionary path of the
Universe towards larger quark chemical potentials [80].

In heavy ion collisions the phase boundary of hadronic
and quark matter is, if at all, crossed twice. First, as for-
mation of a quark gluon plasma in a hadronic gas and then as
rehadronization of the fireball. Complications in studying
nucleation in heavy ion collisions are the short time scales
and the finite size of the system. Additionally, the nuclea-
tion rate has to be considered in relation to the expansion
time. These conditions can lead to the fact that the system
stays in the metastable state close to the spinodal instability
and that the dominant mechanism for phase conversion is
the alternative scenario to homogenous nucleation, namely
spinodal decomposition [19]. Nevertheless, the growth rate
of fluctuations by spinodal instabilities is closely related to
the surface tension [81,82]. They can lead to observable
signatures for thevalue of the surface tensionwe found [82].
Additionally, these fluctuations can be amplified by nuclea-
tion in the metastable region. The relatively small values of
the surface tension we found suggest a early nucleation of
small quark-gluon plasma droplets at relatively modest
energies like at FAIR’s SIS 100 [83]. The details of reha-
dronization leave their fingerprints on those observables that
are sensitive to the life-time of the fireball. Weak supercool-
ing favors the thermal freeze-out to happen in the hadronic
phase with impact on particle yields and spectra [84] and a
distinct hydrodynamic expansion pattern [19].

V. CONCLUSION

In this work, we have analyzed some thermodynamical
properties of the PQM model with Nf ¼ 2þ 1 constituent

quarks. In particular, we were concerned about the

definition of the equilibrium state of a system at tempera-
ture T and quark chemical potential�. As in the case of the
PNJLmodel, the in-medium effective potential of the PQM
model is not a real function of real variables and, therefore,
it has no minima. As a way to circumvent this problem, we
have first rewritten the effective potential in terms of real
variables only, such that the real and imaginary parts of the
potential are separated. The relation between the imaginary
part of the effective potential and the fermion sign problem
is discussed. The real effective potential is found to be the
appropriate quantity to be minimized and it is a consistent
quantity in terms of standard arguments of equilibrium
statistical physics. This allowed us to calculate some prop-
erties of the model in equilibrium at finite T and �. In
particular, we calculated the evolution of the order parame-
ters as functions of the temperature (for � ¼ 0) and of the
quark chemical potential (for T ¼ 2 MeV, which is, in
practice, equivalent to T ¼ 0). We also calculated the
T-� phase diagram of the model and compared our results
to the ones found in the literature using the saddle-point
method. The results are equivalent for � ¼ 0 (where they
had to be), but differ for nonzero �. The phase transition
lines of both methods coincide, but the location of the
critical end point can be at up to 40% larger chemical
potentials using the minimizing method, depending
on the Polyakov loop potential parametrization and
parameters.
A careful minimization of the effective potential also

allowed us to study the problem of homogeneous nuclea-
tion of bubbles in a first-order phase transition. More
specifically, we calculated the surface tension of an inter-
face between the two phases predicted by the model, a
quantity that is crucial for the nucleation rate of bubbles in
a first-order phase transition. We saw that the Nf ¼ 2þ 1

PQM model yields results very similar to those of the two-
flavor NJL and QM models, so that the influence of both
the strange quark and the Polyakov loop at low tempera-
tures is small. However, the same cannot be said for higher
temperatures, where all contributions become of the same
order of magnitude. Our overestimate gives a conservative
upper bound of � & 15 MeV=fm2 for the surface tension.
The actual value, however, may be even lower, not only
because of the direct approximations in the calculation
of the surface tension, but also due to vacuum terms, which
we have neglected and should make the first-order
transition weaker at low T and high �. In any case, this
reinforces the trend shown recently in Refs. [26,27] of a
low surface tension in chiral models for QCD at finite
baryon density. Such a low value would allow a quick
hadron-quark phase conversion. This implies interesting
implications for several physical scenarios, be it heavy ion
collisions, proto-neutron stars or the early Universe.
In summary, the analysis carried out in this work sug-

gests that, in spite of the good agreement of the chiral
models at finite T and � ¼ 0 with lattice calculations, one
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should take care when the � � 0 case is addressed. This
difficulty is manifest in the nonreality of the equilibrium
effective potential for � � 0, even far from any phase
transition. Notice that, in principle, the same problem can
affect any chiral model with gauge fields coupled to quarks
at finite �, such as the PNJL model. We believe that more
consistent solutions to these (and other possible) problems
are still needed as they would bring more confidence to
further progress in the domain of high chemical potentials
of the QCD phase diagram with effective models.
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