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We calculate the shear (�) and bulk (�) viscosities of a weakly coupled quark gluon plasma at the

leading-log order with finite temperature T and quark chemical potential �. We find that the shear

viscosity to entropy density ratio �=s increases monotonically with � and eventually scales as ð�=TÞ2 at
large �. In contrast, �=s is insensitive to �. Both �=s and �=s are monotonically decreasing functions of

the quark flavor number Nf when Nf � 2. This property is also observed in pion gas systems. Our

perturbative calculation suggests that QCD becomes the most perfect (i.e. with the smallest �=s) at� ¼ 0

and Nf ¼ 16 (the maximum Nf with asymptotic freedom). It would be interesting to test whether the

currently smallest �=s computed close to the phase transition with � ¼ 0 and Nf ¼ 0 can be further

reduced by increasing Nf.
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I. INTRODUCTION

Viscosity, diffusivity, and conductivity are transport
coefficients which characterize the dynamics of long wave-
length and low frequency fluctuations in a medium. The
quantity shear viscosity (�) per entropy density (s) has
attracted a lot of attention because of the intriguing con-
jecture that �=s has a minimum bound of 1=4� for all
systems [1]. This conjecture is inspired by the anti-de Sitter
space/conformal field theory correspondence (AdS/CFT)
[2–4] which is rooted in string theory. Surprisingly, the hot
and dense matter produced at RHIC [5–8] (for reviews, see
e.g. Refs. [9–12]) just above the phase transition tempera-
ture (Tc) has �=s ¼ 0:1� 0:1ðtheoryÞ � 0:08ðexperimentÞ
[13], a value close to the conjectured bound. A robust limit
of 1=ð4�Þ � �=s � 2:5=ð4�Þ at Tc � T � 2Tc was
recently extracted from a VISHNU hybrid model [14]
and a lattice computation of gluon plasma yields �=s ¼
0:102ð56Þ at temperature T ¼ 1:24Tc [15].

The QCD transport coefficients have also been studied
in other temperatures. When T � Tc, the � of a weakly
interacting quark gluon plasma is inversely proportional to
the scattering rate, � / 1=� / 1=�2

s ln�
�1
s [16], where �s

is the strong coupling constant. The bulk viscosity � is
suppressed by an additional factor of ðT�

� Þ2, arising from
the response of the trace of the energy momentum tensor
ðT�

� Þ to a uniform expansion. Thus, � vanishes when the
system is ‘‘conformal’’ or scale invariant. For a gluon
plasma, the running of the coupling constant breaks the

scale invariance. Thus, T
�
� / �ð�sÞ / �2

s , � / �2
s= ln�

�1
s

[17]. In the perturbative region, �=� / �4
s � 1. When

T � Tc, the effective degrees of freedom are pions. In
the chiral limit (u and d quarks are massless), �=s /
f4�=T

4 [18] and �=s / T4=f4� [19] where f� is the pion
decay constant. A compilation of perturbative QCD calcu-
lations of � and � can be found, e.g., in Refs. [20,21]. Most
of these calculations are performed with finite T but zero
quark chemical potential �.
The purpose of this work is to extend the previous

perturbative QCD calculation of � and � to finite � at
the leading-log (LL) order. At this order, we find � /
1=�2

s ln�
�1
s and � / �2

s= ln�
�1
s , the same as in the limit

of � ¼ 0, which give parametrically the dominant contri-
bution at asymptotically large (compared with the �QCD

scale where QCD becomes nonperturbative) T or �. The
vacuum in our calculation has no spontaneous symmetry
breaking; thus, it cannot be applied to the color super-
conducting phase in the �=T ! 1 limit. In the context
of finding the minimal �=s and hence the most ‘‘perfect’’
fluid, we explore whether �=s can be further reduced by
varying � and the quark flavor number Nf in the hope that

our perturbative calculation can shed light on the non-
perturbative region near Tc where QCD is found to be
the most perfect matter ever produced in nature.

II. EFFECTIVE KINETIC THEORY

� and � can be calculated through the linearized
response function of thermal equilibrium states using the
Kubo formula. In the leading order (LO) expansion in the
coupling constant, the computation involves an infinite
number of diagrams [22–25]. However, it has been shown
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that the summation of the LO diagrams in a weakly
coupled�4 theory [22,26] or in hot QED [27] is equivalent
to solving the linearized Boltzmann equation with
temperature-dependent particle masses and scattering
amplitudes. This conclusion is expected to hold in pertur-
bative QCD as well.

The Boltzmann equation of a quark gluon plasma
describes the evolution of the color and spin averaged

distribution function ~fapðxÞ for particle a:
d~fapðxÞ
dt

¼ Ca; (1)

where ~fapðxÞ is a function of space-time x� ¼ ðt;xÞ and
momentum p� ¼ ðEp;pÞ.

The LL contribution comes from two-particle scattering
processes denoted as ab $ cd. Near forward scattering,
the singularity similar to that of Rutherford scattering is
regularized by the Debye and dynamical screenings which
give thermal masses to particles. This yields a logarithmic
enhancement factor lnðq2max=m

2Þ where qmax is the size of
the maximum momentum transferred in the t-channel pro-
cess and m is the thermal mass. qmax is set by T or �,
whichever is bigger, and m has the expression shown in
Eqs. (8) and (9). Thus lnðq2max=m

2Þ scales as lnð1=�sÞ.
For the LL calculation, we only need to consider two-

particle scattering with the collision terms of the form

Cab$cd �
Z
k1k2k3

d�ab!cd½~fak1 ~fbk2 ~Fc
p
~Fd
k3
� ~Fa

k1
~Fb
k2
~fcp ~f

d
k3
�;

(2)

where ~Fg ¼ 1þ ~fg and ~Fqð �qÞ ¼ 1� ~fqð �qÞ and

d�ab!cd ¼ 1

2Ep

jMab!cdj2
Y3
i¼1

d3ki
ð2�Þ32Eki

	 ð2�Þ4�ð4Þðk1 þ k2 � k3 � pÞ; (3)

where jMab!cdj2 is the matrix element squared with all
colors and helicities of the initial and final states summed
over. They are tabulated in Table I in the Appendix. Then
the collision term for a quark of flavor a is

NqCqa ¼
1

2
Cqaqa$qaqa þ Cqa �qa$qa �qa þ

1

2
Cgg$qa �qa

þ Cqag$qag þ
X

b;b�a

ðCqaqb$qaqb þ Cqa �qb$qa �qb

þ Cqb �qb$qa �qaÞ; (4)

where Nq ¼ 2	 3 ¼ 6 is the quark helicity and color

degeneracy factor and the factor 1=2 is included when
the initial state is formed by two identical particles.
Similarly,

NgCg ¼ 1

2
Cgg$gg þ

X
a

ðCgqa$gqa þCg �qa$g �qa þCqa �qa$ggÞ;

(5)

where Ng ¼ 2	 8 ¼ 16 is the gluon helicity and color

degeneracy factor. In equilibrium, the distributions are

denoted as fqð �qÞ and fg, with

fgp ¼ 1

eu
p=T � 1
; (6)

TABLE I. Matrix elements squared for two-particle scattering processes in QCD. The helicities and colors of all initial and final state
particles are summed over. q1 and q2 represent quarks of distinct flavors, �q1 and �q2 are the associated antiquarks, and g represents a
gluon. dF and dA denote the dimensions of the fundamental and adjoint representations of the SUcðNÞ gauge group while CF and CA

are the corresponding quadratic Casimirs. In a SUcð3Þ theory with fundamental representation fermions, dF ¼ CA ¼ 3, CF ¼ 4=3, and
dA ¼ 8.

ab ! cd jMaðk1Þbðk2Þ!cðk3Þdðk4Þj2

q1q2 ! q1q2 8g4
d2FC

2
F

dA
ðs2þu2

t2
Þ

�q1q2 ! �q1q2
q1 �q2 ! q1 �q2
�q1 �q2 ! �q1 �q2

q1q1 ! q1q1 8g4
d2FC

2
F

dA
ðs2þu2

t2
þ s2þt2

u2
Þ þ 16g4dFCFðCF � CA=2Þ s2tu

�q1 �q1 ! �q1 �q1

q1 �q1 ! q1 �q1 8g4
d2FC

2
F

dA
ðs2þu2

t2
þ t2þu2

s2
Þ þ 16g4dFCFðCF � CA=2Þ u2st

q1 �q1 ! q2 �q2 8g4
d2FC

2
F

dA
t2þu2

s2

q1 �q1 ! gg 8g4dFC
2
Fðut þ t

uÞ � 8g4dFCFCAðt2þu2

s2
Þ

q1g ! q1g �8g4dFC
2
Fðus þ s

uÞ þ 8g4dFCFCAðs2þu2

t2
Þ

�q1g ! �q1g

gg ! gg 16g4dAC
2
Að3� su

t2
� st

u2
� tu

s2
Þ
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fqð �qÞp ¼ 1

eðu
p��Þ=T þ 1
; (7)

where T is the temperature, u is the fluid four-velocity and
� is the quark chemical potential. They are all space-time
dependent.

The thermal masses of gluons and quarks or antiquarks
for external states (the asymptotic masses) can be com-
puted via [28,29]

m2
g ¼ 2g2

dA

Z d3p

ð2�Þ32Ep

½NgCAf
g
p þ NfNqCFðfqp þ f �q

pÞ�;

(8)

m2
q ¼ m2

�q ¼ 2CFg
2
Z d3p

ð2�Þ32Ep

ð2fgp þ fqp þ f �q
pÞ; (9)

where dA ¼ 8, CA ¼ 3, and CF ¼ 4=3. This yields

m2
g ¼ CA

6
g2T2 þ NfCF

16
g2
�
T2 þ 3

�2
�2

�
; (10)

m2
q ¼ 1

4
CFg

2

�
T2 þ�2

�2

�
; (11)

wherewe have setEp ¼ jpj in the integrals on the right-hand
sides of Eqs. (8) and (9). The difference from nonvanishing
masses is of higher order.

A. Linearized Boltzmann equation

To extract transport coefficients, it is sufficient to con-
sider infinitesimal perturbations away from equilibrium
which have infinite wave lengths. Using the Chapman-
Enskog expansion we linearize the Boltzmann equation
to the first order in the derivative expansion in x. Thus,
we only need the thermal equilibrium distributions fg

and fq; �q on the left-hand side of the Boltzmann equation.
We can also make use of the zeroth-order energy-

momentum conservation relation, @�T
ð0Þ�	 ¼ 0, to replace

the time derivatives @T=@t and @�=@t with spatial
gradients:

@T

@t
¼ �T

�
@P

@


�
n
r 
 u;

@�

@t
¼ �

�
�

�
@P

@


�
n
þ

�
@P

@n

�



�
r 
 u; (12)

where n � nq � n �q is the baryon number density. Wework

in the local rest frame of the fluid element where u ¼
ð1; 0; 0; 0Þwhich implies @�u

0 ¼ 0 after taking a derivative

on u�ðxÞu�ðxÞ ¼ 1. For the right-hand side of the

Boltzmann equation, we expand the distribution function
of particle a as a local equilibrium distribution plus a
correction

~fa ’ fa½1� �að1� faÞ�; (13)

and �a can be parametrized as

�aðx; pÞ ¼
�
AaðpÞ
T

riui þ BaðpÞ
T

p̂½ip̂j�r½iuj�
�
; (14)

where i, j ¼ 1, 2, 3 and [. . .] means the enclosed indices
are made symmetric and traceless.
Applying Eq. (13) to the right-hand side of the

Boltzmann equation and equating it to the left-hand side,

we get linear equations for BaðpÞ and AaðpÞ. For ~fg, we
obtain

p½ipj� ¼
Eg

fgFg

1

Ng

�
1

2
Bij
gg$gg þ

XNf

a¼1

ðBij
gqa$gqa

þ Bij
gqa$gqa

þ Bij
qa �qa$ggÞ

�
; (15)

where

Bij
ab$cdðpÞ �

Z
k1k2k3

d�ab!cdf
a
k1
fbk2F

c
pF

d
k3
½�Ba

ijðk1Þ

� Bb
ijðk2Þ þ Bc

ijðpÞ þ Bd
ijðk3Þ� (16)

with Ba
ijðpÞ ¼ BaðpÞp̂½ip̂j� and we have suppressed the p

dependence in Ba
ij and Ba when there is no ambiguity.

Similarly, for ~fq, we obtain

p½ipj� ¼
Eq

fqFq

1

Nq

�
1

2
Bij
q1q1$q1q1 þ Bij

q1 �q1$q1 �q1

þ 1

2
Bij
gg$q1 �q1

þ Bij
q1g$q1g þ

XNf

a¼2

ðBij
q1qa$q1qa

þ Bij
q1 �qa$q1 �qa

þ Bij
qa �qa$q1 �q1

Þ
�
: (17)

The corresponding equation for ~f �q can be obtained
from the above equation by interchanging q $ �q.
The linear equations for BaðpÞ are relevant to the shear
viscosity computation. They can be written in a compact
form

jS�i ¼ C�jBi; (18)

with p½ipj� taken as the source jS�i for the shear viscosity.
Similarly, the linear equations for AaðpÞ for the quark

and gluon are given by

p2

3
�

�
E2
g � T2

@m2
g

@T2
��2

@m2
g

@�2

��
@P

@


�
n

þ Eg

�
@Eg

@�
� ag

��
@P

@n

�



¼ Eg

fgFg

1

Ng

"
1

2
Agg$gg þ

XNf

a¼1

ðAgqa$gqa þ Agqa$gqa

þ Aqa �qa$ggÞ
#
; (19)
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and

p2

3
�

�
E2
q � T2

@m2
q

@T2
��2

@m2
q

@�2

��
@P

@


�
n

þ Eq

�
@Eq

@�
� aq

��
@P

@n

�



¼ Eq

fqFq

1

Nq

"
1

2
Aq1q1$q1q1 þ Aq1 �q1$q1 �q1

þ 1

2
Agg$q1 �q1 þ Aq1g$q1g þ

XNf

a¼2

ðAq1qa$q1qa

þ Aq1 �qa$q1 �qa þ Aqa �qa$q1 �q1Þ
#
; (20)

where ag ¼ 0, aq= �q ¼ �1 and

Aab$cdðpÞ �
Z
k1k2k3

d�ab!cdf
a
k1
fbk2F

c
k3
Fd
p½�Aaðk1Þ

� Abðk2Þ þ Acðk3Þ þ AdðpÞ�: (21)

These equations are relevant for the bulk viscosity compu-
tation. They can be written compactly as

jS� i ¼ C� jAi: (22)

Using the expression of the thermal mass in Eq. (8), we can
evaluate the prefactor of ð@P=@
Þn in Eq. (19) as

E2
g � T2

@m2
g

@T2
��2

@m2
g

@�2

¼ p2 � �ðg2Þ
�
CA

6
T2 þ NftF

6

�
T2 þ 3

�2
�2

��
� p2 þ ~m2

g; (23)

where �s ¼ g2=4� and the QCD beta function for gð ~� �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T2 þ�2

p Þ is

�ðg2Þ ¼ ~�2dg2

d ~�2
¼ g4

16�2

�
2Nf � 33

3

�
: (24)

Similarly we obtain the prefactor of ð@P=@
Þn in Eq. (20) as

E2
q � T2

@m2
q

@T2
��2

@m2
q

@�2
¼ p2 � �ðg2Þ

�
1

4
CF

�
T2 þ�2

�2

��
� p2 þ ~m2

q: (25)

As will be shown later, ð@P=@
Þn � 1=3 / �ðg2Þ and
ð@P=@nÞ
 / �ðg2Þ; thus the source of the bulk viscosity
jS� i / �ðg2Þ. This means jS� i is, as expected, proportional
to the conformal symmetry breaking.

B. Energy-momentum tensor and quark
number density

The energy-momentum tensor of the kinetic theory
can be written as [22] (note the sign difference in metric
with [22])

T�	 ¼ X
a

Na

Z d3p

ð2�Þ3
faðp; xÞ

Ea

�
p�p	 � 1

4
m2

aðxÞg�	

�
;

(26)

where a sums over the gluons and Nf flavors of quarks and

antiquarks. This equation expresses the total energy-
momentum tensor of the system as the sum of individual
quasiparticles. There is no u�u	 term on the right-hand side
because energy-momentum conservation cannot be satis-
fied unless this term vanishes. In principle, one expects
the form of Eq. (26) (and kinetic theory itself) will be no
longer valid at higher orders in the expansion of the
coupling constant; however, Eq. (26) does reproduce
all the thermal dynamical quantities of QCD at Oð�sÞ
correctly [30].
Expanding T�	 to the first order of �i, we have the fairly

simple expression

�T�	 ¼ �X
a

Na

Z d3p

ð2�Þ3Ea

faFa�a

	
�
p�p	 � u�u	T2 @E

2
a

@T2
� u�u	�2 @E

2
a

@�2

�
: (27)

In deriving the above equation one needs to carefully keep
track of the implicit distribution function dependence in Ea

through the thermal mass (9). This expression can then be
matched to hydrodynamics.
In the local rest frame of the fluid element withuðxÞ ¼ 0,

the most general form of Tij at the order of one space-time
derivative (assuming parity and time reversal symmetry)
can be decomposed into shear and bulk viscosity terms

�Tij ¼ �2�

�riuj þrjui
2

� 1

3
�ijr 
 u

�
� ��ijr 
 u:

(28)

[Recall that @T=@t and @�=@t can be replaced by r 
 u as
shown in Eq. (12).] Then using Eq. (14) for � and compar-
ing Eqs. (27) and (28), we obtain

� ¼ 1

10T

X
a

Na

Z d3p

ð2�Þ3Ea

faFaBa
jkp½jpk�; (29)

and

� ¼ 1

T

X
a

Z d3p

ð2�Þ3Ea

p2

3
faFaAa: (30)

They can be written schematically as

� ¼ hBjS�i; � ¼ hAjS0� i: (31)

Note that jS0� i � jS� i, but we will show � ¼ hAjS0� i ¼
hAjS� i later.

JIUNN-WEI CHEN et al. PHYSICAL REVIEW D 87, 036002 (2013)

036002-4



We also need the total quark number density

n ¼ NfNq

Z d3p

ð2�Þ3 ðf
q � f �qÞ: (32)

Expanding n to the first order of �a, we have

�n ¼ X
a

Na

Z d3p

ð2�Þ3 f
aFa�a

�
@Ea

@�
� aa

�
: (33)

Equations (27) and (33) will be used in the computation of
bulk viscosity.

C. Shear viscosity

It is well known that � should not be negative such that
the second law of thermodynamics (entropy cannot
decrease in time) is satisfied. This requirement is fulfilled
by rewriting Eqs. (18) and (31) as

� ¼ hBjC�jBi (34)

and showing that � is quadratic in jBi with a positive
prefactor such that it is bounded from below by zero.
Indeed, these conditions are satisfied in our expression:

� ¼ D
�
gg!gg þ NfðNf � 1Þ

2

�
4D

�
qaqb!qaqb þ 4D

�
�qa �qb! �qa �qb

þ 8D
�
qa �qb!qa �qb

þ 8D
�
qa �qa!qb �qb

�
a�b

þ Nf

�
D�

qq!qq þD�
�q �q! �q �q þ 4D�

q �q!q �q

þ 4D�
gg!q �q þ 4D�

qg!qg þ 4D�
�qg! �qg

�
; (35)

where there is no summation over a and b and we can just
take ða; bÞ ¼ ð1; 2Þ and where

D�
ab!cd � 1

80T

Z d3p

ð2�Þ3 d�ab!cdf
a
k1
fbk2F

c
k3
Fd
p½Ba

ijðk1Þ
þ Bb

ijðk2Þ � Bc
ijðk3Þ � Bd

ijðpÞ�2: (36)

Once � has the standard quadratic form in jBi, and � ¼
hBjC�jBi ¼ hBjS�i, we can use the standard algorithm to

systematically approach � from below [20].

D. Bulk viscosity and the Landau-Lifshitz condition

For bulk viscosity, the collision kernel C� in Eq. (22) has
two zero modes AE and An which satisfy

C� jAEi ¼ C� jAni ¼ 0: (37)

AE arises from energy conservation

Aa
EðpÞ ¼ Ea; a ¼ g; q; �q; (38)

while An arises from quark number conservation

Ag
nðpÞ ¼ 0; Aq

nðpÞ ¼ 1; A �q
nðpÞ ¼ �1: (39)

We can use the Landau-Lifshitz condition

�T00 ¼ 0 (40)

and

�n ¼ 0 (41)

to rewrite Eq. (30) by adding linear combinations of �T00

and �n:

� ¼ X
a

Na

T

Z d3p

ð2�Þ3Ea

faFaAa

"
p2

3
�

�
@P

@


�
n

	
�
E2
a � T2 @E

2
a

@T2
��2 @E

2
a

@�2

�

þ
�
@P

@n

�


Ea

�
@Ea

@�
� aa

�#
� hAjS� i: (42)

Substituting jS� i with Eq. (22), � becomes quadratic in jAi
with a positive prefactor:

� ¼ hAjC� jAi

¼ D�
gg!gg þ NfðNf � 1Þ

2

�
4D�

qaqb!qaqb

þ 4D�
�qa �qb! �qa �qb

þ 8D�
qa �qb!qa �qb

þ 8D�
qa �qa!qb �qb

�
a�b

þ Nf

�
D�

qq!qq þD�
�q �q! �q �q þ 4D�

q �q!q �q þ 4D�
gg!q �q

þ 4D�
qg!qg þ 4D�

�qg! �qg

�
; (43)

where

D�
ab!cd �

1

8T

Z d3p

ð2�Þ3 d�ab!cdf
a
k1
fbk2F

c
k3
Fd
p½Aaðk1Þ

þ Abðk2Þ � Acðk3Þ � AdðpÞ�2: (44)

ð@P=@
Þn and ð@P=@nÞ
 in Eq. (42) can be obtained from
thermodynamic relations�
@P

@


�
n
¼ sP;�;� � nP;�;T

CVP;�;�

;

�
@P

@n

�


¼ nTP;T;T þ ðn�� sTÞP;�;T � s�P;�;�

CVP;�;�

; (45)

where the pressure PðT;�Þ can be read off from Eq. (26)
and where P;X;Y � @2P=@X@Y, n ¼ @P=@�, s ¼ @P=@T,

 ¼ �Pþ Tsþ�n and CV ¼ TðP;T;T � P2

;�;T=P;�;�Þ.
We have also used

�
@P

@


�
n
¼

�@P
@T �T þ @P

@� ��
@

@T �T þ @


@� ��

�
�n¼@n

@T�Tþ@n
@���¼0

: (46)

Then it can be shown that

hAEjS� i ¼ 0; hAnjS� i ¼ 0: (47)
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Thus one can solve � ¼ hAjC� jAi ¼ hAjS� i for � using the

standard algorithm to systematically approach � from
below [20].

E. Numerical results

As mentioned in the introduction, the LL result has � /
g�4ln�1ð1=gÞ and � / g4ln�1ð1=gÞ. When �=T � 1, �,
� , and s all scale as T3 from dimensional analysis. For
T=� � 1, �, � , and s should be even functions of �
because they should be invariant under � ! ��, i.e. the
exchange of quarks and antiquarks.

We first show the result for the entropy density s. Only
the leading order s for free particles is needed:

s ¼ Ngsg þ NfNqðsq þ s �qÞ; (48)

where

sg ¼
Z
p

�
�Ep

e�Ep � 1
� lnð1� e��EpÞ

�
; (49)

sq; �q ¼
Z
p

�
�ðEp ��Þ
e�ðEp��Þ þ 1

þ lnð1þ e��ðEp��ÞÞ
�
: (50)

In Fig. 1, s=T3 is shown as a function of ð�=TÞ2. When
�=T � 1, s scales as T3 and when T=� � 1, s scales as
�2T. This agrees with the expectation that s ¼ 0 when
T ¼ 0, and s increases with T for fixed �. The entropy
density s also increases monotonically with the number of
flavors Nf. We stop at Nf ¼ 16, just before the asymptotic

freedom of QCD is lost when Nf � 33=2.

In Fig. 2, we show the normalized shear viscosity ~� �
ð�=T3Þg4 lng�1 as functions of ð�=TÞ2 for different Nf.

When�=T ! 0,� scales as T3 from dimensional analysis.
When T=� ! 0, � cannot scale as �3 because it is an
even function of�. Instead, � scales as�4=T. Technically,
this is because fqFq / �ððE��Þ=TÞ ¼ T�ðE��Þ as
T=� ! 0 while the antiquark and gluon contributions
vanish. Thus, Eqs. (29) and (35) are solved with Bjk /
1=T and � / 1=T. Physically, this 1=T behavior emerges

because � is inversely proportional to the collision rate
which vanishes at T ¼ 0. Also, � is monotonically increas-
ing with Nf because the averaged coupling between gluons

is stronger than those with quarks involved. Thus, the effec-
tive collision rate is smaller with higher � and higher Nf.

Around � ¼ 0, we make a Taylor expansion ~� ¼ a� þ
b�ð�=TÞ2 þ 
 
 
 , where a� is ~� at zero quark chemical

potential. The values of a� and b� for various Nf is

tabulated in Table II. Our a� is identical to AMY’s to at

least the second decimal place for all Nf computed in

Ref. [16]. The agreement is better than 1%.
In Fig. 3, ð�=sÞg4 lng�1 is shown as functions of

ð�=TÞ2. For a given coupling, the LL value of �=s is the
smallest at � ¼ 0, i.e. the fluid is the most perfect at
� ¼ 0. This perturbative QCD result at high T is consistent
with the observation of Ref. [31] in the hadronic phase at
low T. Thus, we speculate that this property might also be
true near the phase transition temperature Tc such that
QCD has its local minimum, perhaps its absolute minimum
as well, at Tc with zero quark chemical potential.
If the coupling g is held fixed, our �=s is monotonically

decreasing with Nf for Nf � 2 but not for Nf ¼ 0 and 1

2/T)µ(
0 5 10 15 20 25

3
s/

T

0

100
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400

500 =0fN
=1fN
=2fN
=3fN
=4fN
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=6fN

=8fN
=10fN
=12fN
=14fN
=16fN

FIG. 1 (color online). s=T3 as functions of ð�=TÞ2 for
different Nf.
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(1

/g
)

4
) g3

/Tη(
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=16fN

FIG. 2 (color online). ð�=T3Þg4 lng�1 as functions of ð�=TÞ2
for different Nf.

TABLE II. First two coefficients in the Taylor expansion ~� ¼
a� þ b�ð�=TÞ2 þ 
 
 
 near � ¼ 0. Our result is identical to

AMY’s [16] to at least the second decimal place.

Nf a� b� Nf a� b�

0 27.125 0 9 172.564 50.381

1 60.808 16.619 10 178.839 51.301

2 86.472 27.281 11 184.389 52.028

3 106.664 34.454 12 189.333 52.608

4 122.957 39.459 13 193.764 53.074

5 136.380 43.055 14 197.760 53.450

6 147.627 45.703 15 201.380 53.755

7 157.187 47.690 16 204.675 54.003

8 165.412 49.207
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(there is a crossing between the �=s of Nf ¼ 1 and 2 at

�2=T2 ’ 1:8). This pattern looks random, but interestingly,
it is qualitatively consistent with the pion gas result of
Ref. [18] which has �=s / f4�=N

2
fT

4 / N2
c=N

2
f (we have

used f2� / Nc). Again, this suggests that there is a natural
connection between �=s above and below the phase transi-
tion. This pion gas analogy can also explain why
Nf ¼ 0 and1 are special—there is nopion in these two cases.

We also observe that whenNf � 8, the fluid can be more

perfect than that of Nf ¼ 0. It would be interesting to test

this in lattice QCD to find a more perfect fluid than the
currently evaluated Nf ¼ 0 case. It would also be interest-

ing to investigate how the above qualitative Nf scaling

changes due to the possible infrared fixed point for
Nf * 12 where chiral symmetry is not supposed to be

broken and hence no pions exist anymore (see, e.g., [32]
and references therein).

In Fig. 4 we show the normalized bulk viscosity
~� � ð�=�2

sT
3Þ lng�1 as functions of ð�=TÞ2 for different

Nf. When �=T ! 0, � scales as T3 from dimensional

analysis. When T=� ! 0, � scales as �2T. Technically,
this is because as T ! 0, fg ¼ f �q ¼ 0, the dominant
contribution in Eq. (43) comes from the scattering between
quarks. In quark scattering, the combination K � fak1f

b
k2

Fc
k3
Fd
p½Aaðk1Þ þ Abðk2Þ � Acðk3Þ � AdðpÞ�2 ¼ OðT2Þ in

Eq. (44). This is because when T ! 0, the scattering
can only happen on the Fermi surface; otherwise it will
be Pauli blocked (this is imposed by the vanishing
of the prefactor fak1f

b
k2
Fc
k3
Fd
p). But scattering on the

Fermi surface yields Aaðk1Þ ¼ Abðk2Þ ¼ Acðk3Þ ¼ AdðpÞ
and thusK ¼ 0. Therefore, the dimensionless combination
K contributes at OðT2=�2Þ in Eq. (44), which leads to
� / T. [A similar argument can be applied to �. As
T ! 0, K0 � fak1f

b
k2
Fc
k3
Fd
p½Ba

ijðk1Þ þ Bb
ijðk2Þ � Bc

ijðk3Þ �
Bd
ijðpÞ�2 ¼ OðT0Þ in Eq. (36), since the scattering on the

Fermi surface does not have to be forward scattering; thus
K0 does not have to vanish. This leads to � / 1=T in
Eq. (36).] In contrast to �, � is not monotonically increas-
ing withNf because � is suppressed by an additional power

2/T)µ(
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 ln
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FIG. 4 (color online). ð�=�2
sT

3Þ lng�1 as functions of ð�=TÞ2
for different Nf.
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FIG. 3 (color online). ð�=sÞg4 lng�1 as functions of ð�=TÞ2
for different Nf.

TABLE III. Power expansion coefficients of ~� where ~� ¼
a� þ b� ð�=TÞ2 þ 
 
 
 . Our result is identical to ADM’s result

[17] to at least the second decimal place.

Nf a� b� Nf a� b�

0 0.4430 0 9 0.3847 0.0873

1 0.5816 0.0393 10 0.3113 0.0725

2 0.6379 0.0747 11 0.2389 0.0569

3 0.6568 0.0981 12 0.1706 0.0414

4 0.6495 0.1116 13 0.1096 0.0270

5 0.6218 0.1172 14 0.0592 0.0148

6 0.5778 0.1163 15 0.0225 0.0057

7 0.5213 0.1103 16 0.0026 0.0007

8 0.4558 0.1003
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FIG. 5 (color online). ð�=s�2
sÞ lng�1 as functions of ð�=TÞ2

for different Nf.
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of ðT�
� Þ2 / �2ðg2Þ / ð33� 2NfÞ2. Thus when Nf is small,

� increases with Nf because quarks tend to make the

averaged effective coupling weaker but at large Nf, the

suppression factor �2ðg2Þ takes control to make � decrease
with Nf. The maximum � happens when Nf ¼ 5 or 6,

depending on the value of �=T.

Around � ¼ 0, we make a Taylor expansion ~� ¼ a� þ
b� ð�=TÞ2 þ 
 
 
 , where a� is ~� at zero quark chemical

potential. The values of a� and b� for various Nf is

tabulated in Table III. Our a� is identical to ADM’s at least

to the second decimal place for all Nf computed in

Ref. [17]. The agreement is better than 1%.
In Fig. 5, if the coupling g is fixed, our �=s is mono-

tonically decreasing with Nf. This pattern is qualitatively

consistent with the massless pion gas result of Ref. [19]
which has �=s / T4=N2

ff
4
� / 1=N2

cN
2
f (only valid for

Nf � 2 where pions exist).

III. CONCLUSION

We have calculated the shear and bulk viscosities of a
weakly coupled quark gluon plasma at the leading-log
order with finite temperature T and quark chemical poten-
tial�. We have found that when normalized by the entropy
density s, �=s increases monotonically with � and even-
tually scales as ð�=TÞ2 at large �. However �=s is insen-
sitive to �. Both �=s and �=s are monotonically
decreasing functions of the quark flavor number Nf when

Nf � 2. The same property is also observed in pion gas

calculations. Our perturbative calculation suggests that
QCD becomes the most perfect (with the smallest �=s)

at � ¼ 0 and Nf ¼ 16 (the maximum Nf with asymptotic

freedom). It would be interesting to test whether the
currently smallest �=s computed close to the phase tran-
sition at � ¼ 0 and Nf ¼ 0 can be further reduced by

increasing Nf.
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APPENDIX A: SCATTERING AMPLITUDES AND
TAYLOR EXPANSION COEFFICIENTS OF

VISCOSITIES

To describe the microscope scattering processes in a
quark gluon plasma, we need scattering amplitudes
between quarks and gluons. In a hot QCD plasma the
infrared singularity in the amplitude can be regularized
by a hard thermal loop dressed propagator. We use the
same amplitude (shown in Table I) as Ref. [33].
Around � ¼ 0, we make Taylor expansions ~��

ð�=T3Þg4lng�1¼a�þb�ð�=TÞ2þ


 and ~��ð�=�2
sT

3Þ	
lng�1¼a�þb� ð�=TÞ2þ


. The values of a�, b�, a� and
b� for various Nf are tabulated in Tables II and III. Our a�
and a� are identical to AMY’s and ADM’s to at least the

second decimal place for all Nf computed in Refs. [16,17],

respectively. The agreement is better than 1%.
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