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We revisit the issue of considering stochasticity of Grassmannian coordinates in N ¼ 1 superspace,

which was analyzed previously by Kobakhidze et al. In this stochastic supersymmetry (SUSY) frame-

work, the soft SUSY breaking terms of the minimal supersymmetric Standard Model (MSSM) such as the

bilinear Higgs mixing, trilinear coupling, as well as the gaugino mass parameters are all proportional to a

single mass parameter �, a measure of supersymmetry breaking arising out of stochasticity. While a

nonvanishing trilinear coupling at the high scale is a natural outcome of the framework, a favorable

signature for obtaining the lighter Higgs boson mass mh at 125 GeV, the model produces tachyonic

sleptons or staus turning to be too light. The previous analyses took �, the scale at which input parameters

are given, to be larger than the gauge coupling unification scale MG in order to generate acceptable scalar

masses radiatively at the electroweak scale. Still, this was inadequate for obtaining mh at 125 GeV. We

find that Higgs at 125 GeV is highly achievable, provided we are ready to accommodate a nonvanishing

scalar mass soft SUSY breaking term similar to what is done in minimal anomaly mediated SUSY

breaking (AMSB) in contrast to a pure AMSB setup. Thus, the model can easily accommodate Higgs data,

LHC limits of squark masses, WMAP data for dark matter relic density, flavor physics constraints, and

XENON100 data. In contrast to the previous analyses, we consider � ¼ MG, thus avoiding any

ambiguities of a post-grand unified theory physics. The idea of stochastic superspace can easily be

generalized to various scenarios beyond the MSSM.
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I. INTRODUCTION

Low energy supersymmetry (SUSY) [1–4] has been
one of the most promising candidates for a theory of
fundamental particles and interactions going beyond the
Standard Model (SM); the so-called BSM physics. The
minimal extension of the SM including SUSY, namely,
the minimal supersymmetric Standard Model (MSSM),
extends the particle spectrum of the SM by one additional
Higgs doublet and the supersymmetric partners of all the
SM particles—the sparticles. The supersymmetric exten-
sion of the SM provides a particularly elegant solution to
the problem of stabilizing the electroweak (EW) symmetry
breaking scale against large radiative correction and keeps
the Higgs ‘‘naturally’’ light. In fact, a very robust upper
limit on the mass of the lightest Higgs boson is perhaps one
of the important predictions of this theory. Further, this
upper limit is linked in an essential way to the values of
some of the SUSY breaking parameters in the theory. In
addition, in R-parity conserving SUSY, the lightest super-
symmetric particle (LSP) emerges as the natural candidate
for the dark matter (DM), the existence of which has been
proved beyond any doubt in astrophysical experiments.
The search for evidence of the realization of this symmetry

in nature (in the context of high energy collider experi-
ments, precision measurements at the high intensity B
factories, and in the DM detection experiments) has there-
fore received enormous attention of particle physicists,
perhaps only next to the Higgs boson. The recent observa-
tion of a boson with mass around �125 GeV at the Large
Hadron Collider (LHC) [5] and the rather strong lower
limits on the masses of sparticles that possess strong inter-
actions that the LHC searches have yielded [6] necessitates
careful studies of the MSSM in the context of all the recent
low energy data. In these studies, it is also very important
to seek suitable guiding principles which could possibly
reduce the associated large number of SUSY breaking
parameters of MSSM. Thus, looking for modes of specific
SUSY breaking mechanisms that involve only a few input
quantities given at a relevant scale can be useful. Here, the
soft SUSY breaking parameters at the electroweak scale
are found via renormalization group (RG) analyses. Apart
from the simplicity of having a few parameters as input,
such schemes create challenging balancing acts. On the
one hand, various soft breaking masses and couplings
become correlated with one another in such schemes. On
the other hand, overall one has to accommodate a large
number of very stringent low energy constraints in a com-
prehensive model consisting of only a few parameters. A
simple and well-motivated example of a SUSY model is
the minimal supergravity (mSUGRA) [7]. Here, SUSY is
broken spontaneously in a hidden sector and the breaking
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is communicated to the observable sector where MSSM
resides via Planck mass suppressed supergravity interac-
tions. The model involves soft SUSY breaking parameters
like (i) universal gaugino mass parameter m1

2
, (ii) the uni-

versal scalar mass parameterm0, (iii) the universal trilinear
coupling A0, and (iv) the universal bilinear coupling B0, all
given at the gauge coupling unification scale. In addition,
one has the superpotential related Higgsino mixing
parameter �0 with its associated sign parameter. The two
radiative electroweak symmetry breaking (REWSB) con-
ditions may then be used so as to replace B0 and �0 with
the Z-boson massMZ and tan�, the ratio of Higgs vacuum
expectation values. Similar to mSUGRA, one has other
SUSY breaking scenarios like the gauge mediated SUSY
breaking and models with anomaly mediated SUSY break-
ing (AMSB), etc. [2,3]. Apart from direct collider physics
data, one has to satisfy constraints from flavor changing
neutral current (FCNC), as well as flavor conserving phe-
nomena like the anomalous magnetic moment of muon,
constraints like electric dipole moments associated with
CP violations, or to check whether there is a proper amount
of dark matter content in R-parity conserving scenarios
or proper neutrino masses in R-parity violating scenarios
[1–3]. A single model is yet to be found that can adequately
explain various stringent experimental results, and at the
same time possesses a sufficient degree of predictiveness.
However, it is always important to continue the quest of a
simple model and check the degree of agreement with low
energy constraints.

In this work, we pursue a predictive theory of SUSY
breaking by considering a field theory on a superspace
where the Grassmannian coordinates are essentially fluc-
tuating/stochastic [8–10]. We note that in a given SUSY
breaking scenario, our limitation of knowing the actual
mechanism of breaking SUSY is manifested in the soft
parameters. Here, in a stochastic superspace framework we
assume that a manifestation of an unknown but fundamen-
tal mechanism of SUSY breaking may effectively lead to
stochasticity in the Grassmannian parameters of the super-
space. With a suitably chosen probability distribution, this
causes a given Kähler potential and a superpotential to lead
to soft breaking terms that carry signatures of the stochas-
ticity. As we will see, the SUSY breaking is parametrized
by � which is nothing but 1=h �� ��i, where the symbol hi
refers to averaging over the Grassmannian coordinates.
The other scale that is involved is �. Values of various
soft parameters at this scale are the input parameters of the
scheme. The values of the same at the electroweak scale
are then obtained from these input values by using the
renormalization group evolution. Considering the super-
potential of MSSM, the soft terms obtained are readily
recognized as the ones supplied by the externally added
soft SUSY breaking terms of constrained MSSM
(CMSSM) [3], except that the model is unable to produce
a scalar mass soft term [8]. Reference [8] used � and � as

free parameters while analyzing the low energy signatures
within MSSM.� was chosen betweenMG toMP, the scale
of gauge coupling unification and the Planck mass scale,
respectively. The model as given in Ref. [8] is called the
stochastic supersymmetric model (SSM) and it is charac-
terized by universal gaugino mass parameter m1

2
, universal

trilinear soft SUSY breaking parameter A0, and universal
bilinear soft SUSY breaking parameter B0, all being
related to �, the parameter related to SUSY breaking. We
note that with the bilinear soft SUSY parameter being
given, tan�, becomes a derived quantity.
However, as already mentioned, in spite of the fact that

the SSM generates soft SUSY breaking terms, it produces
no scalar mass soft term. Scalar masses start from zero at
the scale � and renormalization group evolution is used to
generate scalar masses at the electroweak scaleMZ. Scalar
masses at MZ severely constrain the model because typi-
cally scalars are very light. In particular, quite often slep-
tons turn to be the lightest supersymmetric particles or
even become tachyonic over a large part of the parameter
space. This is partially ameliorated when one takes the
high scale � to be larger than the gauge coupling unifica-
tion scale MG � 2� 1016 GeV. However, in spite of ob-
taining valid parameter space that would provide us with a
lightest neutralino as a possible dark matter candidate in
R-parity preserving framework, we must note that the low
values that one obtains for the masses of the first two
generation of squarks are hardly something of an advan-
tage in view of the constraints coming from FCNC as well
as those from the LHC data [6]. On the other hand, SSM
has a natural advantage of being associated with a non-
vanishing trilinear coupling that is favorable to produce a
relatively light spectra for a given value of Higgs boson
mass mh. The recent announcement from the CMS and
ATLAS Collaborations of the LHC experiment about the
discovery of a Higgs-like boson at �125 GeV [5] thus
makes this model potentially attractive. However, as ex-
plored in Ref. [10], SSM as such is unable to accommodate
such a large mh in spite of having a built-in feature of
having a nonvanishing A0. It could at most reach 116 GeV
formh [9,10] and the constraint due to BrðBs ! �þ��Þ as
used in Ref. [10] was much less stringent in comparison to
the same of present day [11]. Furthermore, it is also
important to investigate the effect of the direct detection
rate of dark matter as constrained by the recent
XENON100 data [12].
In this analysis, we would like to give all the input

parameters at the grand unification scale MG, the scale at
which the Standard Model gauge group, namely, SUð3Þ �
SUð2Þ �Uð1Þ, comes into existence. Any evolution above
MG would obviously demand choosing a suitable gauge
group; a question that is not going to be addressed in
this work. In this way we would like to avoid unknown
issues arising out of a post-grand unified theory (GUT)
[13] physics. However, we would rather try to meet the
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phenomenological demand of confronting the issue of
sleptons becoming tachyonic or avoiding scalar masses
to become light in general in a minimal modification by
considering an externally given scalar mass soft parameter
m0 as a manifestation of an additional origin of SUSY
breaking. It would be useful to have the first two gener-
ations of scalar masses adequately heavy so as to overcome
the FCNC related constraints and LHC data [6] on squark
masses. Additionally, this will also be consistent with
having the lighter Higgs boson mass (mh) to be in the
vicinity of 125 GeV. We will henceforth denote the model
as Mod-SSM.

We may note that traditionally minimal versions of
models of SUSY breaking have been extended for phe-
nomenological reasons. It is also true that extending a
minimal model often lowers predictiveness and may even
cause partial dilution of the main motivations associated
with the building of the model. For example, considering
nonuniversal gaugino or scalar mass scenarios may be
more suitable than CMSSM or mSUGRA so as to obtain
a relatively lighter spectra in the context feasibility of
exploring via LHC. Another example may be given in
the context of the minimal AMSB model. As we know, a
pure AMSB scenario [14] is associated with form invari-
ance of the renormalization group equations (RGE) of
scalar masses and absence of flavor violation. However,
it produces tachyonic sleptons. In the minimal AMSB
model [3,15], one introduces an additional common mass
parameter m0 for all the scalars of the theory. This ameli-
orates the tachyonic slepton problem but it is true that we
sacrifice the much cherished feature of form invariance and
accept some degree of flavor violations at the end. We
would like to explore a nonminimal scenario of stochastic
supersymmetry model, namely, Mod-SSM in this spirit.
We particularly keep in mind that the stochastic supersym-
metry formalism may be used not only within the MSSM
framework but it may be extended to superpotentials
beyond that of the MSSM [9]. The fact that the model
with a minimal modification can easily accommodate the
recent Higgs boson mass range by its generic feature of
having a nonvanishing trilinear coupling parameter makes
it further attractive. We believe that our approach of con-
sidering an additional SUSY breaking scalar mass term is
justified for phenomenological reasons.

Thus, in Mod-SSM we consider the input of soft term
parametersm1

2
, B0, and A0 (all are either proportional to j�j

or ��) and a universal scalar mass soft parameter m0, all
being given at a suitable scale which we simply choose as
the gauge coupling unification scale MG considering the
LEP data on gauge couplings could be a hint of the
existence of grand unification. As in Ref. [8], we would
also restrict � to be real, either positive or negative.

We clearly like to emphasize that the SSM framework
produces no scalar mass soft term at a scale �. With � set
to the gauge coupling unification scale MG, SSM is

plagued with tachyonic sleptons. With �>MG, one can
avoid tachyonic scalar, but there is no scope of obtaining
the currently accepted Higgs boson mass. In Mod-SSM, we
consider� ¼ MG and add the extra scalar mass term for an
additional SUSY breaking effect. With the trilinear cou-
pling parameter A0 and the bilinear coupling parameter B0

becoming correlated with m1
2
, Mod-SSM parameter space

is essentially a subset of the one for the CMSSM. In Mod-
SSM, the SSM inspired nonvanishing A0 parameter is
suitable for producing an appropriately large loop correc-
tion to the lighter Higgs boson mass while keeping the
overall sparticle spectra relatively at a lower range.
CMSSM, on the other hand, does not pinpoint with any
fundamental physical distinction/motivation for such a
zone of parameter space that is capable of producing the
correct Higgs mass with similarly smaller sparticle mass
scale. Even if we consider the stochastic superspace model
in its original form as only a toy idea, we believe that it
may be worthwhile to explore it with minimal modifica-
tions in regard to the current Higgs boson mass, as well as
other phenomenological constraints.

II. STOCHASTIC GRASSMANNIAN
COORDINATES AND SUSY BREAKING

As seen in Ref. [8], we consider an N ¼ 1 superspace
where the Grassmannian coordinates � and �� are taken to
be stochastic in nature. One starts with identifying the
terms involving superfields in the superpotential and
the kinetic energy terms that could be used to construct
the SUSY invariant Lagrangian density for a given model.
Each term is then multiplied with a probability distribution
function P ð�; ��Þ and integrated over the Grassmannian
coordinates appropriately. P ð�; ��Þ can be expanded into
terms involving � and �� which obviously has a finite
number of terms because of the Grassmannian nature of
� and ��. One then imposes the normalization conditionR
d2�d2 ��P ð�; ��Þ ¼ 1 and vanishing of Lorentz nonscalar

moments like h�i, h ��i, h� ��i, h�2 ��i, and h� ��2i. The stochas-
ticity parameter � is defined as h��i ¼ 1=��. Here, � is a
complex parameter with mass dimension unity. As com-
puted in Ref. [8], and as worked out in this analysis
explicitly in the Appendix, the above leads to the following
Hermitian probability distribution:

P ð�; ��Þj�j2 ¼ ~P ð�; ��Þ
¼ 1þ ��ð��Þ þ �ð �� ��Þ þ j�j2ð��Þð �� ��Þ:

(1)

For the simple case of a Wess-Zumino type of scenario [3]
where the kinetic term is obtained from �y� and the
superpotential is given as W ¼ 1

2m�2 þ 1
3h�

3, where �

is a chiral superfield, one finds that the effect of stochas-
ticity as described above leads to the following SUSY
breaking term:
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� Lsoft ¼ 1

2
��m�2 þ 2

3
��h�3 þ H:c: (2)

Applying the stochasticity idea to the superpotential of
MSSM, along with considering the effect on the gauge
kinetic energy function, the above formalism leads to the
following tree level soft SUSY breaking parameters to be
given at the high scale �:

(a) universal gaugino mass parameter m1
2
¼ 1

2 j�j,
(b) universal trilinear soft parameter A0 ¼ 2��,
(c) universal bilinear Higgs soft parameter B0 ¼ ��.

Recall that there is no scalar mass soft SUSY breaking
term in SSM. For convenience, we take � to be a real
positive number with an additional input signð�Þ. If we
count the universal gaugino mass parameter m1

2
as the

independent parameter, we have

A0 ¼ signð�Þ:4m1
2
; B0 ¼ signð�Þ:2m1

2
: (3)

As has already been discussed before, we introduce a
nonvanishing scalar mass parameter m0 and fix � at
MG.

1 Thus with the above extension, the input quantities
for the stochastic SUSY model are

m1
2
; m0; signð�Þ; and signð�Þ:

We note that the model quite naturally is associated with
nonvanishing trilinear soft breaking terms. As we will see,
this is quite interesting in view of the recent LHC an-
nouncement for the Higgs mass range centering around
125 GeV [5]. In this analysis, we will discuss only the case
of � < 0 because the other sign of � does not produce a
spectra compatible with the dark matter relic density
constraint.

The requirement of the REWSB then results in the
following relations at the electroweak scale:

�2 ¼ � 1

2
M2

Z þ
m2

HD
�m2

HU
tan 2�

tan 2�� 1
þ �1 � �2tan

2�

tan 2�� 1
;

(4)

and

sin 2� ¼ 2B�=ðm2
HD

þm2
HU

þ 2�2 þ �1 þ�2Þ; (5)

where �i denote the one-loop corrections [16,17]. Here, B
refers to the value of bilinear Higgs coupling at the elec-
troweak scale which has to be consistent with its given
value B0 at MG. B0 is determined via m1

2
apart from a sign

of the stochasticity parameter as mentioned before.
Consequently, tan� is a derived quantity in the model.
B0 at the scale MG and B at the electroweak scale are

connected via the following RGE written here at the one-
loop level:

dB

dt
¼

�
3~�2 ~m2 þ 3

5
~�1 ~m1

�
þ ð3YtAt þ 3YbAb þ Y�A�Þ;

(6)

where t ¼ lnðM2
G=Q

2Þ with Q being the renormalization

scale. ~�i ¼ �i=ð4�Þ for i ¼ 1, 2, 3 refer to scaled gauge
coupling constants (with �1 ¼ 5

3�Y) and ~mi for i ¼ 1, 2, 3

are the running gaugino masses. Yi are the squared Yukawa
couplings, e.g., Yt � y2t =ð4�Þ2 where yt is the top Yukawa
coupling. In this analysis, the value of tan� is determined
via Eqs. (4)–(6) along with B0 ¼ signð�Þ2m1

2
at the scale

MG. We use SuSpect [18] for solving the RGEs and
obtaining the spectra. The code takes tan� as an input
quantity. Hence, we implement a self-consistent method of
solution that starts from a guess value of tan� resulting
into a BðMGÞ that in general would not agree with the input
of B0. Use of a Newton-Raphson root finding scheme
ensures a fast convergence toward the correct value of
tan� when BðMGÞ matches with the input of B0. Here
we stress that we do not encounter any parameter point
with multiple values of tan� in our analysis.2

III. RESULTS

The fact that the model has tan� as a derived quantity
necessitates studying the behavior of the evolution of the
bilinear Higgs parameter B. Figure 1 shows the evolution
of a few relevant couplings for a specimen input of
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FIG. 1 (color online). Evolution of a few relevant couplings for
a specimen input of m1=2 ¼ 600 GeV, m0 ¼ 2 TeV, and �> 0.

With � < 0, one has B0 ¼ �2m1=2 and A0 ¼ �4m1=2. For a

valid parameter point within the model with �> 0, we require
B ¼ BðMZÞ> 0 a necessity in order to have a positive sin 2�
from Eq. (5).

1We note that a vanishing scalar mass parameter at a post-GUT
scale with RG evolution corresponding to an appropriate gauge
group would indeed generate nonvanishing scalar mass terms at
the unification scale MG [13].

2See Ref. [19] for such a general possibility in REWSB where
B0 is given as an input.
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m1=2 ¼ 600 GeV, m0 ¼ 2 TeV, and �> 0 in Mod-SSM.

For � < 0, both B0 as well as A0 are negative, namely,
B0 ¼ �2m1=2 and A0 ¼ �4m1=2. For a valid parameter

point within the model with �> 0, we require BðMZÞ>0
a necessity in order to have a positive sin 2� from Eq. (5).3

We note that the denominator in the right-hand side of
Eq. (5) is the square of pseudoscalar Higgs mass which
needs to be positive. The fact that B is originally negative
at MG and has to change to a positive value at MZ puts a
strong constraint on the parameter space of the model.
Numerically, this results in tan� assuming large values.
In regard to the evolution of A parameters, we defer our
discussion until Fig. 3.

Figure 2 shows a scatter plot of parameter points in the
tan��m1

2
plane that satisfy the REWSB constraints of

Eqs. (4) and (5). As m0 is varied up to 7 TeV and m1
2
up to

2 TeV, tan� is seen to have a range of 32 to 48. The spread
of tan� for a given m1

2
arises from variation of m0. For

smaller values of m1
2
, there is a larger dependence of m0 on

tan�. Hence there is a larger spread of tan� when m0 is
varied. For largerm1

2
, the valid solution of tan� has a lesser

dependence on m0. Hence, for larger m1
2
values the spread

in values of tan� decreases. The white region embedded
within the blue-green area corresponds to parameter points

with no valid solution satisfying REWSB. Typically, the
two REWSB conditions are nonlinear in nature with re-
spect to m1

2
and m0. The code unsuccessfully tries with a

large number of iterations to find consistent �2 and m2
A

solutions for parameter points within the white region (for
all m0Þ. Thus, a lack of a valid tan� for any value of m0

results in the above white region. It is worth mentioning
that the range of valid tan� is much larger for the case of
� > 0 where B stays positive throughout the range from
MG to MZ. This is unlike the case of � < 0 under discus-
sion, where B is negative at MG and necessarily has to
become positive at the electroweak scale, thus adding
stringency to tan� in its range. However, as already men-
tioned, we will not discuss the case of � > 0 further be-
cause of the resulting overabundance of dark matter for the
entire parameter space for this sign of �. Wewill study now
the effect of low energy constraints particularly in the
context of the recent discovery of the Higgs-like boson
[5]. Figure 3 shows the result in them1

2
�m0 plane for �<0.

A sufficiently nonvanishing At (see, for example, Fig. 1)
helps in producing a large loop correction to the lighter
CP-even Higgs boson h. This can be understood by
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FIG. 3 (color online). Constraints shown in the m1
2
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for �> 0 and � < 0 for Mod-SSM. A0 and B0 in the model
satisfy A0 ¼ signð�Þ:4m1

2
and B0 ¼ signð�Þ:2m1

2
. tan� becomes

a derived quantity that varies between 32 and 48. The Higgs
boson limits are shown as two solid blue lines. Brðb ! s	Þ limit
is shown as a maroon dot-dashed line. The lower part corre-
sponds to discarded region via Eq. (9) where the branching ratio
goes below the lower limit of the constraint. BrðBs ! �þ��Þ
limit is shown as a brown solid line of which the lower region
exceeds the upper limit of Eq. (10). The top green region (I)
corresponds to discarded zone via REWSB. The bottom blue-
green region (III) refers to the zone where stau becomes LSP or
tachyonic. The gray region (II) has discontinuous patches of
valid parameter zones, the details of which are mentioned in the
text. Red points/areas falling in region II satisfy the WMAP-7
data only for the upper limit of Eq. (12). Typically, the red points
bordering region III and some part of the extreme left red points
(for very small m1

2
) satisfy both the upper and the lower limits

of Eq. (12).
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FIG. 2 (color online). Scatter plot of parameter points in the
m1

2
� tan� plane whenm0 andm1

2
are scanned up to 7 and 2 TeV,

respectively. Here we only consider the validity of REWSB
constraints of Eqs. (4) and (5). The values of tan� that satisfy
the REWSB constraint vary from 32 to 48. The white region
inside the shaded (blue-green) region corresponds to invalid
parameter points where no consistent solution satisfying
REWSB could be found even after trying with a large number
of iterations. The spread of tan� for a given m1

2
arises from

variation of m0. This spread decreases as m1
2
becomes larger

because of decreased sensitivity onm0 while satisfying REWSB.

3tan� which is the ratio of two vacuum expectation values is
positive. Hence, sin 2� ¼ 2 tan�

ð1þtan 2�Þ is also positive.
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looking at the expression for the dominant part of loop
correction to the Higgs boson mass coming from the top-
stop sector [20–22]

�m2
h ¼

3 �mt
4

2�2v2sin 2�

�
log

M2
S

�mt
2
þ X2

t

2M2
S

�
1� X2

t

6M2
S

��
: (7)

Here, MS ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m~t1m~t2

p
, Xt ¼ At �� cot�, v ¼ 246 GeV,

and �mt is the running top-quark mass that also takes into
account QCD and electroweak corrections. The loop cor-

rection is maximized if Xt ¼
ffiffiffi
6

p
MS. Clearly, a nonvanish-

ing A0 can be useful to increase�m
2
h so thatmh reaches the

LHC specified zone without a need to push up the average
sparticle mass scale by a large amount. As particularly
mentioned in Ref. [8], the SSM is additionally attractive
in this context since it naturally possesses a nonvanishing
and large jA0j. We further note that in this model, the
lighter Higgs boson h has couplings similar to those in
the Standard Model because the CP-odd Higgs boson mass
(mA) is in the decoupling zone [23]. The ATLAS and
CMS results for the possible Higgs boson masses are
126:0� 0:4ðstatÞ � 0:4ðsystÞ GeV and 125:3�0:4ðstatÞ�
0:5ðsystÞGeV, respectively [5]. In regard to MSSM light
Higgs boson mass, we note that there is about a 3 GeV
uncertainty arising out of uncertainties in the top-quark
mass, renormalization scheme, as well as scale dependence
and uncertainties in higher order loop corrections up to
three loop [24–28]. Hence, in this analysis we consider the
following limits for mh:

122 GeV<mh < 128 GeV: (8)

We will outline the other relevant limits used in this
analysis. A SUSY model parameter space finds a strong
constraint from Brðb ! s	Þ. In the SM, the principal con-
tribution that almost saturates the experimental value
comes from the loop comprised of top quark and W boson
[29]. In the MSSM, principal contributions arise from
loops containing top quark and charged Higgs bosons,
and the same containing top squarks and charginos [30].
The chargino loop contributions are proportional to At�,
and this may cause cancellations or enhancements between
the principal terms of the MSSM contribution depending
on the sign of At�. Similar to mSUGRA, both the SSM and
Mod-SSM with � < 0 also typically have At < 0. With
�> 0, this primarily means cancellation between the
chargino and the charged Higgs contributions. This leads
to a valid region for Brðb ! s	Þ for a larger sparticle mass
scale compared to the case of �< 0. Brðb ! s	Þ con-
straint thus favors the positive sign of � by allowing larger
areas of parameter space. We consider the experimental
value Brðb ! s	Þ ¼ ð355� 24� 9Þ � 10�6 [31]. This re-
sults in the following 3
 level zone as used in this analysis:

2:78� 10�4 < Brðb ! s	Þ< 4:32� 10�4: (9)

The above constraint is displayed as a maroon dot-dashed
line. The left region of this line would be a discarded zone.

Next, the fact that the stochastic model with � < 0 selects
appreciably large values for tan� necessitates checking the
Bs ! �þ�� limit. This is required because Bs ! �þ��
increases with tan� as tan 6� and decreases with increase
in mA, the mass of pseudoscalar Higgs boson as m�4

A [32].
We use the recent experimental limit from LHCb [11]:
BrðBs!�þ��Þexp¼ð3:2þ1:4

�1:2ðstat:Þþ0:5
�0:3ðsyst:ÞÞ�10�9. This

is contrasted with the SM evaluation BrðBs!�þ��ÞSM¼
ð3:23�0:27Þ�10�9 [33]. As in Ref. [34], combining the
errors of the LHCb data along with that of the SM result,
one finds the following:

0:67� 10�9 < BrðBs ! �þ��Þ< 6:22� 10�9: (10)

The upper limit of BrðBs ! �þ��Þ is shown as a brown
solid line going across Fig. 3. Parameter values in the
region below this curve lead to values of BrðBs!�þ��Þ
higher than the above limit.
We also compute BrðB ! ���Þ in this analysis. The

SUSY contribution to BrðB ! ���Þ is typically effective
for large tan� and small charged Higgs boson mass scenar-
ios [35]. The experimental data from BABAR [36] reads
BrðBþ ! �þ��Þ ¼ ð1:83þ0:53

�0:49ðstat:Þ � 0:24ðsyst:ÞÞ � 10�4.

The recent result from Belle [37] for B� ! �� ��� that used
the hadronic taggingmethod is given byBrðB� ! �� ���Þ ¼
ð0:72þ0:27

�0:25ðstat:Þ � 0:11ðsyst:ÞÞ � 10�4. The same branch-

ing ratio from Belle extracted by using a semileptonic
tagging method is ð1:54þ0:38

�0:37ðstat:Þþ0:29
�0:31ðsyst:ÞÞ � 10�4

[38]. We use Ref. [39] for the result of averaging all of the
recent Belle and BABAR data which is BrðB ! ��Þexp ¼
ð1:16� 0:22Þ � 10�4. The SM result strongly depends on
the CKM element jVubj and the B-meson decay constant.
We use BrðB ! ��ÞSM ¼ ð0:97� 0:22Þ � 10�4 [39].
Using the above theoretical and experimental errors appro-
priately, we obtain the following:

RðB!���Þ ¼
BrðB ! ���ÞSUSY
BrðB ! ���ÞSM ¼ 1:21� 0:30: (11)

This translates into 0:31<RðB!���Þ < 2:10 at 3
. Here,

BrðB ! ���ÞSUSY denotes the branching ratio in a SUSY
framework, of course including the SM contribution. In
general, we find that the model parameter space of Mod-
SSM is not constrained by B ! ��� since charged Higgs
bosons are sufficiently heavy.
We have not, however, included the constraint from

muon g� 2 in this analysis, considering the tension arising
out of large deviation from the SM value, uncertainty in
hadronic contribution evaluations, and accommodating
SUSY models in view of the LHC sparticle mass lower
limits [40].
We now explore the cosmological constraint for neutra-

lino dark matter relic density [41]. At 3
, the WMAP-7
data [42] are considered as shown below

0:094<�~�0
1
h2 < 0:128: (12)
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The conclusions in regard to the relic density constraint is
additionally found to be sensitive on the top-quark mass in
this model. We divide the dark matter analysis into two
parts depending on (a) the top-quark pole mass set at
173.3 GeV, and (b) using a spread of top-quark pole mass
within its range mt ¼ 173:3� 2:8 GeV following the re-
sult of the recent analysis performed in Ref. [43]. In this
context, we note that the experimental value as measured
by the CDF and D0 Collaborations of Tevatron is m

exp
t ¼

173:2� 0:9 GeV [44].4

A. Analysis with mt ¼ 173:3 GeV:
Underabundant LSP

The lightest neutralino, the LSP of the model, is typi-
cally highly bino dominated except in a few regions where
the Higgsino mixing parameter � turns out to be small.
The parameter points within all of the white region in Fig. 3
have bino-dominated LSP. At this point we note that the
implementation of the REWSB conditions as manifest in
Eqs. (4) and (5) has to be done by keeping in mind
(i) positivity of sin 2�, (ii) positivity of �2, and (iii) the
requirement of B0, A0 being related to m1

2
as given by

Eq. (3), as well as requiring that the lighter chargino
mass lower limit is respected. All these requirements
lead the top green shaded region (labeled as I) to be a
discarded zone. On the other hand, the gray shaded
region (II) has discontinuous zones of valid parameter
points shown in red. The red points have considerably
small values of �, thus giving the LSP a large degree of
Higgsino mixing. Apart from the red points, there are no
solutions in the gray areas of region II. The need to satisfy
the point (i) as explained above along with the requirement
to satisfy the condition (iii) (implemented via a Newton-
Raphson method of finding the correct tan�) stringently
negates the existence of solution zones within region II. As
a result, either there are solutions with appreciably small�
or no solution at all within this region. This on the other
hand leads to a large amount of ~�0

1 � ~��
1 coannihilation.

Such degrees of coannihilations indeed cause the LSP to be
only a subdominant component of DM. Thus, in this part of
the analysis, we consider the possibility of an underabun-
dant dark matter candidate and ignore the lower limit of the
WMAP-7 data. Typically we see that the relic density falls
below the lower limit of Eq. (12) in region II by an order of
magnitude. Such underabundant LSP scenarios have been
discussed in several works [45].

The lower shaded region III is disallowed as the mass of
the stau (~�1) turns negative or it is the LSP. Typically the
red strip near region III refers to the LSP-stau coannihila-
tion5 zone where the relic density can be consistent with
both the upper and lower limits of Eq. (12). Quite naturally,

the coannihilation may be stronger, and this would addi-
tionally produce some underabundant DM points for this
zone. Finally, the leftmost red region (with very small m1

2
)

satisfying WMAP-7 data is discarded by all other con-
straints. We note that only a small region satisfying the
Higgs mass bound is discarded via Brðb ! s	Þ. On the
other hand, the Higgs mass bound line of 122 GeV super-
sedes the constraint imposed by the recent data on inclu-
sive search for SUSY by the ATLAS experiment [6].
The most potent constraint to eliminate a large region of
parameter space with m0 up to 1.5 TeV or so is due to
BrðBs ! �þ��Þ data Eq. (10). The constraint is effective
simply because of the large values of tan� involved in the
model. The discarded part of parameter space via the above
constraint includes a large zone that satisfies the dark
matter limit via LSP-stau coannihilation.
We will now describe the spin-independent direct detec-

tion scattering cross section for scattering of LSP with
proton. The scalar cross section depends on t-channel
Higgs exchange diagrams and s-channel squark diagrams.
Unless the squark masses are close to that of the LSP, the
Higgs exchange diagrams dominate [47]. We note that for
the cases of parameter points with �~�h

2 < ð�CDMh
2Þmin ,

where ð�CDMh
2Þmin refers to the lower limit of Eq. (12),

one must appropriately include the fraction of local DM
density contributed by the specific candidate of DM under
discussion while evaluating the event rate.
This translates into multiplying 
SI

p~�0
1

for such under-

abundant scenarios by 
�=
0. Here, 
� is the actual DM

density contributed by the specific DM candidate contrib-
uting to 
0 where the latter is the local dark matter density.
We thus use 
� ¼ 
0� where � ¼ �~�h

2=ð�CDMh
2Þmin .

On the other hand, � is simply 1 for abundant or over-
abundant dark matter cases. Thus, we conveniently define
� ¼ min f1;�~�h

2=ð�CDMh
2Þmin g [48]. Figure 4 shows the

rescaled cross section as computed via micrOMEGAs
version 2.4 [49]. We wish to emphasize that while some
region of parameter space where the LSP typically has a
large degree of Higgsino component is eliminated via
XENON100 data, as announced in the summer of 2012
[12], a large section of parameter space remains to be
explored via future direct detection of DM experiments.
This consists of both types of coannihilation zones;
namely, the chargino as well as the stau coannihilation
zones. We must also keep in mind the issue of theoretical
uncertainties, particularly the hadronic uncertainties in
evaluating 
SI

p~�0
1

. The strangeness content of nucleon finds

a large reduction in the evaluation of relevant couplings
via lattice calculations [50]. This is not incorporated in
our computation while using micrOMEGAs to calculate
the cross section. Thus, the above itself will cause a
reduction of 
SI

p~�0
1

by almost an order of magnitude.

There is also an appreciable amount of uncertainty of
the local dark matter density [51]. All these points need

4For bottom quark mass we have usedmb
MSðmbÞ ¼ 4:19 GeV.

5See, for example, works in Ref. [46] for various annihilation
processes in relation to SUSY parameter space in general.
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to be kept in mind while evaluating the implications of
Fig. 4 for SUSY models.

B. Analysis with mt ¼ 173:3 � 2:8 GeV:
LSP of right abundance

It is to be noted that in the gray area (shown as region II)
of Fig. 3, the existence of a valid solution depends very
critically on the parameters of the model. It was found that
either (i) we obtain a very small � (barely satisfying the
lighter chargino mass lower limit) in the gray area that
would only provide us with extreme coannihilation be-
tween lighter chargino and LSP leading to underabundance
of DM, or (ii) we find no valid solution at all. The sensi-
tivity arises from the stringency of satisfying REWSB on
the parameter space for this region. In other words, for a
given m1

2
, a small change in assumed m0 for a valid

parameter point would produce a small change in tan�
in the white region producing most probably another valid
parameter point. However, the change may not be allowed
via REWSB, particularly Eq. (5) if the parameter point is
considered in the gray region. Equation (5) means sin 2�
needs to be a positive quantity less than unity. This typi-
cally becomes a severe constraint even if the condition of
satisfying the lighter chargino mass lower limit is met.
With the top-quark mass having a strong influence on
REWSB, it may be useful to investigate whether varying
mt may extract newer valid points within the gray region
that would have a suitable � so as to satisfy a well-
tempered [52] LSP situation. This will then have the right
abundance of dark matter satisfying both the lower and
upper limits of DM in Eq. (12).

The present experimental data on top-quark mass read
m

exp
t ¼ 173:2� 0:9 GeV [44]. Recently, Ref. [43] pre-

dicted the pole mass of top quark to be m
pole
t ¼ 173:3�

2:8 GeV. The analysis used the next-to-next-to-leading

order (NNLO) in the QCD prediction of the inclusive
pp ! t�tþ X cross section and the Tevatron and LHC
data of the the same cross section. The comparison
between the experimental and theoretical results helped
extract the top-quark mass in the modified minimal

subtraction (MS) scheme. This was then used to compute

the pole mass m
pole
t . We now extend our analysis by inves-

tigating the effect of varying top-quark pole mass within

the above range (mpole
t ¼ 173:3� 2:8 GeV) on the solu-

tion space of the model. Indeed, we will see that even with
a variation of 0.9 GeV, the range of experimental error
would be enough to have a substantial effect on the
conclusions.
Figure 5 shows the scattered points that satisfy the

WMAP-7 given range of relic density for the aforesaid

variation ofmt � m
pole
t . Here,m1

2
andm0 are varied up to 2

and 7 TeV, respectively. We see from this figure that the
central value of mtð¼ 173:3Þ GeV as considered in Fig. 3
is indeed the one which has the least amount of possibility
to satisfy the WMAP-7 data. The occurrence of points
which satisfies WMAP-7 data is particularly rare around
this value of mt, near the lower part of the limit of relic
density. We already found that the gray region (region II) of
Fig. 3 is a sensitive zone because of REWSB, where � can
be quite small. For such small values of �, one can only
expect a large degree of ~�0

1 � ~��
1 coannihilation which

results into very small relic density. The latter goes below
the lower limit of Eq. (12). Hence no red point exists near
the bottom blue line of Fig. 5 for this value of mt. On the
contrary, a value of mt less than 1 GeV from the central
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FIG. 4 (color online). Scaled spin-independent ~�0
1 � p scatter-

ing cross section vs LSP mass. The scaling factor is given as
� ¼ �~�h

2=ð�CDMh
2Þmin , where ð�CDMh

2Þmin refers to the

lower limit of Eq. (12).
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FIG. 5 (color online). Relic density satisfied points shown in
red that fall within the lower and upper limits of WMAP-7 data
for the neutralino relic density, when mt is varied by 2.8 GeVon
either side of 173.3 GeV. Herem1

2
andm0 are scanned up to 2 and

7 TeV, respectively, for �> 0 and � < 0. The two blue lines are
the WMAP-7 limits of Eq. (12). The value of mt ¼ 173:3 GeV
as used in Fig. 3 visibly falls in a disfavored zone in the context
of obtaining the correct relic density, particularly toward the
lower limit of Eq. (12).
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value, which is only within the experimental error of mexp
t ,

would cause to have a LSP with correct abundance for DM.
The most favored zone formt, however, would be from 171
to 172 GeV for satisfying the relic density limits. In fact, a
reduced degree of sensitivity for satisfying REWSB is the
reason for obtaining a well-tempered LSP while consider-
ing a top-quark mass little away from the central value.

Figure 6 shows the effect of scanning the top-quark mass
on the m1

2
�m0 plane. Region I shown in green is a dis-

allowed area of parameter space via REWSB similar to
Fig. 3, except that it is now an invalid region for all values
of mt within its limit. Thus, this region is smaller in
extension than the corresponding region of Fig. 3. The
region II is disallowed because of stau turning tachyonic
or the least massive. The constraints from Brðb ! s	Þ and
BrðBs ! �þ��Þ are as shown. The lines denote the
boundary of purely discarded zones irrespective of varia-
tion of mt within its range. The blue line for mh ¼
124 GeV means that mh < 124 GeV for all the region
left of the line irrespective of the value of mt within the
range. The ATLAS specified limit [6] for squarks also falls
well within this left zone. The neutralino relic density
satisfied areas are below region I and above region II.
The red points satisfy both the limits of the WMAP-7
data, and thus correspond to having the right degree of
abundance of DM. On the other hand, we have also shown
blue-green points that only satisfy the upper limit of the
WMAP-7 data. In this part of the analysis, we consider the

LSP to have the correct abundance so as to be a unique
candidate for DM.
Finally, we show the effect of varying mt on the

spin-independent LSP-proton scattering cross section in
Fig. 7. Only the WMAP-7 satisfied points are shown (in
red). Considering an order of magnitude of uncertainty
(reduction), primarily because of the issue of strangeness
content of nucleon as well as astrophysical uncertainties as
mentioned before, we believe that the recent XENON100
data still can accommodate Mod-SSM even while consid-
ering the LSP as a unique candidate of DM.
Table I shows three benchmark points of the model. The

top-quark massmt is as shown for each of the cases. Points
A and B correspond to values of mt which are entirely
within the experimental error. The points A and C corre-
spond to the upper region of Fig. 6, and these two points
correspond to the hyperbolic branch (HB)/focus point (FP)
zone [53,54]. These points are associated with a large
degree of ~�0

1 � ~��
1 coannihilation. The degree of agree-

ment between the desired value of B0 and the one obtained
via the Newton-Raphson iteration may be seen from the
fifth and sixth rows. We allowed a maximum deviation of
1% in the iterative procedure while scanning the parameter
space. A majority of the points are consistent within 0.1%
in this regard. The charginos and the neutralinos are rela-
tively lighter for points A and C in comparison to those in
point B. The scalar particles, on the other hand, are rela-
tively lighter for point B. Undoubtedly, like many SUSY
models analyzed or reanalyzed after the Higgs boson dis-
covery, the spectra is on the heavier side. The fact that A0 is
nonvanishing and adequately large helps in reducing the
average sparticle mass to a great extent compared to van-
ishing A0 scenarios satisfying the current lighter Higgs
boson limit. The mh for point C, however, goes below
the assumed limit of Eq. (8). However, we still believe
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for �> 0 and � < 0 when top-quark mass is varied by 2.8 GeV
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except that it is now a discarded zone for all values of mt within
its limit. The region II is discarded via stau turning the LSP
or turning itself tachyonic for all mt. The constraints from
Brðb ! s	Þ and BrðBs ! �þ��Þ are as shown. The lines show
the boundary of purely discarded zones irrespective of variation of
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than 124 GeV irrespective of values of mt. Three benchmark
points A, B, and C are shown corresponding to Table I.
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that it is within an acceptable zone considering the various
uncertainties to computemh as mentioned before. Points A
and C have larger spin-independent scattering cross section

SI

p� than the XENON100 limit. But, we believe this is

within an acceptable limit considering the existing uncer-
tainties arising out of strangeness content of nucleon, as
well as those from astrophysical origins particularly from
local DM density. Finally, it is also possible to satisfy all
the limits in full subject to a 5%–10% heavier spectra
and/or considering a multicomponent DM scenario.

IV. CONCLUSION

In the SSM [8], one assumes that a manifestation of an
unknown but a fundamental mechanism of SUSY breaking
may effectively lead to stochasticity in the Grassmannian
parameters of the superspace. With a suitable probability
distribution decided out of physical requirements, stochas-
ticity in Grassmannian coordinates for a given Kähler
potential and a superpotential may lead to well-known
soft breaking terms. When applied to the superpotential
of the MSSM, the model leads to soft breaking terms like

the bilinear Higgs coupling term, a trilinear soft term, as
well as a gaugino mass term, all related to a parameter �,
the scale of SUSY breaking. The other scale considered in
the model of Ref. [8] at which the input quantities are given
is �, where the latter can assume a value between the
gauge coupling unification scale MG and the Planck mass
scaleMP. There is an absence of a scalar mass soft term at
� in the original model that leads to stau turning to be the
LSP or even turning itself tachyonic if � is chosen as MG.
This is only partially ameliorated when � is above MG.
However, the model because of its nonvanishing trilinear
parameter is potentially accommodative to have a larger
lighter Higgs boson mass via large stop scalar mixing. As
recently shown in Ref. [10], the model in spite of its nice
feature of bringing out the desired soft breaking terms of
MSSM is not able to producemh above 116 GeV, and it has
a LSP which is only a subdominant component of DM.
In this work, a minimal modification (referred to

as Mod-SSM) is made by allowing a nonvanishing single
scalar mass parameterm0 as an explicit soft breaking term.
Phenomenologically, the above addition is similar to what
was considered in minimal AMSB while confronting the

TABLE I. Spectra of three specimen parameter points A, B, and C as shown in Fig. 6. Results
with marginal deviation from the assumed limits are shown in italics (red). Muon g� 2 is not
imposed as a constraint in this analysis. B0 ¼ BðMGÞ has two entries. The first one is the desired
value while the second one is the value obtained with a suitable tan� as found from the Newton-
Raphson root finding scheme. See text for further details.

Parameter A B C

mt 173.10 173.87 171.58

m1=2 838.78 1239.16 579.69

m0 6123.75 1817.69 4200.55

ðA0 ¼ �4m1=2Þ �3355:13 �4956:64 �2318:75
ðB0 ¼ �2m1=2Þ �1677:56 �2478:32 �1159:37
B0 (as output) �1683:56 �2478:32 �1160:27
tan� (as output) 45.86 40.92 45.11

sgnð�Þ 1 1 1

� 403.86 2508.85 310.43

m~g 2145.53 2727.64 1525.80

m~uL 6247.84 2994.87 4292.70

m~t1 , m~t2 3758.76, 4376.60 1333.10, 2078.60 2587.56, 3026.20

m~b1
, m~b2

4397.10, 4886.58 2054.58, 2339.25 3037.22, 3381.67

m~eL , ~�e 6119.53, 6119.05 1983.72, 1982.21 4197.61, 4196.89

m~�1 , m ~��
4750.43, 5482.91 549.62, 1536.41 3281.31, 3770.25

m~��
1
, m~��

2
406.25, 741.03 1038.00, 2491.42 304.84, 518.70

m~�0
1
, m~�0

2
356.62, 417.02 548.95, 1038.00 241.80, 316.70

m~�0
3
, m~�0

4
424.40, 741.06 2489.56, 2491.14 322.35, 518.80

mA, mH� 2573.69, 2573.69 1967.83, 1967.50 1846.04, 1846.04

mh 124.42 126.55 121.57

�~�1
h2 0.1105 0.1002 0.1106

BFðb ! s	Þ 3:23� 10�4 2:96� 10�4 3:15� 10�4

BFðBs ! �þ��Þ 2:98� 10�9 5:23� 10�9 2:89� 10�9

RðB!��Þ 0.98 0.98 0.97

�a� 5:78� 10�11 1:65� 10�10 1:22� 10�10


SI
p� 3:05� 10�8 1:04� 10�11 2:64� 10�8
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issue of sleptons turning tachyonic in a pure AMSB frame-
work. The modified model successfully accommodates the
lighter Higgs boson mass near 125 GeV. Additionally, it
can accommodate the stringent constraints from the dark
matter relic density, BrðBs ! �þ��Þ, Brðb ! s	Þ, and
XENON100 data on direct detection of dark matter.
A variation of top-quark mass within its allowed range is
included in the analysis, and this shows the LSP to be a
suitable candidate for dark matter satisfying both the limits
of WMAP-7 data. Finally, we remind that the idea of
stochastic superspace can easily be generalized to various
scenarios beyond the MSSM.
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APPENDIX

Using Ref. [8], we consider the following Hermitian
probability distribution:

P ð�; ��Þ ¼ Aþ ���� þ �� _�
�� _� þ ����Bþ �� _�

�� _�C

þ ��
�
� _�

��
_�V� þ ���� �� _�

�� _� þ �� _�
�� _�����

þ ���� �� _�
�� _�D: (A1)

Here, A, B, C, D, and V� are complex numbers. �, ��, ��,

and � are Grassmann numbers.
In order to arrive at the results of Ref. [8], we use the

following [3]: d2� ¼ � 1
4d�

�d��, d2 �� ¼ � 1
4d

�� _�d �� _�,

d4� ¼ d2�d2 ��,
R
d2�ð��Þ ¼ 1,

R
d2 ��ð �� ��Þ ¼ 1,

R
d2� ¼R

d2 �� ¼ 0, and
R
d2��� ¼ R

d2 �� �� _� ¼ 0.
Normalization: First, P ð�; ��Þ should satisfy the normal-

ization condition
R
d2�d2 ��P ð�; ��Þ ¼ 1. All the terms

except the one with the coefficient D vanishes inR
d2�d2 ��P ð�; ��Þ. Thus, D ¼ 1.
Vanishing fermionic moments: Next, we require

vanishing of moments of fermionic type because of the
requirement of the Lorentz invariance. The fact that h��i¼R
d2�d2 ����P ð�; ��Þ¼0 means ��¼0. Similarly, h �� _�i ¼ 0

means �� _� ¼ 0, and h�� �� _	i ¼ 0 leads to V� ¼ 0. Finally,

h�2 �� _�i ¼ 0 gives �� _� ¼ 0, and h�� ��2i ¼ 0 gives �� ¼ 0.

Bosonic moments: We now compute the bosonic
moments.

h��i ¼
Z

d2�d2 ������P ð�; ��Þ

¼
Z

d2�d2 ��ð��Þð �� ��ÞC ¼ C:

Similarly, h �� ��i ¼ B. Calling B ¼ 1=�, one has B ¼ C� ¼
1=�. Furthermore, h�� �� ��i ¼ A. The fact that h�� �� ��i ¼
h��ih �� ��i leads to A ¼ 1=j�j2.
Thus we find the following Hermitian probability

measure for the stochastic Grassmann variables:

P ð�; ��Þj�j2 ¼ ~P ð�; ��Þ
¼ 1þ ��ð��Þ þ �ð �� ��Þ þ j�j2ð��Þð �� ��Þ:

(A2)

We consider the Wess-Zumino model with a single
chiral superfield �. � has the following expansion [3]:

� ¼ �ðxÞ � i�
� ��@��ðxÞ � 1

4
�2 ��2@�@

��ðxÞ

þ ffiffiffi
2

p
�c ðxÞ þ iffiffiffi

2
p �2@�c ðxÞ
� ��þ �2FðxÞ: (A3)

Correspondingly, for �y we have

�y¼��ðxÞþ i�
� ��@��
�ðxÞ�1

4
�2 ��2@�@

���ðxÞ

þ ffiffiffi
2

p
�� �c ðxÞ� iffiffiffi

2
p ��2�
�@� �c ðxÞþ ��2F�ðxÞ: (A4)

The kinetic term of the Lagrangian L is ½�y��D. One
finds

�y� ¼ j�j2 þ ffiffiffi
2

p
�c�� þ ffiffiffi

2
p

�� �c �þ �2��Fþ ��2F��

þ 2 �� �c �c þ i
ffiffiffi
2

p
�2 �� �
�c ½@���� þ ffiffiffi

2
p

�2 �� �c F

� 2i�
� ����½@���þ i
ffiffiffi
2

p
��2�
� �c ½@���

þ ffiffiffi
2

p
��2�cF� þ �2 ��2

�
F�Fþ 1

2
@��

�½@���

� 1

2
��½@��@��þ ic
�½@�� �c

�
: (A5)

Here, X½@��Y ¼ 1
2 ðX@�Y � Y@�XÞ. Upon vanishing the

appropriate surface terms, the D term in particular reads

½�y��D ¼F�Fþ@��
�@��þ i

2
ðc
�@� �c �@�c
� �c Þ:

(A6)

Next, we consider the superpotential W given by
W ¼ 1

2m�2 þ 1
3h�

3. One has

�2 ¼ �2 þ 2
ffiffiffi
2

p
�c�þ �2ð2�F� c c Þ; and

�3 ¼ �3 þ 3
ffiffiffi
2

p
�c�2 þ 3�2ðF�2 � c c�Þ:

(A7)

Thus,
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W ¼
�
1

2
m�2 þ 1

3
h�3

�
þ ffiffiffi

2
p

�c ðm�þ h�2Þ

þ �2
�
m�F� 1

2
mc c þ hF�2 � hc c�

�
: (A8)

The potential energy density term will be as follows:

½WþH:c:�F¼
�
m�F�1

2
mc c þhF�2�hc c�

�
þH:c:

(A9)

Kinetic and potential terms averaged over � and �� and
emergence of soft SUSY breaking terms:

Averaging over the Grassmannian coordinates, we

compute L ¼ hLi ¼ R
d2�d2 �� ~P ð�; ��ÞL. Here L is the

usual super-Lagrangian density: L ¼ �y�þW�ð2Þð ��Þ þ
Wy�ð2Þð�Þ. Then, using Eqs. (A2) and (A5) hLkinetici,
namely, the kinetic part of L is found as

hLkinetici ¼ ½�y��D þ j�j2j�j2 þ ���F� þ ���F
zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{SUSY

:

(A10)

Similarly, the potential energy density averaged over � and
�� is given by

hW þ H:c:i ¼
Z

d2�d2 �� eP ð�; ��ÞðW�ð2Þð ��Þ þWy�ð2Þð�ÞÞ:
(A11)

Using Eqs. (A2) and (A8) we find

hW þ H:c:i ¼
�
��
�
1

2
m�2 þ 1

3
h�3

�zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{SUSY

þ
�
m�F� 1

2
mc c þ hF�2 � hc c�

��
þ H:c: (A12)

The total Lagrangian is then

L ¼ hLi ¼ hLkinetici þ hW þ H:c:i: (A13)

Using Eqs. (A9), (A10), and (A12) we break L into
SUSY invariant and SUSY breaking parts as follows:

L ¼ hLiSUSY þ hLi
SUSY

; (A14)

where

hLi
SUSY

¼ ½�y��D þ ½W þ H:c:�F; (A15)

and

hLi
SUSY

¼ j�j2j�j2 þ ���F� þ ���F

þ
�
��
�
1

2
m�2 þ 1

3
h�3

�
þ H:c:

�
: (A16)

The equations of motion of auxiliary fields are then

F ¼ �ð���þm�� þ h��2Þ; and

F� ¼ �ð��� þm�þ h�2Þ:
(A17)

Substituting F and F� in L; one finds

L ¼ LOn-shell-SUSY þ Lsoft; (A18)

where LOn-shell-SUSY is the usual on shell SUSY invariant
Lagrangian for the interacting Wess-Zumino model and is
given by

LOn-shell-SUSY

¼ @��
�@��þ i

2
ðc
�@� �c � @�c
� �c Þ

�m2j�j2 � h2ðj�j2Þ2

�
��

mhj�j2�þ 1

2
mc c þ hc c�

�
þ H:c:

�
; (A19)

and Lsoft is given by

� Lsoft ¼
��

1

2
��m�2 þ 2

3
h���3

�
þ H:c:

�
: (A20)

We remind that a negative sign in the left-hand side of
Eq. (A20) appears simply because of considering a positive
sign before hW þ H:c:i in Eq. (A13) while writing the
total Lagrangian. We note that it is only the superpotential
term in the original theory that leads to soft breaking terms
in the resulting Lagrangian (m ! ��m and h ! 2��h
going from W to Lsoft). The presence of a vector field
will not lead to any soft SUSY breaking term. This can
easily be seen by considering a vector superfield in Wess-
Zumino gauge.
MSSM: In the MSSM, as mentioned in Ref. [8] the

superpotential term �HuHd will lead to ��� ~Hu
~Hd, and

terms like ŷupQUcHu will lead to 2��ŷup ~Q ~Uc
~Hu as soft

SUSY breaking terms. Here, fields with tildes denote the
scalar component of the corresponding chiral superfields.

One further obtains a gaugino mass term ��
2 �i�

ðiÞ�ðiÞ. Thus,
one finds a universal gaugino mass m1=2 ¼ 1

2 j�j, a bilinear
Higgs soft parameter B� ¼ ��, and a universal trilinear

soft parameter A0 ¼ 2��. With no resulting scalar mass
term, one has the universal scalar mass parameter m0 ¼ 0.
These are the input quantities to be given at a scale�. Low
energy spectra are then found via RG evolutions.
Reference [8] considered � and � as the input quantities
and considered MG <�<MP.
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