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We analyze the prospective impact of supersymmetric radiative corrections on tests of charged current

universality involving light quarks and leptons. Working within the R-parity conserving minimal super-

symmetric Standard Model, we compute the corresponding one-loop corrections that enter the extraction

of the Cabibbo-Kobayashi-Maskawa matrix element Vud from a comparison of the muon-decay Fermi

constant with the vector coupling constant determined from nuclear and neutron � decay. We also revisit

earlier studies of the corrections to the ratio Re=� of pion leptonic decay rates �½�þ ! eþ�ð�Þ� and
�½�þ ! �þ�ð�Þ�. In both cases, we observe that the magnitude of the corrections can be on the order of

10�3. We show that a comparison of the first row Cabibbo-Kobayashi-Maskawa unitarity tests with

measurements of Re=� can provide unique probes of the spectrum of first generation squarks and first and

second generation sleptons.
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I. INTRODUCTION

New physics beyond the Standard Model (BSM) is
widely expected to be discovered at the Large Hadron
Collider (LHC). If so, a key challenge will be to identify
the scenario that best accounts for the collider signatures
and to determine the parameters of the corresponding
Lagrangian. In this respect, high precision measurements
of electroweak precision observables (EWPOs), such as the
muon anomalous magnetic moment, may provide crucial
input. During the first decade of LHC operations, much
of the effort at the intensity frontier or precision frontier
will involve low-energy studies involving hadronic, nu-
clear, and atomic systems (for recent reviews, see, e.g.,
Refs. [1,2]). In this paper, we consider one such class of
observables that involves the weak decays of light quarks
and leptons.

Historically, such studies played a crucial role in testing
and confirming the universality of the Standard Model
(SM) charged current (CC) interaction. The comparison
of Fermi constants extracted from the muon lifetime and
neutron/nuclear � decays, respectively, indicated that the
underlying universality of CC interactions of leptons and
quarks is obscured by the mismatch between quark flavor
and mass eigenstates—leading ultimately to the Cabibbo-
Kobayashi-Maskawa (CKM) matrix—but is otherwise
intact. Today, the most stringent tests of lepton-quark
universality involve the first row CKM unitarity relation,

jVudj2 þ jVusj2 þ jVubj2 ¼ 1: (1.1)

The largest and most precisely known entry in this
relation, Vud is obtained from a comparison of the muon
decay Fermi constant, G� with the corresponding � decay

Fermi (or vector coupling) constant G�
V extracted from

superallowed 0þ ! 0þ nuclear � decays [3]. The value
of Vus is obtained from Ke3 decay branching ratios [4].
For both the nuclear and kaon decays, extraction of the
corresponding CKM matrix element requires theoretical
input (see, e.g., Refs. [3–6]). Given the overall resulting
uncertainty and the much smaller magnitude of Vub, the
latter can be ignored in testing Eq. (1.1). A measure of this
test is given by the quantity

�CKM ¼ ðjVudj2 þ jVusj2 þ jVubj2Þexp � 1; (1.2)

where the exp subscript indicates the value extracted
from experiment with the corresponding theoretical input.
Currently,

�CKM ¼ �0:0001� 0:0006; (1.3)

with comparable uncertainties coming from Vud and Vus

[5]. This agreement with the SM places stringent con-
straints on a variety of BSM scenarios.
A similarly powerful test of CC universality involves the

ratio of pion decay branching ratios

Re=� ¼ �½�þ ! eþ�ð�Þ�
�½�þ ! �þ�ð�Þ� : (1.4)

The theoretical interpretation of this ratio in terms of BSM
physics is remarkably clean, as many hadronic theory
uncertainties that affect the individual branching ratios
cancel from the ratio. Recent work using chiral perturba-
tion theory puts the overall relative error bar at the 10�4

level [7], leading to a present error bar dominated by the
experimental uncertainty:
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�e=� � �Re=�

Re=�

� R
exp
e=� � RSM

e=�

RSM
e=�

¼ �0:0034� 0:0030� 0:0001; (1.5)

where the SM superscript indicates the theoretical SM
prediction [7]. The first error is the experimental and the
second is the theoretical error in the SM prediction for
RSM
e=�.

In what follows, we analyze the sensitivity of �CKM

and �e=� to supersymmetric radiative corrections in the

R-parity conserving minimal supersymmetric Standard
Model (MSSM). (For a discussion of the effects of
R-parity violation, see, e.g., Ref. [8]) Supersymmetry
(SUSY) is one of the most widely considered and strongly
motivated BSM scenarios, and the MSSM represents the
natural starting point for any study of SUSY effects on
EWPOs. Our focus on CC universality tests is motivated by
the prospects of significant improvements in experimental
and theoretical precision in both �CKM and �e=�.

Experiments presently underway at TRIUMF [9] and PSI
[10] aim to reduce the experimental uncertainty in �e=� to

the level of 5� 10�4, and one hopes that future generation
experiments will lead to additional significant reductions.
Similarly, new measurements of the neutron decay corre-
lation parameters using the Proton and Electron Radiation
Channel [11] detector may lead to an overall uncertainty in
jVudj2 of a few times 10�4, while progress in computing
the ratio of pseudoscalar decay constants FK=F� using
lattice QCD may yield a similar improvement in the error
bar on jVusj2. Since radiative corrections involving weak
scale particles generally have the scale �=�� 10�3, it is
interesting to analyze the prospective sensitivity of these
observables to weak scale SUSY.

Previous analyses of CC universality in the R-parity
conserving MSSM have appeared in Refs. [12,13]. The
authors of Ref. [14] performed a model-independent analy-
sis of first row CKM unitarity violation in an effective
operator framework. The author of Ref. [15] analyzed the
effects of right-handed currents in the determinations of
jVubj and jVcbj, specifically in the MSSM. At the time
Ref. [12] appeared, there existed a longstanding �2�
deviation of �CKM from zero. The authors of Ref. [12]
showed—using a semianalytical exploration of the MSSM
parameter space—that the sign of the discrepancy was at
odds with the implications of conventional models for
SUSY-breaking mediation. Subsequently, the remeasure-
ment of kaon decay branching ratios has lead to agreement
with CKM unitarity, assuming the values of the kaon form
factor fþK ð0Þ are taken from lattice QCD computations
[16]. Alternately, one may obtain from the ratio of K‘2

and �‘2 decay widths and lattice QCD computations of the
decay constant ratio FK=F� [17]. Thus, it is interesting
to revisit the analysis of Ref. [12]. In doing so, we carry out
a more general investigation of the relevant MSSM

parameters using a numerical scan that takes into account
relevant experimental constraints. At the same time, we
consider the behavior of �e=� in the same scan, reproduc-

ing the results of Ref. [13] but uncovering a novel corre-
lation with �CKM. We show that the correlation of these
two EWPOs may provide unique diagnostic of the first and
second generation squark and slepton spectrum that may
ultimately be compared with the results of LHC searches if
the latter discover superpartners.
We summarize our findings here:
(i) The generic magnitude of the SUSY corrections is of

order 10�3 or smaller.
(ii) The corrections entering the determination of Vud

(and thus �CKM) are largest for relatively light
charginos and either light first generation squarks
or second generation sleptons. Current collider
bounds on squark masses [18,19], together with the
deviation of the muon anomalous magnetic moment
from the SM expectation, suggest that the scenario
with relatively light charginos and second genera-
tion sleptons is most likely. The effects of first
generation slepton loops on Vud are suppressed.

(iii) SUSY loop contributions to �e=� are largest in

magnitude in the presence of light charginos and
a relatively large mass splitting between the first
and second generation left-handed sleptons. In this
case, the sign of the correction indicates which of
the two slepton generations is lightest.

(iv) Global constraints on SUSY contributions to �CKM

and �e=� from electroweak precision data are rela-

tively weak, since the corrections to gauge boson
propagators cancel in both cases. Our results illus-
trate the more general insensitivity of low-energy CC
observables to the � parameter that is otherwise
strongly constrained by Z-pole observables.

(v) There exist strong correlations between the SUSY
loop corrections to �CKM and �e=� for various

representative slepton and squark spectra for light
charginos. These are given in Table I.

Our discussion of the calculations and analysis leading
to these findings are organized in the remainder of the
paper as follows. In Sec. II, we briefly review � decay
and �‘2 decays. In Sec. III, we set up our computation and
summarize current constraints on the parameters of the
MSSM. In Sec. IV, we numerically evaluate the MSSM

TABLE I. Correlations between �CKM and �e=� [see also
Fig. 10(c)].

Case j�CKMj j�e=�j
Light ~‘2, heavy ~‘1 and ~q1 Large Large

Heavy and nearly degenerate ~‘1 and ~‘2, light ~q1 Large Small

Light ~‘1, heavy and nearly degenerate ~‘2 and ~q1 Small Large

Light and nearly degenerate ~‘1, ~‘2 and ~q1 Small Small

Heavy ~‘1, ~‘2 and ~q1 Small Small
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corrections to �CKM and �e=� for a large space of MSSM

parameters by performing scans over the relevant parame-
ters. We also study the corrections to both quantities as
functions of a single mass parameter with all others held
fixed in order to derive insight into regions where effects
become largest. In Sec. V, we give our conclusions. For the
benefit of readers wishing to carry out their own numerical
studies, we provide expressions for the individual loop
corrections in Appendix A.

II. AN OVERVIEW OF �AND �‘2 DECAYS

The most precise value of Vud is obtained from an
analysis of Q-values, branching ratios, and corrected half
lives or ‘‘ft’’ values from a series of 13 0þ ! 0þ super-
allowed nuclear decays. For a general nuclear or hadronic
decay, the ft values can be expressed in terms of the �
decay vector (V) and axial vector (A) coupling constants,

G�
V;A as

ft ¼ K

ðG�
V Þ2M2

F þ ðG�
AÞ2M2

GT

; (2.1)

K ¼ ℏð2�2 ln2ÞðℏcÞ6=ðmec
2Þ5; (2.2)

where MF and MGT denote the Fermi and Gamow-Teller
transition matrix elements, respectively. For the superal-

lowed decays of interest, MF ¼ ffiffiffi
2

p
and MGT ¼ 0, while

for neutron decay MF ¼ 1 and MGT ¼ ffiffiffi
3

p
.

One obtains Vud by expressing it in terms of G�
V , the

muon decay Fermi constant G�, and electroweak radiative

corrections to both processes:

G�
V ¼ G�Vud½1þ �rðVÞ� ��r��gVð0Þ: (2.3)

Here, �rðVÞ� is the correction to tree-level four-fermion

semileptonic amplitude for � decay and �r� is the corre-

sponding correction for muon decay, while gVð0Þ is an
appropriate hadronic form factor evaluated at zero momen-

tum transfer. Note that the corrections �rðVÞ� and �r� do

not include pure QED corrections to the effective four
fermion interaction. The latter are conventionally com-
puted separately and combined with the corresponding real
photon corrections to the decay rates before extracting the
corresponding Fermi constants. This procedure ensures
the appropriate cancellation of infrared (IR) divergences.
The effects of BSM physics, including contributions from
superpartner loops that we consider here, are incorporated in
the difference

½�rðVÞ� ��r��BSM: (2.4)

Since superpartners are all massive and since our assumption
of R-parity precludes the presence of any massless particles
(photons or gluons) in the one-loop SUSY graphs, our cal-
culation introduces no new IR singularities.

In order to relate the quantity in Eq. (2.4) to �CKM, we

invert Eq. (2.3) to solve for Vud in terms of �rðVÞ� ��r�.

The resulting shift in �CKM due to BSM physics is, thus,
given by

	�CKM ¼ �2jVudj2½�rðVÞ� ��r��BSM: (2.5)

The meaning of this quantity is as follows: if for example

½�rðVÞ� ��r��BSM were positive (negative), then the value

of Vud extracted from G�
V would be decreased (increased)

relative to the value obtained using only SM radiative
corrections, thereby decreasing (increasing) �CKM by
twice the magnitude of the BSM correction (due to squar-
ing of Vud). Conversely, the lower (upper) end of the range

in Eq. (1.3) implies an upper (lower) bound on ½�rðVÞ� �
�r��BSM at a given level of confidence. As we discuss

below, the present error on �CKM is on the verge of allow-
ing one to infer new constraints on the MSSM parameter
space, but further reductions in both experimental and
theoretical uncertainties would be needed in order to do so.
These uncertainties have several sources. Here, we

concentrate on those associated with the determination of
Vud. For the case of neutron decay, the form factor gV is
given by

hfj �u�
djii ¼ �UpðP0Þ
�
gVðq2Þ�
 þ igMðq2Þ

2mN

�
�q
�

�
UnðPÞ;
(2.6)

where ji> is the state of the initial neutron having momen-
tum P; jf> and P0 refer to the final state proton; and q ¼
P0 � P. The conserved vector current (CVC) property
of the SM implies that gVð0Þ ¼ 1. Small corrections due
to isospin breaking have been calculated in Ref. [20] using
chiral perturbation theory. The magnitude is less than 10�4

and can be neglected for present purposes. For the super-
allowed decays, additional isospin-breaking corrections
are incorporated into ‘‘corrected’’ ft values:

F t ¼ ftð1þ 	RÞð1þ 	CÞ; (2.7)

where 	C is a nucleus-dependent isospin-breaking correc-
tion and 	R is an additional nucleus-dependent correction
to the Oð�Þ electroweak radiative corrections.
The current world average for the 13 most precisely

known corrected ft values is [3,5]

F t ¼ 3071:87� 0:83 s; (2.8)

where the nuclear shell model computations of Towner and
Hardy have been used to evaluate the corrections 	R;C and

where the error bar has been increased to include slight
differences with a result obtained using Hartree-Fock
methods. As a result, one obtains

Vud ¼ 0:97425ð14Þð19Þ ðsuperallowedÞ: (2.9)
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The first error is the combined experimental and nuclear
theory error, while the second arises from hadronic uncer-

tainties in the SM contribution to �rðVÞ� [6]. The combined

fractional uncertainty of 0.024% is dominated by the had-

ronic theory error in �rðVÞ� that is common to both the

nuclear and neutron decays.
In contrast to superallowed decays, whose spin-parity

quantum numbers select only the vector current transition,
the neutron lifetime (�n) also depends on the axial vector
coupling

G�
A ¼ G�Vud½1þ�rðAÞ� � �r��gAð0Þ; (2.10)

where �rðAÞ� can in principle differ from �rðVÞ� due to BSM

physics and where gA is the nucleon axial vector form
factor. The value of the latter is not protected from strong
interaction renormalization of the underlying quark axial
current. At present, it is not feasible to compute gAð0Þ
from first principles in the SM with the precision needed
for probes of new physics. Consequently, an additional
neutron decay observable (having a different relative de-

pendence on G�
V and G�

A than �n) must be measured in

order to extract G�
V with sufficient precision. What cur-

rently is the most precise value of G�
V from neutron �

decay was obtained by measuring the neutron lifetime �n
and angular correlations in the decay. (See Ref. [21]). The
angular correlations relate to the ratio,


 ¼ G�
A

G�
V

� gAð0Þ
gVð0Þ ð1þ�rðAÞ� � �rðVÞ� Þ: (2.11)

At present, the value of Vud derived from neutron decay
has a larger uncertainty than that given in Eq. (2.9), owing
largely to the experimental uncertainties in �n and 
.
Improvements in the precision of 
 are expected with
measurements of other neutron decay parameters at the
Fundamental Neutron Physics Beamline at the Oak Ridge
Spallation Neutron Source and with the PERC detector
under construction in Vienna and Heidelberg.

A detailed discussion of the determination of Vus can be
found in Ref. [4]. The result, which we use below, is

Vus ¼ 0:2252� 0:0009: (2.12)

Combining the latter with Eq. (2.9) leads to the result for
�CKM quoted in Eq. (1.3).

We turn now to pion leptonic decays. Theoretically, we
will denote the corrections to the �‘2 decay widths as

�rðAÞ� ð‘Þ � �r� with

�½�þ ! ‘þ�‘ð�Þ� ¼
G2

�jVudj2
4�

F2
�m�m

2
‘

�
1� m2

‘

m2
�

�
2

� f1þ 2½�rðAÞ� ð‘Þ � �r�� þ bremg;
(2.13)

where F� ¼ 92:4 MeV is the pion decay constant and
where the ‘‘(�)’’ and ‘‘þbrem’’ indicate the inclusion of
real radiation as needed to cancel infrared divergences in

the Standard Model contributions to �rðAÞ� ð‘Þ. The sub-
script ‘‘A’’ appears since only matrix elements of the
hadronic axial vector current contribute to pion decays,
in contrast to the determination of Vud for which we are
interested in the hadronic vector current. The ratio Re=� is

then insensitive to any quantities that are lepton-species
independent, such as F�, Vud, and �r�. The resulting

dependence of Re=� and �e=� on BSM physics is then

encoded in the difference

2½�rðAÞ� ðeÞ ��rðAÞ� ð�Þ�BSM: (2.14)

As in the case of Eq. (2.4), the superpartner loop contribu-
tions to the difference (2.14) are free from IR divergences.
The result for �e=� given in Eq. (1.5) has been obtained

from a comparison of the average of separatemeasurements
of Re=� carried out at TRIUMF [22] and PSI [23] and with

theoretical SM prediction [7]. Two new measurements are
underway at these laboratories [9,10] that plan for an ex-
perimental error of �0:0005, comparable to the previous
and longstanding value for the theoretical uncertainty in the
SM prediction. The smaller theoretical error quoted above
is given in a recent two-loop chiral perturbation theory
computation. Part of the reduction in the theory error results
from matching the low-energy constants, or counterterms,
to low-energy QCD in the large NC limit. Assuming both
experiments achieve their planned precision, the resulting
uncertainty in�e=� will be comparable inmagnitude to, but

slightly smaller than, the error in �CKM.
Looking further to the future, we observe that further

reductions in the uncertainties in both �CKM and �e=�

would be needed if these observables are to probe signifi-
cant portions of the MSSM parameter space. In the case of
�e=�, the challenge will be entirely experimental as the

present theory error is smaller than the expected magnitude
of SUSY corrections, particularly in the regime of light
superpartners. For �CKM, one would require progress
from a combination of experiment and hadronic physics
theory. In what follows, we use the magnitude of the
SUSY corrections to set a benchmark for these future
improvements.

III. MSSM RADIATIVE CORRECTIONS

One-loop corrections come in the form of vertex, propa-
gator and box diagrams for both muon decay (�r�) and

light quark decay ½�rðVÞ� ;�rðAÞ� ð‘Þ�. Graphs for the super-

symmetric contributions are shown in Figs. 13–17 of
Appendix A. [Note that we do not show corrections to the
W-boson propagators, since these cancel from the differ-
ences in Eqs. (2.4) and (2.14)]. Explicit results for individ-
ual graphs are given in Appendix A. Here, we outline the

SKY BAUMAN, JENS ERLER, AND MICHAEL J. RAMSEY-MUSOLF PHYSICAL REVIEW D 87, 035012 (2013)

035012-4



general framework for the computation and comment on
some general characteristics.

In the R-parity conserving MSSM, all of the internal
lines involve superpartners. As noted above, the masses of
the latter are much greater than the scale of external
momenta in the decay process, and we encounter no infra-
red (IR) divergences whose effect would have to be com-
pensated by inclusion of real radiation. This situation
contrasts with that of the SM corrections, where the pres-
ence of internal photon and charged lepton lines lead to
soft and collinear IR divergences. As a result, our compu-
tation can be simplified by neglecting external masses and
momenta in the loop integrals.

The SUSY contributions do, however, lead to ultraviolet
(UV) divergences in the vertex and external leg correc-
tions. We regularize these UV divergences using dimen-
sional reduction, working in d ¼ 4� 2� spacetime
dimensions for the momenta and d ¼ 4 dimensions for
the Clifford algebra. Use of the latter is needed to preserve
supersymmetry at one-loop order. Renormalization is car-
ried out by subtracting all terms proportional to 1=�� �þ
ln4� with appropriate counterterms, a procedure known is
‘‘DR renormalization.’’1 All divergences cancel in the

differences �rðVÞ� � �r� and �rðAÞ� ðeÞ � �rðAÞ� ð�Þ (see

Appendix B); the one-loop corrections are finite and insen-
sitive to the UV regulator.

In addition to the cancellation of W-boson propagator
corrections from the differences (2.4) and (2.14), there exist
additional cancellations that simplify the analysis of the
SUSY corrections on the underlying MSSM parameters.

In the case of �rðVÞ� and �r�, the residual finite corrections

to the e�W vertex and electron propagators are identical, so
these corrections cancel from the difference (2.4).
Specifically, denoting the external leg, vertex, and box
corrections as �leg, �vertex, �box respectively and writing

�rðVÞ� ��r� ¼ �leg þ�vertex þ �box; (3.1)

this cancellation implies that

�leg � ��-leg ���-leg (3.2)

is independent of any corrections to the electron propagator,
while all corrections to the e�W vertex cancel from

�vertex � ��-vertex � ��-vertex: (3.3)

The remaining first generation slepton mass dependence
enters via the box graphs, whose contributions are
numerically suppressed [12]. Thus, we expect the SUSY
corrections to �CKM to be largely independent of first
generation slepton masses—an expectation that we

confirm numerically below. Similarly, corrections to the
udW vertex and external light quark fermion propagators
cancel from (2.14), thereby desensitizing �e=� to first

generation squark masses. Thus, we expect

(i) �rðVÞ� ��r� will be most sensitive to details of the

electroweak gaugino, first generation squark, and
second generation slepton spectrum, becoming larg-
est when the latter classes of sfermions are nonde-
generate with one set being relatively light;

(ii) �rðAÞ� ðeÞ ��rðAÞ� ð�Þ will be most sensitive to spec-
tra of electroweak gauginos plus those of the first
and second generation sleptons, becoming largest
when the latter are nondegenerate with, again, one
set being relatively light.

In short, �CKM and �e=� probe, respectively, slepton-

squark and slepton universality in the MSSM.
Given the cancellation of the udW vertex and external

leg corrections from (2.14), �e=� carries no dependence on

the gluino mass at Oð�sÞ. In principle, (2.4) will display
some gluino mass sensitivity since the hadronic CC vertex
and external leg corrections do not cancel. In practice, this
dependence is typically negligible, due to conservation of
the vector current, or CVC. In the case of SM corrections,
CVC implies that in the limit of exact isospin symmetry,
the hadronic vector charged current receives no strong
interaction renormalization. Tiny corrections associated
with the light quark mass differences and electromagnetic
effects that break isospin symmetry may arise. The analog
for the SUSY corrections is that for degenerate up and
down squarks, the gluino loop contributions will cancel
from the sum of vertex and external leg corrections, a
consequence of super CVC [12]. This degeneracy will be
broken by the difference in up and down quark mass
contributions to the squark masses as well as by anymixing
between left- and right-handed squarks. Since the latter is
typically taken to be proportional to quark Yukawa cou-
plings, the breakdown of super CVC will lead to a negli-
gible sensitivity to the gluino mass.

A. Present constraints

Collider searches for superpartners have placed lower
bounds on many of the masses relevant for radiative cor-
rections computed here. Prior to the operation of the LHC,
results from superpartner searches at LEP and the Tevatron
yielded the following lower bounds [4]:

m~
0
1
> 46 GeV; m~
0

2
> 62:4 GeV; m~
0

3
> 99:9 GeV;

m~
0
4
> 116 GeV; m�

~
1
;m�

~
2
> 94 GeV;

m~e > 107 GeV; m ~� > 94 GeV; m~� > 81:9 GeV;

m~q > 379 GeV; m~b > 89 GeV;

m~t > 95:7 GeV; m~g > 308 GeV: (3.4)

1It is common to denote all DR-renormalized quantities with a
hat, viz., �̂r�. We will not do so here, however, to avoid
cumbersome notation.
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In the case of first and second generation squarks and
gluinos, more stringent lower bounds have recently
been reported by the ATLAS and CMS collaborations.
Namely, squark masses are constrained to be above
roughly 1000 GeV [18]. The exact limits on the squark
masses of course depend on assumptions about the MSSM,
and these are summarized in Ref. [19]. However, for
the purposes of this paper, we will simply take m~q >

1000 GeV when illustrating the general implications of
present LHC search results.

In general, electroweak precision observables (EWPOs)
imply additional indirect constraints on the MSSM
parameter space due to superpartner contributions at the
one-loop level.2 To the extent that loop corrections to
EWPOs are dominated by contributions to the electroweak
gauge boson propagators, one may derive constraints using
the oblique parameters. At present, a global analysis of
EWPO leads to the allowed ranges

S ¼ �0:13� 0:10; T ¼ �0:13� 0:11;

U ¼ 0:20� 0:12;
(3.5)

where correlations between the errors are described below.
The corresponding 
2-fit function is


2 ¼ ð�2Þ�1
ij ðSi � �SiÞðSj � �SjÞ; (3.6)

where the indices i and j are summed from 1 to 3, with
i ¼ 1, 2, 3 corresponding, respectively, to S, T, and U. The

quantities �Si are the corresponding central values and are
listed in Eq. (3.5), while the matrix �2 is given as

ð�2Þij ¼ �ij�i�j; (3.7)

where the �i are the errors in the oblique parameters
appearing in Eq. (3.5) and the correlation matrix � is

� ¼
1 0:866 �0:588

0:866 1 �0:392

�0:588 �0:392 1

0
BB@

1
CCA:

TABLE II. Parameter values for plots. All mass scales are in GeV.

Fig. � tan� M1 M2 M3 mL11 mL22 mQ11

1 100–1000 1 50 50 10000 110 110 10000

2(a) and 2(b) 50 1 50 100–1000 10000 110 110 10000

2(c) 50 1 50 500–9500 10000 110 110 10000

3 250 1 150 200 10000 150 100–5000 1000

4 �ð50–1000Þ 1 50–1000 �ð50–1000Þ 10000 110 110 1000

5 �ð50–1000Þ 1 50–1000 �ð50–1000Þ 10000 110 110 1000

6 �ð50–1000Þ 1 50–1000 �ð50–1000Þ 10000 110 110 1000

7 �ð50–1000Þ 1 50–1000 �ð50–1000Þ 10000 110 110 1000

8(a) 75–1000 20 100 150 10000 100 500 200

8(b) 200 20 100 75–1000 10000 100 500 200

9 �ð45–1000Þ 1–50 45–1000 �ð45–1000Þ 10000 45–5000 45–5000 45–1000

10 �ð45–1000Þ 1–50 45–1000 �ð45–1000Þ 10000 45–5000 45–5000 45–1000

11 �ð45–1000Þ 1–50 45–1000 �ð45–1000Þ 10000 45–5000 45–5000 45–1000

12(a) and 12(b) 45 1 45 45 10000 50–2000 5000 500

12(c) and 12(d) 45 1 45 45 10000 5000 50–2000 500

12(e) and 12(f) 45 1 45 45 10000 1000 5000 50–2000
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FIG. 1. 	�CKM vs �. The total correction is given by the light
solid line. The vertex and external leg contribution is given by
the heavy line. The box graph contribution is given by the dashed
line.

2Here, we distinguish EWPO as referring to these indirect
constraints, and LEP as referring to the direct search bounds.
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Setting
2 < 7:815 in Eq. (3.6) defines a 95% confidence
level allowed region for a three parameter fit.3

For each choice of the MSSM parameters that we use to
compute the corrections to the low-energy CC observables,
we also compute the contributions to the oblique parame-
ters. We discard any parameter set that falls outside the
allowed region for the latter. Of course, a more complete

treatment of present EWPO constraints would require
computing nonoblique corrections to each observable,

performing a new global fit, and retaining only those

parameters that satisfy an appropriate criterion for a good-

ness of the fit (see, e.g., Ref. [24]). In the present case,

we find that implementation of the oblique parameter

constraints does not lead to a significant restriction of the

MSSM parameter space that is most relevant to the low-

energy observables. Consequently, we anticipate that a
more comprehensive EWPO analysis is unlikely to yield

significant additional constraints. Nonetheless, our expec-

tations should be checked by a more comprehensive,

model-independent EWPO analysis—a task that goes

beyond the scope of the present study.
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FIG. 2. Corrections as functions of M2. (a) 	�CKM and the contributions to this quantity. The total correction is given by the light
solid line. The vertex and external leg contribution is given by the heavy line. The box graph contribution is given by the dashed line,
(b) The ratio of the box graph correction to the vertex and external leg correction, and (c) The ratio of the box graph correction to the
vertex and external leg correction.

3We note that in many theories of new physics, the oblique
parameter U automatically is very small (see, e.g., Ref. [4]).
Therefore, one might presume that it would be appropriate to
perform a 
2 fit for two oblique parameters instead of three.
However, it turns out that the oblique parameter U is not small
for the scans over MSSM parameters performed in this paper.
This is demonstrated in Figs. 7 and 11.
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IV. PARAMETER SCANS AND
NUMERICAL ANALYSIS

In order to evaluate the possible magnitude of the cor-
rections (2.4) and (2.14), we have scanned over the relevant
MSSM parameters, taking into account the aforementioned
constraints and then computing the resultant CC radiative
corrections. The relevant parameters include gaugino
masses M1, M2, M3; the supersymmetric Higgs-Higgsino
mass parameter �; the ratio of up- and down-type Higgs
vacuum expectation values, tan�; and the slepton and
squark mass matrices m2

L, m
2
R, m

2
Q, m

2
U and m2

D. (We take

the triscalar couplings A‘, Au and Ad to vanish.) To avoid
unacceptably large flavor changing neutral currents, we
have taken the mass matrices to be flavor diagonal. In
what follows, we discuss results of two types of variations
of MSSM parameters. In the first type, we vary a single
MSSM parameter while keeping the other parameters
fixed. In the second type, a random number generator is
used to select parameters distributed uniformly over
ranges. Parameter ranges are listed in Table II. In all
figures, left-right sfermion mass mixings vanish.

The results of our numerical study are indicated by the
plots in Figs. 1–12.

We first observe that the corrections to �CKM are at most
of order 10�3 in the region of relatively light superpartner
masses. On the basis of the size of electroweak couplings
and the masses of superpartners, one might expect correc-
tions to be larger. However, significant cancellations between
loop corrections occur, thereby reducing the magnitude of
the total. These cancellations can be understood in part from
the � dependence shown in Fig. 1. For large �, and light
M1;2, the electroweak gauginos are nearly pure bino, wino,

and Higgsino states—corresponding to the spectrum which
would occur in the limit of unbroken electroweak symmetry.
In this limit, the vertex and external leg corrections for each
Wff interaction sum to a mass-independent constant:

�̂=4�sin2�̂W in the DR scheme [13]. This constant then
cancels exactly in the difference �vertex þ�leg. For this

regime, the box graph contribution �box dominates, so that
the dashed and light solid lines in Fig. 1 nearly coincide.

As � becomes lighter, the cancellation of vertex and
external leg corrections no longer holds. Though �vertex þ
�leg remains finite in this region, it introduces some de-

pendence on the other MSSM parameters and, for very
light superpartners, can lead to corrections of order 10�3

(see the heavy line in Fig. 1). The box graph correction, in
contrast, varies only gently with �. Moreover, its sign is
opposite to that of �vertex þ �leg. Consequently, in the light

� region, the latter cancels against �box. For the particular
parameter choice used in generating Fig. 1, the cancellation
is quite strong, leading to a total correction that is much
smaller in magnitude than that of either �box or �vertex þ
�leg individually. At present, we have no physical explana-

tion for this cancellation, but simply report it as a result.

In Fig. 2(a), we show 	�CKM as a function of M2 for
light �. The same cancellation as indicated above occurs
for light M2 and persists into the heavy M2 region, where
�box and �vertex þ �leg are becoming small individually.

The cancellation becomes exact in the region of M2 �
500 GeV, as we observe from Fig. 2(b). There, we give
the ratio of �box=ð�vertex þ �legÞ as a function of M2. The

ratio becomes close to�1 forM2 in the vicinity of 500 GeV.

Since generically the finite corrections �rðVÞ� and �r�

tend to cancel each other in the difference �rðVÞ� ��r�,

the overall effect on �CKM will be maximized in special
regions of parameter space where one contribution which
otherwise cancels is relatively suppressed. One situation is
the region of a large splitting between the first generation
squark and second generation slepton masses. Given the
present LHC lower bounds on squark masses, such a situ-
ation is phenomenologically more viable for light ~� and

heavy ~u, ~d. In Fig. 3, we show 	�CKM as a function ofm ~�L

for heavy squark masses in the region of light � and M2.
The resulting possibility of an overall correction having

a magnitude comparable to or larger than the present
sensitivity is indicated by the scatter plot in Fig. 4. Here,
we show 	�CKM as a function of the lightest chargino mass
for heavy squarks and light sleptons, scanning over the
remaining electroweak gaugino-Higgsino mass parame-
ters, as indicated in Table II. We also illustrate the impact
of imposing EWPO constraints and direct LEP bounds.
The red points are outside these bounds. Points consistent
with LHC data and all other constraints are black (note that
we have set the squark mass parameter to 1 TeV for this
plot). The impact from the oblique parameter constraints
is negligible. The primary impact from including LEP
constraints is to impose a lower bound on the lightest
chargino mass. The weak dependence on oblique parame-
ter constraints is expected, since the oblique parameters
characterize the impact of superpartner loops on the elec-
troweak gauge boson propagators and since the propagator

 0

 2e-05

 4e-05

 6e-05

 8e-05

 0.0001

 0.00012

 0.00014

 0.00016

 0.00018

 0.0002

 500  1000 1500 2000 2500 3000 3500 4000 4500 5000

δ
∆ C

K
M

mµ~L (GeV)

FIG. 3. 	�CKM as a function of m ~�L.
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corrections cancel from 	�CKM. Scatter plots for the
oblique parameters are shown in Fig. 7.
Form
1 close to the LEP lower bound, 	�CKM can be as

large as 10�3 and have either sign. We note that the
maximum magnitude of 	�CKM is slightly larger than the
present combined experimental and theoretical error.
Further reductions in these uncertainties would be needed
in order for a first row CKM unitarity test to provide a
significant probe of superpartner loop effects. The sign of
	�CKM in Fig. 4 is sensitive to the value of the� parameter,
but not toM1 orM2. The magnitude of 	�CKM in this figure
is sensitive to � and M2, but not M1. This is illustrated in
Fig. 5. An interesting feature of Fig. 5 is the sharp sign
change of 	�CKM as a function of �. This is due to com-
petition between the vertex and external leg contributions to
	�CKM and the box graph contribution. As shown in Fig. 6,
the vertex and external leg contributions are negative,
whereas the box graph contribution is positive. The vertex
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(dark gray).
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and external leg contribution approaches zero in the limit of
large j�j, due to the effects of electroweak symmetry break-
ing becoming negligible in this limit.

Reference [12] investigated superpartner corrections in
special regions of parameter space. The authors of that

work showed that when ~u and ~d had the same masses and
mixing angles, M2

LR � jM2
L �M2

Rj, �~f ¼ M~f2
=M~f1

was

large,

½�rðVÞ� ��r��SUSY � �EM

ðc2W � s2WÞ
32�s2Wc

2
W

lnð�~q2=�
4
~�Þ; (4.1)

where cW is the cosine of the weak mixing angle and
sW is the sine. Under the assumed limits on MSSM pa-
rameters, box graphs can be neglected. Reference [12] also
considered the limit of large sfermion masses and
M2

LR � 0. In this case,

½�rðVÞ� � �r��SUSY � �EM

2�
cosð2�Þ

�
M2

Z

3m2
~q

ln

� m2
~q

hM2
~
i
�

�M2
Z

m2
~�

ln

� m2
~�

hM2
~
i
��

; (4.2)

where hM2
~
i is the squared-mass scale for the charginos and

neutralinos. As a cross-check on our analysis, we have
numerically verified Eqs. (4.1) and (4.2) using our scans
in the limits assumed in Ref. [12].
Turning now to Re=�, we first compare our computation

with the results of Ref. [13]. For completeness, we show
our results in Figs. 8(a), 8(b), and 9(a)–9(c), which agree
with the corresponding graphs in Ref. [13]. In Fig. 9, the
absolute value of �e=� is plotted, in accordance with

Ref. [13]. We also plot the SUSY correction without the
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absolute value in Fig. 10(a). For comparison, we show the
� decay correction for the same set of mass constraints in
Fig. 10(b). The correlation between the � decay correction
and the pion decay correction is shown in Fig. 10. We note
that both Figs. 4 and 10(b) are scatter plots of 	�CKM vs
m
1. However, as noted in Table II, the bounds on the

MSSM parameters are different. In particular, tan� and the
sfermion masses are fixed in Fig. 4 but are not in Fig. 10(b).

The corresponding corrections obtained without using
absolute values are indicated in Figs. 10(a) and 10(b). As
expected, �e=� goes to zero for degenerate first and second

generation sleptons, corresponding to slepton universality.
Away from this regime, the magnitude of �e=� can be as

large as the expected experimental uncertainty of the present
experiments and as much as five times larger than the theo-
retical SM uncertainty when the lightest chargino and lighter
of the two slepton generations is sufficiently light.Moreover,
for ~eL lighter (heavier) than ~�L, the sign of�e=� is negative

(positive). Thus, a reduction in the experimental error to a

level commensurate with the theoretical SM uncertainty
would allow for a significant probe of the MSSM parameter
space, including the nature of the first and second generation
slepton spectrum. Figure 11 shows scatter plots of oblique
parameters corresponding to Figs. 9 and 10.
InFigs. 10(c) and10(d),wegive the correlationbetween the

corrections 	�CKM and �e=�. [Figure 10(c) shows points

inside and outside LHC bounds, whereas Fig. 10(d) only
shows points within LHC bounds. The purpose of Fig. 10(d)
is to show a larger number of points, since only a small portion
of points in Fig. 10(c) are within LHC bounds]. We observe
the existence of three branches in which loop corrections are
enhanced: (a) �e=� is negatively enhanced, but 	�CKM

receives no enhancement; (b) both are enhanced, but �e=�

is positive and 	�CKM is negative; (c) 	�CKM is positively
enhanced, but �e=� receives no enhancement; imposition of

LHC constraints cuts into this branch. As we discuss below,
these features are associated with dependencies of the correc-
tions on sfermion masses, as illustrated in Fig. 12.
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FIG. 11 (color online). Scatter plots of the oblique parameters corresponding to Figs. 9 and 10. (a) U vs S, (b) U vs T, and (c) T vs S.
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FIG. 12. Corrections to �e=� and �CKM, as functions of sfermion masses. (a) 	�CKM vs m~l1
, (b) �e=� vs m~l1

, (c) 	�CKM vs m~l2
,

(d) �e=� vs m~l2
, (e) 	�CKM vs m ~q1 , and (f) �e=� vs m ~q1 .
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First, Figs. 12(a) and 12(b) show the dependence on the
first generation slepton mass for heavy first generation
squarks and second generation sleptons. In the limit of a
small first generation slepton mass but a large second
generation slepton mass, �e=� is enhanced and negative,

but �rðVÞ� � �r� is not. This is due to the fact that �e=�

depends on the difference between the first and second

generation slepton masses, whereas �rðVÞ� � �r� is rela-

tively insensitive to the first generation slepton mass. Thus,
branch (a) corresponds to this sfermion spectrum.

Figures 12(c) and 12(d) then show the dependence on the
second generation slepton mass for heavy first generation
squarks and sleptons. In the limit of a small second generation
slepton mass but large first generation slepton and squark

masses,�e=� and�rðVÞ� ��r� both are positively enhanced,

corresponding to branch (b). In the case of�e=�, this is again

due to the dependence on the difference between first and
second generation slepton masses. Moreover, as discussed

above, the quantity �rðVÞ� ��r� depends on the difference

between the first generation squark and the second generation
sleptonmasses and thus canbecome relatively largewhen one
or the other of these sfermion masses is relatively light.

Finally, Figs. 12(e) and 12(f) show the dependence on the
first generation squarkmass for heavy sleptons. In the limit of
a small first generation squark mass and a large second

generation sleptonmass,�rðVÞ� ��r� is negatively enhanced,

but �e=� receives no enhancement. For this spectrum, one

thus obtains branch (c). As stated previously,�rðVÞ� ��r� is

sensitive to the difference between the first generation squark
and the second generation slepton masses. However, depen-
dence on squarkmasses cancels in�e=�.We also note that the

sign of �rðVÞ� � �r� indicates whether the first generation

squarks or second generation sleptons are heavier.
New results from the LHC raised the limit on the squark

mass. As seen in Figs. 10(c) and 10(d), LHC constraints
contract branch (c). This is because this branch corre-
sponds to the limit of a low squark mass.

V. DISCUSSION AND CONCLUSIONS

Precision tests of CKM unitarity and lepton universality
provide powerful indirect probes of BSM physics. Here,
we have uncovered a novel correlation between MSSM
corrections to first row CKM unitarity and the ratio Re=� of

�‘2 decays that would be indicative of interesting details
for the first and second generation sfermion spectrum.4 If

superpartners are discovered at the LHC, these correlations
could provide a particularly interesting diagnostic tool in
an effort to specify the underlying Lagrangian. For ex-
ample, the observation of a significant and positive devia-
tion of �CKM would either be inconsistent with the present
LHC bounds on first generation squarks—thereby pointing
to the presence of some other new physics—or would
suggest a spectrum for gluinos and first generation squarks
that evades these bounds. On the other hand, agreement of
�CKM with the SM but a significant deviation for �e=�

would indicate heavy first generation squarks, consistent
with the early LHC constraints, but relatively lighter and
nondegenerate first or second generation sleptons, with the
sign of the effect indicating the mass hierarchy.
More generally, the study of these charged current

observables introduces considerable simplifications of the
MSSM parameter space analysis, since superpartner con-
tributions to the gauge boson propagators cancel from the
relevant ratios—thereby weakening the impact of indirect
constraints from electroweak precision data—as do some
classes of vertex plus external leg corrections. In this sense,
the present study provides a concrete illustration of the
unique potential for insight that comparisons of low-energy
CC processes may provide in the LHC era.
As our analysis indicates, application of this diagnostic

tool to the R-parity conserving MSSM requires a precision
of a few times 10�4, at least when a subset of the super-
partners are relatively light. The sensitivities of present tests
of first row CKM unitarity and lepton universality with �‘2

decays are just beginning to probe the relevant region of
MSSM parameter space. Importantly, however, the pros-
pects for more sensitive probes are promising, particularly
in light of reduced hadronic uncertainties in the SM predic-
tions forRe=�. In the case of first row CKMunitarity, similar

reductions in the hadronic uncertainties associated with SM

contributions to�rðVÞ� ��r� and with the determination of

Vus, along with commensurate reductions in the experimen-
tal uncertainty in the determination of Vud from nuclear and
neutron � decay, would be desirable.
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APPENDIX A: LOOP GRAPHS

In this appendix, we give explicit expressions for one-
loop graphs involving Standard Model superpartners,
which contribute to � decay corrections. Specifically, we
give results for external leg, vertex and box graphs which

contribute to �rðVÞ� and �r�. Extensive discussions of the

4As noted in Sec. II, we computed apparent violations of first
row CKM unitarity, due to the measured value of jVudj possibly
deviating from the value appearing in the MSSM Lagrangian.
(Standard Model assumptions go into the measurement of jVudj).
We did not compute corrected values of CKMmatrix elements in
an effective Lagrangian or � functions for CKM parameters. For
a study of the latter, see, e.g., Ref. [25].
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corrections entering �e=� appear in Ref. [13] so we do not

reproduce them here.

1. External leg corrections

A generic external leg contribution for either � decay or
muon decay is shown in Fig. 13. The general result for an
electroweak correction given by Fig. 13 is

�ð13Þ
diagram¼ g2

ð4�Þ2
1

2

� �
C

�
�
��

2
�
Z 1

0
dxx logððxm2

~f0 þð1�xÞm2
XÞ=�2Þ

�
;

(A1)

where m~f0 and m
 are the masses of the ~f0-field and the

~
-field respectively in Fig. 13. A similar result holds for a
supersymmetric QCD correction, except with the weak
coupling g replaced with the strong coupling gs. The super-

script on �ðdiagramÞ
leg indicates that the quantity is the contri-

bution to the external leg correction from a single diagram,
in contrast to the total external leg correction �leg given in

Eq. (3.1). The variable x is the Feynman parameter. The
coefficient of 1=2 in front of the Feynman parameter integral
is due to the fact that the square root of the fermion field
strength renormalization appears in a coupling correction.
The quantity � is the ’t Hooft scale. The quantity C is

C ¼ �ðjgLj2 þ jgRj2Þ; (A2)

where gL and gR are couplings defined in Fig. 14. This
computation was performed in dimensional reduction. The
term �� is given as

�� ¼ 1

�
� �þ logð4�Þ þOð�Þ; (A3)

where � is the dimensional reduction parameter defining
the loop diagram in d ¼ 4� 2� dimensions, and � is the
Euler-Mascheroni constant. Both �� and � cancel in

�rðVÞ� � �r�.

Tables III and IV list the values of the coefficient C from
Eq. (A1) for external leg contributions to � decay and
muon decay. According to the convention in Ref. [26],
ZL is the selectron mixing matrix, Z� is the sneutrino
mixing matrix, ZU is the up squark mixing matrix and

ZD is the down squark mixing matrix. According to the
convention in Ref. [27], N is the neutralino mixing matrix,
and U and V are the chargino mixing matrices. We note
that unlike the other mixing matrices, absolute values do
not appear on N in Tables III and IV. This is because N is
an orthogonal matrix whose components are real.

2. Vertex corrections

Generic vertex graph corrections are shown in Fig. 15.
The correction due to the vertex graph in Fig. 15(a) has the
general form,

�ð15aÞ
vertex ¼ � g2

ð4�Þ2
ffiffiffi
2

p
H

�
��

2
�

Z 1

0
du

Z 1

0
d!!

� log½ð! �m2
~f
þ ð1�!Þm2




þ�m2
~f
!ð1� 2uÞ=2Þ=�2�

�
; (A4)

where

�m 2
~f
¼

m2
~f1
þm2

~f2

2
; (A5)

TABLE III. The values of C from Eq. (A1), for the external leg
graphs in � decay. Note that the weak coupling g is replaced by
the strong coupling gs for the diagrams involving the gluino �G.

f ~f0 
 C

u ~ui 
0
j � 1

2 jZ1i
U j2ðNj2 þ tan�WNj1=3Þ2

u ~di 
j �jUj1j2jZ1i
D j2

u ~ui �G � 8
3 jZ1i

U j2
d ~ui 
C

j �jVj1j2jZ1i
U j2

d ~di 
0
j � 1

2 jZ1i
D j2ðNj2 � tan�WNj1=3Þ2

d ~di �G � 8
3 jZ1i

D j2

FIG. 14. The tree-level interaction between f, 
 and ~f0. The
value of this vertex interaction is igðgLPL þ gRPRÞ.

FIG. 13. A one-loop correction to the graph for an external
fermion leg. The internal scalar ~f0 is a sfermion. The internal

-field is a chargino, a neutralino or a gluino, depending on the
specific diagram. (We shall use similar notations for subsequent
loop diagram figures). The fermion-sfermion interactions are
defined according to Fig. 14.

TABLE IV. The values of C from Eq. (A1), for the external leg
graphs in muon decay.

f ~f0 
 C

� ~‘i 
0
j � 1

2 jZ2i
L j2ðNj2 þ tan�WNj1Þ2

� ~�J 
C
j �jVj1j2jZ2J

� j2
��

~‘i 
j �jUj1j2jZ2i
L j2

�� ~�J 
0
j � 1

2 jZ2J
� j2ðNj2 � tan�WNj1Þ2

SKY BAUMAN, JENS ERLER, AND MICHAEL J. RAMSEY-MUSOLF PHYSICAL REVIEW D 87, 035012 (2013)

035012-16



�m2
~f
¼ m2

~f2
�m2

~f1
; (A6)

m~f1
is the mass of the ~f1-particle in Fig. 15(a), m~f2

is the

mass of the ~f2-particle, and m
 is the mass of the


-particle. The values of H for different vertex graphs
are given in Tables V and VI.

The correction due to the vertex graph in Fig. 15(b) has
the form,

�ð15bÞ
vertex¼� g2

ð4�Þ2
ffiffiffi
2

p �
�1

�
��

2
�
Z 1

0
du

Z 1

0
d!! logðD=�2Þ

�

þm
1
m
2

�4

Z 1

0
du

Z 1

0
d!

!

D

�
; (A7)

where

D ¼ ð1�!Þm2
~f
þ! �m2


 þ!ð1� 2uÞ�m2

=2; (A8)

where m~f is the mass of the sfermion ~f in the figure,

�m 2

 ¼ m2


1
þm2


2

2
; (A9)

�m2

 ¼ m2


2
�m2


1
; (A10)

m
1
is the mass of the 
1-particle, and m
2

is the mass of

the 
2-particle. The quantities �1 and �4 are given as

�1 ¼ g2	L g1Lðaþ bÞ (A11)

TABLE V. The values of H from Eq. (A4), for the vertex graphs of the type shown in Fig. 15(a), for � decay. Note that the weak
coupling g is replaced with the strong coupling gs for the graph involving the gluino �G.

f1 f2 ~f01 ~f02 
0 H

d u ~di ~ui0 
0
j � 1

2
ffiffi
2

p Zki	
D Z1i

DZ
ki0	
U Z1i0

U ðNj2 þ tan�WNj1=3Þð�Nj2 þ tan�WNj1=3Þ
d u ~di ~uj �G � 8

3
ffiffi
2

p Z	kj
U Z1j

U Z
	ki
D Z1i

D

TABLE VI. The value ofH from Eq. (A4), for the vertex graph of the type shown in Fig. 15(a),
for muon decay.

f1 f2 ~f01 ~f02 
0 H

� ��
~‘i ~�J 
0

j
1

2
ffiffi
2

p ZkJ	
� Z2J

� Zki	
L Z2i

L ðNj2 � tan�WNj1ÞðNj2 þ tan�WNj1Þ

FIG. 15. Vertex corrections involving superpartners. The internal fermion in Fig. 15(a) is a neutralino or a gluino. The W � ~f1 � ~f2
interaction in Fig. 15(a) is defined as �igGLLðq1 þ q2Þ�, where q1 is the momentum of ~f1 and q2 is the momentum of ~f2. The
W � 
1 � 
2 interaction in Fig. 15(b) is given as ig��ðaþ b�5Þ. The ~f� f1 � 
1 interaction is given as �igðg1LPL þ g1RPRÞ, and
the ~f� f2 � 
2 interaction is �igðg2	L PR þ g2	R PLÞ. The fermion-s-fermion interactions in both Figs. 15(a) and 15(b) are defined

according to Fig. 14.

TABLE VII. The values of �1 from Eq. (A7), for the vertex graph shown in Fig. 15(b), for � decay.

f1 f2 ~f 
1 
2 �1

d u ~ui 
�
j 
0

j0
1

2
ffiffi
2

p V	
j1jZ1i

U j2ðNj02 þ tan�WNj01=3Þð�Nj02Vj1 þ Nj04Vj2=
ffiffiffi
2

p � Nj02Uj1

� Nj03Uj2=
ffiffiffi
2

p þ Nj02Uj1 þ Nj03Uj2=
ffiffiffi
2

p � Nj02Vj1 þ Nj04Vj2=
ffiffiffi
2

p Þ
d u ~di 
0

j 
j0
1

2
ffiffi
2

p Uj01jZ1i
D j2ð�Nj2 þ tan�WNj1=3ÞðNj2V

	
j01 � Nj4V

	
j02=

ffiffiffi
2

p þ Nj2U
	
j01 þ Nj3U

	
j02=

ffiffiffi
2

p

þ Nj2U
	
j01 þ Nj3U

	
j02=

ffiffiffi
2

p � Nj2V
	
j01 þ Nj4V

	
j02=

ffiffiffi
2

p Þ
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and
�4 ¼ g2	L g1Lða� bÞ; (A12)

where a and b are interaction terms described in the
caption of Fig. 15. The coupling gL is defined in Fig. 14.

The quantities g1L and g2L represent gL for the f1 and f2
interactions in Fig. 15(b). The values of �1 and �4

for different graphs are given in Tables VII, VIII, IX,
and X.

TABLE IX. The values of �1 from Eq. (A7), for the vertex graph shown in Fig. 15(b), for muon decay.

f1 f2 ~f 
1 
2 �1

� �� ~�J 
�
j 
0

j0
1

2
ffiffi
2

p V	
j1jZ2J

� j2ðNj02 � tan�WNj01Þð�Nj02Vj1 þ Nj04Vj2=
ffiffiffi
2

p � Nj02Uj1

� Nj03Uj2=
ffiffiffi
2

p þ Nj02Uj1 þ Nj03Uj2=
ffiffiffi
2

p � Nj02Vj1 þ Nj04Vj2=
ffiffiffi
2

p Þ
� ��

~‘i 
0
j 
j0 � 1

2
ffiffi
2

p Uj01jZ2i
L j2ðNj2 þ tan�WNj1ÞðNj2V

	
j01 � Nj4V

	
j02=

ffiffiffi
2

p þ Nj2U
	
j01 þ Nj3U

	
j02=

ffiffiffi
2

p

þ Nj2U
	
j01 þ Nj3U

	
j02=

ffiffiffi
2

p � Nj2V
	
j01 þ Nj4V

	
j02=

ffiffiffi
2

p Þ

TABLE X. The values of �4 from Eq. (A7), for the vertex graph shown in Fig. 15(b), for muon decay.

f1 f2 ~f 
1 
2 �4

� �� ~�J 
�
j 
0

j0
1

2
ffiffi
2

p V	
j1jZ2J

� j2ðNj02 � tan�WNj01Þð�Nj02Vj1 þ Nj04Vj2=
ffiffiffi
2

p � Nj02Uj1 � Nj03Uj2=
ffiffiffi
2

p � Nj02Uj1

� Nj03Uj2=
ffiffiffi
2

p þ Nj02Vj1 � Nj04Vj2=
ffiffiffi
2

p Þ
� ��

~‘i 
0
j 
j0 � 1

2
ffiffi
2

p Uj01jZ2i
L j2ðNj2 þ tan�WNj1ÞðNj2V

	
j01 � Nj4V

	
j02=

ffiffiffi
2

p þ Nj2U
	
j01 þ Nj3U

	
j02=

ffiffiffi
2

p

� Nj2U
	
j01 � Nj3U

	
j02=

ffiffiffi
2

p þ Nj2V
	
j01 � Nj4V

	
j02=

ffiffiffi
2

p Þ

FIG. 16. Box graph contributions to �rðVÞ� .

TABLE VIII. The values of �4 from Eq. (A7), for the vertex graph shown in Fig. 15(b), for � decay.

f1 f2 ~f 
1 
2 �4

d u ~ui 
�
j 
0

j0
1

2
ffiffi
2

p V	
j1jZ1i

U j2ðNj02 þ tan�WNj01=3Þð�Nj02Vj1 þ Nj04Vj2=
ffiffiffi
2

p � Nj02Uj1

� Nj03Uj2=
ffiffiffi
2

p � Nj02Uj1 � Nj03Uj2=
ffiffiffi
2

p þ Nj02Vj1 � Nj04Vj2=
ffiffiffi
2

p Þ
d u ~di 
0

j 
j0
1

2
ffiffi
2

p Uj01jZ1i
D j2ð�Nj2 þ tan�WNj1=3ÞðNj2V

	
j01 � Nj4V

	
j02=

ffiffiffi
2

p þ Nj2U
	
j01

þ Nj3U
	
j02=

ffiffiffi
2

p � Nj2U
	
j01 � Nj3U

	
j02=

ffiffiffi
2

p þ Nj2V
	
j01 � Nj4V

	
j02=

ffiffiffi
2

p Þ
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3. Box graph corrections

At one-loop order, there are box graph corrections to �rðVÞ� and �r�, as shown in Figs. 16 and 17. The individual box

graph contributions �box for either � decay or muon decay take one of two forms:

�
ðdiagramÞ
box ¼ g2

ð4�Þ2 Am
2
Wm
m
0

Z 1

0
dx

Z 1�x

0
dy

Z 1�x�y

0
dz½xm2


 þ ym2

0 þ zm2

~f
þ ð1� x� y� zÞm2

~f0 ��2 (A13)

or

�
ðdiagramÞ
box ¼ g2

ð4�Þ2 Bm
2
W

Z 1

0
dx

Z 1�x

0
dy

Z 1�x�y

0
dz½xm2


 þ ym2

0 þ zm2

~f
þ ð1� x� y� zÞm2

~f0 ��1; (A14)

FIG. 17. Box graph contributions to �r�.
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depending on the individual graph. Both equations de-
scribe box graphs for muon decay and for � decay. The
coefficients A and B are products of mixing matrices. The
values of A and B are given in Tables XI, XII, XIII, and
XIV.

APPENDIX B: CANCELLATIONS OF
DIVERGENCES

The Fermi constants for � decay and muon decay both
receive divergent corrections arising from vertex and ex-
ternal leg graphs (box graphs are finite). In the limit of no
electroweak symmetry breaking, the weak couplings me-
diating � decay and muon decay are the same. When
electroweak symmetry is broken, loop corrections generate
a difference between the two. However, the difference is
finite (i.e., divergences cancel between � decay and muon

decay). This is because divergences are due to effects in the
UV, and the scale of electroweak symmetry breaking is
finite.
In this appendix, we illustrate the cancellation of diver-

gences. Specifically, we show that the divergent part of the

difference �rðVÞ� � �r� is zero.

We define �div to be the divergent part of �rðVÞ� ��r�.

We may express �div as

�div ¼ �div
leg þ�div

vertðaÞ þ�div
vertðbÞ; (B1)

where �div
leg is the contribution to �div from external legs,

�div
vertðaÞ is the contribution from vertex corrections of the

type shown in Fig. 15(a), and �div
vertðbÞ is the contribution

from vertex corrections of the type shown in Fig. 15(b).
According to Eq. (A1) and Tables III and IV,

�div
leg ¼

g2

ð4�Þ2
�
��

4

��
� 1

2
jZ1i

U j2
�
Nj2 þ 1

3
tan�WNj1

�
2 � 1

2
jZ1i

Dj2
�
Nj2 � 1

3
tan�WNj1

�
2

þ 1

2
jZ2i

L j2ðNj2 þ tan�WNj1Þ2 þ 1

2
jZ2J

� j2ðNj2 � tan�WNj1Þ2
�
� g2s

ð4�Þ2
�
��

4

��
8

3
jZ1i

U j2 þ
8

3
jZ1i

Dj2
�
: (B2)

TABLE XII. The values of B from Eq. (A14), for the � decay box graphs in Fig. 16.

Fig. B

16(a) jVj1j2Z1J
� Z1i	

U Z1i
U ðNj02 þ tan�WNj01=3ÞZ1J	

� ðNj02 � tan�WNj01Þ
16(b) �jUj01j2Z1i0

L jZ1i
D j2ðNj2 þ tan�WNj1Þð�Nj2 þ tan�WNj1=3ÞZ1i0

L

TABLE XIII. The values of A from Eq. (A13), for the muon decay box graphs in Fig. 17.

Fig. A

17(c) �U	
j1V

	
j1Uj01Vj01Z

2J	
� Z1J

� Z1i
L Z

2i	
L

17(d) �Z1J	
� Z2J

� Z1i	
L Z2i

L ðNj2 � tan�WNj1ÞðNj2 þ tan�WNj1ÞðNj02 þ tan�WNj01ÞðNj02 � tan�WNj01Þ
17(e) Uj01Vj01jZ1J

� j2jZ2i
L j2ðNj2 � tan�WNj1ÞðNj2 þ tan�WNj1Þ

17(f) U	
j1V

	
j1jZ1i

L j2jZ2J
� j2ðNj02 þ tan�WNj01ÞðNj02 � tan�WNj01Þ

TABLE XIV. The values of B from Eq. (A14), for the muon decay box graphs in Fig. 17.

Fig. B

17(a) jVj1j2jZ1J0
� j2jZ2J

� j2ðNj02 � tan�WNj01ÞðNj02 � tan�WNj01Þ
17(b) jUj01j2jZ2i

L j2jZ1i0
L j2ðNj2 þ tan�WNj1ÞðNj2 þ tan�WNj1Þ

17(g) Z2J
� Z1J	

� Z2i
L Z

1i	
L ðNj2 � tan�WNj1ÞðNj2 þ tan�WNj1ÞðNj02 � tan�WNj01ÞðNj02 þ tan�WNj01Þ

TABLE XI. The values of A from Eq. (A13), for the � decay box graphs in Fig. 16.

Fig. A

16(c) �V	
j01Uj01Z

1J	
� Z1J	

� jZ1i
D j2ðNj2 � tan�WNj1Þð�Nj2 þ tan�WNj1=3Þ

16(d) U	
j1V

	
j1jZ1i0

L j2Z1i
UZ

1i
UðNj02 þ tan�WNj01ÞðNj02 þ tan�WNj01=3Þ

SKY BAUMAN, JENS ERLER, AND MICHAEL J. RAMSEY-MUSOLF PHYSICAL REVIEW D 87, 035012 (2013)

035012-20



By the orthogonality of N and the unitarity of the other mixing matrices,

�div
leg ¼

g2��

ð4�Þ2
�
2

9

�
tan2�W � g2s��

ð4�Þ2
�
4

3

�
: (B3)

According to Eq. (A4) and Tables V and VI,

�div
vertðaÞ ¼

g2

ð4�Þ2
�
��

2

��
1

2
Zki	
D Z1i

DZ
ki0	
U Z1i0

U ðNj2 þ tan�WNj1=3Þð�Nj2 þ tan�WNj1=3Þ

� 1

2
ZkJ	
� Z2J

� Zki	
L Z2i

L ðNj2 � tan�WNj1ÞðNj2 þ tan�WNj1Þ
�
þ g2s

ð4�Þ2
�
��

2

�
8

3
Z	kj
U Z1j

U Z
	ki
D Z1i

D: (B4)

By the orthogonality of N and the unitarity of the other mixing matrices,

�div
vertðaÞ ¼ � g2��

ð4�Þ2
�
2

9

�
tan2�W þ g2s��

ð4�Þ2
�
4

3

�
: (B5)

According to Eq. (A7) and Tables VII and IX,

�div
vertðbÞ ¼ � g2

ð4�Þ2
�
��

2

��
1

2
V	
j1jZ1i

U j2ðNj02 þ tan�WNj01=3Þð�Nj02Vj1 þ Nj04Vj2=
ffiffiffi
2

p � Nj02Uj1 � Nj03Uj2=
ffiffiffi
2

p

þ Nj02Uj1 þ Nj03Uj2=
ffiffiffi
2

p � Nj02Vj1 þ Nj04Vj2=
ffiffiffi
2

p Þ þ 1

2
Uj01jZ1i

Dj2ð�Nj2 þ tan�WNj1=3ÞðNj2V
	
j01 � Nj4V

	
j02=

ffiffiffi
2

p

þ Nj2U
	
j01 þ Nj3U

	
j02=

ffiffiffi
2

p þ Nj2U
	
j01 þ Nj3U

	
j02=

ffiffiffi
2

p � Nj2V
	
j01 þ Nj4V

	
j02=

ffiffiffi
2

p Þ

� 1

2
V	
j1jZ2J

� j2ðNj02 � tan�WNj01Þð�Nj02Vj1 þ Nj04Vj2=
ffiffiffi
2

p � Nj02Uj1 � Nj03Uj2=
ffiffiffi
2

p þ Nj02Uj1

þ Nj03Uj2=
ffiffiffi
2

p � Nj02Vj1 þ Nj04Vj2=
ffiffiffi
2

p Þ þ 1

2
Uj01jZ2i

L j2ðNj2 þ tan�WNj1ÞðNj2V
	
j01 � Nj4V

	
j02=

ffiffiffi
2

p

þ Nj2U
	
j01 þ Nj3U

	
j02=

ffiffiffi
2

p þ Nj2U
	
j01 þ Nj3U

	
j02=

ffiffiffi
2

p � Nj2V
	
j01 þ Nj4V

	
j02=

ffiffiffi
2

p Þ
�
: (B6)

By the orthogonality of N and the unitarity of the other mixing matrices,

�div
vertðbÞ ¼ 0: (B7)

By Eqs. (B1), (B3), (B5), and (B7),

�div ¼ 0: (B8)

Thus, we have demonstrated that the divergent part of �rðVÞ� � �r� vanishes.
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