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Three-step cascade decays into two invisible particles and two visible particles via two intermediate on-

shell particles develop cusped peak structures in several kinematic distributions. We study their basic

properties and demonstrate that the masses of the missing particles and the intermediate particles can be

determined by the cusp and endpoint positions. Effects from realistic considerations such as finite decay

widths, the longitudinal boost of the mother particle, the initial state radiation, and spin correlations are

shown to be under control for the processes illustrated.
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I. INTRODUCTION

At the energy frontier, the LHC experiments are taking
us to an unprecedented territory of the terascale physics
beyond the Standard Model (SM). At the cosmo frontier,
we have entered an era of precision cosmology. With
much progress made in the two frontiers, we have to admit
that our understanding of the Universe is still far from
being complete. According to the precise measurements of
the cosmic microwave background fluctuations, such as
WMAP [1], about 95% of the components of the current
Universe have never been directly observed in the labora-
tory. The dominant component (� 72%) is dark energy
that is responsible for the accelerating expansion of the
Universe [2]. The second dominant (� 23%) is cold dark
matter (CDM), which is assumed to be in a form of non-
relativistic matter but cannot be explained within the SM.
Even in the realm of particle physics, the SM is regarded as
an effective theory below a certain scale, albeit its extraor-
dinary success in explaining current experimental data
with incredibly high precision. For example, theoretical
unnaturalness of the SM, dubbed as the gauge hierarchy
problem, suggests new physics beyond the SM at the TeV
scale. Therefore, there is a very intriguing possibility that
such CDM components appear in new particle physics
models.

Indeed particle physics has theoretical answers for the
astrophysical question about CDM. One of the most popu-
lar scenarios is a thermal production of weakly interacting
massive particles [3]. In this scenario, a stable particle X
had been once in thermal equilibrium in the early history of
the Universe but later got frozen out as its reaction rate
became slower than the expansion rate of the Universe.
The stability of the CDM particle over cosmic time is often
attributed to an unbroken parity symmetry or a discrete
symmetry. Under such a symmetry, the SM particle fields
are in the trivial representation while new particle fields are
in some nontrivial representation. The decay of the lightest
new particle into SM particles is prohibited. The current

observation highly suggests that the CDM particle has its
mass at the electroweak scale and its couplings with a size
of weak interaction. Some popular models with weakly
interacting massive particles are supersymmetric models
with R parity [4], the universal extra dimension (UED)
model with Kaluza-Klein (KK) parity [5], and the littlest
Higgs model with T parity [6].
This weakly interacting massive particle is likely to be

produced at the LHC and to be identified by missing
transverse energy. The measurement of its mass is of
crucial importance to reveal the identity of the CDM, but
a very challenging task at the LHC because such invisible
particles are produced in pairs. With large errors especially
in jet energy measurements, the combinatoric complica-
tions disentangle the indirect information on the missing
particle mass. In the literature, many new ideas to measure
the CDM mass have been proposed [7], such as endpoint
methods [8], polynomial methods [9,10], MT2 methods
[11–14], and combined methods [15].
Recently, we have proposed a new approach to measure

the missing particle mass by using the singular structures in
the kinematic distributions of the antler decay [16,17]. The
antler decay is a resonant decay of a parity-even particle D
into a pair of the missing particles (X1 and X2) and a pair of
SM visible particles (a1 and a2) through two on-shell
parity-odd intermediate particles (B1 and B2), as depicted
in Fig. 1. We have studied two kinds of singular structures,
a cusp and an endpoint. The positions of cusps and end-
points determine the masses of the missing particle as well
as the intermediate particle, if the mother particle massmD

is known from other decay channels, directly into two SM
particles.1

Following are a few merits of this method: (i) the posi-
tions of the cusps and endpoints are stable under the spin
correlation effects since they are purely determined by the
phase space; (ii) a cusp as a sharp and nonsmooth peak is

1This is possible since the particle D has even parity.

PHYSICAL REVIEW D 87, 035004 (2013)

1550-7998=2013=87(3)=035004(17) 035004-1 � 2013 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.87.035004


statistically more advantageous to search than an endpoint
and more identifiable to observe than a kink; (iii) the
simple configuration of outgoing particles can reduce com-
binatoric complication which is commonly troublesome in
many missing particle mass measurement methods; (iv) the
derived analytic functions of some kinematic distributions
allow us to reconstruct the mass parameters by best fitting.

As a companion of Ref. [17], this paper focuses on
another decay topology of a parity-even particle D into
two visible particles and two missing particles, the cascade
decay shown in Fig. 2. In this process, the mother particle
D decays through three steps in series, finally ended up
with a missing particle X2. There are two nontrivial types
of this decay, Type I and Type II, according to at which step
the first missing particle X1 is produced. Unlike the antler
decay case with one kind of intermediate particle, the
cascade decay involves two different intermediate parti-
cles. We thus need to fix one more unknown mass, which
requires more independent observables. The study of the
basic properties of cusps and endpoints to determine all of
the unknown masses is our main purpose. The cusp in the
invariant mass distribution of the Type I cascade decay has
been discussed in the context of new physics models with
the CDM particle stabilized by Z3 symmetry [18].

The rest of the paper is organized as follows. In Sec. II,
we categorize all possible kinematic variables from the
four-momenta of the two visible particles. Section III deals
with the Type I cascade decay. We present the expressions
of cusps and endpoints of various kinematic distributions
in a common case where ma1 ¼ ma2 ¼ 0 and mX1

¼ mX2
.

The functional form of the invariant mass distribution is
also given. The general mass case is to be discussed in the

Appendix. In Sec. IV, we present the corresponding results
for the Type II cascade decay. Section V is devoted to
realistic considerations such as the finite widths of the
intermediate particles, the longitudinal boost of the mother
particle D, the initial state radiation (ISR), and the spin
correlation. We then conclude in Sec. VI.

II. KINEMATICS OF CASCADE DECAY
TOPOLOGY WITH TWO MISSING PARTICLES

We consider the four-body cascade decay of a heavy
particle D through three sequential steps. The cascade
decay into a single missing particle and three visible par-
ticles has been extensively studied in the literature. In a
supersymmetry model, a good example is the process of

~q! q~�0
2 ! q‘n ~‘! q‘n‘f ~�

0
1. In the UED model, we

have Qð1Þ ! Zð1Þq! Lð1Þ‘nq! Bð1Þ‘f‘nq. Here ‘nð‘fÞ
denotes the near (far) lepton with respect to the mother
particle. In principle, three observable particles provide
enough information to determine all of the unknown
mass parameters [7,8]. However, there are some difficulties
in extracting proper information, especially because of
combinatoric complications. It is hard to distinguish ‘n
from ‘f. Furthermore, the mother particle D is to be pair

produced due to its odd parity, yielding another decay
chain in the event.
Here we consider the three-step cascade decay with two

missing particles. The mother particle D is of even parity
and thus its single production is allowed. The final states
are simply two visible particles (a1 and a2) with missing
transverse energy. There is no combinatoric complication
when forming the invariant mass of two visible particles. In
addition, if the rest frame of D in the transverse direction
can be determined, we can use the transverse momenta of
a1 and a2 as additional information. As shall be shown
below, some transverse momentum variable distributions
accommodate cusps.
The cascade decays of D! a1a2X1X2 can be classified

according to at which step the first missing particle, say X1,
is produced. We fix that the other missing particle X2 is
from the last step. If X1 is also from the last step, the final
intermediate particle B is just missing and this decay is
indistinguishable from a two step cascade decay. We do not
consider this case. Then, there are two nontrivial three-step
cascade decays, as depicted in Fig. 2. In the Type I decay,

FIG. 2. The cascade decay topology of a parity-even particle D into two missing particles (X1 and X2) and two visible particles (a1
and a2).

FIG. 1. The antler decay topology of a parity-even particle D
into two missing particles (X1 and X2) and two visible particles
(a1 and a2).
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X1 is from the second step. The mother particle D decays
into a visible particle a1 and a new particle C, followed by
the decay of C into a missing particle X1 and a new particle
B. Finally B decays into a visible particle a2 and a missing
particle X2. In the Type II decay, X1 is from the first step:D
decays into CX1, followed by C! a1B, and finally B!
a2X2. In the viewpoint of two observable particles a1 and
a2, this Type II decay is a two-step cascade decay of a new
heavy particle C. As shall be shown, there is no cusp
structure in Lorentz-invariant distributions.

It is useful to describe the kinematics in terms of the
rapidity of a massive particle i,

�ðkÞi ¼
EðkÞi
mi

; (1)

where EðkÞi and mi are the energy and mass of the particle i
in the rest frame of a particle (system) k. To avoid con-
fusion, we adopt the following rapidity notations for the
Type I and Type II decays:

Type I Cascade Type II Cascade

rapidity notation �i �i

(2)

For the sake of simplicity, we omit the superscript specify-
ing the reference frame when the rapidity is defined in the
rest frame of its mother particle.

With the four-momenta k1 and k2 of the two observable
particles a1 and a2 in the lab frame, respectively, we
consider the following observables in three categories:

(1) Lorentz invariant observables: the invariant mass of
a1 and a2,

m ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk1 þ k2Þ2

q
: (3)

(2) Longitudinal-boost invariant observables:
(a) the magnitude of the transverse momentum of a

visible particle ai,

pTi ¼ jkT
i j; (4)

(b) the magnitude of the transverse momentum of
the a1-a2 system,

pT ¼ jkT
1 þ kT

2 j; (5)

(c) the transverse mass of the a1-a2 system,

mT ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
T þm2

q
: (6)

(3) Noninvariant observables:
(a) cosine of �i, the angle of the visible particle ai

in the c.m. frame of a1 and a2, with respect to
their c.m. moving direction,

cos� ¼ kðaaÞ1 � kðDÞ
jkðaaÞ1 jjkðDÞj : (7)

Here the bold-faced letter denotes the three-vector momen-
tum, k ¼ k1 þ k2, and the superscript ðDÞ and ðaaÞ denote
the D-rest frame and the c.m. frame of a1 and a2, respec-
tively. We note that the cos� variable is observable only if
the rest frame of the mother particle D is reconstructed.
As shall be shown, pTi and mT distributions show cusp

structures if the mother particleD is produced at rest in the
transverse direction. These additional cusp structures are
very valuable to determine all of the unknown masses. At a
hadron collider, however, reconstructing the transverse rest
frame of D is not feasible since strong QCD interactions
always yield sizable ISR, which causes transverse kick to
the mother particle D. The cusps and endpoints in the D
rest frame get affected. In Sec. V, we study the ISR effects
on the mT and pTi cusps and endpoints.
The final comment in this section is on the simplifying

assumption about mass parameters. In general, the
involved seven particles (D, C, B, a1, a2, X1, X2) may
have different masses. However, the cascade decay pro-
cesses in many new physics models have massless visible
particles and the same kind of invisible particles. In the
main text, therefore, we consider only the following case:

ma1 ¼ ma2 ¼ 0; mX1
¼ mX2

: (8)

The results for the most general case with seven different
masses are presented in the Appendix.

III. TYPE I CASCADE DECAY

As illustrated in Fig. 2, the Type I cascade decay is the
decay of a parity-even particleD into two missing particles
X1 and X2 and two visible particles a1 and a2 through

DðPÞ ! Cþ a1ðk1Þ; C! Bþ X1;

B! a2ðk2Þ þ X2:
(9)

Here D, C, a1, and a2 are parity even while B, X1, and X2

are parity odd. In order to accommodate the Type I cascade
decay, we need at least two heavy parity-even particles.
One good example is found in the UED model [19]. It is

based on a single flat extra dimension of size R, compacti-
fied on an S1=Z2 orbifold. All of the SM fields propagate
freely in the whole five-dimensional spacetime. Each field
has an infinite number of KK excited states. Since the KK
parity is conserved, the lightest KK particle with odd KK
parity is stable and becomes a good candidate for the
CDM. Usually the first KK mode of theUð1ÞY gauge boson
Bð1Þ is the lightest KK particle [19,20]. All of the second
KK states of the SM particles have even KK parity and
mass of �2=R. Lower limit of 1=R * 400 GeV is set
based on the combination of the constraints from the �
parameter [21], the electroweak precision tests [22], the
muon g� 2measurement [23], the flavor-changing neutral
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currents [24], the direct searches by the D0 collaborations
at the Tevatron [25], and the ATLAS and CMS collabo-
rations [26]. The second KK modes are within the reach of
the LHC. Possible Type I cascade decays are

Zð2Þ ! ‘n þ Lð2Þ ! ‘n þ Bð1ÞLð1Þ ! ‘n þ Bð1Þ þ ‘fB
ð1Þ;
(10)

gð2Þ ! qn þ qð2Þ ! qn þ Bð1Þqð1Þ ! qn þ Bð1Þ þ qfB
ð1Þ:
(11)

Now we present the cusps and endpoints of m, mT , pT ,
pTi, and cos� distributions in terms of the masses. For the
simple case in Eq. (8), there are two independent rapidities,
�B and �C, given by

cosh�B ¼ mC

2mB

�
1þ m2

B

m2
C

�m2
X

m2
C

�
;

cosh�C ¼ mD

2mC

�
1þ m2

C

m2
D

�
:

(12)

We will also use En and Ef, the energy of the near visible

particle a1 and the far visible particle a2 in its mother’s rest
frame, respectively:

En ¼ mD

2

�
1� m2

C

m2
D

�
; Ef ¼ mB

2

�
1�m2

X

m2
B

�
: (13)

For illustration, we take three sets for the mass parame-

ters in Table I. The Mass–A1 is motivated by the Zð2Þ decay
in Eq. (10). The KK masses are determined by the UED
model parameters of �R ¼ 20 and 1=R ¼ 500 GeV,
where � is the cutoff scale [19]. Almost equal spacing in
the KK mass spectrum leads to very degenerate masses,
i.e.,mD � mC � 2mB � 2mX. The Mass–B1 case has sub-
stantial mass gaps for each pair of adjacent masses. Finally
the Mass–C1 case has a sizable mass gap between mC and
mB þmX.

For the precise mass measurement using the singular-
ities, it is necessary to have visible cusp and endpoint. A
sharp cusp is considered as a visible one. The visibility of
an endpoint is determined by the functional behavior near
the endpoint, either fast dropping or long-tailed. We take
the former as a visible endpoint.

A. Invariant mass m distribution

We first discuss the distribution of the invariant mass
m of two visible particles. The differential decay rate
d�=dm is

d�

dm
/
8<
:
2�Bm; for 0<m<m

cusp
cas1 ;

m ln
ðmmax

cas1
Þ2

m2 ; for m
cusp
cas1 <m<mmax

cas1;
(14)

where the cusp and endpoint are

ðmcusp
cas1Þ2 ¼ 4EnEfe

�C��B ; ðmmax
cas1Þ2 ¼ 4EnEfe

�Cþ�B :

(15)

Note that the functional behavior of d�=dm is the same as
that of the antler decay [17]. The general case with seven
different masses is discussed in the Appendix.
The degree of the sharpness of the m cusp is deduced

from Eq. (14). The d�=dm function is linear in m for
m<mcusp

cas1 and a concave function for mcusp
cas1 <m<mmax

cas1.

At m ¼ mmax
cas1=e, the concave function reaches its maxi-

mum. If mmax
cas1=e < m

cusp
cas1 , which is equivalent to �B < 1,

the cusp can be considered to be pronounced.
In Fig. 3, we show the normalized differential decay rate

d�=dm for the three mass parameter sets in Table I. In
order to compare the shapes of cusps only, we present it as
a function of m=mmax

cas1. The vertical lines denote the posi-
tions of m

cusp
cas1 in units of mmax

cas1. The Mass–A1 case with
�B ¼ 0:12 has a very sharp m cusp. The Mass–B1 case
with �B ¼ 0:60 shows a triangular shape with a cusped
peak. However, the Mass–C1 case with �B ¼ 1:16 has a
dull cusp. The endpoints for all of three cases are
fast dropping, as suggested by the concave function
in Eq. (14).

TABLE I. Test mass spectrum sets for the Type I cascade
decay. All of the masses are in units of GeV.

mD mC mB mX �B

Mass–A1 1045.7 1023 514.2 500.9 0.12

Mass–B1 600 400 200 100 0.60

Mass–C1 600 500 150 100 1.16

FIG. 3 (color online). The normalized differential decay rate of
the invariant mass of two visible particles, d�

�dm for the Type I

cascade decay. The masses are in Table I.
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B. Transverse mass mT distribution

Figure 4 shows the normalized differential decay rate
d�=dmT , which is defined in the rest frame of D. For all of
three cases, the mT distributions show visible cusp struc-
tures. Even the Mass–C1 case, which has a dull cusp in the
m distribution, has a quite sharp cusp. This is contrasted to
the antler decay case where there is no cusp in the mT

distribution [17]. As shall be shown in the next section, the
Type II cascade decay also has a cusp in the mT distribu-
tion. Therefore the presence of the mT cusp signals the
cascade decay topology. The cusp and maximum positions
in terms of the masses are

ðmTÞcuspcas1 ¼ En þ Efe
�C��B ;

ðmTÞmax
cas1 ¼ En þ Efe

�Cþ�B ;
(16)

where En and Ef are in Eq. (13).

C. The system pT distribution

Figure 5 shows the normalized distribution of the trans-
verse momentum pT of two visible particle system. For all
of the three mass spectra in Table I, the pT distribution has
smooth peak without a cusp structure. The endpoint of pT

distribution is

ðpTÞmax
cas1 ¼ En þ Efe

��Cþ�B : (17)

Only the Mass–A1 case has the endpoint of fast-dropping
shape, which is attributed to very small momentum transfer
to the visible particles. More general cases of Mass–B1 and
Mass–C1 have long-tailed endpoints. The pT distribution is
not useful for the mass measurement.

D. Single particle pTi distribution

We show the individual transverse momentum pTi dis-
tributions in Fig. 6. The thin solid line labeled by ‘‘near’’
(‘‘far’’) is the pTi distribution of the near visible particle a1
(the far visible particle a2). The pTf distribution has both

the cusp and the endpoint structures. On the contrary, the
pTn distribution has only an endpoint of a suddenly ending
shape, which holds true for all of the mass cases. The
positions of the cusp and the endpoint in the pTf distribu-

tion are given by

ðpTfÞcuspcas1 ¼ Efe
�C��B ; ðpTfÞmax

cas1 ¼ Efe
�Cþ�B ; (18)

and the endpoint in the pTn distribution is located at

ðpTnÞmax
cas1 ¼ En: (19)

However, we cannot distinguish a1 from a2 event by
event. Therefore we consider a more practical observable,
the sum of two pTi distributions. The thick lines in Fig. 6
represent the sum. Depending on whether ðpTnÞmax

cas1 >

ðpTfÞmax
cas1 or not, the summed distribution shows very differ-

ent shape. For the former case as in Mass–A1, the spiky
ðpTnÞmax

cas1 stands outside the pTf distribution, which reveals

the pTf cusp and endpoint. For the later case as in Mass–B1

and Mass–C1, the ðpTnÞmax
cas1 peak lies in the middle of pTf

distribution. The pTf cusp gets distorted and thus barely

visible.

E. cos� distribution

The variable cos� in Eq. (7) is defined by the angle of
one visible particle. We have two cos� distributions for a1
and a2, which cannot be distinguished. In Fig. 7, therefore,

FIG. 4 (color online). The normalized differential decay rate of
the transverse mass of two visible particles, d�

�dmT
for the Type I

cascade decay. The masses are in Table I.

FIG. 5 (color online). The normalized differential decay rate of
the transverse momentum of two visible particles, d�

�dpT
for the

Type I cascade decay for the masses in Table I.
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we present the summation of two cos�i distributions in the
rest frame of D for Mass–A1 and Mass–B1 cases. It is
symmetric about cos� ¼ 0 and has two cusp structures,

cos�cusp1
cas1 and cos�cusp2

cas1 , marked by the vertical arrows. In

terms of masses, they are

cos�
cusp1
cas1 ¼

En � Ef expð�B � �CÞ
En þ Ef expð�B � �CÞ ;

cos�
cusp2
cas1 ¼

En � Ef expð��B � �CÞ
En þ Ef expð��B � �CÞ :

(20)

In the Mass–A1 case, cos�cusp1
cas1 stands on a steep slope,

which is difficult to probe. The Mass–B1 case shows two
pronounced cusps.

IV. TYPE II CASCADE DECAY

Type II cascade decay is a chain decay of

DðPÞ ! Cþ X1; C! Bþ a1ðk1Þ;
B! a2ðk2Þ þ X2:

(21)

A good example can be found in the minimal supersym-
metric standard model,

H=A! ~�0
1 þ ~�0

2; ~�0
2 ! ‘n þ ~‘; ~‘! ‘f þ ~�0

1:

(22)

As in the Type I cascade decay, we restrict ourselves to
the realistic cascade decay with ma1 ¼ ma2 ¼ 0 and

mX1
¼ mX2

. Then there are two independent rapidities,

�C and �B,

cosh�B ¼ mC

2mB

�
1þ m2

B

m2
C

�
;

cosh�C ¼ mD

2mC

�
1þ m2

C

m2
D

� m2
X

m2
D

�
:

(23)

For illustration, we consider three mass sets for the Type II
cascade decay in Table II.

A. Invariant mass m distribution

We first study the distribution of the invariant mass of a1
and a2. Note that in the viewpoint of a1 and a2, this Type II
cascade decay is a three-body decay of the mother particle
C. The presence of the invisible X1 decayed from D does
not change any Lorentz invariant result. Them distribution

is the same as that of, i.e., m‘‘ of the decay ~�0
2 ! ‘n ~‘!

‘n‘f ~�
0
1 in the minimal supersymmetric standard model.

This m‘‘ distribution is well known to have no cusp
structure. The endpoint is [27],

FIG. 7 (color online). The summed distributions of cos�i in
the Type I cascade decay for the masses in Table I.

FIG. 6 (color online). The normalized differential decay rate of the transverse momentum of one visible particle, d�
�dpTi

for the Type I
cascade decay. In the Mass–A1 case, the line labeled by ‘‘near’’ (‘‘far’’) denotes the pTi distribution of a1 (a2). Thick lines are the
summed distributions of pTi.
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ðmmax
cas2Þ2 ¼ m2

C

�
1�m2

B

m2
C

��
1�m2

X

m2
B

�
: (24)

In Fig. 8, we show the m distribution for three sets of the
mass parameters in Table II, all of which have right-angled
triangle shapes without a cusp.

The absence of a cusp in a two-step cascade decay can
be understood by a simple kinematic configuration. For the
antler decay (D! B1 þ B2 ! a1X1 þ a2X2) in the mass-
less visible particle case (ma1 ¼ ma2 ¼ 0), the following

four critical points correspond to a kinematic singular
structure [17]:

1D configuration ma1a2

(a2  B2 �D !B1 )a1
)a2  B2 �D !B1 (a1
)a2  B2 �D !B1 )a1
(a2  B2 �D !B1 (a1

max
cusp
min
min

(25)

Here we simplify the picture as a one-dimensional case. It
is clear to see that mmin

a1a2 happens when two observable

particles move in the same direction, while one of two
kinematic configurations of back-to-back moving visible
particles corresponds to either mmax

a1a2 or m
cusp
a1a2 . For a

two-step cascade decay (C! a1 þ B! a1 þ a2X2), a1
and a2 in one-dimensional space have only two indepen-
dent kinematic configurations, moving in the same direc-
tion and moving in the opposite direction. The former
corresponds to the minimum m, while the latter to the
maximum m. There is no critical point left for the cusp.

B. Transverse mass mT distribution

Unlike the invariant mass distribution, the mT distribu-
tion contains the information about the transverse momen-
tum of the first missing particle X1. As shown in Fig. 9,
there is a cusp here. We stress once again that this mT cusp
appears only when D is produced at rest in the transverse
direction.
Another interesting feature is that the position of the mT

cusp is nothing but the m maximum,

ðmTÞcuspcas2 ¼ mmax
cas2: (26)

This nontrivial equality is a unique feature of the Type II
cascade decay.

C. System pT distribution

The total pT distributions for the Type II cascade decay
are shown in Fig. 10. All of the three mass sets have smooth
pT distributions, and their endpoints are all long tailed.
This feature is common for the antler, Type I, and Type II
cascade decay topology.

D. Single particle pTi distribution

Figure 11 shows the distribution of the individual trans-
verse momentum of the near a1 and the far a2. The near
pTn distribution has a sharp cusp and a fast dropping

TABLE II. Test mass spectrum sets for the Type II cascade
decay. All of the masses are in units of GeV.

mD mC mB mX mmax

Mass–A2 614 299 222 161 138.0

Mass–B2 600 300 200 100 193.6

Mass–C2 400 250 150 120 120.0

FIG. 8 (color online). The normalized differential decay rate of
the invariant mass of two visible particles, d�

�dm for the Type II

cascade decay. The mass spectrum sets are described in Table II.

FIG. 9 (color online). The normalized differential decay rate of
the transverse mass of two visible particles, d�

dmT
for the Type II

cascade decay. The mass spectrum sets are described in Table II.
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endpoint. The pTf distribution has a long-tailed endpoint

without any cusp. In terms of masses, they are simply

ðpTnÞcuspcas2 ¼
mC

2

�
1� m2

B

m2
C

�
e��C ;

ðpTnÞmax
cas2 ¼

mC

2

�
1� m2

B

m2
C

�
e�C :

(27)

Note that the product of ðpTnÞcuspcas2 and ðpTnÞmax
cas2 removes the

�C dependence, which depends on the intermediate masses
mC and mB. In addition the ratio ðpTnÞcuspcas2=ðpTnÞmax

cas2

depends only on the rapidity �C.
As discussed before, the individual pTi distribution can-

not be constructed. Instead we show the sum of two

distributions in Fig. 12. For the Mass–A2 case, the cusp
in the pTn distribution and the smooth peak of the pTf

distribution are located nearby. In their sum, the pTn cusp
survives over the relatively round pTf peak and the fast

dropping pTn endpoint is also measurable. For the
Mass–C2 case, however, the pTn cusp and the pTf peak

are separated so that the summed distribution shows both.
With finite number of data, it would be difficult to distin-
guish the pTn cusp from the pTf peak.

E. The cos� distribution

We consider the cos� distribution for the Type II cas-
cade decay. In Fig. 13 we show the normalized differential
decay rate d�=d cos� for the near and far visible particles
(denoted by thin lines) as well as their sum (thick lines) for
the Mass–A2 and Mass–C2. In both cases, the summed
distribution of cos�i is symmetric about cos� ¼ 0 and has
one sharp cusp denoted by vertical lines in Fig. 13. The
cos� cusp position in terms of the mass parameters is

cos�cusp
cas2 ¼

mC

�
1� m2

B

m2
C

�
�mB

�
1� m2

X

m2
B

�
e��B

mC

�
1� m2

B

m2
C

�
þmB

�
1� m2

X

m2
B

�
e��B

: (28)

F. Mass determination from the cusps and endpoints

Unlike the antler decay with one kind of intermediate
particles, the cascade decay has two different intermediate
particles. In addition, the Type II decay has fewer inde-
pendent observables of cusps and endpoints: there is no m
cusp structure, and the mT cusp position is the same as the
m endpoint. A concern arises whether we have enough
information to determine all of the masses, especially at the
LHC where the cos� cusp cannot be used. We show that

FIG. 10 (color online). The normalized differential decay rate
of the transverse momentum of two visible particles, d�

�dpT
for the

Type II cascade decay. The mass spectrum sets are in Table II.

FIG. 11 (color online). The normalized differential decay rate of the transverse mass of one visible particle, d�
�dpTi

for the Type II
cascade decay. The left figure is for the near visible particle a1, and the right one is for the far visible particle a2.
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three unknown masses (mC, mB, and mX) are unambigu-
ously determined by three singularities of mmax

cas2, ðpTnÞcuspcas2 ,
and ðpTnÞmax

cas2, as

mC ¼ R�mD; mB ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �1

R�

s
mC;

mX ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2

R�

s
mB;

(29)

where R� is

R� ¼ 1þ �1�2

�3 � �1 � �2

; (30)

and �1;2;3 are

�1 ¼ ðmmax
cas2Þ2

2mD

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðpTnÞmax

cas2=ðpTnÞcuspcas2

q ;

�2 ¼
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðpTnÞmax

cas2=ðpTnÞcuspcas2

q
mD

;

�3 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðpTnÞmax

cas2

ðpTnÞcuspcas2

s
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðpTnÞcuspcas2

ðpTnÞmax
cas2

s
:

(31)

V. EFFECTS OF REALISTIC CONSIDERATIONS

All of the previous expressions of the cusps and end-
points have been derived in an idealistic situation: the total
decay widths of decaying particles are ignored; the D rest
frame is assumed to be reconstructed; the ISR effects are
neglected; and the spin-correlation effects from the full
matrix elements are negligible. In this section, we inves-
tigate these effects on the position and shape of the kine-
matic cusp and endpoint.

A. Finite width effects

Up to now we have applied the narrow width approxi-
mation, ignoring the width of decaying particles. Since the
effect of finite �D is shown to be very minor in Ref. [16],
we focus on the effects of �B and �C.
We find that the mass spectrum is the most crucial factor

to determine the stability of the cusp and endpoint struc-
tures under the width effects. Out of six cases in Tables I
and II, the Mass–A1 has very vulnerable structures. This
case is special because of its degenerate masses: the
observable particles have very small momentum transfer
and their kinematic phase space is highly limited.
In Figs. 14 and 15 we show, for the Mass–A1 case, the

finite width effects on the m, mT ,
P

pTi, and cos� distri-

butions. We present four cases for �B and �C: on-shell
(solid line), �=M ¼ 0:01 (long dashed line), �=M ¼ 0:1
(short dashed lien), and �=M ¼ 0:5 (dotted line). Here
�=M � �B=mB ¼ �C=mC for simplicity. Just one percent
of �=M destroys all of the sharp cusp structures into
smooth peaks. In addition, the positions of the peaks are
shifted significantly from the true cusp positions. For
�=M * 0:1 the summed pTi and cos�i distributions lose
their functional characteristics completely, leaving very
smooth and featureless distributions. In summary, sizable
widths like �=M * 0:01 smash the cusps.
The fast-falling endpoints in the m, mT , and pTi distri-

butions are also smeared out considerably. The degree of
its shifting is large even for �=M ¼ 1%. One interesting
observation is that two shifted endpoints of the m and mT

distributions are the same as mD � 2mX, denoted by ver-
tical arrows. This new endpoint is from the kinematic
configuration where two visible particles’ momenta span
all of the phase space determined by mD and mX. Even

FIG. 12 (color online). The sum of two normalized differential
decay rate with respect to the individual transverse momenta of
the near and far visible particles.

FIG. 13 (color online). The sum of d�=d cos�i for the Type II
cascade decay.
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though we do not know the intermediate particle masses,
the missing particle mass mX can be read off. For this
information, the mT distribution is more advantageous
than the m distribution because of its fast falling shape.

In a realistic new physics process, however, this
Mass–A1 case does not allow even one percent of �=M.

For example, the Zð2Þ decay in the minimal UEDmodel has
the decay widths of

�D ¼ �Zð2Þ ’ 270 MeV; �C ¼ �Lð2Þ ’ 5 MeV;

�B ¼ �Lð1Þ ’ 1 MeV;
(32)

which lead to �=M� 10�5. In summary, the extreme
Mass–A1 case has generically negligible width effects.
The cusp and endpoint structures are reserved.

We consider more general mass parameters, Mass–B1

for the Type I and Mass–C2 for the Type II cascade decay.
First we examine the finite width effects on the invariant
mass distributions in Fig. 16. These cases show more stable
cusp and endpoint structures from the finite width effects.
For �=M ¼ 1%, the m distributions in both Type I and
Type II decays do not change, keeping the same cusp and
endpoint structures. For 10% of �=M, the m cusp of the
Type I decay retains its position, though losing its sharp-
ness. The m endpoints in both Type I and Type II decays
are shifted into the new position mD � 2mX. If �=M ¼
50%, the Type I decay does not retain the shape and
position of the m cusp, and the Type II decay loses the
right-angled triangle shape of the m distribution. Both
cases have the same new endpoint at mD � 2mX, which

FIG. 15. The finite decay width effects on the summed distributions of pTi and cos�i in the Mass–A1 case of the Type I cascade
decay. As before, we take �=M ¼ 0, 0.01, 0.1, 0.5.

FIG. 14. The finite decay width effects on the m and mT distributions in the Mass–A1 case. Solid lines are for the on-shell decay,
the long dashed lines for �=M ¼ 0:01, the short dashed lines for �=M ¼ 0:1, and the dotted lines for �=M ¼ 0:5. Here
�=M � �B=MB ¼ �C=MC.
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is also valuable information for the missing particle mass
measurement.

In Fig. 17, we show the width effects on the mT distri-
butions. The mT cusp structures are more stable than the m
cusps in both Type I and Type II decays. For �=M ¼ 1%,
the changes in the distribution are unnoticeable. For
�=M * 10%, we start to lose the sharpness of the cusps
but still keep the positions for the cusp in both cases. If
�=M ¼ 50%, the cusped peaks become dull further with
relatively stable positions, and themT endpoints are shifted
into mD � 2mX.

Figures 18 and 19 show the width effects on the
summed distributions of pTi and cos�i, respectively.
Both distributions preserve the cusp structure for
�=M ¼ 1%. If �=M * 10%, however, the finite width
effects almost smear the cusp and endpoint structures.

B. Longitudinal boost effect

In hadronic collisions, the longitudinal motion of the

particle D is not determined. This longitudinal ambiguity

affects the kinematic variable cos�, which is defined in the

D rest frame. In order to see the longitudinal boost effects,

we convert the cos� distribution in the D rest frame into

the pp frame at the LHC, by convoluting with the parton

distribution functions of a proton. In Fig. 20, we compare

the summed distributions of cos�i in theD rest frame (thin

curves) with that in the pp lab frame at
ffiffiffi
s
p ¼ 14 TeV

(thick curves). For the parton distribution function, we

have used CTEQ6 [28]. We take the Mass–A1 for Type I

and the Mass–C2 for Type II decay. For simplicity we

assume that the heavy particle D is singly produced

through the s-channel gluon fusion.

FIG. 16. Finite width effects on the normalizedm distribution. We take the Mass–B1 case for Type I decay and the Mass–C2 for Type
II decay. As before, we take �=M ¼ 0, 0.01, 0.1, 0.5.

FIG. 17. The width effects on the normalized d�=dmT for the Type I Mass–B1 and Type II Mass–C2 cascade decays. As before, we
take �=M ¼ 0, 0.01, 0.1, 0.5.
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Unlike the finite width effects, the longitudinal boost
effect does not completely smash the characteristic shape.
The sharp cusp structures survive to some extent in both
Type I and Type II cascade decays. The shift of the cos�
cusp position is minor. Moreover, the overall functional
shape remains the same even though the pp frame allows
nonvanishing events around cos� ¼ 0. The cusp in the
cos� distribution, though Lorentz noninvariant, is quite
useful to draw mass information. Again, we emphasize that
the eþe� linear collider does not have this ambiguity.

C. ISR effects

The cusps and endpoints in the mT and pTi distributions
play a crucial role in the mass measurement of cascade,
especially Type II, decays. The results are based on the
assumption that the transverse momentum of the mother
particle D is known event by event so that its rest frame

along the transverse direction can be reconstructed. At a
hadron collider, even though D is singly produced at the
parton level, the gluon radiation from initial patrons, called
the ISR, is inevitable because of strong QCD interaction:
the mother particle D receives transverse kick and the
ambiguity arises in its transverse motion [29].
We examine the ISR effects on the cusp and endpoint

structures in the mT and pTi distributions. As in Ref. [17],
we adopt the simplifying assumptions that D is produced
by q �q initial states, and decays through electroweak inter-
actions so that final state radiation is neglected. We also

veto hard ISR gluons if pjet
T > 50 GeV. We use the parton

shower Monte Carlos in PYTHIA for the ISR [30].
Figure 21 compares the mT distributions with and with-

out ISR effects, denoted by the thin (red) line and the thick
(blue) line, respectively. We take Mass–A1 for Type I
cascade decay, and Mass–C2 for Type II decay. In both
cases, the mT cusps remain almost intact from the ISR

FIG. 18. The width effects on the summed distributions of pTi for �=M ¼ 0, 0.01, 0.1, 0.5.

FIG. 19. The summed cos� distributions for �=M ¼ 0, 0.01, 0.1, 0.5.
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effects. The sharpness and position keep those in theD rest
frame. The endpoints get tailed, but not significantly.
Almost linearly dropping behaviors for both cases are
preserved until the vicinity of endpoints. The extrapolation
of the distribution will help to find the endpoint without the
ISR effects.

In Fig. 22, we show the normalized pTn and pTf distri-

butions with and without the ISR effects by the thin (red)
line and the thick (blue) line, respectively, in the same
setup as in Fig. 21. In the Type I cascade decay, the far
visible particle accommodates both the cusp and endpoint
singularities in its transverse momentum distribution. The
ISR effects do not affect them. The near visible particle in
the Type I decay has only spiky and suddenly ending
endpoint. The ISR smears this into the tailed one. Still

the fast dropping behavior survives to some extent, which
can be used to read the endpoint without ISR effects. In the
Type II cascade decay, the near particle pTi distribution has
the cusp and endpoint. The ISR effects do not change the
cusp but do smear the endpoint. The pTi distribution of the
far visible particle, which has only the endpoint, is not
affected.
In summary, the inclusion of ISR with veto on hard jets

does not change the cusp structures but gets the endpoint
tailed.

D. Spin-correlation effect

Our main results are based on the kinematics only,
ignoring the spin correlation in the full matrix elements.
Since this paper is focused on the basic properties of the

FIG. 20 (color online). Normalized differential decay rates versus cos� in the D rest frame (thin curves) and in the pp lab frame
with

ffiffiffi
s
p ¼ 14 TeV (thick curves).

FIG. 21 (color online). The normalized transverse mass distributions with and without the ISR effects by the thin (red) line and the
thick (blue) line, respectively. We take Mass–A1 for the Type I cascade decay and Mass–C2 for the Type II. Extra jets with pT >
50 GeV are vetoed.
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kinematic singular structures in the cascade decays, full
analysis for each new physics process is beyond the scope
of this paper. Nevertheless we expect that the algebraic
singularity origin of the cusp and endpoint keeps them
stable under the spin-correlation effects [31].

In order to demonstrate this, we consider one example,

the Zð2Þ decay in the the UED model:

Cascade Type I: Zð2Þ ! ‘þ Lð2Þ ! ‘þ Bð1ÞLð1Þ

! ‘‘Bð1ÞBð1Þ: (33)

In Fig. 23, we show their spin-correlation effects. We find
that the spin correlations do not change the m and pTi

distributions. Two distributions with and without spin-
correlation effects are almost identical.
We note that there are other uncertainties such as the SM

background and experimental resolutions. The magnitudes
of those effects depend on a specific process, which are
beyond the scope of this paper. For a benchmark process

of pp! Z0 ! ~‘þ~‘� ! ‘þ ~�0
1‘
� ~�0

1 in a supersymmetry

model with an extra Uð1Þ gauge field, we have considered
all the realistic effects including the SM backgrounds
and detector simulation in Ref. [16]. The total uncertainty
in the mass measurement is about 10%. Most of the
uncertainty is from huge SM t�t backgrounds. Unless the
observed decay products are jets, the experimental resolu-
tion does not affect the cusp and endpoint structures dom-
inantly. The crucial role was done by best-fitting the m
distribution based on its analytic functional form.

VI. SUMMARYAND CONCLUSIONS

We have studied the singularity structure, such as cusps
and endpoints, in the kinematic distributions of three-step
cascade decay of a new parity-even particle D and the
determination of the missing particle mass by using such
singularities.
Two nontrivial decay topologies, called the Type I and

Type II cascade decays, have been studied. In the Type I
decay (D! a1C, C! X1B, B! a2X2), the distribution
of the invariant mass m of two visible particles, a1 and a2,
develops a cusp. Full functional form of the m distribution
for general mass parameters has been derived. If the
mother particle D is produced at rest in the transverse
direction, various longitudinal-boost invariant observables
accommodate cusp structures. First the transverse massmT

distribution has a cusp, which is complementary for the m
cusp since the mT cusp is sharp even when the m cusp is

FIG. 22 (color online). The normalized pTn and pTf distributions with and without the ISR effects by the thin (red) line and the thick
(blue) line, respectively. We take Mass–A1 for the Type I cascade decay and Mass–C2 for the Type II. Extra jets with pT > 50 GeV are
vetoed.

FIG. 23 (color online). The d�=dm and d�=dpTi for the
process of Zð2Þ ! ‘þ Lð2Þ ! ‘þ Bð1ÞLð1Þ ! ‘‘Bð1ÞBð1Þ with
and without spin correlations.

TAO HAN, IAN-WOO KIM, AND JEONGHYEON SONG PHYSICAL REVIEW D 87, 035004 (2013)

035004-14



dull. Although the transverse momentum distribution of
the two-visible-particle system does not develop a visible
cusp structure and a sharp endpoint, we note that the
transverse momentum distribution of the far visible parti-
cle a2 has a cusp and that of the near visible particle a1 has
an endpoint in the shape of a steep cliff. We also study the
summed distribution of cos�i, which has two independent
cusp structures.

In the Type II decay (D! X1C, C! a1B, B! a2X2),
the kinematics of a1 and a2 is determined solely by the
two-step cascade decay from the first intermediate particle
C. The invariant mass distribution does not have a cusp
structure. However, the kinematic distributions of the
transverse motion carry the information from the whole
three-step cascade decay. Both the mT and

P
ipTi distribu-

tions have distinctive cusp structures. In the individual
transverse momentum distribution, only the near visible
particle has both a sharp cusp and a fast-falling endpoint.
The cos� distribution also shows a cusp as well. Including
the antler decay topology, we have summarized the exis-
tence of cusp in the kinematic distributions of m, mT , pT ,
pTi, and cos� in Table III.

We have also considered the effects of the finite decay
widths of intermediate particles, the longitudinal boost of
the mother particle D, the ISR, and the spin correlation.
The finite width effects are significant if the decay width is
sizable like �=M * 10%: the sharp cusp gets smeared; the
endpoint position gets shifted to mD � 2mX. The longitu-
dinal motion of the mother particle D affects the distribu-
tion of cos�. At least for the sample mass parameters,
however, the cos� cusp remains sharp after convoluting
with the parton distribution functions of a proton at the
LHC. The ISR effects do not change the cusp structure
much if we veto hard jets, but they do smear the endpoints.
Spin correlation effects from full S-matrix elements turn
out to be negligible in most cases, which is expected since
the singularities are determined by the kinematic relations.

With the companion paper on the antler decay [17], our
analysis presents the general properties and useful formu-
las of the kinematic cusps and endpoints for the decay
topologies with two visible particles and two missing
particles. By looking at the singularity structures of various

kinematic distributions, the hidden nature of the missing
particle can be probed effectively and elegantly. With the
outstanding performance of the LHC and detectors, this is
an exciting time for such investigation.
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APPENDIX: INVARIANT MASS DISTRIBUTIONS
FOR THE GENERAL TYPE I CASE

In this appendix, we present the invariant mass distribu-
tion in the general Type I cascade decays,

DðPÞ ! Cþ a1ðk1Þ; C! Bþ X1;

B! a2ðk2Þ þ X2:
(A1)

As discussed in the main text, the Type II cascade decay is
practically a three-body decay in the viewpoint of visible
particles. This four-body decay generally has seven
different mass parameters. We define the rapidities of six
particles as

cosh�C ¼
m2

D þm2
C �m2

a1

2mDmC

;

cosh�a1 ¼
m2

D þm2
a1 �m2

C

2mDma1

;

cosh�B ¼
m2

C þm2
B �m2

X1

2mCmB

;

cosh�X1
¼ m2

C þm2
X1
�m2

B

2mCmX1

;

cosh�a2 ¼
m2

B þm2
a2 �m2

X2

2mBma2

;

cosh�X2
¼ m2

B þm2
X2
�m2

a2

2mBmX2

:

(A2)

A very useful kinematic variable is �, the rapidity of the
particle a2 in the rest frame of a1,

� � cosh�ða1Þa2 ¼
m2 �m2

a1 �m2
a2

2ma1ma2

; (A3)

where the superscript ða1Þ denotes that the rapidity is
defined in the rest frame of a1.
The functional expression of d�=dm is different accord-

ing to the mass relations. The derivation of d�=dm is
similar to that presented in the appendix of Ref. [17]. For
simple presentation, we introduce

TABLE III. The presence or absence of the cusp in the kine-
matic distributions of m, mT , pT , pTi, cos� of the antler, Type I
cascade, Type II cascade decays.

Cascade

Antler Type I Type II

M Yes Yes No

Mt No Yes Yes

Pt No No No

PtN Yes
No Yes

PtF Yes No

cos� Yes Yes Yes
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�þþ ¼ �B þ �a1 þ �a2 þ �C; (A4)

�þ� ¼ j�B þ �a1 � �a2 � �Cj; (A5)

��þ ¼ j�B � �a1 þ �a2 þ �Cj; (A6)

��� ¼ j�B � �a1 � �a2 � �Cj: (A7)

We order �þ�, ��þ and ��� and name them �1 � �2 � �3. Analytic function forms of d�=d� are then written as
(i) if j�B � �a2 � �Cj � �a1 or �B þ �a2 þ �C � �a1 ,

d�

d�
/

8>>>><
>>>>:

��1 þ cosh�1�; if cosh�1 � � � cosh�2;

�2 � �1; if cosh�2 � � � cosh�3;

�þþ � cosh�1�; if cosh�3 � � � cosh�þþ;
0; otherwise:

(A8)

(ii) if j�B � �a2 � �Cj< �a1 < �B þ �a2 þ �C,

d�

d�
/

8>>>>>>>><
>>>>>>>>:

2cosh�1�; if 1 � � � cosh�1;

�1 þ cosh�1�; if cosh�1 � � � cosh�2;

�1 þ �2; if cosh�2 � � � cosh�3;

�þþ � cosh�1�; if cosh�3 � � � cosh�þþ;
0; otherwise:

(A9)

The positions of the minimum, cusp, and maximum of the invariant mass distribution are

Mmin
cas1 ¼

8<
:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

a1 þm2
a2 þ 2ma1ma2 cosh�1

q
; for R1;...;6

ma1 þma2 ; for R7;...;12

Mcusp
cas1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

a1 þm2
a2 þ 2ma1ma2 cosh�3

q
;

Mmax
cas1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

a1 þm2
a2 þ 2ma1ma2 cosh�þþ

q
:

(A10)
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