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We derive the off-shell photon propagator and fermion-photon vertex at one-loop level in Maxwell-
Chern-Simons quantum electrodynamics in arbitrary covariant gauge, using four-component spinors
with parity-even and parity-odd mass terms for both fermions and photons. We present our results using a
basis of two, three and four point integrals, some of them not known previously in the literature. These
integrals are evaluated in arbitrary space-time dimensions so that we reproduce results derived earlier

under certain limits.
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I. INTRODUCTION

When local gauge symmetry is what drives theories of
fermion and boson interactions, mass terms for the latter are
forbidden. Thus, the mass of these particles should be
explained with different arguments such as the spontaneous
breaking of symmetry through a Higgs mechanism. The
recent discovery of a boson with 125 GeV mass and quan-
tum numbers similar to those of the Higgs boson [1] brings
this mechanism to a physical reality in the high-energy
realm. Nonetheless, if leaving local gauge symmetry
untouched is desired and yet one wishes to allow the gauge
boson to acquire a mass, one could rely on topological
quantum field theories such as Chern-Simons (CS) theory
[2]. The CS theory has been put forward in (2 + 1)-space-
time dimensions in several contexts of condensed matter
physics (see, for instance, Ref. [3] and references therein),
quantum gravity [4] and string theory [5]. The Lagrangian
for such a term, although not manifestly gauge invariant,
possesses a gauge invariant action. Particularly, considered
along with the Maxwell theory for photons, the CS term
provides a topological mass for these gauge bosons, which
preserves gauge invariance. Moreover by adding matter
fields, the theory becomes richer in the sense that some
features are apparently unique to (2 + 1)-dimensional theo-
ries, such as anyon excitations, generalized parity, and so on.

In this paper, we study the quantum electrodynamics of
four-component fermions and photons in two space and one
time dimensions coupled to a CS term, QED5. The action of
this theory is gauge invariant, though parity and time reversal
might be explicitly broken. Fermion and boson mass terms
play anintricate role, because in addition to the usual fermion
mass term, a parity violating mass term can be included. Such
a term would radiatively generate a CS term and vice versa
(see, for instance, Refs. [6,7]). Specific cases of the under-
lying Lagrangian have been used in the description of several
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condensed matter physics systems, once fermions have been
integrated out, such as high-7. superconductors [8,9], the
quantum Hall effect [6,10] and, more recently, graphene [11]
and topological insulators (see Ref. [12] for a recent review).
In high-energy physics, the use of QEDj; has been connected
to the study of dynamical chiral symmetry breaking and
confinement, where it provides a popular battleground for
lattice and continuum studies [13]. In particular, the CS term
allows the possibility of chiral and parity symmetry breaking.
Within the two-component fermion formalism, it was
observed that while chiral symmetry can be broken, parity
symmetry remains untouched [14]. Moreover, this term
induces a detaching of chiral symmetry breaking-restoration
and confinement-deconfinement transitions [15], leading to a
phase resembling quarkonia, where chiral symmetry is
restored, but confinement takes place [16]. Confinement
and screening effects have been studied in this theory [17]
through the behavior of the vacuum polarization.

A key issue in these type of studies is to address the gauge
covariance properties of Green functions. In Ref. [18], the
gauge covariance of the fermion propagator was established
through the use of the Landau-Khalatnikov-Fradkin trans-
formations [19]. In the same spirit, in Ref. [20], the fermion
and photon propagator, and particularly the on-shell
fermion-photon vertex were calculated and some limits
explicitly considered. The same three-point function was
studied in Refs. [21,22], the latter study carried out in the
light cone gauge. Interestingly, in all these works, the
corresponding anomalous magnetic moment for electrons
is identified directly. Here we extend these findings comput-
ing the off-shell forms of these Green functions in arbitrary
covariant gauges. The seminal work of Davydychev et al.
[23] on the one-loop quark gluon vertex already provides a
guide towards the master integrals involved in the calcula-
tion of the two- and three-point Green functions. Moreover,
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in Refs. [24,25], the fermion-photon vertex for the parity
preserving version of QED5 was calculated for massless and
massive fermions, respectively. Reference [25], in fact,
provides the most general form of the nonperturbative
fermion-photon vertex in QED3 guided by perturbation
theory. In this work, we attempt to generalize these findings
incorporating an explicit topological photon mass. In this
task, we are faced with new master integrals which were not
previously reported in literature, as far as we know. These
involve an explicit gauge boson mass, and therefore we
evaluate them in arbitrary space-time dimensions, so that
these can be useful in other contexts. For us, these steps are
fundamental in order to pursue further analysis of certain
physical observables sensitive to the influence of the CS
term, as will be reported elsewhere.

The paper is organized as follows: In Sec. 11, we consider
four-component spinors to describe the QED; Lagrangian
with parity conserving and violating mass terms for fermi-
ons and photons. In Sec. III, we calculate the photon propa-
gator at one-loop level for the most general Lagrangian. The
one-loop correction to the fermion propagator is discussed
in Sec. IV. In Sec. V, we derive the fermion-photon vertex at
one-loop level under a general decomposition of the vertex
we propose. Given this structure of the vertex, new master
integrals arise that we calculate and study some of their
limiting cases, including the massless case for both fermi-
ons and photons. At the end, we summarize our findings in
Sec. VI. Details on the calculation of the new master inte-
grals are presented in the Appendix.

II. MAXWELL-CHERN-SIMONS QED;

Let us start by presenting our model and conventions. We
work with four-component spinors and thus with a
4 X 4 representation for the Dirac matrices. We choose to
work in Euclidean space, where the Dirac matrices satisfy
the Clifford algebra {y,,y,} =26,,. Once we have
selected a set of matrices to write the Dirac equation, say
{v0, Y1, Y2}, tWo anticommuting gamma matrices, namely,
v5 and 75, remain unused, leading us to define two inde-
pendent global phase transformations of the chiral-type for
the spinors: ¢ — e’#v3 4y and ¢ — €'“75 s, where 8 and o
are arbitrary real numbers. Consequently, there exist two
types of mass terms for fermions that can be considered in
the Lagrangian, the ordinary mass term m . and a new
mass term m, 74 with 7=1[y;, y5], sometimes referred
to as the Haldane mass term [26] in condensed matter
physics. The former violates chirality, whilst the latter is
invariant under ‘‘chiral” transformations. Moreover,
m, Y is parity invariant but m, 7 is not. This allows
parity and time reversal to be broken in our theory, which is
described by the Lagrangian

L=ylif +el—m, — tm,)y —

4,MV ,uV

S eunAFup 0

1
_2_§(a )2
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where the first term corresponds to the Dirac Lagrangian
with parity-even and -odd mass terms and fermion-photon
interaction; the next one is the Maxwell term followed by
the covariant gauge fixing term, ¢ denoting the gauge
parameter. The last term is precisely the CS term, with
being the topological mass for the photons. Rather than
working with parity eigenstates, we find it convenient to
work in a chiral basis. For this purpose, we introduce the
chiral projectors

1
Xz =51 %) )
which have the properties
Xi=x+  xix-=0 xi+txy-=1 (3

Then, the right-handed i, and left-handed i _ fermion
fields are y+ = y+ ¢, in such a fashion that the chiral
decomposition of the fermion propagator becomes [18]
p+m p+m_

2 +2 2 7 X )
p-+tm p-+ m=

P (p) =~

X+ —

with m. = m, = m,. Furthermore, we identify the
photon propagator associated with the Lagrangian (1) as

(0)( g) (5 CI,qu)
2 + 02 q2
€uvpdpt qudyv
- + ¢ : (5)
q*(g* + 62) q*

One can identify from the transverse piece of the
propagator the role of 6 as a photon mass. It also plays
arole in the parity-odd piece (proportional to &,,,), but it
is absent in the longitudinal part. In the following section
we calculate the one-loop correction to this propagator.

III. THE ONE-LOOP PHOTON PROPAGATOR

The one-loop correction to the photon propagator is
depicted in Fig. 1. Using Feynman rules, it corresponds
to the expression
d*w
@m)’
which we define in terms in the left- and right-hand side
projections as

1,,(p) = SOwey, SO (w — pley,,  (©6)

H,uv(p) = H,Lz,v+(p) + H,u,v—(p)J (7)
where
d3
H(*)lw(p) — (277.)3

[W tmely[w - p+ m+]%
[+ m2 ][ — p)? + m2] *

To evaluate these expressions, we propose the following
decomposition:
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FIG. 1 (color online). One-loop correction to the photon
propagator.
a
H(r),w(P) = W[KU'B‘YUYMF}/[;‘YV - Kzr’yg")//.l,ﬁ’)lv
- ZmiKUB}LUyV - mi)’,u,ﬁ)’v
+miyylxe ®)

where we have written the propagator in terms of

1
— [ &w
k= [a (w2 + m2 v — pP + 2]’
— 3 Wy
I (02 + m2 v — pP + 2]’ ©)

Wuw,

_ 3
K Y+ v — pP & n]’

These can be evaluated straightforwardly, using standard
techniques (see the Appendix for further details and also
Ref. [27]). Following Ref. [18], we define

1
I(p,m) = — arctang, (10)
p m

so that the basis integrals may be expressed as

K= w21(§,mi), (11)
KM = 772%1<§, mi), (12)

2 2
_ ma p-+4mL\ (p
R S ey LGB

puby[m= (3p*+4mi\ (p
+ 2 Pe [-—(—*)1(—, )] 13
T2 8 2" (13)

Using the results (11)—(13) into the decomposition (8) and
making the replacement m. — m we obtain the photon
propagator in accordance to the results in Refs. [7,20].
This completes our calculation of the one-loop photon
propagator. Next we calculate the fermion propagator at
one-loop.
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IV. ONE-LOOP FERMION PROPAGATOR

The one-loop correction to the fermion propagator has
been previously considered by some of us in Ref. [18], and
corresponds to the diagram in Fig. 2. To calculate this
correction, we write the one-loop fermion propagator as

sV (p) = sV(p) + sV(p), (14)
where

AL (g + BV(p)
[AYD)]'p? + [BY D]

St(l’) == X=- (15)
The functions A(il)(p) and B(il)( p) are thus obtained as

2ma [ dw
AVp)=-"% | 555
- p* J @n)

X T p7,,8Y )7, AL w — p: )y |

Pw
BV (p)=2 /
Vip)=2ma [ 55

Ti 7,8 )y, A (w = p3é)x- |
(16)

Performing the traces, after suitable manipulations, these
functions can be expressed in the form (compare against
Eq. (26) of Ref. [18])

AV(p) = - ff o 2 m) — 10, m2, pP)]
g7 =PI, )
(7 = 2 + 64116 w2, ) — 62T ()]
¥ 3t gL = VI, p?)
— (0 + W) IO, p) — T(6))],
BY(p) = 2212 10,2, p2) + U 10 p?)

+m%)I(6% m2, p?)
= (p* +m2) 10, m? p*) — T (67)], a7

where the master integrals are

wp

w

FIG. 2 (color online).
propagator.

One-loop correction to the fermion
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1
T(m%;) = [d3wm,
1
w2+ 602][(p—w)> +mi] (18)
1
wil(p—w)* + mi]

I(0%,m2%, p?) = jd3w[

I,(m%, p?) = ] Pw

These integrals are performed using standard techniques
(see Appendix), and give

T(m%) = —27%m.,

I(6*, m%, p?) = 2a1(p, m% + 6°), (19)
27 m
L, P =~ vy

Inserting the above results into the decompositions (17)
and (15), we obtain the one-loop correction to the fermion
propagator, in accordance with Eq. (27) of Ref. [18]. This
completes the one-loop correction of the two-point Green
functions corresponding to the Lagrangian (1). Next we
calculate the one-loop correction to the fermion-photon
vertex.

V. ONE-LOOP FERMION-PHOTON VERTEX

At O(a), the fermion-photon vertex is depicted in Fig. 3,
and corresponds to
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FIG. 3 (color online).
photon vertex.

One-loop correction to the fermion-

F,kp)=vy,+A, (20)

Using the Feynman rules, A, is simply given by

dPw
Ay = et ,[(277)3 ')’asg))(l’ - w)yﬂng)(k - W)YBAE%(W)'
(21)

Given the properties of the projectors in (3), the crossed
structures vanish and therefore we have only integrals with
the same mass propagators (m . or m_). Given this, we can
write A, as

Ay = A + Ao (22)

where

o
A(i)M :2—77_2{[70-[57;1,%70' + mi(4k,u, + 4p,u - ﬁ’)’u - 7;1,%) - mg: 7;1,]](0)(6: mt) - [70’[57;1,71/70' + 70’71/7,41,%70'

—6m=8,,10(0,m2) + VoV Y u YAV d A0, me) + Ely , KOms) = [y, By, + v, Ky, —2m=6,, 10 ()
Ly By kya + mae (Y By uva + V0¥ Kya) + mE v,y R m)] = y [KO(ma) — 62706, m=)]

by + v by, —2med,, 1000, ma) + [y, By Ky + me (Yo By ¥ + Vo¥ ukyn)

+mE Y, YW VAL O, m) = 08,0 [ (VoY u Y o YA+ VoY oY ukVA (VoY oY u VA + VY ¥ o ¥ )W O (0,m2)

Y YoV Yo Yad O, m) [V BY by a + me (VoY uva + VoV uBv)) + M3y, v A LD 0 m )y, (23)

In this expression we have introduced the basis integrals K©, J©_jDj2) 10 1D 12 1 12 which we define as

KO®m.) = fd3w

[((p—w)? +mil(k—w)?+mi]

1

JO(m.) = fd3w

w(p = w)* + mi](k = w)* + mi]

1

JOWG, m.) = deW

[w? + 2 1(p — w)* + mi]l(k — w)* + mi]
w

7

I (my) = [d3w

wl(p = w)? + mi]l(k = w)? + mi]

Wu

Jﬁ)(ﬁ,mt) = [d3w[

w2 + 62 ][(p — w)* + miJl(k — w)* + mi]
WuW,

() —
1m) = [ AT
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1) = [@w
w

w
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D im = [ dw
R e P (e

w

Wy

2 -
e e e (e

Wy

Lﬁp(ﬁ,mi) = [d3W

wiw? + l(p — w)* + mi]l(k — w)* + mi]

Wuw,

L(Zgj 0, +) = fd3
wrlbm) = J o o e T

From this list of integrals, those which depend only on
fermion masses have been calculated in [25] and for them
we just replace m — m- to obtain the results needed in the
calculation at hand. The rest correspond to two-, three- and
four-point integrals that depend both on a fermion and a
gauge boson mass, therefore they might be useful in theo-
ries in other space-time dimensions. We solve these in
arbitrary dimensions in the Appendix. Also, it is important
to mention that these results are crucial to our interest in
the impact of the CS term on certain physical observables
related to the Lagrangian (1).

These results along with the decomposition proposed in
Eq. (23) complete the calculation of the one-loop correc-
tion of the fermion-photon vertex. We summarize our
findings in the next section.

VI. SUMMARY AND CONCLUSIONS

We have derived the one-loop correction to the photon
propagator, fermion propagator and the fermion-photon
vertex in Maxwell-Chern-Simons in QEDj5. In doing so,
we have proposed a basis of master integrals to expand said
Green functions, some of them new in literature. Due to the
potential applications of two- and three-point Green func-
tions with a massive gauge boson in physical processes in
several frameworks of particle and condensed matter
physics, we evaluated these new integrals in arbitrary
space-time dimensions. The basis expansion contains the
ordinary expansion of QED; as the particular case of our
findings in the parity preserving limit [25], which is
achieved when both the CS term and the Haldane mass
are taken to zero. Massless theory for both fermions and
photons [24] follows as well. The Green functions we have
obtained will help us make progress in certain physical
applications in the near future. Particularly, we are inter-
ested in the radiative generation of fermion masses by the
CS term and its impact in several physical observables.
This project is in progress and the results will be presented
elsewhere.

—w)? + mil(k —w)> + mi]

(24)
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APPENDIX

In this appendix we provide details in the calculations
for three sets of master integrals: for the one-loop photon
propagator described in (13), the one-loop fermion propa-
gator, Eq. (18), and for the one-loop vertex described in
(24). Let us begin with the K-type master integrals.

1.K
We begin solving K. Using

1 1 dx
ab /0 [xa + (1 — x)b]’ (AD
we can write
_ 1 3 1
K L dx/d w2t 2]+ (-0 + m) P
(A2)

The denominator in the above expression can be written
as w? — 2xw - p + xp*> + m2, which after the change of
variables w' = w — px, allows us to write

1 1
K= [ dx | &w . (A3
R R e
This integral has the following form:
dPw -2 1
g B e L — A4
f(w2 — )" 1y M oo AY

In our case, we take D = 3, n =2 and s = —p?x(1 —x) —
m?Z, and then
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1
K= 773/2F<%)f dx[—p*x(1 — x) — m3]~'/2
0

2

T
- — arctan( p
p m+

). (AS)

2.K,

Now, we calculate K ,. This integral depends only of p,,
thus we can write

K, =cp,. (A6)
We find ¢ multiplying with p, on both sides
2= & vr . (AT
= [ e sy @7
Using w - p = w? + p? — (w — p)?, we have
1
=-K. A8
=3 (A8)
3.K,,

Finally, we solve K,,. In its most general form, it
depends only on p,p, and §,,,

_ [Puprv 1
K/_“, = 0[7 + 58,“,,] - bﬁw,,
which is symmetrical under the exchange of u and v. After
simplifying, we find that

(A9)

1 1 3p? + 4m3
=— | & - =K, Al10
a4 4 [ ww2 + m3 8 (A10)
and
1 d*w m%
b= | ————5+t—K, All
3 /(w -pP+mi 3 (&l

where the tadpole integrals [see Eq. (A13) below] are

[d3w 1 :[ d*w
w? + mi (w—p)?+mi

= —27m..

T (m%)

(A12)
Next, we provide details of the calculation of the integrals

in Eq. (18).

4. T (m2)
The integral

1
T (m2) = fd3wm (A13)

can be evaluated directly from Eq. (A4) withn = 1,D =3
and s = —m?. It yields

T(m2) = —27*m-. (Al4)
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5. 1(0%, m3, p?)
Let us evaluate

1
I(0%, m%, p*) = fd3w

[w? + 61 (p—w)* +mi]

(A15)

Using Feynman parametrization, and after the appropriate
change of variables, we can write

1(6° m%, p*)
i —
0 [W)? +x(1 = x)p?> + mix + 6°(1 — x)?

1

1
= 772[ dx(x(1 —x)p* + mix+ 6>(1 —x) 2
0

=2m1(p, m% + 6). (A16)
6. IZ(mZI; PZ)
In order to evaluate
1
I,(m%, p?) = [d3 , Al7
e R (T M
we introduce the auxiliary integral
w
I L, ph) = [d3 K’ , AlS8
R (T s Bl
such that
1
P,U,Iy,(mg_h P2) = 5((172 + mg_*)IZ(m?_ﬂ pz)
+ I(0, m%, p?)). (A19)
Using the identity
1 F(n+p) (1 _
— dxx" 1 1—x)? 1
T~ ) Jo &0
1
(A20)

A+ (=B

with n = 1, p = 2, followed by the shift w’ = w — px, we
can write

1,(m%, p*) = 2/1 dx(1 — x) fd3w’
0

X Put
[((W)? + p*x(1 — x) + m%ix]’

(A21)
performing the w' integration,

2 1 s
1,02 p) =y [ st = A=)+ 2]
0
(A22)

and the remaining integration yields

I,(m2 2)=12 — M L ipmy) | (A23)
/.Lmi’p pzp,u p2+m% p,m+) |
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Thus Next, we will give the results for the new integrals that are
L 2, Iu(mi, 0?) — 100, m2, p?) described in (24).
]2(mi’p ) = — 2 + 2 —
b 7. J00, m..)
2
— % (A24) We begin solving J©(6, m-.). For this purpose, we con-
(p* + m%) sider the following integral in Minkowski space:
J
1
(0) D
T vivy (0, ms) = d°w . A25
O = [ A G P PG (A2
Using Schwinger parametrization
1 r=orw +
- [ de{A v= JM (A26)
[A, + Al 2mi T(v)

to each of the factors in the denominator, the Mellin-Barnes representation for TV v, (0, m+) becomes
TO (0, m.) = ! e / e / A sdAssdAs(—m2) s (— 0T (= AT (= Ass + As)
T Ca T (w3) J - s ST A

XT(=2As5)[(A3 + v )T (A3 — A3 + v3)[(As + Vz)jyl+,\3,1/2+/\5 it ag—1, 0, 0), (A27)

where we have used the notation Asy; = A3 + A4 and dA, = dA3, and where JS}(?)+ AoratAg it A=Ay (0,0) has been

calculated in Ref. [28]. Replacing these results and simplifying, we obtain the following expression in terms of five
integrals to evaluate

AD K2)P/2= i3
T, me) = &)

f [ [ f [j: dAydAadAydAsydAsT(—= AT (= )T(= AT (A3 — Asg)

L(v;) Qi)
Al q A m2 Az 02 As F(/\IZ + /\34 + Vios + )\5 )
XT(=A — (A3 +
) (O () D
D D
X F(_)\13 - Vip — AS + 5)F<_)\2 - /\34 — Vi3 + 3) (A28)
We perform one integration at a time. First we integrate over A3, defining
1 +ioo D
I, = i [,- dAsT(=23)T(A3 = A3 (A3 + Vl)r<_)‘13 —vp—Ast 5) (A29)

Using the Barnes lemma

1 I'la + c)T'(b+ c)T'(a + AT(b + d)

+ico
— + + — —5) =
— Lw dsT(a + )T (b + )T(c — T(d — s) e , (A30)
with a = _)\34, b= Vq + )l]z, Cc = 0, d= % — Vip — )\1 - A5, we find that
(= A3)T(vy + AT (A — vy — A5 + 2 D
I, = (= 3)l' (v 2)'(A — v, . 5 2)F<—A1 Ay — As — V12+—)-
3 F(/\Z_)\34_V2_A5+7) 2
Then, after integrating over A3, Eq. (A28) becomes
(l)D (kz)D/Z*V]m f/]:/»+ioo (pz)Al
,,,,,,30 <) = AN dAyd A3y dAsT (= A )T (= X)) (= As)| =
Loy (6, M) 13:1 ) Qmi)t e 1d A2 dA34dAsT(—= AT (= 1)1 (= As) 2
% (612))‘2<_7112)"34<_92)A5 TAp + Asg + i3 + As = DI04 — Ay — w3 +9)
K k* k* LD — vi3 — A4 — As)
T(—=A)T(w + A)T(=A = Ayy —As — v + DA, — v, — A5 + 2
% (=239 (v DI(=2y 34 57 V2 2) (A — 1y 5 2). (A31)

T(Ay = A3y — vy — A5 + D)

One particular limit of our interest is § — 0. We integrate over As first and call 7, the relevant term in the above
multidimensional integration. Therefore, a wise selection of the position of the poles accordmg to the possible closure of
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the contour of integration in Fig. 4 must be done in order to avoid unnecessary analytic continuation. We close the contour
to the left, such that |~ §%/k?*| > 1. Then, the poles are due to I'(A, + A34 + v123 =2+ A5) alone, and are located at
As = —Ajp — A3y — vip3 + 2 — n. Therefore

—277'12

Hence, we can write

\75/01),1/2,1/3(0r mi) =

(— 1)"( 02)9/2 A=Ay vin=n Ay + w3 + n)T( Ay + Az + vz — + n)
F(g + )l12 + n)r(2)l2 + /\1 + Vi3 + I’l) ’

(i)P (kZ)D/Z—Vm ad _1)n f+lm[ f
dAdAad Ay (= AT (= AT (= A
3 F(V) (277[)3 n:o oo 2 34 ( ) ( 2) ( 34)
F()\z o3+t lApn +v)T A + Ayt vis =2+ 0)0(=A — Ay — w3 +59)
F(D +n+ /\12)1_‘(7[ + Vi3 + Al + 2)[2)

% (i_j)h(z_j)h(_ I}I:_j)h4(_ Z_j)D/Z_Mz—/\M_Vm_"‘ (A32)

Next, we integrate with respect to A3, closing the contour in Fig. 4 to the left, where |— m?/k*|> 1. Naming / A, the
relevant term, we have that

+ioo m>\ s O*\D/2~ A= Aas—vins—n D D
Iy, = /ﬂm d)\34<_ ﬁ) (_p) F(—A34)F<—A2 — Ay vzt E)F<A12 At vy — o ")-

The poles in I, are due to I'(A1; + A3y + v1p3 — 2 + n), and are located at A3y = — Ay, — vip3 + D/2 — n. Thus

_l)l O0*\!{ m>\~An—vis+D/2-n=1 D
I/\M = 2771 Z <_ ﬁ) (_ﬁ) F(/\l +n+1+ V2)F</\12 + 1+ Vi3 — 5 + n).

Then we can write

70 (HP(KHP/ 2 2 (=1)" (1)} tioo
T vy (0, ms) = LJ(%)QWQZ%O Y !( )[ / dAdA,T(—A;)

2\ A, M2\ A2 —via3+D/2—n—1
X r(_A2)<IIZ—2) ( ) ’ ’ <q > F(/\IZ + Vl)r()lz + V3 + l’l)

k? K2
D I'Ay +v,+n+1
X F<A12 + v —=+n z) - A + 2, ) . (A33)
F(/\IZ + 3 + n)F(Z)tz + )\1 +n+ V13)
. . . f
Now we integrate with respect to A,, but now closing the
contour in Fig. 4 to the right, such that |¢?/k*| < 1. Calling Im(u)
I, to the corresponding contribution, we have :
+ico q2 Ay m2\ —Ap—vi3+D/2—n—1 :
Iy z_[ d)‘2( 2) <__2> A> Ay | A> Az
: —ico k k S TR I
X T(=2)T (A + v)T(A; + v3 + 1) a7
Y
F()llz +n+ l + V12% - _) _‘1/6) @ @ /I\ Re(u)
|
F(A]z + + n)F(2)x2 + )\l +n+ V13) 2N
N T Ty IS
There are poles in this expression are due to I'(—A,) and :
are located at A, = j. Therefore :
1)/ m AN —j—vi3+D/2—n—1 !
I/\2=27le( )(—2)(_—2) 1 "
= j! \k k FIG. 4 (color online). Mellin-Barnes contour of integration
) ) which separates the poles of I'(---+ u) from those of
XT + v+ )l(n+j+ v3) I'(---—u). We close the contour to the left or to the right,
Ty +n+1+j+ v — g) choosing one of the two series of poles. A; and A, represent

the arguments in the sum which are given a Schwinger

Py +n+j+ %)F(Al +n+2j+vp) representation (A26).
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2 1
)( )F(n+]+v3)f dAT(— /\)(k2>

and thus
7O (om _ (DP@)Pm (=D (=1 (—1)1( 0*
T, L Pw)2mi G2 nt 1! k2
2\ =X —vi;3+D/2—n—1—j
X (—%) L T +n+1+ )T+ j+ )
IF'Ay+j+v;s— % + n+l
(A ] D 123 ) (A34)
Finally, we integrate with respect to A, closing the contour to the right, such that | p?/k*| < 1, and observing that the poles
of the expression are due to I'(—A;) and they are located at A; = s, we find
JO (g = DPCmPET S (2D () (1 (1 (_ L )(9_2 )l(_q_z)-’(_l’_z)‘
Toivers 3 Ty i 1! noj s! m?) \m? m? m?
r D+ i+j+
. _ (7123 : 5> T n jts) (A35)
FG+n+j+s9)l(vz;+n+2j+5s)

XT'(ws+n+ )y +n+1+)w, +j+5)

Changing to Pochammer symbols according to
Iy, +n+1+s)=wyn+1+s5(v,)
%,I’l l+j+s)F<V123 _j),

F(v;+n+j)=(vsin+ jl(v3)
D
vy +j+s)= )+ (), F(V123 +n+l+j+s)=(v123 +
D
Iy +n+2j+s)=wn+2j+s)(v3) F( +n+j+ s) <E,n +j+ s>r<5),
we reach at the expression
_ D (=] n i+s .
jSJO)V v (0 I’H,+) - (i)D(_mz)D/z V123 ( Y123 ) (_1) i (_k_z)n<0_2)l<_q_2)j
b (D)F(Vm) i nls! m?) \m? m?
y (_p_Z)S(VIZS 2in+ l s+ wysn+ 1+ s)vasn + j)(vsj+s) (A36)
m? Don+j+s)vin+2j+s) ’
or, equivalently
- D 2 g2 2 2
0) \D( o 2\D/2— iy L 123 ? Viz T V2 Va Vi kT 607 g7 p
v, (0, M) = 12 Y e i B A37
Tomws(6, me) = (@7 (=m?) INCOINE2PYY, 3|: Divis m? w2’ m? m? (A7
where
ai, a,, ds, a
[ i e

2 p

2

is the generalized Lauricella function of 4 variables. This is the general expression in arbitrary space-time dimensions. In
m

our particular case, we take v; = v, = v3 = 1 and D = 3, and Wick rotates to Euclidean space. We hence obtain

Y )

o0

_3
JO0, my) = (m*) 32 16— >
+ INETNE) iy Nl
Sn+l+s+ Lin+1+s)(Ln+ )(Lj+s)

G-
n+j+s)2n+2j+s)

m?
(A38)
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or
3SLLL k2 602 g2 p2
T m) = md) 32y, 2 | L P
(0, m.) = (m*) 3 %;2 m2 m? m? m2
(A39)

This completes the calculation of J© (@, m.). Next we
check some particular limits.
First we consider 82 = m?. Then

00 _l)n+j+s k2 \n q2 j p2 s
o) (0 2V=3/2 ( N(aY(prP-
J (mi) (m ) n’]-yZY:O I’l‘]'S' (mz) (mz) (mz)

F's+j+DI'(n+s+1)
I'2n+2j+2s+3)

I'n+j+1)

XF<n+j+s+§>,

5 (A40)

that can be written as

3 2 2 .2
0 N o »LLTVE ¢° p
J()(mi)_T(m) /cI)3|: 3 Wﬁﬁ s
(A41)
where
ai, a, ds, a
(I)3[ ! Zbl 3 4 xl)xz’ x3 ]

is the generalized Lauricella function of three variables.
This expression coincides with Eq. (A13) obtained in
Ref. [28] where, in our case, ¥; = v, =v; =1 and
V= p, vy p, V3D

Another limit of interest is when # = 0. This limit is
achieved by returning to Eq. (A28), where we take directly
6 = 0 and integrate using the Barnes theorem and integrat-
ing in accordance with above reasoning. Then,

IO = )RS %(k_z)(p_z)(q_i)j

n,s,j=0 m m m

I's+j+1DI'n+s+1)
Fn+s+j+IT(n+s+2j+2)

XF(n-i—j-i—1)F(n+s+j+%)l—‘<j+l),

2
(A42)
or
LLLLSRR p? g
JO(m.) = Jm(m*) 732D, 50 |m@mEaR |
2’

(A43)
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where

ai, ay, as, dy; ad
® 1 4, a3, dg; 4y
2 by; b,

X1, X2, X3 ]

is the three-parameter generalized Lauricella function.
This expression is in agreement with Eq. (32) of the
Ref. [28] after the identification v; = v, = v3 = 1 and
V| — P, Vy— U, V3 — V.

Finally, in the limit when 0% < m? in Eq. (A38), we
obtain

JO(m.) = (m?) 732 i (_l)j(kzz)(qz)](li)

1ilg!
nineo Ut \m m m

I'n+j+1DI'n+s+1)
Fn+j+s+IT(n+2j+s+2)

XF(j+s+1)F(n+j+s+%)+---.

(A44)
8.3 (6, m.)
We write JE})(H, m-) in its most general form
(1) ™
Ju'(0,ms) = T{k,uJA(k’ p) + puJpk p)t,  (A45)

that is symmetrical under the exchange of k and p. Here

1
Jalk, p) = — p{[pz(k2 +mi — 6%)
Gk p(p? + e — g )
+ (k- p)T(6% m2, k?) — p*I(62 m3, p?)
1
+ E(PZ — k- P)Ko(mr)},

Jp(k, p) = J4(p, k), (A46)

and Jo(6, m=) =2/7*J0(0, m.), Ko(m+) =
2/ KO (m.), 1(0% m2, p?) = I(6% m2, p?)/m*. The
limits § — 0, m+ — 0 and 6 — m+ can be derived
straightforwardly and show complete agreement with the
findings of Refs. [18,24].

9. ngl(os m:)

In its most general form, we expand

035001-10
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L K2 2k -
T (0, m.) = 7{_ g Ko(m.) — (kMkV - 5uv?>~’c(k, p)— (P;Lku +tkupy — SMVTP)JD(](, p)
e
- <pu,p7/ - 6,41,1/ ?)JE(k; P)}, (A47)

where

1 (1 2 5
Jelkop) = 5[5 P07+ 2 = 02 = 0 = 09 [rath ) = 2+ = gt )+ p T )

. 2 Ko(m-)
+k-p+p )74 }
3 1 J 2 J
Iolk, p) =W{[(k-p)<k2 = 6) =R+ m - 92)]7“ [(k-p)(p2 = 07) = L+t - 92)]73
171 4 1 ~ -
30— 0 e [Rotm) + S T0 2, ) £ p, 3,67, 20
Je(k, p) = Jc(p, k), (A48)

and T,(6% m2, p?) = I,(62 m3, p?)/ 2, being

I,(6%m2, p?) = [d3 el . A49
S R T s (T Ty (A4
This integral is readily found to be
0 —m. L0+ p
1,(6%m, p?) = wzpy{ T mUE Fa—  1p, . + 0)}. (A50)

The limits # — 0, m+ — 0 and @ — m . can be derived straightforwardly and show complete agreement with the findings
of Refs. [18,24].

10. LY, m.)

In order to integrate

LY m.) = [d3w i , (AS1)
- w2 w? + 02 ][(p — w)* + m3 J[(k — w)* + m%]
we use the identity
1 171 1
N —— A52
e Rl e (852
Thus, we can write
1
Ly (0, m) = 5L (m) = (0, m)) (AS3)
11. LE,(0, m.)
Similarly, we can express
1
Ly (0, m2) = 5 [JEme) = T30, m.)] (AS4)
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