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In this work, we report the determination of nonperturbative operator product expansion parameters

from fits of continuum perturbation theory to the Landau gauge quark propagator. The propagators are

computed numerically using lattice QCD with Nf ¼ 2 dynamical Wilson twisted mass fermions. We use

four different values of the lattice spacing ranging from a � 0:1 fm to a � 0:05 fm as well as several

quark masses per lattice spacing. This allows us to obtain continuum results for the chiral condensate

and the up/down quark mass extrapolated to the physical point. The main results are the average

up/down quark mass mMS
q ð2 GeVÞ ¼ 3:0 ð4Þ ð2Þ MeV at the physical point and h �c c iMSð2 GeVÞ ¼

�ð299 ð26Þ ð29Þ MeVÞ3 in the chiral limit. We have also studied nonperturbative contaminations of our

results at small values of the momenta, which are often interpreted as the contribution of the gluon

condensate hA2i. We do see contributions from such terms, which are, however, not stable over the order in

perturbation theory.
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I. INTRODUCTION

Quantum chromodynamics (QCD) describes the strong
interaction part in our current standard model of elemen-
tary particle physics. Because of its particular properties,
predictions for fundamental parameters of QCD require
nonperturbative methods. The main tool in this context is
lattice QCD, which allows predictions from first principles.

Also perturbative calculations in QCD, where appli-
cable, play an important role for our understanding of
QCD. For instance, in the regime of large momenta two-
point functions hOðpÞOðp0Þi of some operator OðpÞ can be
written in terms of an operator product expansion (OPE).
The OPE contains coefficients carrying the dependence on
the momenta, which can be computed in perturbation
theory as asymptotic series in powers of the strong cou-
pling �s, multiplied with local operators and appropriate
factors of the quark mass. The matrix elements of those
local operators, as e.g., the chiral condensate, are of purely
nonperturbative nature.

A most natural combination of the two aforementioned
notions is to compute the momentum dependence of two
point functions nonperturbatively and compare these for
large momenta with the OPE prediction. Such a method
not only allows us to compute estimates for fundamental
parameters of QCD, such as quark masses and conden-
sates, but in principle also to determine the strong coupling
constant �s.

The quantity we consider in this work is the Landau
gauge quark propagator PðkÞ in momentum space. Its OPE
has the following form:

PðkÞ � 1

k2
ð6kC1ðk2Þ þ Cmðk2Þmq þ C �c c ðk2Þh �c c i þ � � �Þ:

(1)

The coefficient functions CXðk2Þ, X � 1; m; �c c ; . . . , carry
the whole momentum dependence and can be computed in
perturbative QCD for large k2. The nonperturbative infor-
mation is encoded in the quark mass and the condensate(s).
Since we are going to compute PðkÞ using lattice QCD,

we cannot perform the calculation at arbitrary values for
the momenta, since we have to fulfill the inequality

1=a2 * k2 * �2
QCD:

The first inequality ensures small lattice artifacts and the
second one the applicability of perturbation theory. It is not
a priori clear that such a window exists, and one of the
questions we try to answer in this work is whether the
values of the lattice spacing available from state of the art
lattice QCD simulations are yet sufficient for such an
investigation. Hence, we will pay special attention to
both lattice artifacts and nonperturbative contaminations
of our results.
Lattice artifacts have actually previously been a compli-

cation for the applicability of the method we are going to
apply: when Wilson fermions are used naively in momen-
tum space, the leading contribution to the OPE of the quark
propagator is a constant term proportional to the lattice
spacing a. Even though this term will vanish eventually in
the continuum limit, at a finite value of a it will dominate
the OPE, since the mass and condensate contributions are
suppressed by powers of 1=k2. This makes the determina-
tion of the chiral condensate difficult, whereas the quark
mass can be determined if several values of it are inves-
tigated [1]. This complication can be circumvented by
using the OPE of the pseudoscalar vertex [2,3] or by work-
ing in x space [4]. For an analysis using the staggered quark
formulation see Refs. [5,6].
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Within the lattice formulation we are going to use
here—the so-called Wilson twisted mass formulation of
lattice QCD [7]—such a term can be avoided owing to
automaticOðaÞ improvement [8]. In addition, we are going
to remove lattice artifacts of order g20a

2 from our data as

computed in one-loop lattice perturbation theory [9,10].
The procedure outlined above is not the only way to

determine the quark mass and the chiral condensate. They
have been determined previously, for instance, from fits of
chiral perturbation theory to the data for the pseudoscalar
decay constant and mass; see, for instance, Ref. [11]. But
the analysis we are going to apply represents an indepen-
dent way to determine these important standard model
parameters with different systematics compared to other
methods.

The main results of this paper are determinations of the
average up/down quark mass at the physical point and

of the quark condensate, both within the MS scheme at
renormalization scale 2 GeV1

mMS
q ð2 GeVÞ ¼ 3:0 ð4Þ ð2Þ MeV (2)

and having performed the chiral limit

h �c c iMSð2 GeVÞ ¼ �ð299 ð26Þ ð29Þ MeVÞ3: (3)

For the chiral condensate we quote here the value stem-
ming from one of our fit strategies (fit B), as explained
later. The other fit strategies give slightly different, but
compatible results. We also discuss nonperturbative con-
taminations at small momenta, called two-dimensional
gluon condensate hA2i and provide effective values for it
depending on the order of perturbation theory taken into
account in the fits.

The investigation presented in this paper is based on
gauge configurations as produced by the European Twisted
Mass Collaboration (ETMC) with Nf ¼ 2 quark flavors of

Wilson twisted mass fermions [11–14]. We refer the reader
to these references for all the details of the simulations.

The paper is organized as follows. In Sec. II we discuss
the quark propagator in perturbation theory and in Sec. III
our lattice formulation. In Sec. IV we present our analysis
strategy and in Sec. V the corresponding results. We con-
clude with a summary.

II. THE QUARK PROPAGATOR
IN PERTURBATION THEORY

In perturbation theory the quark propagator is known up
to three loops [15]. Recently, the OPE of the renormalized
momentum space quark propagator in Landau gauge has

been performed in Ref. [16] in theMS scheme. The authors
have included terms up to mass dimension three in their
calculations. According to its Lorentz structure, PðkÞ can
be written as

PðkÞ ¼ 1

k2
Sðk2Þ1þ 6k

k2
Vðk2Þ: (4)

Assuming that we can use the OPE, one gets the following
expansion for the scalar and vector form factors Sðk2Þ and
Vðk2Þ [16] (up to operators of dimension three):

Sðk2Þ ¼ Cmðk2Þmq þ Cm3ðk2Þ
k2

m3
q þ CmA2ðk2Þ

k2
mqhA2i

þ C �c c ðk2Þ
k2

h �c c i (5)

and

Vðk2Þ ¼ C1ðk2Þ1þ Cm2ðk2Þ
k2

m2
q þ CA2ðk2Þ

k2
hA2i: (6)

While the quark mass mq and the chiral condensate h �c c i
are clearly of physical origin, the existence of a gluon
condensate hA2i is debatable. However, in the OPE such
a term is not excluded. The Wilson coefficients C1, Cm,
CA2 , Cm2 , C �c c , CmA2 , and Cm3 are functions of the strong

coupling constant �sð�Þ. The expansion can be found in
Ref. [16]. The value of �sð�Þ can be computed via renor-
malization group evolution as described in Ref. [17], which
needs �MS as an input. For this purpose we use a literature

value, as discussed later on.
Although known up to a certain order in �s, the pertur-

bative series of the Wilson coefficients in Eqs. (5) and (6)
may be truncated further in order to study the systematic
effect of the truncation. For this purpose we stop the
evaluation of the perturbative series at the nmax th power
in �s including at maximum terms of order �nmax

s ,

CX ¼ C0
X þ C1

X�
1
s þ � � � þ Cnmax

X �nmax
s ; (7)

where X stands for 1; A2; m2; . . . . The truncation is con-
sistently done in the Wilson coefficients as well as in the
evolution of �s by means of the � function.

III. LATTICE FORMULATION

The lattice quark propagator is calculated within the
twisted mass formulation of Nf ¼ 2 QCD [11–14]. For a

review see Ref. [18]. The gauge action used to generate the
ensembles was the tree level Symanzik improved gauge
action [19], viz.

Sg ¼ �

3

X
x

�
b0

X4
�;�¼1
1��<�

f1� ReTrðU1�1
x;�;�Þg

þ b1
X4
�;�¼1
���

f1� ReTrðU1�2
x;�;�Þg

�
;

with the bare inverse gauge coupling � ¼ 6=g20, b1 ¼
�1=12 and b0 ¼ 1� 8b1. The fermion action in the
so-called twisted basis is given by

1The first errors are purely statistical and the second ones
systematic, respectively.
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SF ¼ a4
X
x

��xðDW þm0 þ i�q�5�3Þ�x � a4
X
x

��xDtm�x:

(8)

HereDW represents the latticeWilson Dirac operator,m0 is
the usual bare quark mass and �q is the bare twisted quark

mass, which is multiplied by the third Pauli matrix �3
acting in flavor space. Twisted mass fermions are said to
be at maximal twist if the bare untwisted quark mass m0 is
tuned to its critical valuemcrit, the situation we are working
in. At maximal twist, the twisted quark mass �q is related

directly to the physical quark mass and renormalizes multi-
plicatively only. Many mixings under renormalization are
expected to be simplified [8,20]. And—most important—
as was first shown in Ref. [8], physical observables are
automatically OðaÞ improved without the need to deter-
mine any operator-specific improvement coefficients. For
details on tuning to maximal twist we refer the reader to
Ref. [11]. The aforementioned twisted basis ��, � is at
maximal twist related to the standard physical basis �c ,
c via the axial chiral rotation

c ¼ ei��5�3=4�; �c ¼ ��ei��5�3=4: (9)

In this framework we compute the Landau gauge twisted
quark propagator PtmðxÞ in position space

PtmðxÞ ¼ h�x ��0i ¼ hðDtmÞ�1iU; (10)

where h� � �iU denotes the average over gauge field configu-
rations fUg collected by the ETMC, which were gauge
fixed to Landau gauge using the overrelaxation method
described in Ref. [21].2 The quark propagators calculated
on these configurations are Fourier transformed to momen-
tum space and then rotated into the physical basis using
Eq. (9), yielding

PðkÞ ¼ 1ffiffiffi
2

p ð1þ i�5�
3ÞPtmðkÞ 1ffiffiffi

2
p ð1þ i�5�

3Þ: (11)

The details of the ETMC ensembles we used can be found
in Table I. In total we consider four values of the inverse
gauge coupling � corresponding to values of the lattice
spacing ranging from 0.1 fm to about 0.051 fm [11], with a
statistics of 240 gauge configurations for most of the
ensembles considered. The values of the (charged) pseudo-
scalar mass range from 600 MeV down to 250 MeV. For
setting the scale we use the results published by ETMC
in Ref. [11].

On the lattice, Eq. (4) is valid only up to lattice artifacts.
In particular, since parity is not a good symmetry ofWilson
twisted mass fermions at finite values of the lattice spacing,
a parity violating term in the propagator is allowed, which

is formally OðaÞ. Ignoring higher order lattice artifacts
including Oð4Þ symmetry breaking terms, the lattice quark
propagator can be written as follows [23]:

PðkÞ ¼ �i
6k
k2

Vðk2Þ þ 1

k2
Sðk2Þ þ i�5�

3 1

k2
Gðk2Þ: (12)

The parity violating term Gðk2Þ comes with opposite sign
for up and down propagators. Averaging over up and down
propagators hence eliminates these artifacts [23]. Note that
the parity violating OðaÞ term encoded in Gðk2Þ contrib-
utes to Sðk2Þ for standard Wilson fermions.
Rotational symmetry is broken at finite values of the

lattice spacing. To reduce the impact of those artifacts on
our results, we carried out the following steps: first, we
use for the analysis the lattice tree level momenta of the

quark propagator, k� ¼ 1
a sin ða~k� þ 1

2	�0Þ with ~k� ¼
ð2�n�Þ=ðaL�Þ. Second, we restrict ourselves to momenta

lying near the lattice diagonal (i.e., off-axis) by applying
the so-called cylinder cut [24] X

�

�
n�
L�

�
2
!
�
 X

�

�
n�N̂�

L�

�!2

� Ccyl

L2
; (13)

where N̂� ¼ 0:5 � ð1; 1; 1; 1Þ is the lattice diagonal. The

constant has been set to Ccyl ¼ 1:6 for the large lattice at

� ¼ 4:2 and to Ccyl ¼ 1:1 elsewhere. Following this pro-

cedure, the data for Sðk2Þ and Vðk2Þ show a sufficiently
smooth behavior.
Finally, we correct the form factors for lattice artifacts of

order Oðg20a2Þ. These corrections have been computed

explicitly in Refs. [9,10] within one-loop lattice perturba-
tion theory.

IV. ANALYSIS

The basic quantities considered in our analysis are the
bare form factors Vðk2Þ and Sðk2Þ of the lattice quark

TABLE I. Details of the ETMC gauge ensembles, used in the
analysis. See Ref. [11] for more details.

Ensemble � L3 � T a�q a [fm] Nconf

A1 3.80 243 � 48 0.0060 � 0:10 231

A2 0.0080 240

A3 0.0110 240

A4 0.0165 240

B1 3.90 243 � 48 0.0040 � 0:085 240

B2 0.0064 240

B3 0.0085 240

B4 0.0100 240

B5 0.0150 240

C1 4.05 323 � 64 0.0030 � 0:067 240

C2 0.0060 161

C3 0.0080 163

D1 4.20 483 � 96 0.0020 � 0:051 188

D2 323 � 64 0.0065 200

2Gribov copy effects have been found to be small for large
momenta in studies of the lattice gluon and ghost propagators in
Ref. [22]. We have also carried out a study on the Gribov copy
dependence of the quark propagator on a test ensemble with a
smaller lattice size and have found no ambiguities there.
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propagator Eq. (12) after applying the cylinder cut and
after removing lattice artifacts of the order Oðg20a2Þ. We

shall denote these corrected form factors with Ŝ and V̂. The
Oðg20a2Þ artifacts have only a modest effect on the ratio

S=V (after performing the cylinder cut) while V alone
receives substantial corrections. As an example we show
in Fig. 1 uncorrected and corrected data for aS=V and V for
� ¼ 3:8 in the left and right panels, respectively. At this
(smallest) � value one sees dramatic corrections to V.
However, as visible in Fig. 2, the corrections decrease as
the continuum limit is approached.

Our goal is to determine the renormalized quark mass
and the chiral condensate. Looking at the OPE’s Eqs. (5)

and (6) it seems appropriate to study Ŝðk2Þ, since the quark
mass can be determined from its leading quark mass de-
pendence and the chiral condensate is the leading contri-
bution in the chiral limit. However, if one wants to avoid
the usage of renormalization constants, it appears to be
useful to consider the scalar-to-vector form factor ratio

R̂ðk2Þ � Ŝðk2Þ
V̂ðk2Þ ; (14)

since the renormalization constant cancels out. Ŝ and V̂ are
then replaced by their perturbative series, and the resulting

expression is fitted to our numerical data for R̂ðk2Þ with
the renormalized quark mass, the renormalized chiral con-
densate and possibly further terms as fit parameters. We
remark in passing that as soon as the renormalization

constants in R̂ cancel in between numerator and denomi-

nator, the OPE of R̂ is written in renormalized quantities
only. The scheme and renormalization scale depend then
on the scheme and scale the perturbative expansion is
performed in.

For the fits of the ratio R̂ aswell as of the form factors Ŝ and

V̂ separately we have followed three different strategies.
(1) Fit A:

The fits of Eq. (14) to the data are performed simul-
taneously to all ensembles at fixed � values, allow-
ing for a different fit parameter value mq for each

ensemble, but only for one global fit parameter
corresponding to h �c c i. All other contributions
from the OPE are neglected. At each value of �
the results for mq are then interpolated to reference

values of r0mPS, r0 denoting the so-called Sommer
scale [25] and mPS the pseudoscalar meson mass,
respectively. Those interpolated results are extrapo-
lated to the continuum limit and then to the physical
point where appropriate.

(2) Fit B:
Resigning to determine a value for the renormalized

quark mass, we extrapolate our data for R̂ðk2Þ to the
chiral limit at each � value first. Only then do we fit
the perturbative series to the data at each � value,
with terms proportional to powers of mq set to zero

and still neglecting all other contributions from the
OPE. Thereafter the result for h �c c i is extrapolated
to the continuum limit.

(3) Fits A0 and B0:
At small values of k2 our data are potentially con-
taminated by additional nonperturbative terms in the
OPE. One example is what is often called the gluon
condensate hA2i. We shall avoid here the discussion
of its mere existence (see also Refs. [26–28]), but we
shall investigate whether our data are contaminated
by effects that may effectively look like the gluon
condensate. Since including such a term into the fits

of type A orB applied to the ratio R̂ appears to be not

stable, we first determine hA2i from V̂ðk2Þ only, and
use it afterward as an input for a fit of type A and B.

(4) Fit C:
As a further check of the sensitivity of the extraction
of the quark and gluon condensates against different
assumptions in the fitting procedures, we resign to
determine the quark masses mq (as in fits B and B0)
and instead we fix their values to the ones of the
renormalized quark masses, which at maximal twist

FIG. 1 (color online). Effect of the correction for Oðg20a2Þ
artifacts on S=V (left) and on V (right) for � ¼ 3:8. The effect
becomes weaker for larger � as expected.

FIG. 2 (color online). Same as in Fig. 1(a) but for � ¼ 3:9
(left) and � ¼ 4:05 (right). The x axis always displays the same
physical momentum range such that these figures may be
compared.
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are given by the twisted bare quark masses, a�q,

multiplied by 1=ZP, where ZP is the renormalization
constant of the pseudoscalar current.3 In what fol-
lows, we will refer to such values as the ZP-based
quark masses.
Contrary to the previous fits A and B, we do not use
the data for the ratio given by Eq. (14), but instead

the data for the two form factors, Ŝ and V̂, separately
in order to improve the sensitivity to the value of the
gluon condensate, and moreover we consider simul-
taneously all the data for the four values of the
lattice spacing. To this end we have to consider
explicitly the values of the renormalization constant
of the quark field, Zq, which will be treated as free

parameters, and we introduce also simple discreti-
zation terms, proportional to the square of the lattice
spacing, for the quark masses and the condensates
(see next section).

We perform fully correlated fits using the inverse co-
variance matrix in our �2 functions as described in
Ref. [30]. To estimate the systematic error induced by a
specific choice of the fit range, we have performed all fits in
several fit ranges. The results we give are then weighted
according to the �2-distribution function, and our final
result consists of the weighted average over all fit ranges
[11]. The fit ranges are consistently chosen among differ-
ent values of the lattice spacings in such a way that the
physical momentum range in terms of r20k

2 is kept approxi-

mately constant. The different sets of fit ranges we used are

r20k
2 2 ½18; . . . ; 58�; ½18; . . . ; 64�; ½18; . . . ; 66�;

½19; . . . ; 64�; ½20; . . . ; 64�; ½21; . . . ; 64�; (15)

which in physical units lie within the range

3:9 GeV2 � k2 � 14:6 GeV2: (16)

The statistical errors are estimated using a bootstrap pro-
cedure to propagate the errors consistently to the next step
of the analysis. To estimate the systematic error related to
the truncation in the perturbative series, we carried out the
fits using nmax ¼ 2 and nmax ¼ 3, and we take the differ-
ence in the results as systematic uncertainty.

The evaluation of the perturbative series requires a value
of �s as input, for which a value of �MS is needed. For

this purpose we use the value �MS ¼ 0:330 ð23Þ GeV [27]

(see also Table II), which is in good agreement with other
Nf ¼ 2 determinations of the same quantity [32,33]. The

error of this number is taken into account in our bootstrap
analysis and contributes to the statistical errors of our fit
results.

V. RESULTS

A. Fit A: Determination of quark condensate and mass

Ignoring terms proportional to hA2i and higher order
terms in the OPE Eqs. (5) and (6), we have performed

fits to the chirally nonextrapolated data of Ŝ=V̂ with the
quark mass and the chiral condensate as fit parameters
only. The fits are performed as discussed previously.
Throughout this analysis the renormalization scale has
been fixed at � ¼ 2 GeV in the perturbative series.
For all fit ranges quoted above the fits have produced

stable results with acceptable �2=dof values ranging from
0.78 to 1.24. We could not increase the lower boundary
beyond r20k

2 ¼ 21 as the fit for � ¼ 3:8 then turned un-

stable. In all considered fit ranges the fitted values of the
quark mass and the chiral condensate have been compat-
ible with each other within errors.
In Figs. 3(a) and 3(b) we show exemplary fits for en-

semble B1 at � ¼ 3:9 and D1 at � ¼ 4:2 with dashed
vertical lines indicating the chosen fit range.
To perform a continuum extrapolation of the fitted quark

masses mq, we first have to interpolate (extrapolate) the

values to common reference points of the squared pseudo-
scalar mass m2

PS at each � value. We have chosen the

following reference points:

r20m
2
PS 2 f0:49; 0:81; 1:21; 1:60g;

which allow us to use interpolations in the pseudoscalar
mass in most of the cases. Only for � ¼ 4:05 and � ¼ 4:2
we have to perform a short extrapolation for the largest
referencemass r20m

2
PS ¼ 1:60, and for� ¼ 3:8 and� ¼ 3:9

TABLE II. Physical quantities used as input parameters for the
fits and analysis. The values of m�0 and r0 have been taken from
Refs. [11,31]. The value of �MS is taken from Ref. [27].

m�0 ½MeV� r0 ½fm� �MS ½GeV�
134.9766(6) 0.42(2) 0.330(23)

FIG. 3 (color online). Fits of R̂ in lattice units to our data for
ensemble B1 at � ¼ 3:9 (left) and ensemble D1 at � ¼ 4:2
(right). The vertical lines indicate the fit range. These plots
correspond to fit strategy A.

3The values of ZP in theMS scheme at a renormalization scale
of 2 GeV can be read off from Ref. [23] at � ¼ 3:80, 3.90, 4.05
and from Ref. [29] at � ¼ 4:20.
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we have to rely on extrapolations for the smallest reference
point. In Fig. 4 we show as an example the interpolation to
these reference points for � ¼ 3:9 and � ¼ 4:2.

For each reference point we perform a separate contin-
uum limit of the quantity r0mq in a2, which is shown in

Fig. 5(a). The data appear to be compatible with a linear
behavior in a2 for all chosen reference points as expected.

Finally, the continuum quark mass data have to
be extrapolated to the physical pion mass m�0 ¼
134:9766 ð6Þ MeV [31], for which we use a linear curve
with zero intercept (leaving the intercept free gives com-
patible results). The extrapolation is shown in Fig. 5(b).
For h �c c i we have also performed a continuum extrapola-
tion linear in a2 as shown in Fig. 6. Note that we also tried
to include chiral logs for the quark mass dependence of
m2

PS; however, at our current precision this does not make a

difference.
After performing a weighted average over the chosen fit

ranges we quote the following results for fit A:

h �c c iMS

Nf

ð2 GeVÞ ¼ �ð335 ð37Þ ð35ÞMeVÞ3;

mMS
q ð2 GeVÞ ¼ 3:0 ð4Þ ð2Þ MeV;

(17)

where the first error is statistical and the second is a system-
atic error reflecting the uncertainties related to the fit range
and to the truncation of the perturbative series. The system-
atic error owing to the variation of the fit range is taken as
the maximum deviation from the �2-averaged result. This
amounts to about 0.08 MeV systematic uncertainty for the
quark mass and ð5 MeVÞ3 for the condensate. Furthermore,
decreasing the perturbative order to nmax ¼ 2 results in a
smaller fitted quark mass value as well as a higher value for
h �c c i. The systematic errors we quote is the change of the
central values when we apply this modification and added
by the change caused by varying the fit range.

B. Fit B: Determination of h �c c i in the chiral limit

In the chiral limit the chiral condensate is the only
nonperturbative parameter (disregarding again a possible
gluon condensate). Therefore, we expect it to be estimated
more reliably and with less statistical error than in the finite
mass case. Having calculated the quark propagator for two
to five bare twisted quark mass values �q, we can perform

a chiral extrapolation for each lattice spacing separately.
This limit has been performed linearly in the bare twisted

quark mass a�q for R̂ðk2Þ. Figure 7(a) shows exemplary

fits for � ¼ 3:9 at three representative values of a2k2, one
at the lower end, one in the middle and one at the upper end
of the considered momentum range. For any lattice spacing
and any other momentum not shown here the data are
consistent with such an extrapolation.
We have then fitted the mass extrapolated data via

Eqs. (5) and (6) disregarding all other OPE terms. The
corresponding one parameter fits in h �c c i have produced
�2=dof values in the range 0.8 to 1.8 and have been
performed in the fit ranges:

FIG. 5 (color online). Continuum limit of r0mq for the four
chosen reference points (left) and extrapolation of the continuum
extrapolated quark mass values r0mq to the physical pseudo-

scalar mass (right). The linear fit has been constrained to go
through the origin. This result again corresponds to fit A.

FIG. 4 (color online). Interpolation to the four chosen pion
mass reference points in m2

PS for � ¼ 3:9 (left) and � ¼ 4:2
(right). We also show the linear fit used for interpolation to the
reference points. The blue points correspond to the interpolated
values. These plots correspond to strategy fit A.

FIG. 6 (color online). Continuum limit of h �c c i from fit A.
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r20k
2 2 ½7; . . . ; 64�; ½9; . . . ; 64�; ½12; . . . ; 64�;

½7; . . . ; 60�; ½7; . . . ; 58�; ½7; . . . ; 56�: (18)

Note that we had to extend the fit range compared to fit A
toward the infrared in order to be sensitive to the curvature
of the chirally extrapolated data and to obtain stable
results. As an example we show the fit for � ¼ 4:05 in
Fig. 8(a). The continuum extrapolation has again been
performed in the lattice spacing squared and is shown in
Fig. 8(b). After a weighted average over the different fit
ranges and the continuum extrapolation, we get the follow-
ing result for the chiral condensate:

h �c c iMS

Nf

ð2 GeVÞ ¼ �ð299 ð26Þ ð29Þ MeVÞ3; (19)

where again the second error is systematic. Lowering
the perturbative order to nmax ¼ 2 results in a higher value

of h �c c i. The systematic error attributable to the use of
different fit ranges is evaluated in the samemanner as for fit
A and amounts to ð6 MeVÞ3.

C. Fits A0 and B0: Nonperturbative A2 contamination

As discussed in the Introduction, on the lattice we have
to restrict the analysis of the quark propagator to a window
in the squared momenta, as for too small momenta the
perturbative expansion will not be valid and for too large
momenta lattice artifacts will be too large. Of course, with
any choice of this window one can never be sure to be free
of this sort of artifacts. For this reason we extend our
analysis by including the further terms mhA2i and hA2i in
the OPE. Unfortunately, it turns out that an inclusion of

these terms as fit parameters in the fit to our data for R̂ðk2Þ
appears to be not stable. This is why we follow a different

strategy: we first determine an estimate for hA2i from V̂ðk2Þ
in the chiral limit alone, and we use this estimate to repeat
the fits we discussed before. This is not a fully consistent
treatment, but it should provide an estimate of the uncer-
tainty in our results.

In more detail, we first studied V̂ðk2Þ of the quark
propagator according to Eq. (8) in the chiral limit. In this
form factor the dimension two term represents the first
nonperturbative OPE contribution when the quark mass
is extrapolated to zero, and thus one has a direct handle
on this term. A similar study has been done using the
inverse lattice quark propagator in Ref. [34]. Note that

unlike R̂ðk2Þ the form factor V̂ requires renormalization,
which we include as free parameters into our fits.

The chiral limit of V̂ðk2Þ has been performed constant in
a�q. This is justified as can be seen, for instance, in

Fig. 7(b) where we show the chiral limit of V̂ for � ¼
3:90 for three values of a2k2. We then fit the OPE formula,

Eq. (6), to our data for V̂ðk2Þ in the same fit ranges as used
for fits A and B. We obtain rather large values for �2=dof of
about� 5–7 for� ¼ 3:8 and� ¼ 3:9, which are related to
the fact that the cut in momenta we have applied does not

work well for two points of V̂ at a2k2 � 1:3 and a2k2 �
1:55 [see the slight spread of the data at these regions in
Fig. 1(b)]. If we had discarded these points, we would have
obtained �2=dof < 3:5 in both cases. The fits for the two
smallest lattice spacings has yielded acceptable values of
�2=dof staying below � 1:3ð1:5Þ for � ¼ 4:05ð4:2Þ [see
Fig. 9(a)]. Finally, the results have been extrapolated to the
continuum limit linearly in a2, as shown in Fig. 9(b). For
the gluon condensate in the continuum limit we obtain

hA2iMS ¼ 0:65 ð09Þ ð17Þ GeV2:

The large systematic error is dominated by the truncation
of the perturbative order. To better understand the role of
the hA2i term in the OPE, we have studied the dependence
of the values of hA2i on the order of perturbation theory that
has been used in Eq. (6). To this end we have truncated

FIG. 7 (color online). (left) Chiral limit for R̂ at � ¼ 3:9. Data
have been extrapolated assuming a linear dependence on the bare
quark mass a�q, which is compatible with our data at every

momentum considered. (right) Chiral limit for V̂ at � ¼ 3:9
assuming a constant dependence on the bare quark mass a�q.

Here we follow fit strategy B.

FIG. 8 (color online). (left) Fit of aR̂ in the chiral limit using
fit strategy B for � ¼ 4:05. The vertical lines indicate the fit
range. (right) Continuum limit extrapolation of h �c c i.
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perturbation theory at the order �nmax
s and have performed

fits with nmax ranging from 1 to 3. For these fits we have
restricted ourselves to only one fit range with 9 � r20k

2 �
64. The resulting values of hA2i have then been extrapo-
lated linearly in a2=r20 to the continuum, as shown in

Fig. 9(b) for nmax ¼ 2.
In Fig. 10 we show the continuum extrapolated expec-

tation value of hA2i as a function of nmax . From the figure
we conclude that with increasing nmax the continuum value
of hA2i decreases with no saturation visible (yet). Hence,
we might conclude that this dimension two term is effec-
tively describing higher order terms in perturbation theory,
which are not included in our analysis; see Ref. [35] for a
discussion. However, it seems that this contamination
is not negligible for our data when momenta as low as
r20k

2 � 9 (k2 � 2 GeV2) are included in the fit.

Next we investigate the influence of this hA2i term on the
results for h �c c i and the quark mass. To this end we use the
values of hA2i determined as discussed above as an input

for fit with strategies A and B with fit ranges given in
Eqs. (15) and (18), as explained previously. The result of
fit B0 is a slightly smaller value of h �c c i

h �c c iMS

Nf

ð2 GeVÞ ¼ �ð294 ð25Þ MeVÞ3; (20)

which is, however, compatible within errors with the value
from fit B. Also the results of fit A0 differ only slightly from
fit A:

h �c c iMS

Nf

ð2 GeVÞ ¼ �ð324 ð37Þ MeVÞ3;

mMS
q ð2 GeVÞ ¼ 3:0 ð4Þ MeV:

(21)

If we had performed fit A (no hA2i term) with the same fit
range, we had obtained

h �c c iMS

Nf

ð2 GeVÞ ¼ �ð335 ð37ÞMeVÞ3;

mMS
q ð2 GeVÞ ¼ 3:0 ð4Þ MeV:

Thus, the difference is well covered by the purely statistical
error, which is quoted here. It is worthwhile to note that in
both cases we were able to get reasonable stable fits of the
fitted parameters h �c c i and mq when including the hA2i
term in the fit with fixed values. We conclude that although
we were not able to fit both nonperturbative condensates
independently, we get consistent results for h �c c i and mq

with and without the contribution of hA2i.

D. Fit C: Determination of the quark
and gluon condensates

A drawback of the previous fitting strategies is that the
sensitivity of the scalar to the vector form factor ratio,
Eq. (14), to the value of the gluon condensate is quite
limited. As a matter of fact, the gluon condensate is either
assumed to be zero (as in the fits A and B) or fixed at the
value extracted from the analysis of the data for the form

factor V̂ extrapolated to the chiral limit (as in the fits A0 and
B0). The main reason for such a limited sensitivity is that,
by expanding the denominator in Eq. (14), the power
corrections depending on hA2i appear always multiplied
by the quark massmq, which is a small quantity. Moreover,

the results of the previous fits suggest that the values of
quark and gluon condensates are anticorrelated to each
other. Therefore, in fit C we use the data for the corrected

form factors Ŝ and V̂, separately, in order to determine
simultaneously both condensates. The price to be paid is
the introduction of the renormalization constant of the
quark field, Zq, which is treated as a free parameter for

each value of the lattice spacing.
At the same time one of the main outcome of the

previous analyses is that the discretization effects on
the quark mass and on the condensates appear to be

FIG. 9 (color online). (left) Chirally extrapolated vector form
factor V̂ and fits of perturbation theory to data at � ¼ 4:05. The
vertical lines indicate the fit range. (right) The continuum
extrapolation of r20hA2i for nmax ¼ 2 in a2=r20.

FIG. 10 (color online). nmax dependence of the fitted gluon
condensate hA2i after continuum extrapolation.
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proportional to the square of the lattice spacing and, more-
over, the light u=d quark mass obtained in the continuum
limit and at the physical point turns out to be in good
agreement with the existing estimates made by the
ETMC (see Ref. [11]). Thus, we also try an alternative
description of the lattice artifacts by fixing the physical
quark masses mq to their ZP-based values and by perform-

ing in Eqs. (5) and (6) the following replacements:

mq ! 1

ZPa
ða�qÞ �

�
1þDm

a2

r20

�
;

h �c c i ! h �c c i �
�
1þD �c c

a2

r20

�
;

hA2i ! hA2i �
�
1þDA2

a2

r20

�
;

where Dm, Dc �c and DA2 are free parameters (independent

of the lattice spacing). Finally, two discretization terms of
the form DSðVÞa2k2, where DSðVÞ is a free parameter, are

added to Eqs. (5) and (6), respectively, to take into account
possible discretization effects proportional to the squared
momentum. The impact of such terms on the extraction of
the quark and gluon condensates turns out to be quite
limited.

A total of 640 data points are analyzed using 11 free
parameters, obtaining a �2 per degree of freedom of�0:9.
The quark and gluon condensates turn out to be

h �c c iMS

Nf

¼ �ð270 ð15Þ ð20ÞMeVÞ3;

hA2iMS ¼ 0:56 ð06Þ ð12ÞGeV2;

where the second error is the systematic one reflecting the
uncertainty in the truncation of the perturbative series. The
value obtained for hA2i agrees with the one used in fits A0
and B0. Furthermore, our estimates for hA2i agree with the

result g2hA2iMS
�¼10 GeV ¼ 2:01 ð11Þ ðþ0:61

�0:73Þ GeV2 obtained

in Ref. [34] from the analysis of the Landau gauge quark
propagator as in the present paper. The latter, once evoluted

at the scale � ¼ 2 GeV, corresponds to hA2iMS
�¼2 GeV ¼

0:67 ð04Þ ðþ0:20
�0:24Þ GeV2.

The result for the quark condensate as obtained from fit
C is a bit below the results obtained in the previous fits.
This means that different treatments of the quark mass
dependence of the leading term of the OPE of the quark
propagator may lead to a systematic effect of�30 MeV on
the extracted value of the quark condensate.

Overall we conclude from the comparison of primed
with nonprimed fits that the contamination of nonpertur-
bative effects in our data is inducing errors that are well
covered by the uncertainties we quote.

VI. CONCLUSIONS

We have presented a study of the quark propagator on
the lattice using Nf ¼ 2Wilson twisted mass fermions. By

comparing the numerical data to the perturbative series we
were able to determine estimates for the quark mass and
the chiral condensate, which both are fundamental parame-
ters of QCD. A summary of the results for the different
analysis methods can be found in Table III. From these
results, we obtain our final estimates printed in bold in
Table III and quoted in Eqs. (2) and (3) and in the abstract.
The results we obtain are well compatible with other lattice
determinations obtained using alternative approaches,
while the errors we quote appear to be larger. However,
we believe that these errors give a fair estimate in particular
of the systematic uncertainties involved in the kind of
analysis we applied in this paper.
Therefore, we conclude that a combined perturbative

and lattice analysis of the quark propagator appears to be
possible with recent lattice data, even if the errors are still
large. This conclusion appears to be in slight disagreement
to the findings in Ref. [3]: the authors found in a quenched
study using clover fermions that it is difficult to perform a
precise OPE analysis of the quark propagator, mainly
caused by the slowly converging perturbative expansion
of the Wilson coefficients. However, as we explicitly
checked the stability of our results with respect to the order
in perturbation theory and included it in the estimate of the
systematic uncertainties we quote, we are confident that
our (large) errors give a good estimate of the uncertainty in
the method. Eventually, smaller values of the lattice spac-
ing are needed to settle this issue, since they would allow
us to include larger values of the momenta in the analysis.
We have also studied nonperturbative contaminations of

our results at small values of the momenta, which is in the
literature often interpreted as a contribution of the gluon

TABLE III. Final values of our fit parameters h �c c i, mq and
hA2i, all in the MS scheme at scale � ¼ 2 GeV. The value mq

corresponds to the physical point, whereas h �c c i and hA2i are
understood to be defined in the chiral limit. We emphasize that
(only) the fit strategies B and B0 provide an explicit extrapolation
of the data to the chiral limit. This is why the B-fit value for
h �c c i is quoted in Eq. (3).

Quantity Final value Fitting method

h �c c i=Nf �ð335 ð37Þ ð35Þ MeVÞ3 Fit A
mq 3:0 ð4Þ ð2Þ MeV

h �c c i=Nf �ð299ð26Þð29Þ MeVÞ3 Fit B

h �c c i=Nf �ð324 ð37Þ ð34Þ MeVÞ3
mq 3:0 ð4Þ ð2Þ MeV Fit A0
hA2i ð0:65 ð09Þ ð17Þ GeVÞ2
h �c c i=Nf �ð294 ð25Þ ð28Þ MeVÞ3 Fit B0
hA2i ð0:65 ð09Þ ð17Þ GeVÞ2
h �c c i=Nf �ð270 ð15Þ ð20Þ MeVÞ3 Fit C
hA2i ð0:56 ð06Þ ð12Þ GeVÞ2
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condensate A2. We do see contributions from such terms,
which are, however, not stable over the order in perturba-
tion theory. In fact, in the continuum limit the contribution
decreases with increasing order in �s, and we do not
observe any saturation as is visible in Fig. 10. Still, our
value for the gluon condensate is compatible with the
findings reported in Ref. [34].
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