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Numerical lattice gauge theory computations to generate gauge field configurations including the

effects of dynamical fermions are usually carried out using algorithms that require the molecular

dynamics evolution of gauge fields using symplectic integrators. Sophisticated integrators are commonly

used but hard to optimize, and force-gradient integrators show promise especially for large lattice

volumes. We explain that symplectic integrators lead to very efficient Monte Carlo algorithms because

they exactly conserve a shadow Hamiltonian. The shadow Hamiltonian may be expanded in terms of

Poisson brackets and can be used to optimize the integrators. We show how this may be done for gauge

theories by extending the formulation of Hamiltonian mechanics on Lie groups to include Poisson

brackets and shadows and by giving a general method for the practical computation of forces, force

gradients, and Poisson brackets for gauge theories.
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I. INTRODUCTION

Essentially all algorithms used in lattice gauge theory
computations to generate gauge field configurations
including the effects of dynamical fermions are variants
of the Hybrid Monte Carlo (HMC) algorithm [1], which
requires a reversible and area-preserving integrator for its
molecular dynamics step. The simplest such method is the
leapfrog integrator, but there is a large class of symplectic
integrators [2] that have these properties and are poten-
tially more cost effective. Indeed, many state-of-the-art
computations use the second-order minimum norm inte-
grator [3–5] which has a free parameter, which has been
tuned heretofore in an ad hoc manner.

The formulation of Hamiltonian dynamics on Lie group
manifolds, which is required for molecular dynamics on
gauge fields [6,7], and the fact that symplectic integrators
conserve a shadowHamiltonian are well known; our goal is
to combine the two and show how to construct the shadow
Hamiltonian for gauge theories. This is most easily done
using the formalism of differential forms [8–12]; in order
to fix our notation and establish the necessary results, some
of which are not easy to find in the literature, we provide a
brief review in Appendix A.

The shadow Hamiltonian is expressed as an asymptotic
expansion in the integration step size ��whose coefficients

depend on the parameters specifying the integrator under
consideration and a collection of Poisson brackets. These
Poisson brackets are complicated functions on phase space,
where in the case of gauge field molecular dynamics a
point in phase space is an entire gauge field configuration
and its associated ‘‘fictitious’’ momenta. For extensive
systems such as field theories, unlike the few body systems
considered previously [13,14], the values of the Poisson
brackets have a distribution that is sharply peaked about
their mean values when we choose the starting points of
their molecular dynamics trajectories to be chosen from the
distribution e�H, as is done in the HMC algorithm. This
may be understood as a consequence of the central limit
theorem applied to the contributions to the Poisson brack-
ets coming from many independent regions of space-time.
This means that for configurations that occur with non-
vanishingly small probability, the shadow Hamiltonian
may be considered to be a function of the average values
of the Poisson brackets; if these are measured on a few test
trajectories then the integrator parameters may be chosen
to minimize the computational cost [15–17]. Perhaps sur-
prisingly this does not correspond to minimizing the aver-
age difference between the Hamiltonian and its shadow1

but instead to minimizing the variance of the distribution of
the shadow. We shall not be concerned with the details of
this tuning procedure here, but we refer the interested
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1Since the shadow is only defined up to an additive constant
this cannot be too surprising.
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reader to Ref. [17] for details: instead, the aim of this
paper is to explain how the Poisson brackets, forces, and
force gradients may be computed at any given point in
phase space.

In Ref. [7] expressions for the molecular dynamics
force were derived from the classical mechanics specified
by the Hamiltonian function and a suitable chosen group-
invariant fundamental two-form. We extend this analysis
to obtain an expression for the force-gradient for gauge
fields [18], which can be used to provide a ‘‘second
derivative’’ integrator step for the construction of improved
integrators [13,14].

A. Multiple link updates

For much of this paper we shall be considering a
Hamiltonian system with a phase space which is the
cotangent bundle T�G over a base space that is a Lie group
manifold G and whose fibres are isomorphic to its
Lie algebra. We shall call the cotangent one-forms
‘‘momenta,’’ although in the context of HMC they are
called ‘‘fictitious momenta’’ as they are quite different
from the canonical momenta of the underlying field theory.
For a gauge field theory we may associate such a phase
space with every link of the lattice. One might at first think
that we need to introduce some fibre bundle structure over
the space-time lattice itself but fortunately that is not
necessary. We can consider the molecular dynamics evo-
lution of each gauge link separately; they are coupled
together through the action that plays the role of the
potential energy part of the Hamiltonian, but the kinetic
energy part does not couple different links. For HMC we
are free to choose the form of the kinetic energy, so we take
it to be of the form2 TðpÞ ¼ 1

2

P
‘c‘p

2
‘ where p‘ is

the momentum associated with the link ‘, and c‘ is a
link-dependent coefficient that is constant in molecular
dynamics ‘‘fictitious time’’. If we wish to evolve the single

link �‘ on its own we choose c‘0 ¼ �‘;‘0 so that _�‘0 ¼
@H=@p‘0 ¼ @T=@p‘ ¼ c‘0p‘0 ¼ 0 if ‘ � ‘0. We are also
free to choose c‘ ¼ 1 for all links, which is the usual
situation where we update the gauge field simultaneously
across the entire lattice. Another interesting choice for the
kinetic energy is to choose c‘ ¼ 1 for all spatial links
and c‘ ¼ � for all temporal ones: this is the procedure
suggested in Refs. [19,20] for evolving anisotropic latti-
ces.3 The momentum anisotropy � is a parameter that can
be adjusted to optimize the HMC algorithm for a given
anisotropy in the action; if the spatial and temporal con-
tributions to the Poisson brackets are measured separately

then the techniques of Clark et al. [17] can be used to tune
� along with other integrator parameters.

B. Pseudofermion forces

So far we have only been discussing pure gauge theo-
ries, but in practice the cost of most lattice computations
is dominated by the inclusion of fermions. This is because
we need to solve a large system of linear equations in
order to update the fictitious momenta (i.e., to apply the

Hamiltonian vector field Ŝ in the notation wewill introduce
later). Typically we have an action S which is the sum of a
pure gauge part SG, built out of sums of small Wilson loops
(traces of a closed loops of gauge links) such as plaquettes
and a pseudofermion part SF built out of sums of pairs
of pseudofermion fields � connected by a string
of gauge links. If we want to compute the force acting
on a particular gauge link4 U then it is convenient to
write SG ¼ Re trðuUÞ and SF ¼ �yM�1ðUÞ� where the
‘‘staple’’ u is the sum of all gauge link strings that connect
the ends of the link U that correspond to the Wilson loops
in SG, and the Hermitian lattice matrixMðUÞ is the sum of
all gauge link strings that include U that occur in SF. For a
local action all of these strings are in some neighbourhood
of U, and we have dropped all other terms in the action
because they are independent of U and therefore do not
contribute to the force on that particular link. In reality, we
update many or all the links on the lattice at once, so we
compute the force on each link in parallel. By the ‘‘force’’
we mean the quantity eiðSÞTi where ei is a linear
differential operator (vector field) whose action on U is
specified by eiðUÞ ¼ �TiU and which we shall define
carefully later (15), and Ti is the representation of a
generator of the gauge group. It is important to note that
here ei acts only on the gauge link U; it gives zero if
applied to any other link variable. There is an opportunity
for confusion when we refer to ei as a vector field; it is a
vector field defined over the phase space of the link U, but
it is not a field over the space-time lattice. In order to
reduce confusion we refer to quantities defined over the
space-time lattice as lattice vectors, and space-time linear
differential operators such as the Dirac operator (or more
precisely lattice difference operators acting on lattice
vectors such as the Wilson-Dirac operator) as lattice
matrices.
The contribution to the force from the pure gauge

part of the action is eiðSGÞTi ¼ Re trðueiðUÞÞTi ¼
�Re trðuTiUÞTi ¼ �Re trðU u TiÞTi ¼ �aT ðUuÞ, T
being the projector onto the Lie algebra, that is
T ðXÞ ¼ Re trðXTiÞTi=a where there is an implicit sum
over i as usual and the generators Ti are normalized such
that trðTiTjÞ ¼ a�ij. If the gauge group is SUðNÞ and we

choose its generators to be anti-Hermitian so as not to

2For notational simplicity we consider here a theory with a
scalar field� and the corresponding momentum p defined on the
links of a lattice.

3In Ref. [20] the temporal step size is adjusted rather than the
kinetic energy, which is equivalent after a rescaling of the
temporal momenta.

4We shall refer both to a gauge link variable and the link on
which it lives as U when there is no ambiguity.
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introduce artificial factors of i, then T ðXÞ is just the trace-
less anti-Hermitian part of X.

The pseudofermion contribution to the force
is eiðSFÞTi ¼ �yeiðMðUÞ�1Þ�Ti. Since ei is a
linear differential operator we have 0 ¼ eiðIÞ ¼
eiðMM�1Þ ¼ eiðMÞM�1 þMeiðM�1Þ, and hence
eiðM�1Þ ¼ �M�1eiðMÞM�1. Therefore eiðSFÞTi ¼
�Re tr½eiðMðUÞÞX � Xy�Ti, where we have defined
X �M�1� to be the solution of a large but sparse system
of linear equations (since M is local); this may be com-
puted on all lattice sites and used to update some or all
gauge links in parallel. The outer product X � Xy is the
rank one Hermitian lattice matrix whose action on an
arbitrary lattice vector y is proportional to the projection
of y along X, namely ðX � XyÞy ¼ XðXyyÞ.

We can express the pseudofermion action in the form
SF ¼ �Re tr½MðUÞX � Xy� analogous to that of SG if we

consider X to be a lattice vector that is independent of U.
This means that once we have computed X the calculation
of the gauge and pseudofermion parts of the force and
related quantities are very similar. Both the gauge and
pseudofermion actions can be written as the trace of lattice
operators times U, where the lattice operators are either
local (u andM) or low rank (X � Xy). Both local and low
rank operators are relatively cheap to apply to lattice
vectors or to trace, the former only involving links in the
neighbourhood of U, and the latter only involving inner
products of lattice vectors. For example, we may evaluate
the trace tr½MðUÞX � Xy� ¼ XyMðUÞX as the inner
product of Xy with the vector MðUÞX.

If we include spin degrees of freedom then we must
replace X � Xy by a sum of outer products for each spin
component, but the result is still a low rank matrix which is
therefore cheap to apply. Likewise, if we wish to introduce
n pseudofermion fields so as to reduce the noise in the
stochastic estimate of the fermionic force and thus defer
the breakdown in the asymptotic expansion for the shadow
Hamiltonian to significantly larger integrator step sizes
[21–25] then we only increase the rank by a factor of n.

C. Outline

The structure of this paper is as follows. In Sec. II we
consider the general formulation of Hamiltonian
mechanics on a symplectic manifold [26]; this serves to
introduce the important concepts of the fundamental
two-form, the Hamiltonian vector field it associates with
any zero-form, and the Poisson bracket of two zero-forms.
We show that Poisson brackets satisfy the Jacobi identity
and that the commutator of two Hamiltonian vector
fields is itself a Hamiltonian vector field; we explain the
isomorphism between the Lie algebra of commutators of
Hamiltonian vector fields and that of Poisson brackets of
zero-forms. The reason we need all this mathematical
machinery is that when we consider Hamiltonian mechan-
ics on Lie groups in Sec. IV we will introduce a nontrivial

fundamental two-form in order to make the dynamics
symmetric under the action of the group. Moreover, the
fact that Hamiltonian vector fields form a Lie algebra is
crucial for the definition of the shadow Hamiltonian, which
we give in Sec. III. The exposition assumes some knowl-
edge of the theory of differential forms, an overview of
which is given in Appendix A.
Section III introduces symplectic integrators by

noting that if a zero-form on phase space only depends
on the momenta p or only on the positions q then the
integral curves of its Hamiltonian vector field are easily
found. We are interested in Hamiltonians Hðq; pÞ ¼
TðpÞ þ SðqÞ that are the sum of two such functions, and
we show how this allows us to construct symplectic

integrators to find approximate integral curves for Ĥ
using the Baker-Campbell-Hausdorff (BCH) formula.
We give some simple examples of integrators for a
system on a symplectic manifold with fundamental
two-form ! ¼ dq ^ dp and show how to compute the
corresponding shadow Hamiltonians. When the kinetic
energy is of the form TðpÞ ¼ 1

2p
2 we show that the

Poisson bracket fS; fS; Tgg is independent of p and explain
how it may thus be used to construct a force-gradient
integrator step.
Section IV defines a symplectic structure on Lie group

manifolds, or more precisely on their cotangent bundle
T�G, that is compatible with the group structure. This is
done by introducing the natural fundamental two-form
terms of Maurer-Cartan forms, and it is here that the
mathematical framework we have developed becomes nec-
essary. We derive explicit formulas for Hamiltonian vector
fields and Poisson brackets in terms of the momentum
coordinates (which are well defined globally) and the
family of left-invariant vector fields dual to the Maurer-
Cartan forms. All the independent Poisson brackets of S
and T that can occur in shadow Hamiltonians up to and
including Oð��4Þ are given explicitly for the case where S
is momentum independent and T is quadratic in the mo-
menta. We then show how to express the results in terms of
matrix representations of the Lie group, as these are what
are used in practice.
In Sec. V we evaluate the formulas for the Poisson

brackets for the physically interesting case of the funda-
mental representation of SUðNÞ. We show that they can all
be expressed as traces of a collection of Lie-algebra-valued
quantities: as these live on links we name them basic lattice
vectors.
In Sec. VI we address the problem of computing these

basic lattice vectors. We do this first for the simple case
where only a single link is updated and then introduce the
algebra of towers to give an efficient way of computing
them in general.
Appendix A gives a brief survey of the theory of differ-

ential forms and serves to fix our notation and conventions,
as does Appendix B which gives an overview of the
properties of Lie groups.
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II. HAMILTONIAN MECHANICS

A. Symplectic manifolds

A Hamiltonian system is defined on phase space,
which is a differential manifold M with a symplectic
structure given by some fundamental two-form ! that
is closed, d! ¼ 0, and globally invertible. Phase space
is usually the cotangent bundle T�G over some configura-
tion space manifold G. For every zero-form F 2 �0 on
M, that is for every C1 smooth function F: M!M,

there is a corresponding Hamiltonian vector field F̂ 2
HamM such that dF � iF̂!: in other words, dFðyÞ ¼
ðiF̂!ÞðyÞ ¼ !ðF̂; yÞ for any vector field y.

A zero-form Z corresponds to a vanishing Hamiltonian
vector field if and only if dZ ¼ 0. We have the following
short exact sequence 0! R! �0ðMÞ ! HamM! 0,
which implies that there is a bijective diffeomorphism
�0ðMÞ=R$ HamM. The nature of this correspondence
between zero-forms (up to an additive constant) and
Hamiltonian vector fields will be examined further in the
following sections.

B. Poisson brackets

Consider the action of a Hamiltonian vector field F̂ on a
zero-form G,

F̂G ¼ dGðF̂Þ ¼ iĜ!ðF̂Þ ¼ !ðĜ; F̂Þ � fF;Gg;
where in the first equality we have made use of the defini-
tion of the exterior derivative of a zero-formG acting on an
arbitrary vector field y, dGðyÞ � yG, and in the last equal-

ity we have introduced the Poisson bracket fA; Bg �
�!ðÂ; B̂Þ for any pair of zero-forms A and B. The minus
sign has to appear somewhere, and our convention is to
introduce it here in the definition of the Poisson bracket.

C. Jacobi identity

The invariant expression (A3) for the exterior derivative
d! of a two-form! applied to three arbitrary vector fields
x, y, and z

d!ðx; y; zÞ ¼ x!ðy; zÞ þ y!ðz; xÞ þ z!ðx; yÞ
�!ð½x; y�;zÞ �!ð½y; z�; xÞ
�!ð½z; x�; yÞ

displays an interesting cyclic symmetry in the three vector
fields x, y, and z. This has an important consequence if !
is the fundamental two-form and the vector fields are
Hamiltonian: if A, B, and C are three arbitrary zero-forms
then

Â!ðB̂; ĈÞ ¼ �ÂfB;Cg ¼ �fA; fB;Cgg;
and also

! ð½Â; B̂�; ĈÞ ¼ �!ðĈ; ½Â; B̂�Þ ¼ �dCð½Â; B̂�Þ
¼ �½Â; B̂�C ¼ ðB̂ Â�Â B̂ÞC
¼ fB; fA;Cgg � fA; fB;Cgg:

We thus find that the condition d!¼ 0 implies that the
cyclic sum of nested Poisson brackets must vanish,

d!ðÂ;B̂;ĈÞ¼fA;fB;CggþfB;fC;AggþfC;fA;Bgg¼0: this
is just the Jacobi identity which, together with the
antisymmetry of the Poisson bracket demonstrates that
zero-forms on M together with the product given by the
Poisson bracket form a Lie algebra.
We can use the Jacobi identity to derive another useful

result. The commutator of any two vector fields is a vector
field [Eq. (A2)]; if both vector fields are Hamiltonian then
their commutator is also Hamiltonian since

½Â; B̂�C ¼ ðÂ B̂�B̂ ÂÞC ¼ fA; fB;Cgg � fB; fA;Cgg
¼ �fC; fA; Bgg ¼ ffA; Bg; Cg ¼ fdA;BgC;

where we applied the Jacobi identity in the antepenultimate
step. Since this must hold 8 C 2 �0, we have

½Â; B̂� ¼ fdA;Bg 2 HamM (1)

telling us that not only is the commutator of two
Hamiltonian vector fields Hamiltonian as promised, but
also that it corresponds to the zero-form that is the
Poisson bracket of the zero-forms corresponding to the
original pair of Hamiltonian vector fields. The bijection
�0ðMÞ=R$ HamðMÞ is therefore an isomorphism of
Lie algebras.

D. Lie derivatives and equations of motion

Given a Hamiltonian H 2 �0ðMÞ and a fundamental
two-form! we may construct the Hamiltonian vector field

Ĥ, and for any point p 2M we may, at least locally,
define an integral curve. We may also define a local flow
�: I �U!M of trajectories starting at any point p 2
U �M in some neighbourhood of p, �: R!M, sat-

isfying Hamilton’s equations d�=dt ¼ Ĥ and the
initial condition �ð0Þ ¼ p. Hamilton’s equations are thus
most naturally expressed in terms of Lie derivatives
(Appendix A 5), dT=dt ¼ LĤT, for any tensor T. In

particular, a scalar field (zero-form) F, vector field v,
and one-form � must obey

dF

dt
¼ LĤF ¼ ĤF ¼ fH;Fg;

dv

dt
¼ LĤv ¼ ½Ĥ;v�; and

d�

dt
¼ LĤ� ¼ ðiĤdþ diĤÞ�:

The formal solution of the equation of motion
dT=dt ¼ LĤT is TðtÞ ¼ expðtLĤÞTð0Þ, where the
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exponential function is defined as expðtLĤÞ ¼
limn!1ð1þ t

nLĤÞn ¼
P1

j¼0ðtLĤÞj=j!.

III. SYMPLECTIC INTEGRATORS
AND SHADOW HAMILTONIANS

A. Baker-Campbell-Hausdorff formula

The BCH formula states that if A and B belong to an
associative algebra then

lnðeAeBÞ ¼ X1
n¼1

cnðA; BÞ; (2)

where the cn, belonging to the free Lie algebra,5 are
recursively determined from the relations c1 ¼ Aþ B and

ðnþ 1Þcnþ1 ¼
Xbn=2c
m¼1

B2m

ð2mÞ!
X

k1 ;...;k2m�1
k1þ			þk2m¼n

ad ck1 . . . ad ck2mðAþ BÞ

� 1

2
ðad cnÞðA� BÞ for n � 1; (3)

where ada: b � ½a; b� and the Bernoulli numbers Bn are
defined by

x

ex � 1
� X

n�0

Bnx
n

n!
:

The first few terms in the Hausdorff series are

lnðeAeBÞ ¼ ðAþ BÞ þ 1

2
½A; B� þ 1

12
ð½A; ½A; B�� � ½B; ½A; B��Þ � 1

24
½B; ½A; ½A; B���

þ 1

720

�4½B; ½A; ½A; ½A; B���� �6½½A; B�; ½A; ½A; B���
þ4½B; ½B; ½A; ½A; B���� �2½½A; B�; ½B; ½A; B���
�½A; ½A; ½A; ½A; B���� þ½B; ½B; ½B; ½A; B����

0BB@
1CCAþ 	 	 	

From this we easily obtain the corresponding formula for a symmetric product

lnðeA=2eBeA=2Þ¼ ðAþBÞ� 1

24
ð2½B;½A;B��þ½A;½A;B��Þþ 1

5760

32½B;½B;½A;½A;B���� �16½½A;B�;½B;½A;B���
þ28½B;½A;½A;½A;B���� þ12½½A;B�;½A;½A;B���
þ8½B;½B;½B;½A;B���� þ7½A;½A;½A;½A;B����

0BB@
1CCAþ			

(4)

B. Symplectic integrators

The integral curve of a Hamiltonian vector field Â is

given by the exponential map t � expðtÂÞ acting on the

initial point. Given two Hamiltonian vector fields Â and B̂
we can construct a curve that is alternately tangential to each
vector field from the composition of their exponential maps

t � ½expðtÂ=nÞ expðtB̂=nÞ�n for some n 2 N. Such a map
is called a symplectic integrator as it manifestly preserves
the symplectic structure because it is a composition of
exponential maps each of which preserves this structure.
The BCH formula (2) tells us that this curve itself is in fact
the integral curve of a vector field Dt=n�

exp

�
tÂ

n

�
exp

�
tB̂

n

��
n

¼
�
exp

�
ðÂþ B̂Þ t

n
þ X1

m¼2
cmðÂ; B̂Þ

�
t

n

�
m
��

n

¼ exp

��
Âþ B̂þ X1

m¼2
cmðÂ; B̂Þ

�
t

n

�
m�1�

t

�
¼ expðDt=ntÞ;

where D" � Âþ B̂þP1
m¼2 cmðÂ; B̂Þ"m�1. As all the cm

are commutators, Eq. (1) tells us that D" is a Hamiltonian

vector field corresponding to the shadow zero-form D"

under the isomorphism HamM$ �0ðMÞ=R discussed

earlier. In other words, D" ¼ D̂", where the zero-form

D" � Aþ BþP1
m¼2 c0mðA; BÞ"m�1 with the c0m defined by

(3) in terms of the Poisson bracket image of the adjoint

under the Lie algebra isomorphism (1) adÂ � badA, wherebadA:B � fA; Bg. We note in passing that the shadow is only

defined up to an additive constant.
The BCH formula is obtained by formal manipulation of

the exponential series, so we should choose a sufficiently

large n to ensure that the Hausdorff series converges. In

order to study the convergence of the BCH formula we

need to specify a topology on the space of Hamiltonian

vector fieldsHamM. It is simpler to ask the same question
about the convergence of the corresponding expansion for

the shadow Hamiltonian, for which there is an obvious

topology as the coefficients are zero-forms and we can use

the usual Lp norms. In most cases none of these norms are

bounded so the series is only asymptotic at best. In HMC

the momenta are selected from a Gaussian distribution

e�TðpÞ so the values of the Poisson brackets can become
arbitrarily large but with exponentially small probability.

There is no value of " for which the Hausdorff series

always converges, but it might well be that for any

5That is the Lie algebra whose Lie bracket is the commutator
constructed from the associative product. For more details about
free Lie algebras and a proof of the BCH formula see
Appendix B of Ref. [27].
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� > 0 we can find an " > 0 such that it does converge
with probability >1� �. This may be acceptable for
HMC, where an exponentially small chance of a
trajectory becoming unstable is unimportant: it will
presumably be rejected and the next momentum or
pseudofermion refreshment will resolve the problem. If
the large norm comes from the gauge field configuration
then there could be more severe problems.

C. Symmetric symplectic integrators

In general a symplectic integrator is not reversible, that
is the group commutator

expð�tÂ=nÞ expð�tB̂=nÞ expðtÂ=nÞ expðtB̂=nÞ � I;

indeed we immediately see from this expression that

that the integrator is reversible if and only if ½Â; B̂� ¼ 0.
This blemish is easily eradicated by using a symmetric

symplectic integrator such as expðtÂ=2nÞ expðtB̂=nÞ�
expðtÂ=2nÞ. An additional advantage of such integrators
is that only even powers of " occur in the Hausdorff series
for their shadow Hamiltonians D", so Aþ B�D" ¼
Oð"2Þ, making them better approximations to the expo-

nential map of Âþ B̂ itself.

D. Practical integrators

Finding a closed-form expression for the integral curve

of some Hamiltonian vector field Â is impossible in most
cases as there is no closed-form solution of Hamilton’s
equations. However, there are some special cases where we
can find such a solution.

For example, suppose that in some local patch of phase
space with coordinates q and p the fundamental two-form
is6 ! ¼ dq ^ dp, A is an arbitary zero-form, and X is an
arbitrary vector field on phase space. Then

dA ¼ @A

@q
dqþ @A

@p
dp; X � Xq

@

@q
þ Xp

@

@p
;

Â � Aq

@

@q
þ Ap

@

@p
;

and we have

dAðXÞ ¼ @A

@q
Xq þ @A

@p
Xp ¼ !ðÂ;XÞ

¼ ðdq ^ dpÞ
�
Aq

@

@q
þ Ap

@

@p
; Xq

@

@q
þ Xp

@

@p

�
¼ AqXp � ApXq:

Since X is arbitrary we can equate coefficients of Xq and

Xp to obtain

Â ¼ @A

@p

@

@q
� @A

@q

@

@p
:

Let cðtÞ ¼ ðqt; ptÞ be the integral curve of Â with
cð0Þ ¼ ðq0; p0Þ, which means that for any zero-form
f it must satisfy the differential equations

ðÂfÞ 
 c ¼ d

dt
ðf 
 cÞ;

or equivalently

_qt ¼ @A

@p
ðqt; ptÞ and _pt ¼ �@A

@q
ðqt; ptÞ;

which are Hamilton’s equations if A is the Hamiltonian.
Now, suppose that Aðq; pÞ ¼ TðpÞ is only a function

of the momenta, then T̂ ¼ T0ðpÞ@=@q, and Hamilton’s
equations reduce to the pair _qt ¼ T0ðpÞ and _pt ¼ 0
of first-order differential equations with constant coeffi-
cients, with the solution that the momentum is constant,
pt ¼ p0, and qt ¼ q0 þ T0ðp0Þt grows linearly in t. The
case where Aðq; pÞ ¼ SðqÞ is analogous. If we have a
function Aðq; pÞ ¼ Hðq; pÞ ¼ TðpÞ þ SðqÞ, perhaps the
Hamiltonian itself, that can be decomposed into the sum
of a kinetic energy and a potential energy then we can
easily integrate either term separately, and we can use a
symplectic integrator to approximate the integral curves of

Ĥ itself.
In fact we have established a stronger result, namely

we can find the exact integral curves of a shadow
Hamiltonian H" that differs from H by terms of Oð"Þ in
closed form. A symplectic integrator thus not only exactly
preserves the symplectic structure but also conserves the
value of H (the energy) up to order " for arbitrarily long

times: unfortunately, the integral curves of Ĥ and Ĥ"

usually diverge from each other after a relatively short
time despite this. This happens even if their equations of
motion are not chaotic: symplectic integrators are very
good at conserving energy and phase space volume, but
they are not particularly good in finding the correct trajec-
tory through phase space.
For HMC applications where we only care about exact

reversibility, exact area preservation, and good energy
conservation we see that symmetric symplectic integrators
meet all the requirements, and the divergence of the
shadow integral curves from the true ones is unimportant.
Given the fundamental two-form! ¼ dq ^ dp we may

evaluate the Poisson bracket of two arbitrary zero-forms A
and B, namely

fA; Bg � �!ðÂ; B̂Þ
¼ �ðdq ^ dpÞ

�
@A

@p

@

@q
� @A

@q

@

@p
;
@B

@p

@

@q
� @B

@q

@

@p

�
¼ @A

@p

@B

@q
� @A

@q

@B

@p
:6We can always find coordinates for which this is true accord-

ing to Darboux’s theorem.

A. D. KENNEDY, P. J. SILVA, AND M.A. CLARK PHYSICAL REVIEW D 87, 034511 (2013)

034511-6



For the HamiltonianHðq; pÞ ¼ TðpÞ þ SðqÞ any integrator
constructed from e"Ŝ and e"T̂ steps will conserve a shadow
whose BCH expansion may be expressed in terms of the
Poisson brackets

fS; Tg ¼ �S0T0 fS; fS; Tgg ¼ �S0 @fS; Tg
@p

¼ S02T00

fT; fS; Tgg ¼ T0
@fS; Tg
@q

¼ �S00T02;

and so forth.

For example, the leapfrog integrator ½expð12��ŜÞ�
expð��T̂Þ expð12��ŜÞ�t=�� is the simplest symmetric sym-

plectic integrator (there is a variant in which Ŝ and T̂ are
interchanged). From (4) we find that it conserves the
shadow Hamiltonian

~H ¼ T þ S� ��2

24
ðfS; fS; Tgg þ 2fT; fS; TggÞ þOð��4Þ

¼ H � ��2

24
ðS02T00 � 2S00T02Þ þOð��4Þ:

E. Higher-order integrators

Let us briefly give some simple examples of more
complicated integrators. The second-order minimum
norm integrator [3–5] is

�
expð���ŜÞ exp

�
1

2
��T̂

�
expðð1� 2�Þ��ŜÞ

� exp

�
1

2
��T̂

�
expð���ŜÞ

�
t=��

with shadow

~H ¼ T þ Sþ ��2
�
6�2 � 6�þ 1

12
fS; fS; Tgg

þ 1� 6�

24
fT; fS; Tgg

�
þOð��4Þ;

and it has the free parameter � as well as the integration
step size ��.

It is interesting to note that if as is usual the kinetic energy
is quadratic, TðpÞ ¼ 1

2p
2, then the Poisson bracket

fS; fS; Tgg ¼ S02 is independent of the momentum p, and
thus we can find the integral curve of its Hamiltonian vector

field dfS; fS;Tgg ¼ �2S0S00@=@p. The corresponding inte-

grator step e"
dfS;fS;Tgg is called a force-gradient integrator

step, because it involves second derivatives of the
potential S.

We can use the force-gradient step to define a force-
gradient integrator

�
exp

�
1

6
��Ŝ

�
exp

�
1

2
��T̂

�
� exp

�
1

72
½48��Ŝ� ��3 dfS; fS;Tgg��

� exp

�
1

2
��T̂

�
exp

�
1

6
��Ŝ

��
t=��

with shadow

~H ¼ T þ S� ��4

155520

41fS; fS; fS; fS; Tgggg
þ36ffS; Tg; fS; fS; Tggg
þ72ffS; Tg; fT; fS; Tggg
þ84fT; fS; fS; fS; Tgggg
þ126fT; fT; fS; fS; Tgggg
þ54fT; fT; fT; fS; Tgggg

0BBBBBBBBBBB@

1CCCCCCCCCCCA
þOð��6Þ; (5)

where we have chosen the integrator parameters to elimi-
nate all terms of Oð��2Þ in the shadow. The Poisson
bracket fS; fS; fS; Tggg ¼ 0 so the first and fourth Poisson
brackets in (5) are also identically zero, however, formula
(5) is valid more generally. Note that the middle step has

combined the Hamiltonian vector fields Ŝ and dfS; fS;Tgg
because they commute.
There is no compelling reason to choose the parameters

to eliminate the ��2 errors: in general we should introduce
some parameters constrained only by the conditions that
the leading-order term in the shadow should be the original
Hamiltonian and that the total step size should be ��, and
then adjust these parameters to minimize the cost of our
integrator for the specific problem it is being applied to. On
the other hand, we can build integrators whose leading
error is ��4 (or ��2n for any n for that matter), without
requiring force-gradient steps. Nevertheless, integrators
with force-gradient steps may be cheaper than those with-
out: it would be surprising if the optimal coefficient of the
force-gradient term was exactly zero.
In HMC for lattice field theory H and ~H are extensive

quantities, that is they are proportional to the lattice
volume V for sufficiently large V, so the leading error is
proportional to V��2n if H � ~H ¼ Oð��2nÞ. In order to
keep the Monte Carlo acceptance rate fixed we therefore

need to vary �� / V�1=2n, and as the cost Vt=�� of a
trajectory of length t is proportional to the number of steps
and the volume, we may estimate that the cost varies as

V1þ1=2n. Of course there are many other contributions to
the cost that have been ignored, but for large enough V this
suggests that we want to increase n.

IV. HAMILTONIAN MECHANICS ON LIE GROUPS

A. Fundamental two-form on a Lie group

The cotangent bundle T�G over any manifold G has a
natural symplectic structure. For the case where G is a Lie
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group a point in T�G may be written as ðg;pÞ, where g 2
G and p 2 T�GðgÞ is called the momentum or Liouville
form. As explained in Appendix B, the vectors in tangent
space at the identity TGðIÞ correspond to the Lie algebra of
left-invariant vector fields ei on G, and their dual one-
forms �i satisfy the Maurer-Cartan equations. The momen-
tum may be written in the Maurer-Cartan basis as p ¼
pi�

i, where pðejÞ ¼ pi�
iðejÞ ¼ pi�

i
j ¼ pj. We shall

choose the fundamental two-form to be

! � �dp ¼ �dðpi�
iÞ; (6)

and using the Maurer-Cartan equations it may be written as

! ¼ �i ^ dpi þ 1

2
pic

i
jk�

j ^ �k:

If F is a zero-form on the cotangent bundle T�G
then the corresponding Hamiltonian vector field F̂ ¼
Fiei þ �Fi@=@pi in TT�G is defined by dF ¼ iF̂!, or

dFðyÞ ¼ !ðF̂; yÞ for all vector fields y ¼ yiei þ �yi@=@pi.
Expanding this expression gives

dFðyÞ ¼ yF ¼ eiðFÞyi þ @F

@pi

�yi ¼ !ðF̂; yÞ
¼ Fi �yi � yi �Fi þ pic

i
jkF

jyk;

so equating the coefficients of yi and �yi we find

eiðFÞ ¼ � �Fi þ pjc
j
kiF

k and @F=@pi ¼ Fi. We thus find

that the vector field F̂ is

F̂ ¼ @F

@pi

ei þ
�
pjc

j
ki

@F

@pk

� eiðFÞ
�

@

@pi

: (7)

From this we can evaluate the Poisson bracket of two
arbitrary Hamiltonian vector fields corresponding to
zero-forms F and G,

fF;Gg � �!ðF̂; ĜÞ
¼ pic

i
jk

@F

@pj

@G

@pk

þ @F

@pi

eiðGÞ � @G

@pi

eiðFÞ: (8)

B. Hamiltonian vector fields for T and S

For HMCwe may take the Hamiltonian to be of the form
H ¼ T þ S where the kinetic energy T: T�G ! R is a
function only of the momenta which we may choose to
be of the form

T ¼ 1

2
hp;pi ¼ 1

2
pipi (9)

using the Cartan-Killing metric (Appendix B 5). Hence
@T=@pi ¼ pi, and the potential energy S: G ! R is a
function only of the group parameters.

For the kinetic and potential energy zero-forms the
corresponding vector fields are thus

T̂ ¼ piei þ cjkipjp
k @

@pi

¼ piei and Ŝ ¼ �eiðSÞ @

@pi

(10)

using (7), where we have made use of the total antisym-
metry of the structure constants for a semisimple Lie

algebra, cjkipjp
k ¼ cjkip

jpk ¼ 0.

C. Poisson brackets of S and T

Wemay compute the Poisson brackets ofS andT from (8)

fS; Tg ¼ �pieiðSÞ (11)

fS;fS;Tgg¼eiðSÞeiðSÞ fT;fS;Tgg¼�pipjeiejðSÞ (12)

fT; fS; fS; Tggg ¼ 2pieiejðSÞejðSÞ
fS; fS; fS; Tggg ¼ 0

fT; fT; fS; Tggg ¼ �pipjpkeiejekðSÞ
fT; fT; fS; fS; Tgggg ¼ 2pipjeiejekðSÞekðSÞ

þ 2pipjeiekðSÞejekðSÞ
ffS; Tg; fT; fS; Tggg ¼ ckijp

ip‘ejðSÞ½eke‘ðSÞ þ e‘ekðSÞ�
þ pipj½ekðSÞekeiejðSÞ
� ekeiðSÞekejðSÞ � eie

kðSÞekejðSÞ�
fT; fS; fS; fS; Tgggg ¼ 0

ffS; Tg; fS; fS; Tggg ¼ �2eiðSÞejðSÞeiejðSÞ
fT; fT; fT; fS; Tgggg ¼ �pipjpkp‘eiejeke‘ðSÞ
fS; fS; fS; fS; Tgggg ¼ 0: (13)

Observe that according to Eq. (12) fS; fS; Tgg does not
depend on the momentum, so just as in Sec. III E
we can use it to define a force-gradient integrator step
corresponding to the Hamiltonian vector field

dfS; fS;Tgg ¼ �eiðejðSÞejðSÞÞ @

@pi

: (14)

D. Representations

If U: G ! Glðn;CÞ � AutCN is a matrix representation
of G then it satisfies UðghÞ ¼ UðgÞUðhÞ for all g, h 2 G.
We may view any matrix elementUab of the representation
as a complex valued zero-form as it is well defined over the
entire group manifold. The left action Lg: h � gh induces

the map Lg�: Uab � Uab 
 Lg according to the definition

given in Appendix A 4, so ðLg�UabÞðhÞ ¼ UabðghÞ ¼
½UðgÞUðhÞ�ab ¼ P

n
c¼1 UacðgÞUcbðhÞ for all h, or equiva-

lently Lg�Uab ¼
P

n
c¼1 UacðgÞUcb. In other words, the map

Lg� takes the zero-form Uab to a linear combination of

zero-forms Ucb with coefficients UacðgÞ 2 C. We can
express this more succinctly by considering U to be a
matrix-valued zero-form, whence Lg�U ¼ UðgÞU.
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Application of the vector field ei to U gives a
matrix-valued zero-form eiU whose value at some point
g 2 G is eiUðgÞ ¼ Lg�eiUðIÞ. ei is left-invariant L�gei ¼
ei, so we have Lg�eiU ¼ Lg�L�geiU ¼ Lg�Lg�1�eiLg�U ¼
eiLg�U ¼ eiUðgÞU ¼ UðgÞeiU. This allows us to evaluate

eiU at any point g in terms of the value of eiU at the
identity. Defining the generators of the representation as
Ti � eiUðIÞ, we obtain eiUðgÞ ¼ UðgÞeiUðIÞ ¼ UðgÞTi or
more succinctly eiU ¼ UTi.

As on the one hand ½ei; ej�U ¼ ckijekU ¼ ckijUTk,

and on the other ½ei; ej�U ¼ eiejU� ejeiU ¼ eiUTj �
ejUTi ¼ UTiTj �UTjTi ¼ U½Ti; Tj�, we see that the gen-
erators must satisfy the commutation relations ½Ti; Tj� ¼
ckijTk upon multiplying on the left by U�1.

Unfortunately the usual convention [7,28] is that the
derivative of a link variable is

eiU ¼ �TiU; (15)

and this is used in most computer implementations.
This arises from considering right-invariant vector
fields. Briefly, the right action on a group is defined by
Rg: h � hg, and the induced maps by Rg�U ¼ U 
 Rg

and R�gei ¼ Rg�1�eiRg�. If we assume that ei is right-

invariant then it satisfies R�gei ¼ ei, and following an argu-

ment completely analogous to that in the text we find
eiUðgÞ ¼ Rg�eiUðIÞ since g ¼ RgI ¼ LgI and Rg�eiU ¼
eiUUðgÞ. We then have to define the generators by
eiUðIÞ ¼ �Ti, leading to eiU ¼ �TiU. We must
include the minus sign in the definition of the generators
for right-invariant vector fields satisfying ½ei; ej� ¼ ckijek;

otherwise, they would not satisfy the commutation
relations ½T1; Tj� ¼ ckijTk. In fact, the usual convention

erroneously omits the minus sign, but as the commutation
relations are used to derive the Maurer-Cartan equations,
and thus our fundamental two-form, the sign is significant
when computing high-order Poisson brackets.

E. Equations of motion

The equations of motion are most naturally expressed in
terms of Lie derivatives (Appendix A 5). The Lie derivative
LvT of a tensor field T is its derivative along the integral
curves of the vector field v, and the definition of the Lie
derivative given in (A4)–(A6) implicitly provides the dif-

ferential equations defining these integral curves. If v ¼ Ĥ
is the Hamiltonian vector field for the Hamiltonian func-
tion then these are just Hamilton’s equations, and we will
write _T � LĤT.

For the case of matrix representations we consider the
matrix elements to be zero-forms as we did in Sec. IVD, so

we may use equation (A4) to obtain _U�LĤU¼ ĤU and
_P � LĤP ¼ ĤP where U is a matrix representation of an

element of G and P � piTi the corresponding matrix rep-
resentation of the momentum in the Lie algebra. Taking

Ĥ ¼ T̂þ Ŝ ¼ piei � eiðSÞ @

@pi

with the explicit forms from (10), and using the relation
eiðUÞ ¼ �TiU of (15), we find

_U ¼ T̂U ¼ pieiðUÞ ¼ �piTiU ¼ �PU
_P ¼ ŜP ¼ �eiðSÞ @P@pi

¼ �eiðSÞTi ¼ �F1;

where we have introduced the quantity F1 � eiðSÞTi

[q.v., Eq. (17)]. The solution of these equations for separate
U and P updates (i.e., for a symplectic integrator) are

UðtÞ ¼ expð�PtÞUð0Þ and PðtÞ ¼ Pð0Þ � tF1:

The equations of motion for the force-gradient
Hamiltonian vector field of (14) is

_P ¼ dfS; fS;TggP ¼ �eiðejðSÞejðSÞÞ @P@pi

¼ �2eiejðSÞejðSÞTi ¼ �G (16)

with G � eiejðSÞeiðSÞTj [q.v., Eq. (17)], since

½ei; ej�ðSÞejðSÞ ¼ ckije
kðSÞejðSÞ ¼ 0.

V. POISSON BRACKETS IN SUðNÞ
In order to compute the Poisson brackets it is useful to

express them in terms of the following set of matrices that
are in the representation of the Lie algebra

P � piT
i

F1 � eiðSÞTi

F2 � PF1 ¼ pjejeiðSÞTi

F3 � P 2F1 ¼ pkekp
jejeiðSÞTi

F4 � P 3F1 ¼ p‘e‘p
kekp

jejeiðSÞTi

G � F 1F1 ¼ ejðSÞejeiðSÞTi;

(17)

pi ¼ trðPTiÞ=a
eiðSÞ ¼ trðF1TiÞ=a

pjejeiðSÞ ¼ trðF2TiÞ=a
pkekp

jejeiðSÞ ¼ trðF3TiÞ=a
p‘e‘p

kekp
jejeiðSÞ ¼ trðF4TiÞ=a

ejðSÞejeiðSÞ ¼ trðGTiÞ=a;
where P ¼ piei and F 1 ¼ eiðSÞei are vector fields (linear
differential operators) corresponding to the matrices P and
F1, respectively. For a lattice field theory P; Fi; G; . . . will
also be lattice vectors, so we shall call these quantities
basic lattice vectors.
To derive more explicit expressions for the desired

Poisson brackets it is useful to use the following identities
that hold for the fundamental representation of the suðNÞ
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Lie algebra,7 for arbitrary N � N matrices X, Y, Z, and
Ti 2 suðNÞ

cijk trðXTjÞtrðYTkÞ ¼ a trð½X; Y�TiÞ; (18)

trðXTiÞtrðYTiÞ ¼ a

�
trðXYÞ � 1

N
trX trY

�
; (19)

tr½X; Y� ¼ trðXY � YXÞ ¼ 0; (20)

and

trð½X; Y�ZÞ ¼ trðXYZ� YXZÞ ¼ trðXYZ� XZYÞ
¼ trðX½Y; Z�Þ ¼ trð½Y; Z�XÞ ¼ trð½Z; X�YÞ;

(21)

from which it follows that

trð½X; Y�XÞ ¼ trð½X; X�YÞ ¼ 0 (22)

and

cijk trðXTiÞtrðYTjÞtrðZTkÞ ¼ a2 trð½X; Y�ZÞ: (23)

Using (23) and (21) we easily see that

ckijp
ip‘ejðSÞe‘ekðSÞ ¼ 1

a3
cijk trðPTiÞtrðF1T

jÞtrðF2T
kÞ

¼ 1

a
trð½F1; F2�PÞ; (24)

and as (18) leads to

p‘½ek; e‘�ðSÞ ¼ p‘cik‘eiðSÞ ¼
1

a2
ck‘i trðPT‘ÞtrðF1T

iÞ

¼ 1

a
trð½P; F1�TkÞ (25)

we find using (23) that

ckijp
ip‘ejðSÞ½ek; e‘�ðSÞ
¼ 1

a3
cijk trðPTiÞtrðF1T

jÞtrð½P; F1�TkÞ

¼ 1

a
trð½F1; P�2Þ: (26)

Combining Eqs. (24) and (26) we obtain

ckijp
ip‘ejðSÞfeke‘ðSÞ þ e‘ekðSÞg
¼ 1

a
trð2½F1; F2�Pþ ½F1; P�2Þ: (27)

We may also deduce from (25) that

piekeiðSÞ ¼ 1

a
trððF2 � ½F1; P�ÞTkÞ;

and hence

pipjekeiðSÞekejðSÞ ¼ 1

a
trððF2 � ½F1; P�Þ2Þ (28)

and

pipjeie
kðSÞekejðSÞ ¼ 1

a
trðF2

2 � F2½F1; P�Þ: (29)

From the identity

ekeiej ¼ ½ek; ei�ej þ ei½ek; ej� þ eiejek

¼ c‘ki½e‘; ej� þ c‘kieje‘ þ eic
‘
kje‘ þ eiejek

¼ c‘kic
m
‘jem þ c‘kieje‘ þ c‘kjeie‘ þ eiejek

we deduce that

pipjekðSÞekeiejðSÞ
¼c‘kie

kðSÞpicm‘jp
jemðSÞþ2c‘kip

ipjeje‘ðSÞekðSÞ
þpipjeiejekðSÞekðSÞ

¼ 1

a4
c‘ki trðF1T

kÞtrðPTiÞc‘jmtrðPTjÞtrðF1T
mÞ

þ 2

a3
cki‘ trðPTiÞtrðF2T

‘ÞtrðF1T
kÞ

þ 1

a2
trðF3TkÞtrðF1T

kÞ

¼�1

a
trð½F1;P�2þ2½F1;F2�P�F1F3Þ: (30)

We thus obtain the following expressions for the desired
Poisson brackets

fS; Tg ¼ �trðF1PÞ=a
fS; fS; Tgg ¼ trðF2

1Þ=a
fT; fS; Tgg ¼ �trðF2PÞ=a

fT; fS; fS; Tggg ¼ 2 trðF1F2Þ=a
fS; fS; fS; Tggg ¼ 0

fT; fT; fS; Tggg ¼ �trðF3PÞ=a
fT; fT; fS; fS; Tgggg ¼ 2ftrðF1F3Þ þ trðF2

2Þg=a
ffS; Tg; fT; fS; Tggg ¼ �trð3½F1; F2�P

þ ½F1; P�2 � F1F3 þ 2F2
2Þ=a

using (27)–(30)

7We choose to normalize the traceless anti-Hermitian gener-
ators Ti of the fundamental representation by trðTiTjÞ ¼ a�ij,
where a is an arbitrary (negative) constant. For suð3Þ the
Hermitian Gell-Mann matrices �i satisfy trð�i�jÞ ¼ 2�ij, so

our choice corresponds to Ti ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi�a=2p

i�i. Moreover, our defi-
nition of the kinetic energy is T ¼ 1

2pip
i ¼ trðP2Þ=2a, and as we

observed in the introduction changing this normalization corre-
sponds to a scaling of molecular dynamics time. One must be
careful to take all these factors into account when comparing
computations using different conventions.
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fT; fS; fS; fS; Tgggg ¼ 0

ffS; Tg; fS; fS; Tggg ¼ �2 trðF1G1Þ=a
fT; fT; fT; fS; Tgggg ¼ �trðF4PÞ=a
fS; fS; fS; fS; Tgggg ¼ 0:

VI. BASIC LATTICE VECTORS AND TOWERS

A. Single link updates

We now consider how to evaluate the basic lattice vec-
tors of (17). This is particularly simple to do in the case
where there is only a single link variable U, or on a lattice
if we choose to only update a single link by setting the
coefficient of the kinetic energy to zero everywhere else,
as described in Sec. I A. In this case the potential is of
the form8 S ¼ Re trðUXÞ where X is some constant
N � N matrix, which in general is neither in the group
nor its algebra. On a lattice where we are only updating
a single link X is constructed out of products of
other link variables, which are themselves constant in
molecular dynamics time. We find F1 ¼ eiðSÞTi ¼
Re trðeiðUÞXÞTi ¼ �Re trðTiUXÞTi ¼ �Re trðUXTiÞTi ¼
�aT ðUXÞ where T projects onto the Lie algebra, i.e., the
traceless anti-Hermitian part for suðNÞ. Likewise,
F2 ¼ PF1 ¼ pjejeiðSÞTi ¼ Re trðpjejeiðUÞXÞTi ¼
Re trðpjej ð�TiUÞXÞ Ti ¼ �Re tr ðTip

jej ðUÞXÞTi ¼
Re trðTip

jTjUXÞTi ¼ Re trðPUXTiÞTi ¼ aT ðPUXÞ,
and so forth for the remaining quantities in (17)

F1 ¼ �Re trðUXTiÞTi ¼ �aT ðUXÞ;
F2 ¼ PF1 ¼ Re trðPUXTiÞTi ¼ aT ðPUXÞ;
F3 ¼ P 2F1 ¼ �Re trðP2UXTiÞTi ¼ �aT ðP2UXÞ;
F4 ¼ P 3F1 ¼ Re trðP3UXTiÞTi ¼ aT ðP3UXÞ;
G ¼ F 1F1 ¼ Re trðF1UXTiÞTi ¼ aT ðF1UXÞ:

B. Lattice updates

When we have many links we trivially generalize the
definition of the fundamental two-form (6) to become sums
over all links

! ¼ �X
‘

dpð‘Þ ¼ �X
‘

dðpið‘Þ�ið‘ÞÞ

¼X
‘

�
�ið‘Þ ^ dpið‘Þ þ 1

2
pið‘Þcijk�jð‘Þ ^ �kð‘Þ

�
:

We can compress the notation by letting indices such
as i also range over all links: that is i! ði; ‘iÞ and
the implicit sum over the basis of the Lie algebra

P
i

becomes an implicit double sum
P

‘i

P
i . Of course,

we also need to augment the structure constants ckij !
cðk;‘kÞði;‘iÞðj;‘jÞ � ckij�

‘k
‘i
�‘k
‘j

since the Maurer-Cartan equations

do not mix links. Similarly, the kinetic energy (9) becomes

T ¼ 1

2

X
‘

cð‘Þhpð‘Þ;pð‘Þi ¼ 1

2

X
‘

cð‘Þgijpið‘Þpjð‘Þ

¼ 1

2

X
‘

cð‘Þpið‘Þpið‘Þ;

where, as discussed in Appendix A 1, it is convenient to
introduce a separate coefficient cð‘Þ in the kinetic energy
for each link. We can extend our compressed notation by
implicitly associating a factor of cð‘Þ with each occurrence
of the augmented Cartan-Killing metric, gij ! gði;‘iÞðj;‘jÞ �
cð‘iÞgij�‘i‘j and hence with every contracted index i. With

these conventions the definition looks like (6) and (9)
again. The sums propagate to the Poisson brackets where
the implicit sums over the indices in Eqs. (11)–(13)
and also become sums over all links, although second
derivatives such as eiejðSÞ have bounded support for an

ultralocal action. It is important to note that the implicit
factor of c‘i associated with contracted indices means that

even though fS; fS; Tgg does not depend on any momentum
it still has a factor of cð‘Þ associated with each term. If we
set cð‘0Þ ¼ �‘‘0 then only link ‘ will appear in Eqs. (12)
and (16), and the force-gradient integrator will therefore
only act on that link.

C. Towers

The situation would seem to be much more difficult
when we want to update all of the link variables simulta-
neously; derivatives like ei1 . . . eikðSÞ depend on k links and
it might appear that it will be prohibitively expensive to
compute them. Fortunately, we can avoid this combinato-
rial explosion; the key observation is that all the Poisson
brackets and forces only depend on the basic lattice vec-
tors, and these have only a single free lattice index. To
make use of this we introduce towers of basic lattice
vectors: a tower TðA; BÞ is a an array of basic lattice vectors
TðA; BÞi ¼AiB, where A is a basic lattice vector, A is
the vector field associated with it, B is a sum of products of
gauge links, and the index i 2 f0; . . . ; n� 1gwhere we call
n the height of the tower.
The basic lattice vectors in (17) may be constructed

from the two towers TðP; BÞ and TðF1; BÞ of heights four
and two, where B is the stencil of the action S. The stencil
is the collection of all paths in the action that start with a
given link. For example, in the case of lattice gauge theory
without dynamical fermions the action is a sum of Wilson
loops, each Wilson loop being the trace of the product of

8We consider the case where the action is linear in U without
loss of generality because if it occurs multiple times we can
transform it into a form linear in its tensor product, which can
be reduced into a sum of irreducible representations. For ex-
ample, the action S ¼ Re trðUXUX0Þ ¼ Re tr½ðU � UÞX00�,
where ðU �U0Þij;k‘ ¼ UikUj‘ and X00k‘;ij ¼ XkjX

0
‘i are N2 � N2

matrices, and U � U can be reduced into a sum of two irreduc-
ible representations acting on vectors of dimensions 1

2NðN � 1Þ
and 1

2NðN þ 1Þ.
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gauge links around a closed loop. This means we can write
the action as S ¼ Re trðUluÞ þ S0 where the stapleu is the
sum of products of gauge links along paths connecting the
end of the link ‘ to its beginning, and S0 is independent of
U‘, as in Sec. I B. The stencil in this case is U‘ u . This is
familiar from the computation of the force acting on U‘

F1ð‘Þ ¼ eiðSÞTi ¼ eiðRe trU‘uÞTi ¼ Re trðeiðU‘ÞuÞTi

¼ Re trð�TiU‘uÞTi ¼ �Re trðU‘ u TiÞTi

¼ �aT ðU‘uÞ: (31)

The thing to notice here is that we are computing the
force on the gauge link U‘ so the index i is really the
pair ði; ‘Þ, and thus eiðU‘0 Þ ¼ 0 for any other link ‘0 � ‘: in
particular, eiðuÞ ¼ 0, eiðS0Þ ¼ 0, and eiðU‘uÞ¼eiðU‘Þu .
Naturally, we want to compute the force acting on every
gauge link, and so the stencil computation of (31) must be
carried out separately for each link: these computations can
be done in parallel if desired.

In order to compute the basic lattice vector AjF1 ¼
AjeiðSÞTi we proceed as follows:

AjF1ð‘Þ ¼AjeiðSÞTi ¼Aj Re trð�TiU‘uÞTi

¼ �Re trðTiAjðU‘uÞÞTi

¼ �Re trðTiTðA;U‘uÞjÞTi

¼ �aT ðTðA;U‘uÞjÞ:
This is easy to do if we can compute the tower TðA;U‘uÞ
on the stencil U‘ u .

D. Algebra of towers

It is simple to construct the tower TðA; BÞ when B is a
single gauge linkU; we haveTðA;UÞj ¼AjU ¼ ð�AÞjU.

This follows from the definitions TðA;UÞ0¼U
and A¼aiei where A ¼ aiTi, so by induction
TðA; UÞjþ1 ¼ Ajþ1U ¼ AðAjUÞ ¼ Að�AÞjU ¼
aieiðð�AÞjUÞ ¼ ð�AÞjaieiðUÞ ¼ ð�AÞjai ð�TiUÞ ¼
ð�AÞjþ1U. Indeed, this corresponds to a convenient recur-
sive way of constructing the tower, TðA;UÞjþ1 ¼
ð�AÞTðA;UÞj.

If B is the product9 of two stencils B1 	 B2 then we may
use the Leibniz rule for the derivation A, AðB1 	 B2Þ ¼
AB1 	 B2 þ B1 	AB2, or more generally

AjðB1 	 B2Þ ¼
Xj
k¼0

j

k

 !
AkB1 	Aj�kB2:

The tower on the product B1 	 B2 is thus the product of the
tower on B1 with that on B2, TðA; B1 	 B2Þ ¼ TðA; B1Þ 	
TðA; B2Þ, where the product is defined by10

ðTðA; B1Þ 	 TðA; B2ÞÞj ¼
Xj
k¼0

j

k

 !
TðA; B1Þk 	 TðA; B2Þj�k:

The tower on the sum of two stencils B1 þ B2 is even
simpler, since AðB1 þ B2Þ ¼AB1 þAB2. We just
have TðA; B1 þ B2Þ ¼ TðA; B1Þ þ TðA; B2Þ where
ðTðA; B1Þ þ TðA; B2ÞÞj ¼ TðA; B1Þj þ TðA; B2Þj.

E. Pseudofermion towers

The principal advantage of updating all links sim-
ultaneously is when we include the effects of (pseudo)
fermions in the dynamics. As described in Sec. I B this
entails solving a large linear system to obtain the quantity
X ¼M�1� needed to compute the force (M being a
lattice Dirac operator) and it is worthwhile to reuse this
solution to update many links.
We therefore need to compute towers for stencils that

include outer products such as X � Xy. This may be done
by computing the tower TðA; XÞ on X ¼M�1�. Observe
that A� ¼ 0 as the pseudofermion lattice (site) vector �
does not depend on U—we want to follow the molecular
dynamics evolution of the gauge links and momenta in the
presence of a fixed pseudofermion background. Using the
Leibniz rule we get 0 ¼ Að�Þ ¼ AðMM�1�Þ ¼
AðMÞM�1� þMAðM�1�Þ so AðM�1�Þ ¼
�M�1AðMÞM�1�. To use this for a tower of arbitrary
height we generalize this to

0 ¼AjðMM�1�Þ ¼ Xj
k¼0

j

k

 !
Aj�kðMÞAkðM�1�Þ

¼MAjðM�1�Þ þXj�1
k¼0

j

k

 !
Aj�kðMÞAkðM�1�Þ

for j > 0, and thus

AjðM�1�Þ ¼ �M�1 Xj�1
k¼0

j

k

 !
Aj�kðMÞAkðM�1�Þ:

This translates into the following recursive definition for
the tower on X:

TðA; XÞ0 ¼M�1�

TðA; XÞj ¼ �M�1 Xj�1
k¼0

j
k

� �
TðA;MÞj�kTðA; XÞk

in terms of the tower TðA;MÞwhich we already know how
to compute. Note that we require exactly n inverses to
construct such a tower of height of height n.
Yin [29] has suggested an ingenious way of performing a

force-gradient update by computing the force twice. We
should not be surprised that the force-gradient update

e��
3 dfS;fS;Tgg can be computed out of e��Ŝ and e��T̂ steps:

9Here we use the symbol 	 to emphasize multiplication opera-
tions. Elsewhere we use juxtaposition to indicate multiplication.
10The symbol 	 on the left denotes multiplication of towers,
whereas on the right it denotes matrix multiplication.
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recall that according to the BCH formula the commutator

CðeA; eBÞ ¼ e�Ae�BeAeB ¼ e½A;B�þ			, hence

Cðe��Ŝ; Cðe��Ŝ; e��T̂ÞÞ
¼ e���Ŝe���T̂e���Ŝe��T̂e��Ŝe���T̂e��Ŝe��T̂

¼ Cðe��Ŝ; e��2½Ŝ;T̂�þOð��3ÞÞ
¼ e��

3½Ŝ;½Ŝ;T̂��þOð��4Þ

¼ e��
3 dfS;fS;TggþOð��4Þ:

It is interesting that this can be reduced to only requiring
two inverses in the case where T is quadratic. There does
not seem to be a way of using this trick to evaluate Poisson
brackets, however.

VII. CONCLUSIONS

We have given a formalism for computing integrators
and the corresponding shadow Hamiltonians for lattice
gauge theories, and we have presented explicit formulas
for the Poisson brackets up to fourth-order and for the
force-gradient update step. We have shown how to express
these quantities in terms of basic lattice vectors taking their
values in the representation of the Lie algebra, as is needed
for the usual formulation of lattice gauge theories, and
explained how these may be computed using towers. The
implementation of towers is straightforward, as it just
requires the substitution of the algebra of towers for that
of the matrices already used in computing the force term.
The stencils for any action are unchanged, and the method
is readily applied to pseudofermions, smeared actions, and
so forth. The rules for addition, multiplication, and ‘‘inver-
sion’’ of towers are given in a recursive form that is easy to
implement (although a recursive implementation is not
necessary).
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APPENDIX A: DIFFERENTIAL FORMS

1. Differential forms and wedge products

For convenience we give the definition of a few basic
operations on differential forms. In some local basis
q: M � U ! Rn a k-form� 2 �k has components 11

� ¼ X
1�I1<			<Ik�k

�I1...Ikdq
I1 ^ 	 	 	 ^ dqIk

¼ 1

k!

XN
i1;...;ik¼1

�i1...ikdq
i1 ^ 	 	 	 ^ dqik

� 1

k!
�i1...ikdq

i1 ^ 	 	 	 ^ dqik

¼ 1

k!

X
�2Sk

��1...�k
dq�1 ^ 	 	 	 ^ dq�k

¼ h��1...�k
dq�1 ^ 	 	 	 ^ dq�ki�2Sk

;

where Sk is the symmetric group acting on 1; . . . ; k, and
h	 	 	iSk

indicates the average over elements of the symmet-

ric group. The wedge product satisfies

� ^ � ¼ ð�1Þkk0� ^ � � 2 �k; � 2 �k0

antisymmetry;

� ^ � ^ � ¼ � ^ ð� ^ �Þ ¼ ð� ^ �Þ ^ �

associativity:

In terms of the components in local coordinates this means
that 12

�^�¼h��1...�k
	�kþ1...�kþk0dq

�1^			^dq�kþk0 i�2Skþk0

¼ 1

ðkþk0Þ!
X

�2Skþk0
��1...�k

	�kþ1...�kþk0

�dq�1^			^dq�kþk0 :

2. Exterior derivatives

The exterior derivative d: �k ! �kþ1 is a linear anti-
derivation, so

dð�þ �Þ ¼ d�þ d� linearity;

dð� ^ �Þ ¼ ðd�Þ ^ �þ ð�1Þk� ^ d� � 2 �k

anti-Leibniz;

d2� ¼ 0 dFðxÞ ¼ xF F 2 �0:

The exterior derivative dF for a zero-form F is defined to
be dFðxÞ � xF for any vector field x: if we evaluate this in
a local coordinate system we find that

dFðxÞ ¼ xF ¼
�
xi

@

@qi

�
F ¼

�
@F

@qi

�
xi

¼
�
@F

@qi
dqi

��
xj

@

@qj

�
¼
�
@F

@qi
dqi

�
ðxÞ;

so

11Our convention is that each independent component occurs
once in the sum: another convention is that each such component
occurs k! times—once for each permutation of its indices.

12For the other convention the numerical coefficient in this
formula is 1=ðk!k0!Þ: caveat emptor.
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dF ¼ @F

@qi
dqi:

Likewise, in a local coordinate system the exterior deriva-
tive of a k-form � 2 �k is

d� ¼ d

�
1

k!
�i1...ikdq

i1 ^ 	 	 	 ^ dqik
�

¼ 1

k!

@�i1...ik

@qj
dqj ^ dqi1 ^ 	 	 	 ^ dqik :

This follows from the anti-Leibniz rule dð��Þ ¼
d� ^ �þ �d� applied to the case where � ¼ �i1...ik 2
�0 and � ¼ dqi1 ^ 	 	 	 ^ dqik because the second term
vanishes (by induction on k) using the condition d2 ¼ 0
for the basis forms which are exterior derivatives of the
coordinates qi, d2qi ¼ 0.

In particular, for a one-form � 2 �1 we have

d� ¼ @
i
@qj

dqj ^ dqi;

so applying the two-form d� to two arbitrary vector fields
x and y gives

d�ðx;yÞ¼ @
i
@qj
ðxjyi�xiyjÞ

¼xj
@

@qj
ð
iyiÞ�xj
i

@yi

@qj
�yj

@

@qj
ð
ixiÞþyj
i

@xi

@qj

¼x�ðyÞ�y�ðxÞ�
i½xðyiÞ�yðxiÞ�
¼x�ðyÞ�y�ðxÞ��ð½x;y�Þ: (A1)

This provides an elegant coordinate-independent definition
of d� in terms of the commutator of the vector fields

½x; y� � xy� yx ¼ xi
@

@qi
yj

@

@qj
� yi

@

@qi
xj

@

@qj

¼
�
xi
@yj

@qi
� yi

@xj

@qi

�
@

@qj
þ ðxiyj � xjyiÞ @

@qi
@

@qj
;

(A2)

which is itself a vector field since the last term involving
second derivatives vanishes by symmetry. Note that if � is
exact, that is � ¼ dF, then the identity d2Fðx;yÞ ¼
xdFðyÞ�ydFðxÞ�dFð½x;y�Þ ¼ xyF�yxF�½x;y�F¼ 0
holds automatically.

For an arbitrary (k� 1)-form� 2 �k�1 we may derive
the corresponding identity,

d�ðx1; . . . ;xkÞ

¼Xk
i¼1
ð�1Þiþ1xi�ðx1; . . . ; x̂i; . . . ;xkÞ

� X
1�i<j�k

ð�1Þiþjþ1�ð½xi;xj�;x1; . . . ; x̂i; . . . ; x̂j; . . . ;xkÞ;

where x̂ indicate that the variable x is omitted. We observe
that for k ¼ 3 the invariant expression for the exterior
derivative is

d!ðx; y; zÞ ¼ x!ðy; zÞ � y!ðx;zÞ þ z!ðx; yÞ
�!ð½x; y�; zÞ þ!ð½x; z�; yÞ �!ð½y; z�; xÞ:

(A3)

3. Interior products

The interior product i: TM��k ! �k�1 is the opera-
tion that inserts a vector as the first argument of a k-form to
yield a k� 1-form. It is formally defined by the axioms

ixð�þ �Þ ¼ ix�þ ix� �;� 2 �k linearity;

ixð� ^ �Þ ¼ ixð�Þ ^ �þ ð�1Þk� ^ ix�

� 2 �k;� 2 �k0 anti-Leibniz;

ixF ¼ 0 F 2 �0

ix�ðx1; . . . ; xk�1Þ ¼ �ðx; x1; . . . ; xk�1Þ � 2 �k;

i2x ¼ 0

so we see that it too is a linear antiderivation.

4. Induced Maps

If �: M!M0 is a diffeomorphism, then there is a
natural induced map ��: �0ðM0Þ ! �0ðMÞ defined by
��f: p � fð�pÞ for all f 2 �0ðM0Þ and p 2M. This
map may also be written as ��f ¼ f 
 � and is called a
pull-back. Another way of saying this is that the following
diagram commutes:

M !� M0
��f & . f

R

If ��1 exists then there is a corresponding pull-back
map ð��1Þ�, and it satisfies the relation ð��1Þ���f ¼
ð��1Þ�ðf 
 �Þ ¼ f 
 � 
 ��1 ¼ f, and thus we see that
ð��1Þ� ¼ ð��Þ�1, and we may denote both of these unam-
biguously as ��1� .
If x 2 TM is a vector field on M then there may be a

push-through map ��: TM! TM0 defined by ��x ¼
��1� 
 x 
 �� if this exists. For any f 2 �0ðM0Þ and p 2
M this means that ��xðfÞj�p ¼ xð��fÞjp. The corre-

sponding commutative diagram is

�0ðMÞ  �� �0ðM0Þ
x # # ��x

�0ðMÞ !��1� �0ðM0Þ
:

The existence of the diffeomorphism ��1: M0 !M is a
sufficient but not necessary condition for ��1� and hence
�� to be well defined.

A. D. KENNEDY, P. J. SILVA, AND M.A. CLARK PHYSICAL REVIEW D 87, 034511 (2013)

034511-14



We may define further induced maps 13 such as the pull-
back of one-form fields ��: �1ðM0Þ ! �1ðMÞ as ��� ¼
�� 
 � 
 ��,

TM !�� TM0
��� # # �
�0ðMÞ  �� �0ðM0Þ;

and so forth.
In the special case where �: M!M is an auto-

diffeomorphism then the push-through maps always exist.

5. Lie derivatives

Suppose now that we have a smooth one-parameter
family of diffeomorphisms �: R�M!M, which we
will also write as �t: M!M. Using this map we can
define a derivative with respect to the parameter t, which is
called a Lie derivative. For any zero-form F we define

LvF � dð�t�FÞ
dt

��������t¼0
¼ dðF 
 �tÞ

dt

��������t¼0
¼ vF; (A4)

where v is the linear differential operator—the vector
field—that is tangential to the curves �ðt; pÞ passing
through �ð0; pÞ ¼ p 2M at t ¼ 0.

The Lie derivative of a vector field y 2 TM can be
deduced from the requirement that Lx be a derivation

LxðA �BÞ ¼ ðLxAÞ � BþA �LxB

for any tensors A and B, and that it commutes with
contractions

LxðyFÞ ¼ ðLxyÞFþ yðLxFÞ;
Lxð�ðyÞÞ ¼ ðLx�ÞðyÞ þ �ðLxyÞ;

and so forth. Applying these rules to the zero-form
yF obtained by applying the vector field y 2 TM to
F 2 �0ðMÞ we have LxðyFÞ ¼ xyF and also LxðyFÞ ¼
ðLxyÞFþ yðLxFÞ, hence

ðLxyÞF ¼ xyF� yxF ¼ ½x; y�F

and, as this holds for all F,

Lxy ¼ ½x; y�: (A5)

We may apply a similar argument to evaluate the Lie
derivative of a one-form � 2 �1ðMÞ. On the one hand
Lxð�ðyÞÞ ¼ x�ðyÞ, while on the other Lxð�ðyÞÞ ¼
ðLx�ÞðyÞ þ �ðLxyÞ, so using (A1)

ðLx�ÞðyÞ ¼ x�ðyÞ � �ð½x; y�Þ ¼ d�ðx; yÞ þ y�ðxÞ
¼ ðixd�ÞðyÞ þ dð�ðxÞÞðyÞ
¼ ðixd�ÞðyÞ þ ðdix�ÞðyÞ ¼ ðixdþ dixÞ�ðyÞ;

hence

L x� ¼ ðixdþ dixÞ�:

This suggests that the Lie derivative of any k-form may be
expressed as

Lx ¼ ixdþ dix; (A6)

and this is indeed the case as the operator ixdþ dix is a
derivation

ðixdþ dixÞð� ^ �Þ ¼ ix½ðd�Þ ^ �þ ð�1Þk� ^ d�� þ d½ðix�Þ ^ �þ ð�1Þk� ^ ix��
¼ ðixd�Þ ^ �þ ð�1Þkþ1ðd�Þ ^ ix�þ ð�1Þkðix�Þ ^ d�þ ð�1Þ2k� ^ ixd�þ ðdix�Þ ^ �

þ ð�1Þk�1ðix�Þ ^ d�þ ð�1Þkðd�Þ ^ ix�þ ð�1Þ2k� ^ dix�

¼ ½ðixdþ dixÞ�� ^ �þ � ^ ðixdþ dixÞ�

for all � 2 �k and � 2 �k0 , and for zero- and one-forms
F and �

LxF ¼ xF ¼ dFðxÞ ¼ ixdFþ dixF;

Lx� ¼ ðixdþ dixÞ�:
The second term in the first equation is zero because
ixF ¼ 0 by definition.

APPENDIX B: LIE GROUPS

1. Left-invariant forms

A Lie group is a manifold that has a group structure
defined by C1 multiplication ðg; hÞ� gh and inverse
g � g�1 operations that satisfy the group axioms

gðg0g00Þ ¼ ðgg0Þg00 � gg0g00 8 g; g0; g00 2 G

associative

g�1g ¼ gg�1 ¼ I 8 g 2 G inverse

with I being the identity element of the group. If
we consider a point g 2 G as being ‘‘fixed’’ then left
multiplication by g is an autodiffeomorphism of G,

13One must be careful with the notation introduced here, as
there are a whole family of mappings that we have given the
same name, ��: �kðM0Þ ! �kðMÞ 8 k, and the equation
��� ¼ �� 
 � 
 �� involves two of them. If we were to call
these induced mappings on forms �k�: �kðM0Þ ! �kðMÞ then
the equation is less ambiguous, �1�� ¼ �0� 
 � 
 ��.
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Lg: g
0 � gg0, with Lgh ¼ Lg 
 Lh by associativity, Lg 


Lhg
0 ¼ gðhg0Þ ¼ ðghÞg0 ¼ Lghg

0 for all g0 2 G. Clearly

Lg�1 ¼ ðLgÞ�1 too.
As for any such diffeomorphisms we can define the

corresponding pull-back maps on forms and vectors,
Lg�F � F 
 Lg, L�gv � Lg�1� 
 v 
 Lg�, and Lg�� �
Lg� 
 � 
 L�g. We may use these maps to define left-

invariant vector fields and forms; for example, a left-
invariant one-form satisfies the condition � ¼ Lg��.

2. Lie algebra

The only left-invariant zero-forms are constants,
as if F ¼ Lg�F (8 g 2 G) then FðgÞ¼FðLgIÞ¼
Lg�FðIÞ¼FðIÞ.

If u¼L�gu and v ¼ L�gv are left-invariant vector fields in

the tangent bundle TG then their commutator is also a vector
field, and furthermore it is also left-invariant since14

½u;v� ¼ ½L�gu;L�gv� ¼ ½Lg�1� 
 u
Lg�;Lg�1� 
v
Lg�� ¼
Lg�1� 
 ½u;v� 
Lg� ¼ L�g½u;v�. If a left-invariant vector

field v vanishes at the identity, vðFÞjI ¼ 0ð8F 2 �0GÞ,
then it must be identically zero everywhere, as
vðFÞjg ¼ ½vðFÞ 
Lg�I ¼ ½Lg�vðFÞ�I ¼ ½Lg� 
L�gvðFÞ�I ¼
½Lg� 
L�1g� 
 vðLg�FÞ�I ¼ ½vðF 
LgÞ�I ¼ 0.

Consider a set of left-invariant vector fields feig in TG
called generators whose values at the origin are linearly
independent; any linear combination of the generators with
left-invariant (constant) coefficients is also left-invariant.
Conversely any left-invariant vector field umust be a linear
combination of this type, since its value at the origin is
ujI ¼

P
iu

ieijI with ui 2 R, and hence u�P
iu

iei ¼ 0
everywhere. Left-invariant vector fields therefore form a
linear space with constant coefficients. In particular, the
commutator of any left-invariant vector fields must be a
linear combination of the generators, ½ei; ej� ¼ ckijek where

the ckij 2 R are called the structure constants. This makes

the linear space of left-invariant vector fields into a Lie
algebra.

Any left-invariant vector field v has an integral curve15

c: R! G satisfying cð0Þ ¼ I. Along this curve we have an
Abelian subgroup of G satisfying cðsþ tÞ ¼ cðsÞcðtÞ, so it
is naturally to call c an exponential map, and write it as
cðtÞ ¼ expðvtÞ. If we view this as a function of v then this
defines a local flow of v, and is a map from the Lie algebra
into the Lie group, exp: TG ! G.

The commutator of two elements g, h 2 G is defined to
be Cðg:hÞ � g�1h�1gh; in a neighborhood of the identity
where g ¼ expðutÞ and h ¼ expðvtÞ we have

Cðg;hÞ ¼ expð�utÞexpð�vtÞexpðutÞexpðvtÞ
¼
�
I� utþ 1

2
ðutÞ2

��
I�vtþ 1

2
ðvtÞ2

�
�
�
Iþ utþ 1

2
ðutÞ2

��
Iþvtþ 1

2
ðvtÞ2

�
þOðt3Þ

¼ Iþ ½u;v�t2þOðt3Þ ¼ expð½u;v�t2Þ þOðt3Þ:

3. Maurer-Cartan equations

The commutation relations may be succinctly expressed
in terms of the cotangent space T�G. We introduce a set of
left-invariant 1-forms �i (called a frame or repère mobile)
dual to the generators �iðejÞ ¼ �i

j. From (A1) we have

d�iðej; ekÞ ¼ ej�
iðekÞ � ek�

iðejÞ � �ið½ej; ek�Þ
¼ ej�

i
k � ek�

i
j � �iðc‘jke‘Þ

¼ �c‘jk�i
‘ ¼ �cijk;

so expanding the two-form d�i ¼ �i
mn�

m ^ �n in terms of
the basis two-forms �m ^ �n we have

d�ðej; ekÞ ¼ �i
mn�

m ^ �nðej; ekÞ
¼ �i

mnf�mðejÞ�nðekÞ � �mðekÞ�nðejÞg
¼ �i

mnf�m
j �

n
k � �m

k �
n
j g ¼ �i

jk � �i
kj;

thus the left-invariant forms �i satisfy the Maurer-Cartan
equations d�i ¼ � 1

2 c
i
jk�

j ^ �k everywhere.

4. Adjoint representation

For any Lie algebra the adjoint representation is defined
by adðxÞy ¼ ½x; y�. This is a representation of the Lie
algebra because for any z

½adðxÞ; adðyÞ�z ¼ adðxÞadðyÞz� adðyÞadðxÞz
¼ adðxÞ½y;z� � adðyÞ½x; z�
¼ ½x; ½y; z�� � ½y; ½x; z��
¼ ½½x; y�; z� ¼ adð½x; y�Þz;

where we used the Jacobi identity in the penultimate step,
and thus ½adðxÞ; adðyÞ� ¼ adð½x; y�Þ. In terms of basis vec-
tors we have adðeiÞej ¼ ½ei; ej� ¼ ckijek, giving the explicit

matrices adðeiÞkj ¼ ckij.

5. Cartan-Killing metric

We may use the adjoint representation to define
the Cartan-Killing metric on the Lie algebra as a
trace, hx; yi � tr½adðxÞadðyÞ�=CA where CA is a
constant; in terms of the basis vectors gij � hei; eji ¼
tr½adðeiÞadðejÞ�=CA ¼ ckilc

l
jk=CA. For a semisimple Lie

algebra the Cartan-Killing metric is nonsingular and has
an inverse satisfying gijgjk ¼ �i

k. For a simple Lie algebra

14Note that Lg�1� ¼ ðLgÞ�1� .
15Strictly speaking this is only true locally: to be precise
we should write c: I !M where I � R is a neighborhood
of zero.
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the adjoint representation is irreducible, so by Schur’s
lemma the invariant Cartan-Killing metric is a multiple
of the unit matrix; we shall choose the constant CA such
that this multiple is unity. For suðNÞ where the generators
in the defining N dimensional fundamental representation
Ti satisfy the commutation relations ½Ti; Tj� ¼ ckijTk and

are normalized such that trTiTj ¼ a�ij the Cartan-Killing

metric is explicitly gij ¼ �ij with CA ¼ 2aN.

For semisimple Lie algebras we can use the Cartan-
Killing metric and its inverse to lower and raise indices
at will, for example, we shall define pi � gijpi, and cor-
respondingly we have an invariant quadratic form for one-
forms, h�;�i ¼ gij�i	j where � ¼ �i


i and � ¼ 	i

i.

We also note that the quantity cijk ¼ gi‘c
‘
jk ¼ �cikj is

totally antisymmetric, because h½ei; ej�; eki ¼ c‘ijhe‘; eki ¼
c‘ijg‘k ¼ ckij, and

CAh½X;Y�;Zi ¼ trðadð½X;Y�ÞadðZÞÞ
¼ trð½adðXÞ; adðYÞ�adðZÞÞ
¼ trðadðXÞadðYÞadðZÞ � adðYÞadðXÞadðZÞÞ
¼ trðadðZÞadðXÞadðYÞ � adðXÞadðZÞadðYÞÞ
¼ trð½adðZÞ; adðXÞ�adðYÞÞ
¼ trðadð½Z;X�ÞadðYÞÞ
¼ CAh½Z;X�;Yi;

hence cijk ¼ cjki ¼ ckij.
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