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Numerical lattice gauge theory computations to generate gauge field configurations including the
effects of dynamical fermions are usually carried out using algorithms that require the molecular
dynamics evolution of gauge fields using symplectic integrators. Sophisticated integrators are commonly
used but hard to optimize, and force-gradient integrators show promise especially for large lattice
volumes. We explain that symplectic integrators lead to very efficient Monte Carlo algorithms because
they exactly conserve a shadow Hamiltonian. The shadow Hamiltonian may be expanded in terms of
Poisson brackets and can be used to optimize the integrators. We show how this may be done for gauge
theories by extending the formulation of Hamiltonian mechanics on Lie groups to include Poisson
brackets and shadows and by giving a general method for the practical computation of forces, force
gradients, and Poisson brackets for gauge theories.
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I. INTRODUCTION

Essentially all algorithms used in lattice gauge theory
computations to generate gauge field configurations
including the effects of dynamical fermions are variants
of the Hybrid Monte Carlo (HMC) algorithm [1], which
requires a reversible and area-preserving integrator for its
molecular dynamics step. The simplest such method is the
leapfrog integrator, but there is a large class of symplectic
integrators [2] that have these properties and are poten-
tially more cost effective. Indeed, many state-of-the-art
computations use the second-order minimum norm inte-
grator [3-5] which has a free parameter, which has been
tuned heretofore in an ad hoc manner.

The formulation of Hamiltonian dynamics on Lie group
manifolds, which is required for molecular dynamics on
gauge fields [6,7], and the fact that symplectic integrators
conserve a shadow Hamiltonian are well known; our goal is
to combine the two and show how to construct the shadow
Hamiltonian for gauge theories. This is most easily done
using the formalism of differential forms [8—12]; in order
to fix our notation and establish the necessary results, some
of which are not easy to find in the literature, we provide a
brief review in Appendix A.

The shadow Hamiltonian is expressed as an asymptotic
expansion in the integration step size 67 whose coefficients
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depend on the parameters specifying the integrator under
consideration and a collection of Poisson brackets. These
Poisson brackets are complicated functions on phase space,
where in the case of gauge field molecular dynamics a
point in phase space is an entire gauge field configuration
and its associated “fictitious” momenta. For extensive
systems such as field theories, unlike the few body systems
considered previously [13,14], the values of the Poisson
brackets have a distribution that is sharply peaked about
their mean values when we choose the starting points of
their molecular dynamics trajectories to be chosen from the
distribution e, as is done in the HMC algorithm. This
may be understood as a consequence of the central limit
theorem applied to the contributions to the Poisson brack-
ets coming from many independent regions of space-time.
This means that for configurations that occur with non-
vanishingly small probability, the shadow Hamiltonian
may be considered to be a function of the average values
of the Poisson brackets; if these are measured on a few test
trajectories then the integrator parameters may be chosen
to minimize the computational cost [15-17]. Perhaps sur-
prisingly this does not correspond to minimizing the aver-
age difference between the Hamiltonian and its shadow'
but instead to minimizing the variance of the distribution of
the shadow. We shall not be concerned with the details of
this tuning procedure here, but we refer the interested

'Since the shadow is only defined up to an additive constant
this cannot be too surprising.
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reader to Ref. [17] for details: instead, the aim of this
paper is to explain how the Poisson brackets, forces, and
force gradients may be computed at any given point in
phase space.

In Ref. [7] expressions for the molecular dynamics
force were derived from the classical mechanics specified
by the Hamiltonian function and a suitable chosen group-
invariant fundamental two-form. We extend this analysis
to obtain an expression for the force-gradient for gauge
fields [18], which can be used to provide a ‘“‘second
derivative” integrator step for the construction of improved
integrators [13,14].

A. Multiple link updates

For much of this paper we shall be considering a
Hamiltonian system with a phase space which is the
cotangent bundle 7% G over a base space that is a Lie group
manifold G and whose fibres are isomorphic to its
Lie algebra. We shall call the cotangent one-forms
“momenta,” although in the context of HMC they are
called ““fictitious momenta” as they are quite different
from the canonical momenta of the underlying field theory.
For a gauge field theory we may associate such a phase
space with every link of the lattice. One might at first think
that we need to introduce some fibre bundle structure over
the space-time lattice itself but fortunately that is not
necessary. We can consider the molecular dynamics evo-
lution of each gauge link separately; they are coupled
together through the action that plays the role of the
potential energy part of the Hamiltonian, but the kinetic
energy part does not couple different links. For HMC we
are free to choose the form of the kinetic energy, so we take
it to be of the form® T(p) =1%,c,p? where p, is
the momentum associated with the link €, and ¢, is a
link-dependent coefficient that is constant in molecular
dynamics “fictitious time” . If we wish to evolve the single
link ¢, on its own we choose ¢y = 64 so that by =
OH/dpy = 0T /dpy = cope = 0 if € # €. We are also
free to choose ¢, = 1 for all links, which is the usual
situation where we update the gauge field simultaneously
across the entire lattice. Another interesting choice for the
kinetic energy is to choose c, = 1 for all spatial links
and ¢, = ¢ for all temporal ones: this is the procedure
suggested in Refs. [19,20] for evolving anisotropic latti-
ces.” The momentum anisotropy & is a parameter that can
be adjusted to optimize the HMC algorithm for a given
anisotropy in the action; if the spatial and temporal con-
tributions to the Poisson brackets are measured separately

*For notational simplicity we consider here a theory with a
scalar field ¢ and the corresponding momentum p defined on the
links of a lattice.

3In Ref. [20] the temporal step size is adjusted rather than the
kinetic energy, which is equivalent after a rescaling of the
temporal momenta.
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then the techniques of Clark et al. [17] can be used to tune
¢ along with other integrator parameters.

B. Pseudofermion forces

So far we have only been discussing pure gauge theo-
ries, but in practice the cost of most lattice computations
is dominated by the inclusion of fermions. This is because
we need to solve a large system of linear equations in
order to update the fictitious momenta (i.e., to apply the
Hamiltonian vector field S in the notation we will introduce
later). Typically we have an action S which is the sum of a
pure gauge part S, built out of sums of small Wilson loops
(traces of a closed loops of gauge links) such as plaquettes
and a pseudofermion part Sy built out of sums of pairs
of pseudofermion fields ¢ connected by a string
of gauge links. If we want to compute the force acting
on a particular gauge link* U then it is convenient to
write S; = Retr(MU) and Sy = ¢T M ~1(U)¢ where the
“staple’ IMis the sum of all gauge link strings that connect
the ends of the link U that correspond to the Wilson loops
in S¢, and the Hermitian lattice matrix M (U) is the sum of
all gauge link strings that include U that occur in Sg. For a
local action all of these strings are in some neighbourhood
of U, and we have dropped all other terms in the action
because they are independent of U and therefore do not
contribute to the force on that particular link. In reality, we
update many or all the links on the lattice at once, so we
compute the force on each link in parallel. By the “force”
we mean the quantity e;(S)T' where e; is a linear
differential operator (vector field) whose action on U is
specified by e;(U) = —T,;U and which we shall define
carefully later (15), and T’ is the representation of a
generator of the gauge group. It is important to note that
here e; acts only on the gauge link U; it gives zero if
applied to any other link variable. There is an opportunity
for confusion when we refer to e; as a vector field; it is a
vector field defined over the phase space of the link U, but
it is not a field over the space-time lattice. In order to
reduce confusion we refer to quantities defined over the
space-time lattice as lattice vectors, and space-time linear
differential operators such as the Dirac operator (or more
precisely lattice difference operators acting on lattice
vectors such as the Wilson-Dirac operator) as lattice
matrices.

The contribution to the force from the pure gauge
part of the action is e;(S;)T" = Re tr(Me,(U))T! =
—Re tr(NT,U)T" = —Ret'(U N T)T' = —aT (UN), T
being the projector onto the Lie algebra, that is
T (X) = Retr(XT,)T'/a where there is an implicit sum
over i as usual and the generators 7; are normalized such
that tr(7;T;) = ad;;. If the gauge group is SU(N) and we
choose its generators to be anti-Hermitian so as not to

“We shall refer both to a gauge link variable and the link on
which it lives as U when there is no ambiguity.
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introduce artificial factors of i, then 7 (X) is just the trace-
less anti-Hermitian part of X.

The pseudofermion contribution to the force
is e,(Sp)T" = ¢pte,(M(U)")pT". Since e; is a
linear differential operator we have 0 = ¢;(I) =

e, (MM = e,(M)M™' + Me,(M™"), and hence
e, (M) = — M le,(M)M~!. Therefore e;(Sp)T! =
—Re tr{e;(M(U))X ® XT]T?, where we have defined
X = M~ ¢ to be the solution of a large but sparse system
of linear equations (since M is local); this may be com-
puted on all lattice sites and used to update some or all
gauge links in parallel. The outer product X ® XT is the
rank one Hermitian lattice matrix whose action on an
arbitrary lattice vector y is proportional to the projection
of y along X, namely (X ® Xt)y = X(Xty).

We can express the pseudofermion action in the form
Sr = —Rett[ M(U)X ® X'] analogous to that of Sg if we
consider X to be a lattice vector that is independent of U.
This means that once we have computed X the calculation
of the gauge and pseudofermion parts of the force and
related quantities are very similar. Both the gauge and
pseudofermion actions can be written as the trace of lattice
operators times U, where the lattice operators are either
local (M and M) or low rank (X ® X1). Both local and low
rank operators are relatively cheap to apply to lattice
vectors or to trace, the former only involving links in the
neighbourhood of U, and the latter only involving inner
products of lattice vectors. For example, we may evaluate
the trace t[M(U)X ® XT] = XTM(U)X as the inner
product of Xt with the vector M(U)X.

If we include spin degrees of freedom then we must
replace X ® X' by a sum of outer products for each spin
component, but the result is still a low rank matrix which is
therefore cheap to apply. Likewise, if we wish to introduce
n pseudofermion fields so as to reduce the noise in the
stochastic estimate of the fermionic force and thus defer
the breakdown in the asymptotic expansion for the shadow
Hamiltonian to significantly larger integrator step sizes
[21-25] then we only increase the rank by a factor of n.

C. Outline

The structure of this paper is as follows. In Sec. II we
consider the general formulation of Hamiltonian
mechanics on a symplectic manifold [26]; this serves to
introduce the important concepts of the fundamental
two-form, the Hamiltonian vector field it associates with
any zero-form, and the Poisson bracket of two zero-forms.
We show that Poisson brackets satisfy the Jacobi identity
and that the commutator of two Hamiltonian vector
fields is itself a Hamiltonian vector field; we explain the
isomorphism between the Lie algebra of commutators of
Hamiltonian vector fields and that of Poisson brackets of
zero-forms. The reason we need all this mathematical
machinery is that when we consider Hamiltonian mechan-
ics on Lie groups in Sec. IV we will introduce a nontrivial
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fundamental two-form in order to make the dynamics
symmetric under the action of the group. Moreover, the
fact that Hamiltonian vector fields form a Lie algebra is
crucial for the definition of the shadow Hamiltonian, which
we give in Sec. III. The exposition assumes some knowl-
edge of the theory of differential forms, an overview of
which is given in Appendix A.

Section III introduces symplectic integrators by
noting that if a zero-form on phase space only depends
on the momenta p or only on the positions ¢ then the
integral curves of its Hamiltonian vector field are easily
found. We are interested in Hamiltonians H(g, p) =
T(p) + S(g) that are the sum of two such functions, and
we show how this allows us to construct symplectic
integrators to find approximate integral curves for H
using the Baker-Campbell-Hausdorff (BCH) formula.
We give some simple examples of integrators for a
system on a symplectic manifold with fundamental
two-form @ = dg A dp and show how to compute the
corresponding shadow Hamiltonians. When the kinetic
energy is of the form T(p) =1p? we show that the
Poisson bracket {S, {S, T}} is independent of p and explain
how it may thus be used to construct a force-gradient
integrator step.

Section IV defines a symplectic structure on Lie group
manifolds, or more precisely on their cotangent bundle
T*@G, that is compatible with the group structure. This is
done by introducing the natural fundamental two-form
terms of Maurer-Cartan forms, and it is here that the
mathematical framework we have developed becomes nec-
essary. We derive explicit formulas for Hamiltonian vector
fields and Poisson brackets in terms of the momentum
coordinates (which are well defined globally) and the
family of left-invariant vector fields dual to the Maurer-
Cartan forms. All the independent Poisson brackets of §
and T that can occur in shadow Hamiltonians up to and
including O(87*) are given explicitly for the case where S
is momentum independent and 7 is quadratic in the mo-
menta. We then show how to express the results in terms of
matrix representations of the Lie group, as these are what
are used in practice.

In Sec. V we evaluate the formulas for the Poisson
brackets for the physically interesting case of the funda-
mental representation of SU(N). We show that they can all
be expressed as traces of a collection of Lie-algebra-valued
quantities: as these live on links we name them basic lattice
vectors.

In Sec. VI we address the problem of computing these
basic lattice vectors. We do this first for the simple case
where only a single link is updated and then introduce the
algebra of fowers to give an efficient way of computing
them in general.

Appendix A gives a brief survey of the theory of differ-
ential forms and serves to fix our notation and conventions,
as does Appendix B which gives an overview of the
properties of Lie groups.

034511-3



A.D. KENNEDY, P.J. SILVA, AND M. A. CLARK
II. HAMILTONIAN MECHANICS
A. Symplectic manifolds

A Hamiltonian system is defined on phase space,
which is a differential manifold M with a symplectic
structure given by some fundamental two-form e that
is closed, dw = 0, and globally invertible. Phase space
is usually the cotangent bundle TG over some configura-
tion space manifold G. For every zero-form F € A° on
M, that is for every C* smooth function F: M — M,
there is a corresponding Hamiltonian vector field Fe
Ham M such that dF = iz: in other words, dF(y) =
(ipw)(y) = w(F, y) for any vector field y.

A zero-form Z corresponds to a vanishing Hamiltonian
vector field if and only if dZ = 0. We have the following
short exact sequence 0 — R — A°(M) — Ham M — 0,
which implies that there is a bijective diffeomorphism
A°(M)/R — Ham M. The nature of this correspondence
between zero-forms (up to an additive constant) and
Hamiltonian vector fields will be examined further in the
following sections.

B. Poisson brackets

Consider the action of a Hamiltonian vector field F on a
zero-form G,

FG = dG(F) = ize(F) = o(G, F) = {F, G},

where in the first equality we have made use of the defini-
tion of the exterior derivative of a zero-form G acting on an
arbitrary vector field y, dG(y) = yG, and in the last equal-
ity we have introduced the Poisson bracket {A, B} =
—w(A, B) for any pair of zero-forms A and B. The minus
sign has to appear somewhere, and our convention is to
introduce it here in the definition of the Poisson bracket.

C. Jacobi identity
The invariant expression (A3) for the exterior derivative
dw of a two-form w applied to three arbitrary vector fields
x,y,and z
do(x,y, z) = xw(y, z) + yo(z,x) + zo(x, y)

— o(x,y] z) — oy, z] x)

- w([z’ x]) y )
displays an interesting cyclic symmetry in the three vector
fields x, y, and z. This has an important consequence if w
is the fundamental two-form and the vector fields are

Hamiltonian: if A, B, and C are three arbitrary zero-forms
then

Aw(B,C) = —A{B,C} = —{A.{B, C}},

and also
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w (4 B) C) = -w(C[A B) = —dC(A, B)
= —-[A Blc=(BA-ABC
{B.{A, C}} —{A,{B, C}}.

We thus find that the condition dw = 0 implies that the
cyclic sum of nested Poisson brackets must vanish,
dw(A, B,C)={A,{B,C}}+{B,{C A} +{C,{A,B}}=0: this
is just the Jacobi identity which, together with the
antisymmetry of the Poisson bracket demonstrates that
zero-forms on M together with the product given by the
Poisson bracket form a Lie algebra.

We can use the Jacobi identity to derive another useful
result. The commutator of any two vector fields is a vector
field [Eq. (A2)]; if both vector fields are Hamiltonian then
their commutator is also Hamiltonian since

[A,BIC=(AB-BA)C={A{B C)}—{B{A C}
= —{C{A B} = {4, B}, C} = {4, BIC,

where we applied the Jacobi identity in the antepenultimate
step. Since this must hold V C € A°, we have

[A, B] = {A, B} € Ham M (1)

telling us that not only is the commutator of two
Hamiltonian vector fields Hamiltonian as promised, but
also that it corresponds to the zero-form that is the
Poisson bracket of the zero-forms corresponding to the
original pair of Hamiltonian vector fields. The bijection
A°(M)/R < Ham(M) is therefore an isomorphism of
Lie algebras.

D. Lie derivatives and equations of motion

Given a Hamiltonian H € A%(M) and a fundamental
two-form w we may construct the Hamiltonian vector field
H, and for any point p € M we may, at least locally,
define an integral curve. We may also define a local flow
o: I XU — M of trajectories starting at any point p €
U C M in some neighbourhood of p, o: R — M, sat-
isfying Hamilton’s equations do/dt = H and the
initial condition ¢(0) = p. Hamilton’s equations are thus
most naturally expressed in terms of Lie derivatives
(Appendix A 5), dT/dt = L4T, for any tensor T. In
particular, a scalar field (zero-form) F, vector field v,
and one-form @ must obey

dF N
— = LyF=HF ={H, F},
dt
d N
d—l; =Lav=[H v] and
de
The formal solution of the equation of motion

dT/dt = L4T is T(1) = exp(tL4)T(0), where the
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function 1is defined as

= (L)l /.

exponential exp(tLy) =

lim, (1 + £ L )" =
IIL. SYMPLECTIC INTEGRATORS
AND SHADOW HAMILTONIANS

A. Baker-Campbell-Hausdorff formula

The BCH formula states that if A and B belong to an
associative algebra then

In(etef) = Z c,(A, B),
n=1

where the c,, belonging to the free Lie algebra,” are
recursively determined from the relations c; = A + B and
|

2)
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[n/2]

B
(I’l + 1)Cn+1 = 2m
m

— adc, ...adc, (A+ B)
—~ (2m)! Z o fon

Ky 4o kg =n

~Jade)A-B) fornzl O

where ad a: b — [a, b] and the Bernoulli numbers B, are
defined by

The first few terms in the Hausdorff series are

A B\ 1 1 B 1
In(e?e®) = (A + B) + E[A’ B]+ ﬁ([A’ (A, B]] - [B,[A, B])) ﬂ[B, (A, [A, B]]]

—4[B,[A [A,[A B]]]]
+4[B,[B,[A [A, B]]]]

+ —
—[A [A [A [A B]]]]

—6[[A, B] [A,[A, B]]]
—2([A, B} [B,[A BI]] | + -
+[B.[B,[B.[A, B]ll]

From this we easily obtain the corresponding formula for a symmetric product

32(B,[B.[A.[A,B]l] —16[[A B][B,[A B]]]

In(e*/2eBe?/?) = (A+ B) — %(2[3, [A, B]]+[A,[A B]]) + 5760 +28[B,[A,[A [A B]]l] +12[[A, BL[A[AB]]] | +---

B. Symplectic integrators

The integral curve of a Hamiltonian vector field A is
given by the exponential map ¢ —> exp(fA) acting on the
initial point. Given two Hamiltonian vector fields A and B
we can construct a curve that is alternately tangential to each
vector field from the composition of their exponential maps
t — [exp(tA/n) exp(tB/n)]" for some n € N. Such a map
is called a symplectic integrator as it manifestly preserves
the symplectic structure because it is a composition of
exponential maps each of which preserves this structure.
The BCH formula (2) tells us that this curve itself is in fact
the integral curve of a vector field D/,

o))

I:exp((A + E)% +

3 ik ) )]
—enf(4+ 8+ 3 @ m(t)" )]

exp(Dt/n t)’

SThat is the Lie algebra whose Lie bracket is the commutator
constructed from the associative product. For more details about
free Lie algebras and a proof of the BCH formula see
Appendix B of Ref. [27].

+8[B,[B,[B,[A Bl +7[A[A[A[A B]]

“
|

where D, = A + B+ Y%_, ¢,,(A, B)e"'. As all the ¢,,
are commutators, Eq. (1) tells us that D, is a Hamiltonian
vector field corresponding to the shadow zero-form D,
under the isomorphism Ham M — Ay(M)/R discussed
earlier. In other words, D, = DAE, where the zero-form
D,=A+B+Y¥%*_, ch(A B)e™ ! withthe ¢/, defined by
(3) in terms of the Poisson bracket image of the adjoint
under the Lie algebra isomorphism (1) adA — z;\dA, where

adA:B — {A, B}. We note in passing that the shadow is only
defined up to an additive constant.

The BCH formula is obtained by formal manipulation of
the exponential series, so we should choose a sufficiently
large n to ensure that the Hausdorff series converges. In
order to study the convergence of the BCH formula we
need to specify a topology on the space of Hamiltonian
vector fields Ham M. It is simpler to ask the same question
about the convergence of the corresponding expansion for
the shadow Hamiltonian, for which there is an obvious
topology as the coefficients are zero-forms and we can use
the usual L, norms. In most cases none of these norms are
bounded so the series is only asymptotic at best. In HMC
the momenta are selected from a Gaussian distribution
e~ TP) 5o the values of the Poisson brackets can become
arbitrarily large but with exponentially small probability.
There is no value of & for which the Hausdorff series
always converges, but it might well be that for any
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6 >0 we can find an & >0 such that it does converge
with probability >1 — 6. This may be acceptable for
HMC, where an exponentially small chance of a
trajectory becoming unstable is unimportant: it will
presumably be rejected and the next momentum or
pseudofermion refreshment will resolve the problem. If
the large norm comes from the gauge field configuration
then there could be more severe problems.

C. Symmetric symplectic integrators

In general a symplectic integrator is not reversible, that
is the group commutator

exp(—tA/n)exp(—tB/n)exp(tA/n) exp(tB/n) # I;

indeed we immediately see from this expression that
that the integrator is reversible if and only if [A, B] = 0.
This blemish is easily eradicated by using a symmetric
symplectic integrator such as exp(tA/2n)exp(tB/n) X
exp(tA /2n). An additional advantage of such integrators
is that only even powers of & occur in the Hausdorff series
for their shadow Hamiltonians D,, so A+ B — D, =
O(e?), making them better approximations to the expo-
nential map of A + B itself.

D. Practical integrators

Finding a closed-form expression for the integral curve
of some Hamiltonian vector field A is impossible in most
cases as there is no closed-form solution of Hamilton’s
equations. However, there are some special cases where we
can find such a solution.

For example, suppose that in some local patch of phase
space with coordinates ¢ and p the fundamental two-form
is® @ = dg A dp, A is an arbitary zero-form, and X is an
arbitrary vector field on phase space. Then

J0A 0A d Jd
dA =—dqg +—dp, X=X,—+X,—,
dq ap dq ap
~ J Jd
A=A, —+4,—,
dq op

and we have

0A 0A A
dA(X) = —X,+ —X, = w(A, X)
daq ap

0 ad 0 0
= (dg A dp)(Aq— +A,— X,—+ Xp—)

d0q ap d0q ap
=A,X, —AX,.

Since X is arbitrary we can equate coefficients of X, and
X, to obtain

®We can always find coordinates for which this is true accord-
ing to Darboux’s theorem.
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L4 9 _aA b
dp dqg dq Ip’
Let ¢() = (g, p,) be the integral curve of A with
¢(0) = (go, po), which means that for any zero-form
f it must satisfy the differential equations

(Afoc="2( o0,

or equivalently

, 0A ) 0A
g, = a—(% p) and p,=—-—(q, p,),
p dq

which are Hamilton’s equations if A is the Hamiltonian.

Now, suppose that A(g, p) = T(p) is only a function
of the momenta, then T = T'(p)d/dq, and Hamilton’s
equations reduce to the pair ¢, = T'(p) and p, =0
of first-order differential equations with constant coeffi-
cients, with the solution that the momentum is constant,
P: = po, and g, = q¢ + T'(py)t grows linearly in 7. The
case where A(g, p) = S(g) is analogous. If we have a
function A(g, p) = H(q, p) = T(p) + S(g), perhaps the
Hamiltonian itself, that can be decomposed into the sum
of a kinetic energy and a potential energy then we can
easily integrate either term separately, and we can use a
symplectic integrator to approximate the integral curves of
H itself.

In fact we have established a stronger result, namely
we can find the exact integral curves of a shadow
Hamiltonian H, that differs from H by terms of O(g) in
closed form. A symplectic integrator thus not only exactly
preserves the symplectic structure but also conserves the
value of H (the energy) up to order ¢ for arbitrarily long
times: unfortunately, the integral curves of H and H R
usually diverge from each other after a relatively short
time despite this. This happens even if their equations of
motion are not chaotic: symplectic integrators are very
good at conserving energy and phase space volume, but
they are not particularly good in finding the correct trajec-
tory through phase space.

For HMC applications where we only care about exact
reversibility, exact area preservation, and good energy
conservation we see that symmetric symplectic integrators
meet all the requirements, and the divergence of the
shadow integral curves from the true ones is unimportant.

Given the fundamental two-form @ = dg A dp we may
evaluate the Poisson bracket of two arbitrary zero-forms A
and B, namely

{A, B} = —w(A, B)

0A 0 0A 0 0B o 0JB 0

=—dgndp)|\ - ———

dp dg dq dp dp dq dq JOp
_0AdB 0JA JB
dp dg dq Ip
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For the Hamiltonian H(g, p) = T(p) + S(g) any integrator
constructed from e® and e®7 steps will conserve a shadow
whose BCH expansion may be expressed in terms of the
Poisson brackets

nS, T
{§,T}=—-S'T {$,{8, T} = —S'%z ST
p
nS, T
{T,{s, T}} = T/% T
q

and so forth.

For example, the leapfrog integrator [exp(}d 78) X
exp(87T) exp(} 878)]/97 is the simplest symmetric sym-
plectic integrator (there is a variant in which S and T are
interchanged). From (4) we find that it conserves the
shadow Hamiltonian

H=T+S— 52—12 (S, {S, T3} + 2{T, {S, T}}) + O(57%)

672 12711 1112 4
E. Higher-order integrators

Let us briefly give some simple examples of more
complicated integrators. The second-order minimum
norm integrator [3-5] is

I:exp(/\érﬁ) exp(% 8TT) exp((1 — 22)678)

1 n A~ Jt/67
X exp(i 67'T) exp()\BTS)]

with shadow

- A2 —61+1

A=T+S+ 5%%{5, (s, 7}

1 —6A
24

+

.15, T}}) + 057,

and it has the free parameter A as well as the integration
step size 67.

It is interesting to note that if as is usual the kinetic energy
is quadratic, T(p) =1p? then the Poisson bracket
{S,{S, T}} = S is independent of the momentum p, and
thus we can find the integral curve of its Hamiltonian vector

field {S, {’STT}} = —28'S"9/dp. The corresponding inte-

grator step e®S1STH is called a force-gradient integrator
step, because it involves second derivatives of the
potential S.

We can use the force-gradient step to define a force-
gradient integrator

PHYSICAL REVIEW D 87, 034511 (2013)

[exp(é 5T§) exp(% 5Tf'>

X exp(% (48678 — 6738, {/STT}}])

1. 4 1. A\]/e
X exp(i 5TT) exp(g 57‘5)]t

with shadow
( 4148, {8, {S, {S, T}}}}
+36{{S, T}, {S,{S, T}}}

st | +72{{S, THAT.{S, T}}}

H=T%57955520| +84(7. {5, 15, {5, T}
+126{T.{T. {S,{S. T}}}}
+54{T T AT, {S, T} /
+ O(81°), ®

where we have chosen the integrator parameters to elimi-
nate all terms of O(872) in the shadow. The Poisson
bracket {S, {S, {S, T}}} = 0 so the first and fourth Poisson
brackets in (5) are also identically zero, however, formula
(5) is valid more generally. Note that the middle step has

combined the Hamiltonian vector fields S and {S, {S, T}}
because they commute.

There is no compelling reason to choose the parameters
to eliminate the 872 errors: in general we should introduce
some parameters constrained only by the conditions that
the leading-order term in the shadow should be the original
Hamiltonian and that the total step size should be 67, and
then adjust these parameters to minimize the cost of our
integrator for the specific problem it is being applied to. On
the other hand, we can build integrators whose leading
error is 87* (or 87" for any n for that matter), without
requiring force-gradient steps. Nevertheless, integrators
with force-gradient steps may be cheaper than those with-
out: it would be surprising if the optimal coefficient of the
force-gradient term was exactly zero.

In HMC for lattice field theory H and H are extensive
quantities, that is they are proportional to the lattice
volume V for sufficiently large V, so the leading error is
proportional to V87> if H — H = O(87%"). In order to
keep the Monte Carlo acceptance rate fixed we therefore
need to vary 87 o V12" and as the cost Vt/87 of a
trajectory of length ¢ is proportional to the number of steps
and the volume, we may estimate that the cost varies as
V1121 " Of course there are many other contributions to
the cost that have been ignored, but for large enough V this
suggests that we want to increase n.

IV. HAMILTONIAN MECHANICS ON LIE GROUPS

A. Fundamental two-form on a Lie group

The cotangent bundle 7" G over any manifold G has a
natural symplectic structure. For the case where G is a Lie
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group a point in 7§ may be written as (g, p), where g €
G and p € T*G(g) is called the momentum or Liouville
form. As explained in Appendix B, the vectors in tangent
space at the identity 7G(ll) correspond to the Lie algebra of
left-invariant vector fields e; on G, and their dual one-
forms @' satisfy the Maurer-Cartan equations. The momen-
tum may be written in the Maurer-Cartan basis as p =
pi0', where p(e;) = p;0'(e;) = p;8; = p;. We shall
choose the fundamental two-form to be

o= —dp = —d(p;0), (6)

and using the Maurer-Cartan equations it may be written as

w=0 ANdp, + %picj.km A O
If F is a zero-form on the cotangent bundle T*G
then the corresponding Hamiltonian vector field F=
Fle; + F;0/0p; in TT*G is defined by dF = i;w, or
dF(y) = w(F, y) for all vector fields y = y'e; + 7,0/ p;.
Expanding this expression gives

5, = w(F,y)

L OF
dE(y) = yF = ei(F)y" + -

= F'y; = y'F; + piciy FIyh,

so equating the coefficients of y' and y; we find
e,(F) = —F; + p;cj;F* and 0F/dp, = F'. We thus find
that the vector field F is

. oF . OF d
F=—ei+<pjc£i——ei(F))—. (7)
ap; Ipy ap;
From this we can evaluate the Poisson bracket of two
arbitrary Hamiltonian vector fields corresponding to
zero-forms F and G,

{F,G}= —w(F,G)

9F G  OF G
=pich——— T -—e(G) ——e(F). (8)
dp; dpx  9Ip; ap;

B. Hamiltonian vector fields for 7 and S

For HMC we may take the Hamiltonian to be of the form
H =T + S where the kinetic energy 7: T°G — R is a
function only of the momenta which we may choose to
be of the form

1 1.
T=—{(p.p)==p'p;
2<pp> SP'p 9)

using the Cartan-Killing metric (Appendix B 5). Hence
aT/dp; = p', and the potential energy S: G— R is a
function only of the group parameters.

For the kinetic and potential energy zero-forms the
corresponding vector fields are thus

PHYSICAL REVIEW D 87, 034511 (2013)

d . ~ d
= p'e; and S = —e;(S)
ap; op;

(10)

T = ple; + cppip*

using (7), where we have made use of the total antisym-
metry of the structure constants for a semisimple Lie
algebra, ci,p;p* = c;up/p* = 0.

C. Poisson brackets of S and T
‘We may compute the Poisson brackets of S and 7 from (8)

{S, Tt = —p'ei(s) 1D
{S»{S’ T}}:el(S)el(S) {T’{S’ T}}: _plp]ele](s) (12)

{T{S.{S, T}}} = 2p'e;e;(S)e!(S)
{SAs{s =0
{T AT {8, T} = —p'p/pee;en(S)
{T AT {SAS, T} = 2p'ple;eje (S)e (S)
+2pipleei(S)e;et(S)
{S, THAT {S, TH} = ck;p'plel(S)ere(S) + ecer(S)]
+ p'pilet(S)eee;(S)
— eke;(S)ere;(S) — e;e*(S)ere;(S)]
{T.{S.{S.{S, TH}} =0
{S, THASAS, TH} = —2€/(S)e/(S)e;e;(S)
{TAT AT S, TH}} = —p'p/ p*pleejere (S)
{SAs{s.{s, TH}} =o. (13)

Observe that according to Eq. (12) {S,{S, T}} does not
depend on the momentum, so just as in Sec. IIIE
we can use it to define a force-gradient integrator step
corresponding to the Hamiltonian vector field

SIS T = —e(@Se,) .  (14)

d
Ip;
D. Representations

If U: G — Gl(n, C) = AutCV is a matrix representation
of G then it satisfies U(gh) = U(g)U(h) forall g, h € G.
We may view any matrix element U, of the representation
as a complex valued zero-form as it is well defined over the
entire group manifold. The left action L,: h — gh induces
the map L,.: U, — Uy, © L, according to the definition
given in Appendix A 4, so (L,.U,)(h) = U,,(gh) =
[U(@)Uh)]p = X", U,(g)U.,(h) for all h, or equiva-
lently L .U, = X"_, U,(g)U,p. In other words, the map
L,. takes the zero-form U,, to a linear combination of
zero-forms U, with coefficients U,.(g) € C. We can
express this more succinctly by considering U to be a
matrix-valued zero-form, whence L,.U = U(g)U.
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Application of the vector field e; to U gives a
matrix-valued zero-form e;U whose value at some point
g € Gis eU(g) = L,.e;U(D). e; is left-invariant Lye; =
e;, so we have L,.e;U = Ly Loe;U = LyiLy1.€;L,U =
e,L,.U=e;U(g)U = U(g)e;U. This allows us to evaluate
e;U at any point g in terms of the value of e;U at the
identity. Defining the generators of the representation as
T, = ¢;U(l), we obtain e;U(g) = U(g)e;U(l) = U(g)T; or
more succinctly e,;U = UT;.

As on the one hand [e;, e;]JU = cfe,U = cj;UT,
and on the other [e;, e;]JU = e;e;U — e;e,U = ¢, UT; —
e;UT; = UT,T; — UT,;T; = U[T,, T,], we see that the gen-
erators must satisfy the commutation relations [T}, T;] =
¢}, Ty upon multiplying on the left by U~".

Unfortunately the usual convention [7,28] is that the
derivative of a link variable is

e,U=—TU, (15)

and this is used in most computer implementations.
This arises from considering right-invariant vector
fields. Briefly, the right action on a group is defined by
R,: h— hg, and the induced maps by R, U=U?oR,
and Rye; = R,-1.€;R,.. If we assume that e; is right-
invariant then it satisfies Rye; = e;, and following an argu-
ment completely analogous to that in the text we find
e;U(g) = R,.e;U(l) since g = Rl = LI and R,.e;U =
e;UU(g). We then have to define the generators by
e,U(l) = —T;, leading to e,U=—T;U. We must
include the minus sign in the definition of the generators
for right-invariant vector fields satisfying [e;, e;] = ci.‘jek;
otherwise, they would not satisfy the commutation
relations [T, T;] = cf.‘ka. In fact, the usual convention
erroneously omits the minus sign, but as the commutation
relations are used to derive the Maurer-Cartan equations,
and thus our fundamental two-form, the sign is significant
when computing high-order Poisson brackets.

E. Equations of motion

The equations of motion are most naturally expressed in
terms of Lie derivatives (Appendix A 5). The Lie derivative
L,T of a tensor field T is its derivative along the integral
curves of the vector field v, and the definition of the Lie
derivative given in (A4)-(A6) implicitly provides the dif-
ferential equations defining these integral curves. If v = H
is the Hamiltonian vector field for the Hamiltonian func-
tion then these are just Hamilton’s equations, and we will
write T = L,T.

For the case of matrix representations we consider the
matrix elements to be zero-forms as we did in Sec. IV D, so
we may use equation (A4) to obtain U= L aU= HU and
P=r aP = HP where U is a matrix representation of an
element of G and P = p'T; the corresponding matrix rep-
resentation of the momentum in the Lie algebra. Taking

PHYSICAL REVIEW D 87, 034511 (2013)

with the explicit forms from (10), and using the relation
e;(U) = —T,U of (15), we find

U=TU= pie;,(U) = —p'T;U=—PU

. A d
P=SP= _ei(S)

= —¢,(S)T" = —F,
ap;

where we have introduced the quantity F; = e;(S)T"
[g-v., Eq. (17)]. The solution of these equations for separate
U and P updates (i.e., for a symplectic integrator) are

U(r) = exp(—P1)U(0) and P(r) = P(0) — tF,.

The equations of motion for the force-gradient
Hamiltonian vector field of (14) is

P= (SIS THP = —e(e(5)ei(5) 5
= —2¢;e;(S)e/(S)T' = -G (16)
with G = e;e;(S)e(S)TY  [q.v., Eq. (17)], since

le;, ej](S)ej(S) = Ckijek(S)ej(S) =0.

V. POISSON BRACKETS IN SU(N)

In order to compute the Poisson brackets it is useful to
express them in terms of the following set of matrices that
are in the representation of the Lie algebra

P=pT
F, = e,(S)T!
F, = PF, = ple;e,(S)T’
Fy = P°F, = pre;ple;e,(S)T'
Fy = P°F = pe;preipie;e,(S)T
G=TF\F = ej(S)ejei(S)Tiy

(17)

pi = w(PT)/a

e,(S) = tr(F\T;)/a

pleje(S) = tr(F,T,)/a

prerpieje(S) = t(F3T;)/a

plecpre,pie;e(S) = u(F,T))/a

e/(S)e;e;(S) = u(GT,)/a,
where P = p'e; and F, = €'(S)e; are vector fields (linear
differential operators) corresponding to the matrices P and
F, respectively. For a lattice field theory P, F;, G, ... will
also be lattice vectors, so we shall call these quantities

basic lattice vectors.

To derive more explicit expressions for the desired

Poisson brackets it is useful to use the following identities
that hold for the fundamental representation of the su(N)
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Lie algebra,7 for arbitrary N X N matrices X, Y, Z, and
T; € su(N)

ch t(XTue(YTY) = at((X, Y]T'); (18)
tr(XT)tr(YT?) = a[tr(XY) - % trX trY]; (19)

t[X, Y] = (XY — YX) = 0; (20)
and

(X, Y]Z) = '(XYZ — YXZ) = t(XYZ — XZY)
= w(X[Y, Z]) = (Y, Z]X) = tr([Z, X]Y);
(2D

from which it follows that
tr((X, Y]X) = tr([X, X]Y) = 0 (22)
and
cip tXTHr(YTH(ZTY) = a® u([X, Y]Z).  (23)

Using (23) and (21) we easily see that
¢k piplel(S)ecey(S) = a—13(:,» (PO, T)e(Fy )
= é t([Fy, F2]P), (24)
and as (18) leads to
pllew €)S) = plele(S) = - cu t(PTOU(E,T)
=~ allp, 1T 25)
we find using (23) that
ckp'plel(S)es e)(S)
= %ci w w(PTHw(F, T ([P, F,1T*)
= ul(F, PP) 6)

Combining Eqgs. (24) and (26) we obtain

"We choose to normalize the traceless anti-Hermitian gener-
ators T; of the fundamental representation by tr(7,T;) = ad;,
where a is an arbitrary (negative) constant. For su(3) the
Hermitian Gell-Mann matrices A; satisfy tr(A;A;) = 26;;, so
our choice corresponds to 7; = 4/—a/2iA;. Moreover, our defi-
nition of the kinetic energy is 7 = 1 p;p’ = tr(P?)/2a, and as we
observed in the introduction changing this normalization corre-
sponds to a scaling of molecular dynamics time. One must be
careful to take all these factors into account when comparing
computations using different conventions.
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ijpipéej(s){ekee(s) + ecer(S)}
— LeQIF RP PP @)
We may also deduce from (25) that
plece(s) = u((Fy ~ [y PTL)
and hence
Pl S)ee () = - ul(Fy ~ [F,PD) (8)
and
pplee(S)ee () = - (]~ Fo[F, P (29)

From the identity
eee; =[eele; +ele,e]+eee
= cﬁi[ee, ej] + ciieje(g + eicfjeg + ee e
= cﬁicg’;em + ciiejeg + cﬁjeie(g + eeje;
we deduce that
pipjek(S)ekeiej(S)
=i e (S)p'cy ple,(S) +2cip'plee(S)ek(S)
+ p'plee;en(S)ek(S)

= %cgi tr(Fy T (PTY)c gy, tr(PTY ) te(F T™)
+ %cm tr(PT)tr(F, T r(F, TF)
+ %tr(ﬂ Ttr(F,TF)
— —étr([Fl, PP +2[F,, F,]P — F\F5). (30)

We thus obtain the following expressions for the desired
Poisson brackets

{8, T} = —te(F\P)/a
{S4S, T} = u(F?)/a
{T.AS. T}} = —t(FyP)/a
{T.{8. {8, TH}} = 2te(F F3)/a
{SASAS. TH =0
{TATAS, T} = —t(F3P)/a
{TATASAS, THY = 2{e(F 1 F3) + w(F3)}/a
{S. THAT{S. T} = —w(B[F,, F2]P
+[Fy, P — F\F3 +2F3)/a

using (27)—(30)
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{T.{S.{S.{S. T}}} =0
{8, T3{8. {8, Th} = —2(F,Gy)/a

{T AT AT S, T}}}} = —te(FyP)/a
{S,4S,{S, {S, TH}} = 0.

VL. BASIC LATTICE VECTORS AND TOWERS
A. Single link updates

We now consider how to evaluate the basic lattice vec-
tors of (17). This is particularly simple to do in the case
where there is only a single link variable U, or on a lattice
if we choose to only update a single link by setting the
coefficient of the kinetic energy to zero everywhere else,
as described in Sec. I A. In this case the potential is of
the form® S = Retr(UX) where X is some constant
N X N matrix, which in general is neither in the group
nor its algebra. On a lattice where we are only updating
a single link X is constructed out of products of
other link variables, which are themselves constant in
molecular dynamics time. We find F, = ¢,(S)T =
Retr(e;(U)X)T' = —Retr(T;UX)T' = —Retr(UXT,)T' =
—aT (UX) where T projects onto the Lie algebra, i.e., the
traceless anti-Hermitian part for su(N). Likewise,
F, = PF, = ple;e,(S)T" = Re tr(p/e;e(U)X)T" =
Re tr(p/e;(—T;U)X) T" = —Re tu(T;ple;(U)X)T" =
Re tr(T;p/T,UX)T" = Re t(PUXT)T' = aT (PUX),
and so forth for the remaining quantities in (17)

F, = —Retr(UXT))T' = —aT (UX),

F, = PF, = Retr(PUXT)T' = a'T (PUX),

Fy = P*F, = —Retr(P?UXT;)T' = —aT (P*UX),
F, = P3F, = Retr(PPUXT,)T" = aT (P3UX),

G = F,F, = Retr(F\UXT;)T" = a'T (F,UX).

B. Lattice updates

When we have many links we trivially generalize the
definition of the fundamental two-form (6) to become sums
over all links

= —;dp(f) = —;d(p,-((?)ﬂ"(f))

= 300 ndpi0) + 3 (0,010 A 04(0)),
€

8We consider the case where the action is linear in U without
loss of generality because if it occurs multiple times we can
transform it into a form linear in its tensor product, which can
be reduced into a sum of irreducible representations. For ex-
ample, the action S = Retr(UXUX')= Retr[(U® U)X"],
where (U ® U');j 1 = Uy Uje and X}y, = X;; X, are N> X N?
matrices, and U ® U can be reduced into a sum of two irreduc-
ible representations acting on vectors of dimensions %N (N—-1)
and I N(N + 1).
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We can compress the notation by letting indices such
as i also range over all links: that is i — (i, €;) and
the implicit sum over the basis of the Lie algebra Y,
becomes an implicit double sum 3, 3. Of course,

we also need to augment the structure constants ci-‘i —

(k€1 — k stsle o ;
CheNGie) = c[jéei o ¢, since the Maurer-Cartan equations

do not mix links. Similarly, the kinetic energy (9) becomes

T = S eOp0), p(0) = L el p (OO
I {

— 2 S0P ),
€

where, as discussed in Appendix A 1, it is convenient to
introduce a separate coefficient ¢(€) in the kinetic energy
for each link. We can extend our compressed notation by
implicitly associating a factor of ¢(€) with each occurrence
of the augmented Cartan-Killing metric, g;; — (i ¢,)(;, () =
c(€;)gij6,¢, and hence with every contracted index i. With

these conventions the definition looks like (6) and (9)
again. The sums propagate to the Poisson brackets where
the implicit sums over the indices in Egs. (11)-(13)
and also become sums over all links, although second
derivatives such as e;e;(S) have bounded support for an
ultralocal action. It is important to note that the implicit
factor of c,, associated with contracted indices means that
even though {S, {S, T}} does not depend on any momentum
it still has a factor of c(€) associated with each term. If we
set ¢(€') = 8¢p then only link € will appear in Egs. (12)
and (16), and the force-gradient integrator will therefore
only act on that link.

C. Towers

The situation would seem to be much more difficult
when we want to update all of the link variables simulta-
neously; derivatives like e; ... e; (S) depend on k links and
it might appear that it will be prohibitively expensive to
compute them. Fortunately, we can avoid this combinato-
rial explosion; the key observation is that all the Poisson
brackets and forces only depend on the basic lattice vec-
tors, and these have only a single free lattice index. To
make use of this we introduce towers of basic lattice
vectors: a fower T(A, B) is a an array of basic lattice vectors
T(A, B); = A'B, where A is a basic lattice vector, A is
the vector field associated with it, B is a sum of products of
gauge links, and the index i € {0, ..., n — 1} where we call
n the height of the tower.

The basic lattice vectors in (17) may be constructed
from the two towers T(P, B) and T(F, B) of heights four
and two, where B is the stencil of the action S. The stencil
is the collection of all paths in the action that start with a
given link. For example, in the case of lattice gauge theory
without dynamical fermions the action is a sum of Wilson
loops, each Wilson loop being the trace of the product of
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gauge links around a closed loop. This means we can write
the action as S = Re tr(U;M) + S, where the staple M is the
sum of products of gauge links along paths connecting the
end of the link € to its beginning, and S, is independent of
Uy, as in Sec. I B. The stencil in this case is U, M. This is
familiar from the computation of the force acting on U,

Fi(€) = e,(S)T = e;(RetrtU,MT' = Retr(e,(U,)r)T!
Re tr(—T,;U,M)T" = —Retr(U, N T)T!
= —aT(UgI'I). (31)

The thing to notice here is that we are computing the
force on the gauge link U, so the index i is really the
pair (i, £), and thus e;(U) = 0 for any other link €/ # €: in
particular, e;(M) = 0, e,(Sy) = 0, and e;(U,M) =¢;(U,) M.
Naturally, we want to compute the force acting on every
gauge link, and so the stencil computation of (31) must be
carried out separately for each link: these computations can
be done in parallel if desired.

In order to compute the basic lattice vector A/F, =
Ale,(S)T' we proceed as follows:

AIF,(£) = Ale,(S)T' = A Retr(—T;UMT"
= —Retr(T; AJ(U,N)T!
= —Retr(T;T(A, U,M)))T'
= —aT (T(A, UM),)).

This is easy to do if we can compute the tower T(A, U,M)
on the stencil U, M.

D. Algebra of towers

It is simple to construct the tower T(A, B) when B is a
single gauge link U; we have T(A, U); = AU = (—A)/U.
This follows from the definitions T(A,U)y=U
and A=a'e; where A =a'T;, so by induction
TA, U)j = AU = A(AIU) = A(-A)U =
d'e,((-AYU) = (-A)d'e,(U) = (—AYd' (-T,U) =
(—A)/*1U. Indeed, this corresponds to a convenient recur-
sive way of constructing the tower, T(A, U);; =
(—A)T(A, U),.

If B is the product9 of two stencils B; - B, then we may
use the Leibniz rule for the derivation A, A (B - B,) =
AB, - B, + B, - AAB,, or more generally

i/
‘A](B] ‘ Bz) = Z(J )ﬂkB] N ﬂjikBQ.
i—o\ k
The tower on the product B; + B, is thus the product of the
tower on B; with that on B,, T(A, B, - B,) = T(A, B)) -
T(A, B,), where the product is defined by'’

“Here we use the symbol - to emphasize multiplication opera-
tions. Elsewhere we use juxtaposition to indicate multiplication.
10 R
The symbol - on the left denotes multiplication of towers,
whereas on the right it denotes matrix multiplication.
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j .
J
(T(A, B)) - T(A By)),; = Z(k)T(A, By)i - T(A, By
k=0

The tower on the sum of two stencils B; + B, is even
simpler, since A(B, + B,) = AB; + AB,. We just
have T(A, B, + B,) =T(A By +T(A, By) where
(T(A, By) + T(A, Bz))j =T(A, Bl)j + T(A, Bz)j-

E. Pseudofermion towers

The principal advantage of updating all links sim-
ultaneously is when we include the effects of (pseudo)
fermions in the dynamics. As described in Sec. IB this
entails solving a large linear system to obtain the quantity
X = M '¢ needed to compute the force (M being a
lattice Dirac operator) and it is worthwhile to reuse this
solution to update many links.

We therefore need to compute towers for stencils that
include outer products such as X ® XT. This may be done
by computing the tower T(A, X) on X = M~ '¢. Observe
that A ¢ = 0 as the pseudofermion lattice (site) vector ¢
does not depend on U—we want to follow the molecular
dynamics evolution of the gauge links and momenta in the
presence of a fixed pseudofermion background. Using the
Leibniz rule we get 0 = A(¢p) = AMM '¢) =
AMM 'y + MAM 'p) so AM '¢) =
—M T A(M)M . To use this for a tower of arbitrary
height we generalize this to

0=A/(MM '¢) = i(i)ﬂ”‘(ﬁ\’l)ﬂlk(ﬁ\’“@

k=0
1
— MAI(M ' $) + jz(i)ﬂfk(mwmw
k=0
for j > 0, and thus
1y
AI(M$) = — M jZ(i)ﬂfk(mw(mw.
k=0

This translates into the following recursive definition for
the tower on X:

TA X)y=M"1¢

=1, .
T(4,X); = —M"! ;(i)T(A, M), T(A, X);

in terms of the tower T'(4, M) which we already know how
to compute. Note that we require exactly n inverses to
construct such a tower of height of height n.

Yin [29] has suggested an ingenious way of performing a
force-gradient update by computing the force twice. We
should not be surprised that the force-gradient update

578 o7

eO784STH can be computed out of €™ and €T steps:
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recall that according to the BCH formula the commutator
Cle?, eB) = e e BeAeB = olABl* hence

C(eérs’ C(eﬁ‘rS’ eérT))
— 6_57§€_87Te_8T§€5TT€87§€_5TT€§T§€67T
— C(eﬁrs" es#[ﬁ,fﬁ@(aé))

— OTISISTI+0(57)
_ PISIS Y0,

It is interesting that this can be reduced to only requiring
two inverses in the case where T is quadratic. There does
not seem to be a way of using this trick to evaluate Poisson
brackets, however.

VII. CONCLUSIONS

We have given a formalism for computing integrators
and the corresponding shadow Hamiltonians for lattice
gauge theories, and we have presented explicit formulas
for the Poisson brackets up to fourth-order and for the
force-gradient update step. We have shown how to express
these quantities in terms of basic lattice vectors taking their
values in the representation of the Lie algebra, as is needed
for the usual formulation of lattice gauge theories, and
explained how these may be computed using towers. The
implementation of towers is straightforward, as it just
requires the substitution of the algebra of towers for that
of the matrices already used in computing the force term.
The stencils for any action are unchanged, and the method
is readily applied to pseudofermions, smeared actions, and
so forth. The rules for addition, multiplication, and ““‘inver-
sion” of towers are given in a recursive form that is easy to
implement (although a recursive implementation is not
necessary).
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APPENDIX A: DIFFERENTIAL FORMS

1. Differential forms and wedge products

For convenience we give the definition of a few basic
operations on differential forms. In some local basis
g M D U — R"ak-form Q € A* has components "'

""Our convention is that each independent component occurs
once in the sum: another convention is that each such component
occurs k! times—once for each permutation of its indices.
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0- ¥

I=[<--<I,<k

Qg dg"" A Adgh

1< . .
=4 > Q.dqt A Adgh
L
_1 i i
= Eﬂil...ikdq LA Adg
1
= E Z QW]--»ﬂ'kdqm A A dqﬂ'k

TES,
= <Q‘n'|,..77kdq7r] A A d‘]“)w&&g
where S is the symmetric group acting on 1, ..., k, and

(- - -)s, indicates the average over elements of the symmet-
ric group. The wedge product satisfies

aAB=(-D*BAa a € A\, B e AF
antisymmetry;

aABANy=aAPBAy)=(@AB) Ay
associativity.

In terms of the components in local coordinates this means
that '

(¢4 /\B = <a771.,.77kB7rH1...77Hk/ dqm AN /\dqwk+k/>77'€8

1
w2

TES, v

k+&!

a7T]4..7TkB7Tk+]“.7Tk+k/
Xdg™ A ANdgTii

2. Exterior derivatives

The exterior derivative d: A¥ — A**! is a linear anti-
derivation, so

dla + B) =da +dB linearity;
daApB)=(da)AB+ (—1)andB a € AF
anti-Leibniz;
da=0 dF(x)=xF FeE A

The exterior derivative dF for a zero-form F is defined to
be dF(x) = xF for any vector field x: if we evaluate this in
a local coordinate system we find that

. F\ .
dF(x) = xF = (x’ 9 )F = (8 .)x’
aq' aq'

OF  \/ . @ OF
= 1 J f— 1
(aqi 4 )(X 661/) (661" 4 )(x)’

SO

2For the other convention the numerical coefficient in this
formula is 1/(k!k'!): caveat emptor.
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_OF

aq'
Likewise, in a local coordinate system the exterior deriva-
tive of a k-form Q € Ak is

dF

dq'.

| | |
Q) = d(ﬁ“ilmikd‘l" A dqlk)

= L0k i ndgh A A dg

K oag T "

This follows from the anti-Leibniz rule d(afB) =
da A B + adp applied to the case where a = (); ; €
A° and B =dg"" A --- Adg's because the second term
vanishes (by induction on k) using the condition d*> = 0
for the basis forms which are exterior derivatives of the
coordinates ¢', d’q' = 0.

In particular, for a one-form @ € A! we have

00, . .
do = —dq/ Adq,
ag %4 Nda

so applying the two-form d@ to two arbitrary vector fields
x and y gives

36; .
d0(x, y) =5 (x/y' = x'y/)
q

9 Ny ) N 0x
—X-’aqu(ﬁ,-y)—xjﬁiaqu—y-’aqu(ﬁix)+y]9,~aqj
=x0(y) — yO(x) — 0,[x(y') — y(x)]

=x0(y) —y0(x) — 6([x, y]). (AD)

This provides an elegant coordinate-independent definition
of d@ in terms of the commutator of the vector fields

[x,y] = x . ;0 i J ;0 i 0
LY = — =X -y —— — - x) —
Yy Yy =) aq’y g y ag " aq
9yl ax\ 9 o 99
= (xl y _ yz ) 4+ (xlyj — x]yl) ; .
aq’ aq') aq’ aq' aq’
(A2)

which is itself a vector field since the last term involving
second derivatives vanishes by symmetry. Note that if  is
exact, that is @ = dF, then the identity d’F(x,y)=
xdF(y) — ydF(x) — dF([x,y]) = xyF — yxF — [x,y]F =0
holds automatically.

For an arbitrary (k — 1)-form 0 € A*"! we may derive
the corresponding identity,

dQ(xl,...,xk)
k .
= Z(—l)’“xiﬂ(xl, ...,.fl', ...,xk)
i=1

- Z (_1)i+j+19([xi,xj],x1,...,.fi,...,.fj,...,xk),

I=i<j=k

PHYSICAL REVIEW D 87, 034511 (2013)

where x indicate that the variable x is omitted. We observe
that for k = 3 the invariant expression for the exterior
derivative is

do(x,y, z2) = xw(y, 2) — yo(x, z) + zo(x, y)

- w([x’ y]r Z) + w([x, Z], J’) - w([y’ Z], .X').
(A3)

3. Interior products

The interior product i: T’M X A*¥ — A¥~1is the opera-
tion that inserts a vector as the first argument of a k-form to
yield a k — 1-form. It is formally defined by the axioms

ila+B)=ia+ipf a, B € AF
il@AB)=ifa)A B+ (-Danip

linearity;

a € AF, B € A¥  anti-Leibniz;
iF=0 FEA°
Q0. x) = Q00 xy, .., X5) O € AK;
2=0

so we see that it too is a linear antiderivation.

4. Induced Maps

If o: M — M’ is a diffeomorphism, then there is a
natural induced map o,: A°(M’) — A°(M) defined by
o.f: p— f(op) for all f € A°(M’) and p € M. This
map may also be written as o.f = f o ¢ and is called a
pull-back. Another way of saying this is that the following
diagram commutes:

M5 M
o.f\ Jf
R

If o~! exists then there is a corresponding pull-back
map (o '),, and it satisfies the relation (o~ !),o.f =
(e Hu(foo)=foogoo ! =f and thus we see that
(o). = (0.)"", and we may denote both of these unam-
biguously as o L.

If x € TM is a vector field on M then there may be a
push-through map o*: TM — TM' defined by o*x =
o, ! o x o o, if this exists. For any f € A°(M’) and p €
M this means that o*x(f)|,, = x(c.f)|,. The corre-

sponding commutative diagram is

[

A(M) = A(M)
x| . lo*x .
M) AN

The existence of the diffeomorphism o~ !: M/ — M is a
sufficient but not necessary condition for o I and hence
o* to be well defined.
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We may define further induced maps '* such as the pull-
back of one-form fields o,: A'(M') — AY(M) as .0 =

o.000 0"

™ < ™M
0.0 10
AO(M) &AM,

and so forth.
In the special case where o: M — M is an auto-
diffeomorphism then the push-through maps always exist.

5. Lie derivatives

Suppose now that we have a smooth one-parameter
family of diffeomorphisms o: R X M — M, which we
will also write as o,; M — M. Using this map we can
define a derivative with respect to the parameter ¢, which is
called a Lie derivative. For any zero-form F we define

Ao F) |  dFoa)
dt =0 d[ =0

LF= —vF, (Ad)

where v is the linear differential operator—the vector
field—that is tangential to the curves o(z, p) passing
through o(0, p) = p € M at t = 0.

The Lie derivative of a vector field y € T’M can be
deduced from the requirement that L, be a derivation

L(A®B)=(L,A)® B+ A® LB

for any tensors A and B, and that it commutes with
contractions

L (yF) = (L y)F + y(LF),

L.(0(y)) = (L.0)(y) + 0(L,y),
|
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and so forth. Applying these rules to the zero-form
yF obtained by applying the vector field y € TM to
F € A°%(M) we have L,(yF) = xyF and also L,(yF) =
(L,y)F + y(L,.F), hence

(L y)F = xyF — yxF = [x, y]F

and, as this holds for all F,
Liy=1[xy] (A5)
We may apply a similar argument to evaluate the Lie
derivative of a one-form @ € A'(M). On the one hand

L.(6(y)) = x0(y), while on the other L.(6(y)) =
(L,0)(y) + 6(L,y), so using (Al)

(L£,0)(y) = x0(y) — 0([x, y]) = dO(x, y) + yO(x)
= (i,d@)(y) + d(6(x))(y)
= (i,d0)(y) + (di 0)(y) = (i,d + di,)0(y),

hence
L.0=(i.d+di,)o.

This suggests that the Lie derivative of any k-form may be
expressed as
L, =id+di, (A6)

and this is indeed the case as the operator i, d + di, is a
derivation

(i,d +di))a A B)=if[(da)AB+ (—)a AdB]+di,a) AB+ (—1)ra Ai.B]
= (iyda) A B+ (-1 da) A i B+ (—DFi,a@) AdB + (—1)*a Ai dB + (di,a) A B
+ (=D 1Ga) AdB + (—D¥da) Ai B+ (—1)*a Adi B
=[(iyd + diy)a] A B+ a A (i d + di,)B

for all @ € A¥ and B € A¥, and for zero- and one-forms
F and @

L .F=xF=dF(x)=i,dF + di,F,
L£.0=(d+di)é.

The second term in the first equation is zero because
i.F = 0 by definition.

30One must be careful with the notation introduced here, as
there are a whole family of mappings that we have given the
same name, o.: AK(M') — A¥(M) V k, and the equation
0.0 = 0, 0 0 o 0" involves two of them. If we were to call
these induced mappings on forms o%: AX(M’) — A%(2M) then
the equation is less ambiguous, o0 = 02 0 o o*.

[
APPENDIX B: LIE GROUPS

1. Left-invariant forms

A Lie group is a manifold that has a group structure
defined by C® multiplication (g, #) — gh and inverse
g+ g~ ! operations that satisfy the group axioms

g(g'e") = (gg)g" =g4g's" Vgg g'€qg
associative
g lg=gg'=1 VgeEG inverse

with [ being the identity element of the group. If
we consider a point g € G as being ““fixed” then left
multiplication by g is an autodiffeomorphism of G,
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L,: g'+ gg', with L, = L, o L, by associativity, L, o
Lyg' = g(hg') = (gh)g' = Lg,g’ for all ¢’ € G. Clearly

-1 = (L,)"! too.

As for any such diffeomorphisms we can define the
corresponding pull-back maps on forms and vectors,
L F=FolL, L*v—L 1, 0v0L,, and L0 =

gx 000 Ly We may use these maps to define left-
invariant Vector fields and forms; for example, a left-
invariant one-form satisfies the condition @ = L g*0.

2. Lie algebra

The only left-invariant zero-forms are constants,
as if F=L,F (Vg€&€G) then F(g)=F(L,)=
L. F(I)=F(l).

If u=Lgu and v = Ly are left-invariant vector fields in
the tangent bundle 7'G then their commutator is also a vector
field, and furthermore it is also left-invariant since'*
[w,v]=[Lou, Lyv] =[Ly1,0uo Ly, Ly, 0vo0 Ly ]=
Ly, 0w, v]o L, = Li[u,v]. If a left-invariant vector
field v vanishes at the identity, v(F)|; = O(VF € A°G),
then it must be identically zero everywhere, as
WP =[0() © L) = (L 0P =Ly © LiwlP) =
[Lyoo Lzt o v(LyF)) = [v(F o L)), =0,

Consider a set of left-invariant vector fields {e;} in TG
called generators whose values at the origin are linearly
independent; any linear combination of the generators with
left-invariant (constant) coefficients is also left-invariant.
Conversely any left-invariant vector field # must be a linear
combination of this type, since its value at the origin is
uly = Y ,u'e;l; with u' € R, and hence u — Y u'e; = 0
everywhere. Left-invariant vector fields therefore form a
linear space with constant coefficients. In particular, the
commutator of any left-invariant vector fields must be a
linear combination of the generators, [e;, e;] = ek where
the ci ;€ R are called the structure constants. ThlS makes
the linear space of left-invariant vector fields into a Lie
algebra.

Any left-invariant vector field v has an integral curve'
c: R — G satisfying ¢(0) = [. Along this curve we have an
Abelian subgroup of G satisfying c(s + t) = c(s)c(z), so it
is naturally to call ¢ an exponential map, and write it as
c(r) = exp(vr). If we view this as a function of v then this
defines a local flow of v, and is a map from the Lie algebra
into the Lie group, exp: TG — G.

The commutator of two elements g, h € G is defined to
be C(g.h) = g 'h~'gh; in a neighborhood of the identity
where g = exp(ur) and h = exp(vt) we have

14Note that L,-1, = = (L, )L
Strlctly speakmg thls is only true locally to be precise
we should write ¢: T — M where I C R is a neighborhood
of zero.
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C(g, h) = exp(—ut) exp(—wvt) exp(ut) exp(vt)
= (I] —ut + %(ut)z)(ﬂ —vt+ %(vt)2)
X (I] +ut + %(ut)2)<[| + vt + %(vt)z) + O()

=1+ [u, v]* + O@F) = exp(u, v]?) + O(F).

3. Maurer-Cartan equations

The commutation relations may be succinctly expressed
in terms of the cotangent space T*G. We introduce a set of
left-invariant 1-forms @' (called a frame or repére mobile)
dual to the generators @'(e;) = 8%. From (A1) we have

doi(e; e;) = e;0'(e;) — e, 0'(e;) — 0'([e}, e;])
= ¢;5} — €8 — 0'(clier)
= _ka% = _Cj'k’

so expanding the two-form d@' = «!,,0™ A 0" in terms of
the basis two-forms 6™ A 6" we have

do(ej, e;) = a,,,0m A 0" (e e;)
= a},,{0"(e;)0"(e;) — 0™ (e)0"(e;)}

= afnn{é;’@}j -8y} = aj-k

— i
akj,

thus the left-invariant forms @' satisfy the Maurer-Cartan
equations d@' = — 3¢, 0/ A 0* everywhere.

4. Adjoint representation

For any Lie algebra the adjoint representation is defined
by ad(x)y = [x, y]. This is a representation of the Lie
algebra because for any z

[ad(x), ad(y)]z = ad(x)ad(y)z — ad(y)ad(x)z
= ad(x)[y, z] — ad(y)[x, z]
=[x, [y, z]] = [y [x, 2]]
= [[x, y] z] = ad(lx, y])z,

where we used the Jacobi identity in the penultimate step,
and thus [ad(x), ad(y)] = ad([x, y]). In terms of basis vec-
tors we have ad(e;)e; = [e;, e;] = ci-‘jek, giving the explicit

matrices ad(e;)} = cf;.

5. Cartan-Killing metric

We may use the adjoint representation to define
the Cartan-Killing metric on the Lie algebra as a
trace, <{(x, y) = trfad(x)ad(y)]/C4, where C, is a
constant; in terms of the basis vectors g;; = (e, e;) =
trfad(e;)ad(e;)]/Ca = cjicly/Cy. For a semisimple Lie
algebra the Cartan-Killing metric is nonsingular and has
an inverse satisfying g"/g; = &}. For a simple Lie algebra
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the adjoint representation is irreducible, so by Schur’s
lemma the invariant Cartan-Killing metric is a multiple
of the unit matrix; we shall choose the constant C, such
that this multiple is unity. For su(N) where the generators
in the defining N dimensional fundamental representation
T; satisfy the commutation relations [T}, T;] = cijk and
are normalized such that tr7,;T; = ad;; the Cartan-Killing
metric is explicitly g;; = 6;; with C4, = 2aN.

For semisimple Lie algebras we can use the Cartan-
Killing metric and its inverse to lower and raise indices
at will, for example, we shall define p' = g p;, and cor-
respondingly we have an invariant quadratic form for one-
forms, (@, B) = g"a;B; where @ = a;6" and B = B,6".
We also note that the quantity c;j = giecf.k = —Cjj 18
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totally antisymmetric, because {[e;, e;], ;) = cfj(eg, e) =
cfjggk = Cij» and
Ci[X, Y], Z) = tr(ad([ X, Y])ad(Z))

= tr([ad(X), ad(Y)]ad(Z))

= tr(ad(X)ad(Y)ad(Z) — ad(Y)ad(X)ad(Z))
= tr(ad(Z)ad(X)ad(Y) — ad(X)ad(Z)ad(Y))
= tr([ad(Z), ad(X)]ad(Y))

= tr(ad([Z, X])ad(Y))

=Cu(Z X]Y),

hence cijk = Cjki = ckij'
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