
Orthogonal technicolor with isotriplet dark matter on the lattice

Ari Hietanen,* Claudio Pica,† Francesco Sannino,‡ and Ulrik Ishøj Søndergaard§

CP3-Origins and the Danish Institute for Advanced Study DIAS, University of Southern Denmark,
Campusvej 55, DK-5230 Odense M, Denmark

(Received 6 December 2012; published 13 February 2013)

We study the gauge dynamics of an SO(4)-gauge theory with two Dirac Wilson fermions transforming

according to the vector representation of the gauge group. We determine the lattice phase diagram by

locating the strong coupling bulk phase transition line and the zero quark mass line. We present results for

the spectrum of the theory obtained at a fixed value of the lattice spacing. In particular we measure the

pseudoscalar, vector and axial meson masses. The data are consistent with a chiral symmetry breaking

scenario rather than a conformal one. When used to break the electroweak symmetry dynamically the

model leads to a natural dark matter candidate.
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I. INTRODUCTION

Understanding the phase diagram of strongly interacting
theories will unveil a large number of theories of funda-
mental interactions useful to describe electroweak symme-
try breaking, dark matter and even inflation [1–4]. To gain
a coherent understanding of strong dynamics besides the
SU(N) gauge groups [5,6], one should also investigate the
orthogonal, symplectic and exceptional groups. SO(N) and
SP(2N) phase diagrams were investigated with analytic
methods in Ref. [7], while the exceptional ones together
with orthogonal gauge groups featuring spinorial matter
representationswere studied in Ref. [8]. So far lattice simu-
lations have been mostly employed to explore the phase
diagram of SU(N) gauge theories while a systematic lattice
analysis of the smallest symplectic group was launched in
Ref. [9].

Here we move forward by analyzing on the lattice the
dynamics of the SO(4) gauge group with two Dirac fermi-
ons in the vector representation of the group. This choice is
based on the following theoretical and phenomenological
considerations. The theory is expected to be below or near
the lower boundary of the conformal window [7,10], and
therefore break chiral symmetry. The theory can be used as
a technicolor [11,12] template similar, from the global
symmetry point of view, to minimal walking technicolor
(MWT) [5,13,14].

Although the chiral symmetry breaking pattern is iden-
tical to the one of MWT there are substantial differences in
the massive spectrum of the theory with important phe-
nomenological consequences. This is because for MWT
the technifermions, like the technigluons, transform ac-
cording to the adjoint representation of the underlying
gauge group. Consequently, one can immediately construct
technicolor gauge singlets, which are made from one

technifermion and one techniglue. This forces model
builders to choose nonstandard model hypercharge assign-
ments for the technifermions in order to make sure that the
composite fermonic states have integer electric charges.
Furthermore, the Witten anomaly [15] of MWT is resolved
by adding new leptonlike fermions that are doubly charged
because of the hypercharge choice with interesting phe-
nomenology. The theory we investigate here has the fol-
lowing features: Being an SO(4) gauge theory it has an
even number of technifermions gauged under the electro-
weak avoiding the Witten anomaly; the technigluons
belong to the two-index antisymmetric representation
[the adjoint of SO(4)] while the technifermions to the
vector representation, therefore forbidding the construc-
tion of a technifermion-technigluon bound state. These
features renders orthogonal technicolor a simpler model
than MWT.
Furthermore the orthogonal technicolor theory leads to a

weak isotriplet with the neutral member being an ideal
dark matter candidate [7,10], the isotriplet technicolor
interactive massive particle (iTIMP). This state is a pseudo
Goldstone and therefore can be light with respect to the
electroweak scale making it a natural candidate to resolve
some of the current experimental puzzles [10,16]. The first
model featuring composite dark matter pions appeared in
Refs. [17,18] and the first study of technipion dark matter
on a lattice appeared in Ref. [9].
Due to the reality of the fermion representation the

quantum global symmetry group is SU(4) expected to
break spontaneously to SO(4), yielding nine Goldstone
bosons. Once gauged under the electroweak theory
three are eaten by the SM gauge bosons. Six additional
Goldstone bosons form an electroweak complex triplet of
technibaryon with the neutral isospin zero component to be
identified with the iTIMP of Ref. [10].
SO(4) is a semisimple group, SOð4Þ ffi SUð2Þ � SOð3Þ,

and it has a nontrivial center Z2. The theory is asymptoti-
cally free and since the two-loop �-function for different
number of flavors loses the infrared zero for Nf ¼ 2:3
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while the all-orders beta function [19,20] predicts the
anomalous dimension of the mass to be unity for Nf ¼
2:86 we expect that chiral symmetry breaks for two
Dirac flavors. However, we want to confirm here this result
via first principle lattice simulations. Furthermore, there is
also the possibility that the theory shows a certain degree
of walking [9,10,21–23] unless the phase transition is
of jumping type [24,25]. Jumping conformal phase tran-
sitions have been demonstrated to occur in a wide class of
theories [26].

As a natural first step, we study the phase diagram in the
ð�;m0Þ-plane to find the relevant region of parameter space
to simulate. We then determine the zero partial conserva-
tion of the axial current (PCAC) mass line as well as the
strong coupling bulk phase transition line. In addition, we
report on the pseudoscalar, vector and axial vector meson
masses. From the measured spectrum we infer that the
theory breaks chiral symmetry dynamically. Part of these
results appeared in Ref. [27].

In Sec. II we present the analytic expectations for the
phase diagram of SO(N) as a function of the number of
flavors. We also summarize the expected breaking pattern
of the quantum global symmetries for theories below the
conformal window. We also prove the spectral degeneracy
between certain diquarks and ordinary mesonlike states. In
Sec. III we recall the lattice formulation of the theory and
summarize the physical observable studied here. The re-
sults of the simulations are reported in Sec. IV and con-
clude in Sec. V.

II. ORTHOGONAL CONFORMALWINDOWAND
CHIRAL SYMMETRY BREAKING PATTERN

The two loop �-function for an SOðNÞ theory with Nf

Dirac fermions transforming according to the vector rep-
resentation of the gauge group is

�ð�Þ ¼ � �2

2�

�
b0 þ b1

�

2�

�
; (1)

where

b0¼11

3
Nc�4

3
Nf�22

3
;

b1¼�10

3
ðNc�2ÞNf�ðNc�1ÞNfþ17

3
ðNc�2Þ2:

(2)

A naive estimate of the lower bound of conformal window
is given when the second coefficient b1 changes sign. For
SO(4) this happens when Nf ¼ 68

29 ’ 2:3. The correspond-

ing values for three and four-loops in the MS-scheme are
Nf ¼ 1:8 and Nf ¼ 3:0. The all-orders beta function pre-

dicts as lower boundary Nf ¼ 2:86, see Fig. 1. Hence,

perturbative and nonperturbative methods suggest that chi-
ral symmetry breaks for two Dirac flavors. However, lattice
simulations can seal this expectation. Since the vector
representations of orthogonal groups are real the quantum

global symmetry of the theory is, for a generic Nf SUð2NfÞ
which is larger than SUðNÞfÞ � SUðNfÞ � UVð1Þ valid for
complex fermion representations. The reality property of
the representation translates in the following property of
the Dirac operator

ð 6DþmÞC�5 ¼ C�5ð 6DþmÞ�; (3)

where 6D ¼ ��ð@� � igAa
��aÞ, a ¼ 1; . . . ; d½G� where

d½G� is the dimension of the adjoint representation of the
gauge group and C ¼ i�0�2 is the charge conjugation
operator.
The global SUð2NfÞ is assumed to break to the maximal

diagonal subgroup

SUð2NfÞ ! SOð2NfÞ; (4)

for the massless theory and for Nf below the conformal

window. A common mass for the Dirac fermions leads to
the same pattern of explicit symmetry breaking. The ex-
plicit interpolating operators for the Goldstones can be
naturally divided in three independent antifermion-fermion
bilinears

�c f�
5c f0 ; (5)

with f and f0 the flavor indices f ¼ 1, 2 and six difermion
operators

c T
fC�

5c f0 and �c f�
5C �c T

f0 : (6)

The reader can find a useful summary of the global sym-
metry breaking patterns tailored for lattice computations in
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FIG. 1 (color online). Conformal window of SOðNcÞ with Nf

Dirac fermions in the fundamental representation. Upper bound
is when asymptotic freedom is lost. Lower bounds are 2-loop
(red, dashed), 3-loop (yellow, dotted) and 4-loop estimates
(green, solid).
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Ref. [28], while applications to beyond standard model
physics for similar patterns appeared in Refs. [17,29].
Notice that whereas the usual pions have odd parity, the
corresponding diquarks are parity even. It was noticed in
Ref. [9] that when fermions are in a pseudoreal represen-
tation, the diquark correlator is exactly identical to the
corresponding mesonic correlator. In the Appendix we
give a similar proof for fermions in real representations.
The proof uses the symmetry (3) of the Dirac operator
along with the �5-hermiticity �5ð 6DþmÞ�5 ¼ ð 6DþmÞy
property. The result can be stated as

cð�Þ�c f
�c f0
ðx� yÞ ¼ cð�Þ�c fc f0

ðx� yÞ ¼ cð�Þc fc f0
ðx� yÞ; (7)

where cð�Þ�c fc f0
is the correlator for the operator �c f�c f0 and

cð�Þc fc f0
is the correlator for the corresponding diquark

operator c T
f�Cc f0 . � can be any of the matrices 1, �5,

��, ���5.
Having discussed the generic features expected for or-

thogonal groups we now turn to the lattice formulation and
results for the relevant case of SO(4) with two Dirac
flavors.

III. LATTICE FORMULATION

In this work we have used theWilson prescription for the
lattice action

S ¼ SF þ SG; (8)

where

SG ¼ �
X
x

X
�;�<�

�
1� 1

Nc

TrU��ðxÞ
�
; (9)

is the Yang-Mills gauge action. We have normalized the
lattice spacing to a ¼ 1.U��ðxÞ is the plaquette defined in
terms of the link variables as

U ��ðxÞ¼U�ðxÞU�ðxþ�̂ÞUT
�ðxþ�̂þ �̂ÞUT

�ðxþ �̂Þ:
(10)

The Wilson fermion action is

SF ¼ X
f

X
x;y

�c fðxÞMðx; yÞc fðyÞ; (11)

with f running over fermion flavors and the Wilson-Dirac
matrix Mðx; yÞ given by

X
y

Mðx; yÞc ðyÞ ¼ ð4þm0Þc ðxÞ

� 1

2

X
�

�
ð1þ ��ÞUT

�ðx� �̂Þc ðx� �̂Þ

þ ð1� ��ÞU�ðxÞc ðxþ �̂Þ
�
: (12)

Here the gauge and spinor indices have been suppressed.
The bare parameters are the inverse of the bare coupling
� ¼ 2Nc=g

2
0 appearing in the gauge action and the bare

mass m0 of the Wilson fermions.
We employ the PCAC relation to define the physical

quark mass

mPCAC ¼ lim
t!1

1

2

@tVPS

VPP

; (13)

where the currents are

VPSðx0Þ¼a3
X

x1;x2;x3

h �c 1ðxÞ�0�5c 2ðxÞ �c 1ð0Þ�5c 2ð0Þi;

VPPðx0Þ¼a3
X

x1;x2;x3

h �c 1ðxÞ�5c 2ðxÞ �c 1ð0Þ�5c 2ð0Þi:

(14)

The meson masses are estimated using time slice aver-
aged zero momentum correlators

Cð�Þ
�c 1c 2

ðx0Þ ¼ a3
X

x1;x2;x3

Trð½ �c 1ðxÞ�c 2ðxÞ�y �c 1ð0Þ�c 2ð0ÞÞ;

(15)

where � ¼ �5 for pseudoscalar, � ¼ �k (k ¼ 1, 2,3) for
vector, and �5�k for axial vector meson.

IV. RESULTS

The simulations were performed on three different lat-
tices 83 � 16, 123 � 64 and 243 � 64where in all cases the
larger dimension is the temporal one. All the simulations
were started from a random configuration and the first
500–2000 iterations were discarded. This is enough to
thermalize the system for the quantities we measured.
For a complete list of the simulations see Table I where
we have omitted the values of the bare masses.
The smallest lattice was used for exploration of the

parameter space spanned by the bare mass m0 and the
coupling �. Figure 2 shows an outline of the lattice phase
structure measured on this 83 � 16 lattice. For small values
of � the system is in a bulk phase not connected to
continuum physics. The bulk phase is separated from the
small coupling (large �) phase by a first order phase
transition. Figure 3 shows the discontinuous behavior of

TABLE I. Simulation parameters and thermalization times.
For each coupling we performed multiple simulations with
appropriate bare masses. The thermalization column refers to
the number of discarded initial configurations.

Volume � Iterations Thermalization

83 � 16
4:1; 4:2; . . . ; 4:9; 5:2; 5:4; 5:6 2000 500

44.55, 5.5, 6, 7 5000 2000

123 � 64 5.5, 7 5000 1500

243 � 64 7 850–2000 600
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the average plaquette when crossing the bulk phase tran-
sition, for three different values of m0. The uncertainty
on the location of the bulk phase transition shown in Fig. 2
is due to taking discrete values of � between simulation
points.

We can compare our result for the location of the bulk
transition to previous studies of SO(N) pure gauge theories.
Earlier simulations focused mainly on the SO(3) gauge
group [30] with the exception of Ref. [31] where also other
values of N were considered. For SO(4) the authors of
Ref. [31] find that the bulk phase transition happens for
4:62ð3Þ<�< 4:87ð3Þ, which is in agreement with our
result in Fig. 3.
The critical line where the physical quark mass vanishes

is determined from the PCAC relation (13). The critical
line of mq ¼ 0 in the phase diagram (Fig. 2) is constructed

by linear fits to the PCAC mass. Figure 4 shows the bare
mass dependency of the PCAC mass at three different
couplings on the 83 � 16 lattice.

A. Finite size effects

According to the perturbative estimates discussed in
Sec. II the running of the gauge coupling is expected to
be slow. This also suggests that attention should be paid to
finite size effects, which need to be estimated nonpertur-
batively by measuring physical observables as a function
of lattice size.
In the case of SO(N) pure gauge theories [30,31] the

bulk phase transition occurs at such a weak coupling that
extremely large lattices are required for simulations in the
confined phase, the one connected to the continuum phys-
ics. However, in the presence of dynamical quarks, we find
that somewhat smaller volumes (243 � 64) are enough to
probe the chiral regime of the system.

FIG. 2 (color online). Lattice phase structure outlined on an
83 � 16 lattice. Circles represent points of critical bare mass
where mPCAC ¼ 0. The transition between the bulk phase is of
first order. The error bars represent the interval over which the
measured average plaquette jumps.
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FIG. 3 (color online). Average plaquette hPi vs � on an 83 �
16 lattice at three different values of the bare mass.
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FIG. 4 (color online). mPCAC in units of inverse lattice spacing
at three different couplings. The measurements are performed on
a 83 � 16.
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In Fig. 5 the mass of the pseudoscalar mesonmPS and the
PCAC quark mass mPCAC is plotted for different lattice
sizes. The PCAC mass has little dependence on the lattice
size being a UV quantity. The pseudoscalar meson mass,
on the contrary, is very sensitive to finite size effects even if
it is still somewhat heavy at the bare mass used in Fig. 5.

Another interesting property which seems to occur at
small volumes is a phase separation characterized by
the existence of domain walls. As explained below, this
would be different from what happens in simulations of
SU(N) gauge models in the so-called femto-world regime
[32–34].

We observe the coexistence, inside the same 4-volume,
of two distinct phases which can be characterized by the
spatial average of Polyakov loops wrapping around the
three spatial directions taken on each time slice separately.
In detail, the operators we consider are defined as

LkðtÞ ¼
�

1

NiNj

X
xi;xj

1

N
Tr
Y
xk

Ukðt;xÞ
�
; (16)

where i � j � k are spatial directions. The two phases are
separated by domain walls which are stable for the whole
length of our simulations, of the order of �5000 hybrid
Monte Carlo updates. As an illustration of this phenome-
non, Fig. 6 shows the time resolved Polyakov loops on a
123 � 64 lattice at � ¼ 7 and m0 ¼ �0:3. Given that the
two phases are long-lived and do not move inside the
4-volume of the lattice during the simulation, we show
the average of the time-resolved Polyakov loops over 700
consecutive, thermalized configurations. The coexistence

of two phases with different values of L2 is clear from the
figure. The phenomenon appears in all simulations per-
formed on small lattices. The location of the phase bounda-
ries and the direction in which the Polyakov loop has
nonzero average is random. In some cases more than two
phase boundaries appear in the same system. Notice also
that in one of the two phases the average value of the
Polyakov loop vanishes.
The behavior just described for this model is in contrast

with what is normally observed in simulations done with
SU(N) gauge groups in a small boxes. In the so-called
femto-world regime of SU(N) gauge theories, one also
expects the Polyakov loops to spontaneously generate a
nonvanishing expectation value, but stable domain walls
inside the lattice volume are not observed.
The coexistence of two phases is also reflected in an

anomalous behavior of mesonic correlators measured for
volumes smaller than 243 � 64. An example is shown in
Fig. 7 where the effective mass plateaux of the pseudosca-
lar meson shows a visible rise at large separations, consis-
tent with the two phases having different pseudoscalar
correlation lengths.
In order to understand whether these phase separations

are related to the presence of dynamical fermions we have
also performed pure gauge simulations on 123 � 64 latti-
ces. The phase separation occurs also for the pure gauge.
Thus the phenomenon seems to be a feature stemming
from the pure gauge sector.
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FIG. 5 (color online). Finite size effects on mPS and mPCAC in
units of inverse lattice spacing. The measurements are performed
on a 243 � 64 lattice at � ¼ 7 and m0 ¼ �0:2.
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FIG. 6 (color online). Average Polyakov loops wound around
the three spatial dimensions computed at each time slice of the
lattice. This measurement was performed on a 123 � 64 lattice at
� ¼ 7 and m0 ¼ �0:3. The values are averages over 700
configurations starting at 1800 where the system does not appear
to thermalize further.
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We will not explore this feature further in this work, but
it would be interesting to continue its investigation in the
future.

In order to avoid the complications stemming from the
phase separation described above we use 243 � 64 lattices
for the rest of the paper.

B. Spectrum and chiral symmetry breaking

We address the dynamical fate of the chiral symmetries
of the theory by determining the pseudoscalars and (axial)
vectors spectrum.

Figure 8 shows the pseudoscalar, vector, and axial vector
meson masses measured on a 243 � 64 lattice at � ¼ 7 as
the bare quark mass is decreased towards the critical value.
At the lightest quark mass the pseudoscalar meson has a
mass of about mPS ’ 0:15 in lattice units corresponding to
about mPSL ’ 3:6. Since two of the three volumes used in
this study are affected by the presence of the phase sepa-
ration phenomenon discussed above, it is difficult to esti-
mate the finite volume effect on the light states. However,
we will take the values of the pseudoscalar and vector
masses obtained here as reasonable first estimates and
leave a more systematic investigation of the finite volume
effects for the future. The reader should also be aware that
in previous studies of non-QCD models such as the so-
called sextet model [35] or MWT [36] it was found that
larger values of mPSL than in QCD are needed to accu-
rately measure the light states.

At large quark masses the vector and pseudoscalar are
degenerate with the common mass increasing linearly with
the quark mass. At smaller masses the vector meson be-
comes heavier than the pseudosclar. This is consistent

with dynamical generation of a chiral scale. To see this
more clearly the ratio of the vector and the pseudoscalar
masses have been plotted in Fig. 9. Indeed the mass
ratio approaches unity for large quark masses. However,
when approaching the chiral limit the ratio increases
signaling chiral symmetry breaking. In fact this result
is consistent with the expectation that if spontaneous
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FIG. 7 (color online). Effective mass of pseudoscalar meson
for two different volumes.
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FIG. 8 (color online). Pseudoscalar, vector, and axial vector
meson masses measured on a 243 � 64 lattice at � ¼ 7.
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FIG. 9 (color online). Ratio between pseudoscalar and vector
meson masses measured on a 243 � 64 lattice at � ¼ 7.
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symmetry breaking occurs, the vector meson remains mas-
sive whereas the pseudoscalar meson is massless. A di-
verging ratio mV=mPS therefore indicates chiral symmetry
breaking. This is the trend we observe in Fig. 9. However to
nail this conclusion more studies have to be performed.

The axial mass in the chiral limit is poorly determined
Fig. 8. In the future we plan on improving its determina-
tion. We will then be able to use it to infer interesting
properties of the chiral transition. For example one can
investigate whether the axial remains (near) degenerate
with the vector in the chiral regime which could signify
the onset of walking dynamics [29,37].

To extract further properties of the theory we analyze in
more detail the functional dependence of the pseudocalar
mass on the quark mass. It is well known that, for these
kinds of theories, spontaneously broken chiral symmetry
leads to the Gell-Mann-Oakes-Renner relation [38]

m2
PS ’ �mPCAC; (17)

valid in the chiral limit, where � ¼ �2h �c c i=f2PS is a

dynamically generated scale. For conformal theories the
behavior is different [39,40]. In Ref. [40] it was also shown
that the instanton contributions to conformal chiral dynam-
ics can be neglected when the anomalous dimension of the
mass operator is less than one. This property has been
investigated and confirmed via lattice simulations in
Ref. [41]. A clever separation of the ultraviolet and infra-
red modes presented in Refs. [42,43] led to a better under-
standing of the conformal chiral scenario but without
discussing the instanton contributions [40]. Building
upon these results, an interesting method to determine

the anomalous dimension of the fermion masses was put
forward in Ref. [44]. To sum up, for a conformal scenario
the dynamical scale �mutates into a fermion-mass depen-
dent quantity [40] and thereforem2

PS must vanish asm2
PCAC.

In Fig. 10 we plot the ratio m2
PS=mPCAC for decreasing

fermion mass. We see that the ratio approaches a constant
for vanishing fermion masses which is consistent with the
chiral symmetry breaking scenario (17).
In Table II we report the fit to the data for the depen-

dence of the pseudoscalar mass as well as the vector
mass as a function of the mPCAC within the believed chiral
regime of the theory. This corresponds to the three lowest
values of mPCAC where the ratio m2

PS=mPCAC becomes

roughly constant as shown in Fig. 10. The data points
used for the chiral fits in the table are shown in Fig. 11.

0 0.05 0.1 0.15 0.2 0.25 0.3
m

PCAC

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

2.1

2.2

m
PS2

/m
PC

A
C

FIG. 10 (color online). Psudoscalar mass squared divided by
the quark mass measured on a 243 � 64 lattice at � ¼ 7.

TABLE II. Different types of fit functions in the chiral regime
for the data with m identified with the mPCAC.

Meson fit Fit function Best parameter �2=dof

ps chiral a
ffiffiffiffi
m

p
a ¼ 1:167ð6Þ 0:43=2

ps conformal am a ¼ 4:69ð3Þ 364=2
ps alternative 1 aþ bm a ¼ 0:111ð6Þ 6:4=1

b ¼ 2:9ð1Þ
ps alternative 2 aþ b

ffiffiffiffi
m

p
a ¼ �0:001ð10Þ 0:41=1
b ¼ 1:17ð4Þ

Vector chiral aþ bm a ¼ 0:16ð1Þ 3:3=1
b ¼ 2:3ð2Þ

Vector conformal am a ¼ 4:91ð3Þ 273=2
Vector alternative 1 a

ffiffiffiffi
m

p
a ¼ 1:231ð6Þ 18=2

Vector alternative 2 aþ b
ffiffiffiffi
m

p
a ¼ 0:07ð2Þ 0:69=1
b ¼ 0:96ð7Þ
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FIG. 11 (color online). The chiral fits to the pseudo scalar and
vector meson masses on a 243 � 64 lattice at � ¼ 7.
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For these three points we have fPSL � 0:8–0:9. The best fit
curve, determined by the lowest �2=dof, for the pseudo-
scalar mass corresponds to the first line of the table which
is in agreement with the GMOR expectation. It is remark-
able that by even allowing for an offset of the mass value in
the chiral limit the best fit demands the offset to vanish, see
the last line of the table. We have tried also to test the
possibility that the pseudoscalar mass vanishes linearly
with the fermion mass and found that this is highly dis-
favored. If the theory would have been conformal we
would have expected this case to fit much better.

Similarly, by fitting the vector masses dependence on the
fermion mass, in the lower part of Table II, we observe a
reasonable agreement with the expected chiral behavior of
the theory. The two best fits correspond to the first and last
line of the lower part of the table. We would have expected
the first line to yield a better fit if chiral symmetry breaks
like in ordinary quantum chromodynamics. We believe that
for this case more statistics is needed to resolve which of
the two cases is actually realized given that the data cannot
yet differentiate between the two. As for the pseudoscalar
case the would-be conformal case is highly disfavored (see
second line of the lower part of the table).

Using the identity for the hadronic correlators (8) we can
immediately infer the baryonic diquark masses.

V. CONCLUSIONS

Orthogonal lattice gauge theories with dynamical fermi-
ons have so far been terra incognita. However, as ex-
plained in the introduction, these theories can be relevant
for models of dynamical electroweak symmetry breaking
as well as for the construction of interesting dark matter
candidates. Furthermore to have a deeper understanding of
strong dynamics it is essential to gain information on
different gauge theories. We have chosen to start inves-
tigating the orthogonal gauge groups dynamics with a
phenomenologically relevant example, i.e., the SO(4)
gauge theory with two Dirac flavors transforming accord-
ing to the vector representation of the group.

We have uncovered the lattice phase diagram and shown
that there is a novel phase separation phenomenon at small
volumes which persists even in the pure gauge case. We
have shown that the phase separation can be circumvented

and the chiral regime of the theory studied using large but
still feasible lattices.
Finally we investigated the spectrum of the theory for

the pseudoscalar, vectors and axial vectors. The results for
the spectrum are consistent with chiral symmetry breaking
and strongly disfavor a conformal behavior. The spectrum
was obtained using lattices with a fixed value of the UV
cutoff, corresponding to � ¼ 7. Further investigations will
be needed using different values of the cutoff to better
address the continuum limit.

APPENDIX: DIQUARK CORRELATORS

A generic mesonic correlator will have the form

cð�Þ�c c 0 ðx� yÞ ¼ Trð½ �c ðxÞ�c 0ðxÞ�y �c ðyÞ�c 0ðyÞÞ; (A1)

and the baryonic diquark correlator will have the form

cð�Þc c 0 ðx� yÞ ¼ Trð½c TðxÞC�c 0ðxÞ�yc TðyÞC�c 0ðyÞÞ:
(A2)

Rewriting the diquark correlator slightly gives

cð�Þc c 0 ðx� yÞ ¼ Trð�c 0ðyÞ �c 0ðxÞ�0�yCyð�0ÞT

�½c ðyÞ �c ðxÞ�TCÞ: (A3)

Now we can invoke two identities

ð��ÞT ¼ �C��Cy; (A4)

c ðxÞ �c ðyÞ ¼ Cy½c ðyÞ �c ðxÞ�TC: (A5)

The latter identity follows from the symmetry of the
Dirac matrix given in (3) along with �5-hermiticity
�5ð 6DþmÞ�5 ¼ ð 6DþmÞy. The identity (A5) extend to
the Wilson lattice formulation of the Dirac matrix. This
is demonstrated for pseudoreal representations in the
Appendix of Ref. [9]. Invoking the identities in the ex-
pression for the diquark correlator (A3) we have

cð�Þc c 0 ðx� yÞ ¼ Trð�c 0ðyÞ �c 0ðxÞ�0�y�0c ðxÞ �c ðyÞÞ
¼ cð�Þ�c c 0 ðx� yÞ: (A6)

A similar derivation holds for the antiparticles leading to
the identity (8).
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