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We determine the energy-dependent amplitude for elastic �� P-wave scattering in isospin-1 by

computing part of the discrete energy spectrum of QCD in finite cubic boxes. We observe a rapidly

rising phase shift that can be well described by a single � resonance. The spectrum is obtained from

hadron correlators computed using lattice QCD with light quark masses corresponding to m��400MeV.

Variational analyses are performed with large bases of hadron interpolating fields including, as well as

fermion bilinears that resemble q �q constructions, also operators that resemble pairs of pions with definite

relative and total momentum. We compute the spectrum for a range of center-of-mass momenta and

in various irreducible representations of the relevant symmetry group. Hence we determine more than

30 values of the isospin-1 P-wave scattering phase shift in the elastic region, mapping out its energy

dependence in unprecedented detail.
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I. INTRODUCTION

Hadron spectroscopy is principally the study of reso-
nances that decay strongly, with widths of tens or hundreds
of MeV, into asymptotic states corresponding to a multi-
plicity of hadrons stable under the strong interaction like
the pion. Hadron resonances typically appear as enhance-
ments in the continuous energy distribution of these multi-
hadron final states. The simplest examples are elastic (or
nearly elastic) resonances like the �ð770Þ that appears in
the I ¼ 1, J ¼ 1 (isospin-1, spin-1) channel of �� scat-
tering, or the �ð1232Þ in the I ¼ 3

2 , J ¼ 3
2 channel of �N

scattering. In the elastic case the energy dependence of a
partial-wave (definite-J) amplitude can be expressed in
terms of a single real number, the phase shift, which in
the case of a narrow resonance will show a rapid rise from
angles near 0�, through 90�, approaching 180� at energies
above the resonance.

Although our only observables involve asymptotic many-
hadron states, our desire is to understand hadron resonances
at the level of interacting quarks and gluons within QCD,
and this presents a significant theoretical challenge. The
stable hadrons (e.g., pions) in the initial and final states
are strongly interacting quark-gluon composites, and the
interactions that give rise to the resonant intermediate state
contain nontrivial features like quark-antiquark annihilation.
These complex and interrelated effects demand a consistent
treatment of the nonperturbative dynamics of QCD.

Lattice QCD, in which the theory is formulated on a
cubic Euclidean space-time grid of finite extent, has the
advantage of being a first-principles approach to QCD in
which the approximations required to render the theory
computationally tractable are under control. It is a non-
perturbative approach that, in the formulation we will use,
respects unitarity—a particularly important feature since
we plan to study resonances (like the �) that maximally
saturate unitarity. The lattice grid spacing acts as a
regulator for the field theory, which can be progressively
reduced toward the continuum. In practice the use of
‘‘improved’’ discretized actions leads to discretization
errors that are small for many quantities of interest. The
restriction to finite spatial volume turns out to be a tool
that allows us indirect access to hadron scattering
amplitudes. These amplitudes are not directly accessible
via ðn > 2Þ-point Euclidean correlation functions [1] but
can be inferred using the discrete energy spectrum that
follows from periodic boundary conditions applied to a
finite volume. The formalism for relativistic elastic scat-
tering in a cubic box is presented in Refs. [2,3] for the case
of a system in its rest frame, with the extension to moving
frames in Refs. [4–6].
A well known practical problem with the implementa-

tion of lattice QCD is the poor scaling of the required
computation time for a realistic calculation with decreas-
ing value of the quark mass. Only very recently have we
seen calculations with quark masses low enough that the
determined pion mass comes out near the experimental
value, and they are typically of only the simplest of quan-
tities (see a review in Ref. [7]). In this paper wewill present
calculations performed with a single strange quark of
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approximately the correct physical mass and two degener-
ate light quarks with a mass such that the pion has
m� 400 MeV.

The challenge then is to compute the excited state
spectrum of QCD in a finite volume so that it can be related
to scattering amplitudes. In a series of papers [8–14] we
have explored the problem of extracting excited state
energy spectra from large matrices of 2-point correlation

functions, h0jOfðtÞOy
i ð0Þj0i, where O are composite op-

erators with the quantum numbers of hadrons, built from
quark and gluon fields. Using a large basis of such opera-
tors, we have extracted highly excited spectra using varia-
tional analysis. Computing with such large operator bases
is made efficient using the distillation framework [15],
which also renders simple the inclusion of quark annihila-
tion diagrams with a high degree of statistical precision.
This was demonstrated in the computation of the isospin-0
meson spectrum in Ref. [13], where, for example, the �
and �0 masses were determined with statistical uncertainty
below 2% and even exotic isoscalar states with JPC ¼ 1�þ
above 2100 MeV could be cleanly extracted.

In Refs. [8,9,11,13], the meson operator basis was lim-
ited to constructions of the type �c�c , where � was
constructed using Dirac gamma matrices and up to three
gauge-covariant derivatives. The resulting spectra did not
show the expected strong volume dependence of multi-
hadronlike states, and the proposed explanation was that
the fermion bilinear operators have only weak overlap
onto such states. To remedy this we should augment the
operator basis with some having large overlap onto multi-
hadronlike states.

In Refs. [16,17] we considered the case of the
empirically nonresonant I ¼ 2 �� scattering using
a basis of ��-like interpolating fields of the form
ð �c��c Þ ~p1

� ð �c��c Þ ~p2
, the use of distillation allowing

for operators of definite relative momentum at both source
and sink and thus enabling a variational analysis ofmatrices
of correlation functions. By considering multiple frames in
which the entire �� system is in flight and many irreducible
representations of the reduced symmetry group of a boosted
cube, the S- andD-wave scattering phase shifts were mapped
out across the elastic region 2m� < Ecm < 4m�, showing
the expected weak repulsive interaction.

In this paper we will present results combining these two
operator bases, forming matrices of correlation functions
that include both constructions of the form �c�c and
ð �c��c Þ ~p1

� ð �c��c Þ ~p2
with vector quantum numbers.

The resulting variationally obtained spectrum leads to a
detailed mapping out of the P-wave phase shift for
isospin-1 �� scattering.

The I ¼ 1, J ¼ 1 scattering channel has been considered
previously in latticeQCDcalculations [18–22]. For example,
in Ref. [19], four quark masses (m� ¼ 290–480 MeV)
were considered in two-flavor QCD calculations, with up
to six points on the phase-shift curve determined at each

pion mass. Fits to a simple Breit-Wigner form were used to
suggest a quark mass dependence for the � mass and width.
In Ref. [20], a single pion mass, m� ¼ 266 MeV in two-
flavor QCD on a relatively small volume (m�L� 2:7) was
considered, with five points on the phase-shift curve deter-
mined; this was again fit with a simple Breit-Wigner form.
One of our objectives in this paper is to map out the energy
dependence through determination of many discrete values
of the phase shift, conclusively demonstrating resonant
behavior and justifying a resonant parametrization. This
will be achieved through extraction of the spectrum on
three volumes and for a large number of irreducible repre-
sentations in moving frames.1

In each irreducible representation, we will extract a
spectrum of states from threshold up to high excitations
with many states above the inelastic thresholds into
K �K;�!; . . . . Since we do not in this first study use inter-
polating fields that have good overlap onto these additional
multihadron channels, we do not trust the determined
spectrum outside the elastic region and restrict ourselves
to the extraction of the elastic P-wave phase shift between
the �� and K �K thresholds.
The remainder of the paper is organized as follows. In

Sec. II we review the details of our lattice setup, and in
Sec. III we describe the method by which excited spectra are
extracted from correlation functions. Section IV highlights
the importance of including multihadronlike operators, in
Sec. V we discuss the consequences of performing calcu-
lations on a lattice in a finite volume that has a reduced
symmetry, and in Sec. VI we summarize how correlators are
constructed using the distillation technique. We show the
extracted finite-volume spectra in Sec. VII, in Sec. VIII we
present the energy-dependent phase shift that follows from
these spectra, and we give a summary in Sec. IX.

II. FINITE VOLUME LATTICE GAUGE FIELDS

In Euclidean time, excited state contributions to corre-
lation functions decay faster than the ground state, and at
large times they are swamped by the signals of lower states,
thus complicating the extraction of excited states. To amel-
iorate this problem we have adopted a dynamical aniso-
tropic lattice formulation of Clover fermions with two light
quarks and one strange quark. In this anisotropic formula-
tion, the temporal extent is discretized with a finer lattice
spacing than the spatial directions [26,27], allowing a
more precise resolution of the discrete time dependence
of correlation functions. In this work, computations were
performed with spatial lattice spacing as � 0:12 fm, and a
temporal lattice spacing approximately 3.5 times smaller,
corresponding to a temporal scale a�1

t � 5:6 GeV. Results
are presented for quark mass parameters atml ¼ �0:0840
and atms ¼ �0:0743 corresponding to a pion mass of

1Advocating the use of moving frames is currently a popular
trend [23–25].
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391 MeV, and on lattice sizes of 163 � 128, 203 � 128 and
243 � 128 with corresponding spatial extents L� 2 fm,
�2:5 fm and �3 fm. Some details of the lattices and
propagators used for correlation constructions are provided
in Table I. The masses of the lightest stable mesons con-
taining light and strange quarks, as determined on these
lattices, are shown in Table II.

As well as the volume dependence of energies of multi-
hadron states originating in hadronic interactions that are
the subject of this work, there can also be dependence of
single-hadron energies on L. These polarization effects,
corresponding to a single hadron ‘‘sensing’’ itself around
the periodic volume, are typically largest for the lightest
hadron, the pion, and can be characterized by the product
m�L. At the single quark mass value used in this study,
m�L ranges from 3.8 to 5.7, and since effects typically
fall off exponentially with increasingm�L, we expect them
to be rather small here. As an example, previous inves-
tigations have found [16,28] that the pion mass variation
with m�L on these lattices is not large.

In an infinite volume of continuous, isotropic space-
time, a single free particle can have any value of momen-
tum with magnitude varying continuously up from zero,
with the energy related to the momentum by the relativistic
dispersion relation E2

~p ¼ m2 þ j ~pj2. In a finite L� L� L

volume with periodic spatial boundary conditions, the
momentum of a free particle is restricted to the discrete
set ~p ¼ 2�

L ðnx; ny; nzÞ ¼ 2�
L
~n, with the n’s being a triplet of

integers. We will write momenta in units of 2�
L with square

brackets, e.g., ~p ¼ ½nx; ny; nz�.
A further complication that arises from our use of an

anisotropic lattice is the need to determine the precise

value of the anisotropy �, which relates the spatial lattice
spacing as to the temporal lattice spacing at ¼ as=�. The
anisotropy appears in the dispersion relation of a free
particle, where as found previously [17], the dispersion
relation for the pion (and other stable hadrons) can be well
described by a continuumlike form

ðatE~nÞ2 ¼ ðatm�Þ2 þ 1

�2

�
2�

L=as

�
2j ~nj2; (1)

for a range of lattice volumes. The result � ¼ 3:444ð6Þ is
used throughout the rest of this paper.

III. EXTRACTING EXCITED STATE SPECTRA

Our determination of the spectrum of eigenstates of
QCD in a finite volume proceeds through the calculation
of matrices of correlation functions between suitable had-
ronic creation and annihilation operators at time 0 and t,
respectively,

CijðtÞ ¼ h0jOiðtÞOy
j ð0Þj0i:

For each correlation matrix, the set of operators fOig,
constructed from color-singlet combinations of quark and
gluon fields, all have the same conserved quantum num-
bers. Within the basis of operators used we can attempt to
find the optimal linear combination for interpolation of
each possible finite-volume eigenstate jni. A commonly
used method to achieve this is a variational solution
[2,29,30], and herein our particular application of the
variational method follows that developed in
Refs. [8,9,31]. A system of generalized eigenvalue equa-
tions is established for the correlation matrix

CðtÞvnðtÞ ¼ �nðtÞCðt0ÞvnðtÞ; (2)

where �n and vn are eigenvalues and eigenvectors for
states labeled by n. Equation (2) is solved for the eigen-
values, and the exponential dependence on the Euclidean

time, �nðtÞ � e�Enðt�t0Þ, is used to determine the energy En

of the state. The orthogonal2 eigenvectors represent the
optimal combination of the operators Oi for interpolation

of the state jni from the vacuum, ðOopt
n Þy �P

iv
n
i O

y
i .

Any two-point correlation function on a finite spatial
lattice can be expressed as a spectral decomposition

CijðtÞ ¼
X
n

Zn�
i Zn

j

2En

e�Ent; (3)

where the ‘‘spectral overlap factors,’’ Zn
i � hnjOy

i j0i, are
related to the eigenvectors by Zn

i ¼
ffiffiffiffiffiffiffiffiffi
2En

p
eEnt0=2vn�

j Cjiðt0Þ.
The form of Eq. (3) assumes that t 	 T, the temporal
length of the box, so that the contributions arising from
other time orderings on the periodic lattice can be ignored.
However, in practice, these alternate time-ordered

TABLE I. The lattice ensembles and propagators used in this
paper. The lattice sizes and number of configurations are listed,
as well as the number of time sources (which varies somewhat
according to the correlator momentum and irrep) and the number
of distillation vectors Nvecs (to be described in Sec. VI) featuring
in the correlator construction.

ðL=asÞ3 � ðT=atÞ Ncfgs Ntsrcs Nvecs

163 � 128 479 4–8 64

203 � 128 603 4 128

243 � 128 553 2–6 162

TABLE II. Stable meson masses and the anisotropy � ¼ as=at
determined on the lattice ensembles listed in Table I. Pion and
kaon masses come from an infinite-volume extrapolation, while
the � and ! masses are those evaluated on the 243 lattice.

atm� 0.06906(13)

atmK 0.09698(9)

atm� 0.10406(56)

atm! 0.15678(41)

� 3.444(6)
2vnyCðt0Þvm ¼ �n;m.
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contributions have a small but discernible effect on the
determined energies; a method to account for them was
presented in Ref. [17] and is used again in this work.

IV. INCLUDING MULTIHADRON OPERATORS

Although we have previously reported on the extraction
of a significant number of excited meson states
[8,9,11,13,14], those calculations used only operators
built from a single fermion bilinear at rest or in flight,
Oi � �c�ic . A large basis was built using up to three
gauge-covariant derivatives acting on the fermion fields,
and this allowed many states to be extracted from varia-
tional analysis of correlator matrices. It was found that the
extracted spectrum, which could be largely described in
terms of constituent q �q constructions supplemented with
‘‘hybrid’’ states in which a gluonic excitation is also
present, showed only very weak dependence on the lattice
volume. In particular, the spectrum lacked signatures of
multimeson states, which if noninteracting would appear
with a strongly volume-dependent spectrum and a charac-
teristic distribution across irreducible representations of
the lattice symmetry group. In the interacting theory we
expect the actual eigenstates to be (volume-dependent)
admixtures of what we might call ‘‘single-hadron’’ basis
states and multihadron basis states.

Our explanation for this observation of a restricted spec-
trum is that the fermion bilinear operators have an overlap
onto multihadron states that is suppressed by powers of the
lattice volume, such that they couple only very weakly into
the multihadron sector. To the extent that the eigenstates in
any particular volume are admixtures of single-hadron
and multihadron states, one can argue that correlators
computed using fermion bilinears contain contributions
from all eigenstates, jni, of the appropriate symmetry inP

n

Zn�
i Zn

j

2En
e�Ent. This is true, but there remains the practical

problem of extracting the spectrum, which is particularly
challenging when there are nearly degenerate states, a
likely occurrence in a dense spectrum of hadron scattering
states. An effective solution, which does not depend upon
distinguishing small energy differences, is to make use of
orthogonality within the variational method, as described
in the previous section, where each state is optimally
interpolated by a different orthogonal linear superposition
of the basis operators even if the states are approximately
degenerate.

The lack of operators that have significant overlap on
multihadron states causes the variational analysis to be
unable to form orthogonal eigenvectors in the larger space
fjsingle hadroni; jmulti hadronig, since they have access
only to fjsingle hadronig. We present a simple model
below of what can happen if only a restricted operator
basis is used when the true eigenstates of the system in
finite volume are admixtures of single-hadron and multi-
hadron basis states.

In Ref. [17] we demonstrated the construction of
��-like operators built from products of variationally

optimized pion operators of definite momentum, �yð ~kÞ.
In simple terms we construct

ð��Þ½ ~k1; ~k2�y~P;�
¼ X

~k1; ~k2

Cð ~P;�; ~k1; ~k2Þ�yð ~k1Þ�yð ~k2Þ;

for definite total momentum ~P ¼ ~k1 þ ~k2 in irreducible
representation �. The sum is over the different directions,

for fixed magnitude, of the definite pion momenta ~k1, ~k2,
with the weights C ensuring that the operators transform in
�. Through the use of multiple possible choices of magni-

tudes, j ~k1j, j ~k2j, we can build a basis of operators.
The importance of including ��-like operators in addi-

tion to fermion bilinears is demonstrated in Fig. 1 which
shows the extracted spectrum computed on the 243 lattice

when the system has a total momentum of ~P ¼ ½0; 0; 1� and
lies in the irreducible representation A1, roughly corre-
sponding to helicity-0 (to be discussed more in the next
section). The three columns show the spectrum extracted
using the full basis of operators (fermion bilinears plus
��-like), only fermion bilinear operators, and only
��-like operators. There are striking differences, notably
the large gap between atEcm ¼ 0:2 and 0.30, which, when
�� operators are included, is populated by several states
that have large overlap onto the �� operators. For our
current purpose, the most important difference is the pres-
ence of two states in the elastic region with the full basis
while only one appears with the restricted operator bases.
Notice that in the full basis these two states each have large
overlap onto both the fermion bilinear operators and the
�� operator of lowest relative momentum.
The essential problem with using a restricted operator

basis can be demonstrated using a simple two-state mixing
hypothesis, where the state basis is a ‘‘would-be’’ stable
single hadron state, j�i, and a multihadron state, j��i. The
finite-volume energy eigenstates are linear superpositions
of these two basis states:

jE1i ¼ cos�j�i þ sin�j��i;
jE2i ¼ � sin�j�i þ cos�j��i:

A variational analysis that used multiple operators with
good overlap onto both j�i and j��i would be able to
resolve the two orthogonal combinations, with two sepa-
rate principal correlators having time dependences�e�E1t,
�e�E2t. However, if one restricts to only operators with
good overlap onto j�i, the variational method will not be
able to form two orthogonal vectors and the principal
correlator will have a time dependence similar to

h�je�Htj�i ¼ cos2�e�E1t þ sin2�e�E2t; (4)

which features both energy scales. In practice these ener-
gies can be very close together, e.g., atE1 ¼ 0:1654ð7Þ and
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atE2 ¼ 0:1779ð7Þ, giving at�E ¼ 0:013ð6Þ in the case
presented in Fig. 1. In Fig. 2 we show the effective mass3

corresponding to Eq. (4) for a range of mixing angles �.
One clearly sees that over the time separations typically
resolved in lattice QCD calculations and, considering typi-
cal statistical uncertainty, the time variation is compatible
with a single-state hypothesis. It is only at very large times
that the correlator relaxes to the true ground state and the
correlator can be seen to clearly contain more than one
state at a low energy scale. In practice correlators will also
contain excited-state pollution from higher energy scales
that impact at small Euclidean times.

In Fig. 3 we show the effective mass of the lowest
principal correlator obtained from variational analysis
using only the fermion bilinear operators. The gray curve
shows the effective mass corresponding to a fit to the
principal correlator, between t=at ¼ 5 and t=at ¼ 41, of

the form �ðtÞ ¼ ð1� AÞe�Eðt�t0Þ þ Ae�E0ðt�t0Þ where

atE ¼ 0:16793ð28Þ and atE
0 ¼ 0:494ð11Þ. The �2=Ndof

for the fit is below 1.0, indicating that the data are

described well in terms of one low-lying state and excited

state contributions at a much higher energy scale. Clearly,

from this principal correlator alone, we cannot infer the

presence of two low-lying energy levels at 0.1654 and

0.1779.
In summary, if one wishes to determine the spectrum

reliably, it proves necessary to include explicit multi-

hadron operators into a variational basis. In this paper

we will consider the inclusion of operators resembling a

pair of pions of definite total and relative momentum.

Since we do not yet include any operators resembling

pairs of kaons, the next lightest stable hadrons, we will

be cautious about trusting extracted levels near the top of

the elastic region where they may be mixing with K �K
basis states.
In the next section we present in somewhat more detail

the construction of two-meson operators relevant for a

study of �� scattering in isospin-1.

0.20

0.25

0.30

0.35

onlyonly

FIG. 1 (color online). The extracted spectrum of states, on the 243 volume, using variational analysis on a matrix of correlation
functions with total momentum ~P ¼ ½0; 0; 1� transforming irreducibly in the A1 representation of the relevant group. The three
columns left to right correspond to a large basis featuring operators of both fermion bilinear structure and �� structure, just fermion
bilinear and just ��, respectively. The histograms show the relative size of matrix element overlaps hnjOyj0i for a range of operators.
The thin red, gray and blue bars are fermion bilinears while the wider orange bars are �� operators. Also shown by the dashed orange

lines are the energies of noninteracting �� pairs, En:i:
�� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

� þ ~n21ð2�L Þ2
q

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

� þ ~n22ð2�L Þ2
q

, and the coarse-dashed purple line shows

the position of the KK threshold above which the system is inelastic.

3meff½CðtÞ� ¼ 1
�t log

CðtÞ
Cðtþ�tÞ .
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V. MESON-MESON OPERATORS
ON A FINITE CUBIC LATTICE

The symmetry of a lattice with a finite extent is reduced
compared to that of an infinite volume continuum. In our
implementation, we have a cubic lattice discretization in a
cubic box with periodic boundary conditions. The appropri-
ate symmetry group is the double cover of the octahedral,
or cubic, group with parity, OD

h , and this is the symmetry

relevant for a system of hadrons overall at rest. The allowed
momenta are quantized by the boundary conditions giving
~p ¼ 2�

L ðn;m; pÞ, or ~p ¼ ½n;m; p� in our notation, where L
is the spatial extent of the lattice (in physical units) and n,m,
p are integers. For a system ‘‘in flight,’’ i.e., with a nonzero

overall momentum, ~P � ~0, the symmetry is reduced further

to that of the littlegroup [32], whichwedenote byLGð ~PÞ, the
subgroup of OD

h under which ~P is invariant.

The consequences of this reduced symmetry were dis-
cussed in detail in Ref. [17], and here we briefly review the
salient points relevant for �� scattering in isospin-1. For
~P ¼ ~0, the continuum spin, J, is no longer a good quantum
number on the lattice, and states are instead labeled by the
irreducible representations, irreps, of the octahedral group,
of which there are a finite number. Parity P and any
relevant flavor quantum numbers are still good. The man-
ner in which the various components of a JP state are
distributed, or subduced, into the irreps, �P, is presented
in Table II of Ref. [17].

The situation is more complicated for ~P � ~0; the pattern
of subductions of the various helicities, �, into the little

group irreps depends on LGð ~PÞ, i.e., the type of momentum
~P; see Ref. [11]. Table II of Ref. [17] shows these sub-
ductions. Note that, apart from the � ¼ 0 components,
parity is not a good quantum number for a system in flight,
but any relevant flavor quantum numbers are still good.
A state consisting of two identical hadrons must have a

definite symmetry under the interchange of the two had-
rons; it must be symmetric under this interchange if the
hadrons are bosons or antisymmetric if they are fermions.
This generalizes to systems of two hadrons, having iden-
tical masses, related by a symmetry, e.g., �þ, �� and �0 if
isospin is a good symmetry, or K and �K related by charge
conjugation. In particular, taking into account the symme-
try of the spin and any flavor parts of the wave function, the
spatial wave function must have some definite symmetry
under this interchange and so is restricted to either only
even or only odd partial waves,4 ‘. For �� in isospin-1,
the flavor (isospin) wave function is antisymmetric and so

0 5 10 15 20 25 30

0.160

0.170

0.175

0.180

0.185

0 100 200 300

0.160

0.165

0.170

0.175

0.180

0.185

FIG. 2 (color online). Effective mass of Eq. (4) with atE1 ¼ 0:1654, atE2 ¼ 0:1779 for a range of mixing angles �. Left panel shows
typical time separations in our calculation over which the time dependence is essentially flat. Right panel indicates that eventually the
presence of two low-lying states could be detected but only through observation of unrealistically long time separations with high
statistical precision.

 0.155

 0.160

 0.165

 0.170

 0.175

 0.180

 0.185

 5  10  15  20  25

FIG. 3 (color online). Effective mass of lowest principal cor-
relator obtained from variational analysis using only fermion
bilinear operators (more time sources were used here than
presented in the central column of Fig. 1). The gray band
indicates a fit to the principal correlator using two exponentials
as described in the text. The dashed gray line is the lower energy
in that fit. Red and purple bands indicate the energies obtained
from the lowest two principal correlators when using the full
operator basis (with a smaller number of time sources).

4For example, if isospin is a good symmetry, even (odd) ��
partial waves have isospin I ¼ 0 or 2 (I ¼ 1) with positive
(negative) G parity. K �K states with positive (negative) charge-
conjugation parity, C, �ðK �K þ C �KKÞ, only occur in even (odd)
partial waves.
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Bose symmetry restricts the system to odd partial waves

[with parity P ¼ ð�1Þ‘ ¼ �1 when ~P ¼ ~0]. The reduced
symmetry of the finite volume lattice means that multiple
partial waves appear in a single irrep as shown in Table III.

We note that, in contrast, for a two-meson state such as
��0, where �0 represents an excited pion, or �!, there is
in general no such Bose symmetry constraint. For such a
system overall at rest, parity, P / ð�1Þ‘, is a good quantum
number, and so, even on a finite volume lattice, odd and
even partial waves do not appear together in any irrep.5

However, when ~P � ~0, parity is not a good quantumnumber,
there is in general no definite symmetry under the inter-
change of the two hadrons6 and all ‘ can mix; there is no
separation between odd and evenpartialwaves. In the current
work, we restrict ourselves to scattering below inelastic
thresholds and so do not consider such mixing between odd
and even partial waves. This will, however, be relevant as
we go higher up in energy and in other scattering channels.

We use the single and multimeson operators, respecting
the symmetries of the finite volume lattice, which have
been developed in a series of papers [8,9,11,17]. For a
single meson at rest, we first construct an operator with

definite continuum JP and Jz-componentM,OJP;Mð ~k ¼ ~0Þ,
consisting of a fermion bilinear featuring gauge-covariant
derivatives and Dirac gammamatrices, and with the correct
flavor structure. We then subduce these into the relevant
octahedral group irreps to form lattice operators [8,9]. At
nonzero momentum, our construction considers the sub-
duction of an operator with definite continuum helicity, �,

OJP;�ð ~kÞ, where ~k is quantized as discussed above, into the
relevant little group irreps [11]. The general pattern of
subductions is summarized in Table II of Ref. [17].

In Ref. [17] we discussed the single-meson operators
relevant for a pion, which has I ¼ 1 and negative G parity,
at rest and in flight. At rest, the subduction of a JP ¼ 0�
operator into the irrep �P ¼ A�

1 is trivial,

O½0��
A�
1
ð~0Þ ¼ O0�ð~0Þ:

At nonzero momentum, for all the momenta we consider,
the subduction into the A2 irrep is also trivial,

O ½0��
A2

ð ~kÞ ¼ O0�ð ~kÞ:
When we use the variational method to find the optimal
linear combination of operators to interpolate a pion, we
will include operators subduced into A�

1 from other J (for
~P ¼ ~0) and other helicity, �, subduced into A2 (for ~P � ~0).

We use �ð ~kÞ as a shorthand to represent these optimal
operators in the appropriate irreps.

For the � meson, which has I ¼ 1 and positive G parity,
at rest the three-dimensional T�

1 irrep is a simple repre-

sentation of JP ¼ 1� and the subduction is straightfor-
ward; this is given explicitly for our basis choice in
Appendix A of Ref. [9]. In flight, the � ¼ 0 components

subduce into the A1 irrep and, depending on LGð ~PÞ, the
� ¼ 
1 components subduce into either the two-
dimensional E2 irrep or the one-dimensional B1 and B2

irreps [11].
As mentioned above and discussed in detail in Ref. [11],

for a system in flight, parity is in general not a good
quantum number. The helicity-0 components have a
‘‘reflection parity,’’ ~� � Pð�1ÞJ, where J and P are,
respectively, the spin and parity at rest. For the momenta
we consider, � ¼ 0 with ~� ¼ þð�Þ subduces into the
A1ðA2Þ irrep, and so there is no mixing between these
even on a finite volume lattice. However, for � � 0 there
is no such symmetry and therefore, for example, the
� ¼ 
1 components of the �ð1�Þ appear in the same
lattice irreps as the � ¼ 
1 components of the b1ð1þÞ
(both these mesons have the same flavor structure).
This is not relevant in the current work where we are
restricting ourselves to relatively low energies, below in-
elastic thresholds, but must be taken into account if we
wish to consider higher energies. Similar situations occur
in other scattering channels.

TABLE III. The pattern of subductions of I ¼ 1 �� partial
waves, ‘ � 3, into lattice irreps, �, where N is the number of
embeddings of this ‘ in this irrep. This table is derived from
Table II of Ref. [17] by considering the subductions of the ‘

when ~P ¼ ~0 and the subductions of the various helicity compo-

nents for each ‘ when ~P � ~0. Here ~P is given in units of 2�
L and

n, m are nonzero integers with n � m. We show the double-
cover groups but only give the irreps relevant for integer spin.

~P LGð ~PÞ �ðPÞ �� ‘N

½0; 0; 0� OD
h T�

1 11, 31

T�
2 31

A�
2 31

½0; 0; n� Dic4 A1 11, 31

E2 11, 32

B1 31

B2 31

½0; n; n� Dic2 A1 11, 32

A2 31

B1 11, 32

B2 11, 32

½n; n; n� Dic3 A1 11, 32

A2 31

E2 11, 32

½n;m; 0� C4 A1 12, 34

½n; n;m� A2 11, 33

5For example, noninteracting �ð ~kÞ!ð� ~kÞ and �ð� ~kÞ!ð ~kÞ
have the same energy, and appropriate linear combinations
are eigenstates of parity.

6For example, noninteracting �ð ~k1Þ!ð ~k2Þ and �ð ~k2Þ!ð ~k1Þ with
~P ¼ ~k1 þ ~k2 do not in general have the same energy.
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In Sec. IV we have argued that to reliably determine the
complete spectrum we need operators that have good over-
lap onto multihadron basis states. We find that operators
built from the product of two or more single-hadron op-
erators of the form described above are able to achieve this.
We will follow the construction used in Ref. [17] where a
general �� creation operator is

ð��Þ½ ~k1; ~k2�y~P;�;	
¼ X

~k12f ~k1g?
~k22f ~k2g?
~k1þ ~k2¼ ~P

Cð ~P;�; 	; ~k1; ~k2Þ�yð ~k1Þ�yð ~k2Þ; (5)

where �ð ~kÞ is a single-pion operator and C is a Clebsch-
Gordan coefficient for �1 ��2 ! � with �1;2 ¼ A�

1 of

OD
h if ~k1;2 ¼ ~0 and �1;2 ¼ A2 of LGð ~k1;2Þ if ~k1;2 � ~0, and

where � is an irrep of LGð ~PÞ. The sum over ~k1;2 is a sum

over all momenta in the stars of ~k1;2, which we denote by

f ~k1;2g?, and by which we mean all momenta related to ~k1;2
by an allowed lattice rotation. The ½ ~k1; ~k2� label on the ��
operator indicates that it was constructed from single-pion

operators with momenta in f ~k1g? and f ~k2g?. We refer to
Ref. [17] for further details, a discussion of the Clebsch-
Gordan coefficients, and explicit values of C.

As discussed in Ref. [17], we use ‘‘optimized’’ single-

pion operators, �ð ~kÞ, to obtain �� correlators that are
dominated by ground state pions at smaller times, i.e., to
reduce contamination from ��0, where �0 is any higher
mass state with pion quantum numbers. We follow that

reference and construct variationally optimal operators by
diagonalizing a matrix of correlators in large basis of
operators for each relevant irrep. As described in Sec. III,
the nth eigenvector gives the variationally optimal linear
combination of the basis operators to overlap with state n.
Our basis consists of all single-meson operators subducing
into the relevant irreps constructed from any possible Dirac
gamma matrix structure and 0, 1, 2, 3 derivatives at rest [9]
or 0, 1, 2 derivatives in flight [11]. The efficacy of these

TABLE IV. The two-pion operators used presented for each ~P on various volumes; also shown

is LGð ~PÞ. Example momenta ~k1 and ~k2 are shown; all momenta in f ~k1g? and f ~k2g? are summed

over in Eq. (5). Swapping around ~k1 and ~k2 gives the same operators up to an overall phase.

~P Volumes ~k1 ~k2 �ðPÞ

½0; 0; 0� OD
h

163, 203, 243 ½0; 0; 1� ½0; 0;�1� T�
1

½0; 1; 1� ½0;�1;�1� T�
1

163 ½1; 1; 1� ½�1;�1;�1� T�
1

½0; 0; 1� Dic4 163, 203, 243

½0; 0; 0� ½0; 0; 1� A1

½0;�1; 0� ½0; 1; 1� A1, E2, B1
a

½�1;�1; 0� ½1; 1; 1� A1, E2, B2
a

½0; 0;�1� ½0; 0; 2� A1

½0; 1; 1� Dic2 163, 203, 243

½0; 0; 0� ½0; 1; 1� A1

½0; 1; 0� ½0; 0; 1� B1

½�1; 0; 0� ½1; 1; 1� A1, B2

½1; 1; 0� ½�1; 0; 1� B1, B2

½0; 1;�1� ½0; 0; 2� A1, B1

½1; 1; 1� Dic3 163, 203, 243
½0; 0; 0� ½1; 1; 1� A1

½1; 0; 0� ½0; 1; 1� A1, E2

½2; 0; 0� ½�1; 1; 1� A1, E2

½0; 0; 2� 163, 203, 243 ½0; 0; 0� ½0; 0; 2� A1

aThese B1 and B2 were not considered on the 163 volume.

TABLE V. Number of single-meson and �� operators used for
each ~P and irrep on the various volumes. The two-meson
operators are listed in Table IV, and all relevant single-meson
operator structures are considered including up to three deriva-
tives at rest and up to two derivatives at nonzero momentum.

~P Irrep Single-meson �� 203, 243 (163)

½0; 0; 0� T�
1 26 2 (3)

½0; 0; 1�
A1 18 4 (4)

E2 29 2 (2)

B1 9 1 (0)

B2 9 1 (0)

½0; 1; 1�
A1 27 3 (3)

B1 29 3 (3)

B2 29 2 (2)

½1; 1; 1� A1 21 3 (3)

E2 35 2 (2)

½0; 0; 2� A1 18 1 (1)
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operators was demonstrated in Ref. [17], and their use
allows us to perform analyses at smaller Euclidean times.

In the current work we restrict ourselves to overall

momenta ~P ¼ ½0; 0; 0�, ½0; 0; 1�, ½0; 1; 1�, ½1; 1; 1� and

½0; 0; 2�. The various combinations of ~k1 and ~k2 used in
our �� operator constructions are presented in Table IV.
For each lattice irrep, we include in our basis these ��
operators along with all relevant isospin-1 single-meson
operators from any possible Dirac gamma matrix structure
combined with 0, 1, 2, 3 derivatives at rest [9] or 0, 1, 2
derivatives in flight [11]. The number of operators we use
in each irrep is summarized in Table V.

VI. CORRELATOR CONSTRUCTION
THROUGH DISTILLATION

In Sec. IV we have emphasized the need to include
operators that have a strong overlap with expected multi-
meson states, and the desire to perform a variational analy-
sis of a matrix of correlation functions forces us to find a
correlator construction method that allows for such opera-
tors at both source and sink. In the isospin-1 channel, the
contractions to form these correlators will involve quark-
line ‘‘annihilation’’—that is, diagrams that feature propa-
gation of a quark from t to the same t. In the previous
section we described how multihadron operators trans-
forming irreducibly under the relevant symmetry can be
constructed from products of single-hadron operators of
definite momentum. The projection into definite relative
momentum requires a sampling of all spatial sites on a time
slice. The correlator construction method known as distil-
lation [15] satisfies all the above desiderata in a natural and
efficient way.

Distillation is a quark-field smearing method that is
designed to increase overlap onto the low modes relevant
for low-lying hadronic states—we define a smearing op-
erator on a time slice that acts in 3-space ( ~x) and color (i),

hð ~xi; ~yj; tÞ ¼ XN
n¼1

�nð ~xi; tÞ�y
n ð ~yj; tÞ; (6)

where one option is to choose f�ng to be the lowest N
eigenvectors of the gauge-covariant Laplacian on time
slice t. If all the quark fields in a correlator are smeared
by application of this operator, the combination of
eigenvectors and the Dirac matrix inverse, M�1, called a

‘‘perambulator,’’ �y
n ðt0ÞM�1ðt0; tÞ�mðtÞ � 
nmðt0; tÞ will

appear in any propagation. Thus the basic numerical prob-
lem to be solved is inversion of the Dirac matrix on
sources, f�ngn¼1���N , which is a smaller vector space than
that of the full lattice. A detailed presentation of the
properties of distillation can be found in Ref. [15].

Five basic topologies of diagram appear when one Wick
contracts correlators in a basis of �c�c and �c�Ac � �c�Bc
operators projected into overall isospin-1—these are
shown in Fig. 4. All five topologies require light-quark

perambulators between fixed tsrc and varying t, and these
are obtained by inversion of the Dirac matrix from a source
on tsrc. While the propagation from tsrc to tsrc seen in
topologies A42 and A44 does not require any extra inver-
sions, the propagation from t to t seen in A24 and A44

requires inversion from sources at every t we wish to
consider. Such 
ðt; tÞ perambulators, computed for both
light and strange quarks on the 163 lattice, were previously
used in Ref. [13] in the computation of isoscalar correlators
featuring �c�c operators. In this paper we use 
ðt; tÞ
perambulators computed on 163, 203, 243 lattices for all
128 time slices.
To reduce statistical noise, and make more use of each

configuration, we compute correlators for several values of
tsrc and average over them, CðtÞ ¼ 1

Nsrc

P
tsrc
Cðtþ tsrc; tsrcÞ.

Although we have inverted from every time slice on the
lattice [to have the 
ðt; tÞ perambulators], covariance
between neighboring time slices reduces the effectiveness
of averaging over tsrc once the sources get too close
together, so in practice, given the computational cost of
contracting perambulators into correlators, we average
only over a handful of well-separated tsrc values, typically
fewer than eight per configuration.
As an example of the distillation contraction for

�c�Ac � �c�Bc at both source and sink, choosing the
temporal origin to be at tsrc ¼ 0, we have

h �c th�A
t hc t

�c th�B
t hc t � �c 0h�C

0hc 0
�c 0h�D

0 hc 0i;

where the 3-space ( ~x) and color (i) dependence of �ðtÞ ~xi; ~yj
might include gauge-covariant spatial derivatives and/or a
projection into definite momentum. Integration of the
quark fields leads to terms that include the Wick contrac-
tion A44,

FIG. 4 (color online). A schematic of the basic Wick-
contraction topologies required to compute a matrix of correla-
tion functions in a f �c�c ; �c�Ac � �c�Bc g basis with isospin-1.
tsrc is fixed and the time dependence with respect to t-tsrc is
studied.

ENERGY DEPENDENCE OF THE � RESONANCE IN . . . PHYSICAL REVIEW D 87, 034505 (2013)

034505-9



A44 ¼ 
vnð0; tÞ�A
nmðtÞ
mpðt; tÞ�B

pqðtÞ
� 
qrðt; 0Þ�C

rsð0Þ
suð0; 0Þ�D
uvð0Þ;

where the repeated distillation indices are summed over
and where the Dirac-spin indices are suppressed. This
factorized form is such that any operator construction, �

(embedded in �nm � �y
n��m), can be considered. For

example, if there is a momentum projection, a Dirac spin

projection (���) and gauge-covariant derivatives (D
$
), then

���
nmð ~p; tÞ ¼ ���

X
~xi; ~yj

�y
n ð ~xi; tÞei ~p� ~x½D$ . . .� ~xi; ~yjðtÞ�mð ~yj; tÞ;

and provided ei ~p� ~x½D$ . . .� ~xi; ~yjðtÞ is well supported in the

restricted space of vectors f�nð ~xiÞgn¼1...N , distillation
should provide an efficient method to compute the corre-
lator. In practice [9,11,15,17] we find that the modest
numbers of vectors N, given in Table I, are sufficient
to obtain excellent signals for hadrons with momenta
p2 & 6ð2�L Þ2.

We demonstrate the quality of the determined correla-
tors in Figs. 5 and 6. In Fig. 5 we present correlators,

evaluated on the 243 lattice in the A1 irrep of ~P ¼ ½001�,
constructed using the simplest fermion bilinear operator,
�c
ic , and the lowest momentum �� operator
��ð½001�Þ�ð½000�Þ. We see that correlators featuring mul-
tipion operators are not much noisier than simple fermion
bilinears and that both types of operator are likely to have a
significant overlap with the ground state and differing
overlaps with excited states. In Fig. 6 we show that the
statistical noise on correlators does not grow rapidly with

an increase in the momentum of pions in �� operator
constructions.

VII. FINITE-VOLUME SPECTRA

We computed correlation matrices for a range of total

momentum ~P and irreps � using the fermion-bilinear plus
�� operator basis described in Sec. V. The corresponding
finite-volume spectra were determined by application of
the variational method described in Sec. III. As an illus-
tration, we show in Fig. 7 the ‘‘principal correlators,’’
�nðtÞ, for the lowest eight levels (from a total of 22) in

the case ~P ¼ ½001�, � ¼ A1 on the 243 lattice. The fits to
the time dependences of these determine the energies with
high precision. The corresponding operator overlap struc-
ture was previously displayed in the first column of Fig. 1.
The effective masses of the five lowest principal correlators
are shown together in the bottom-right pane of Fig. 7.
In Fig. 8 we show the extracted volume dependence of

the spectra for ~P ¼ ½001� for the irreps, A1 and E2. Also
shown are the energy thresholds for various inelastic pro-
cesses and the energies of noninteracting meson-meson
states ��, K �K, �!. Clearly we are not observing the
expected number of levels in the inelastic region, and we
expect that this is caused by our not using operator con-
structions with good overlap onto e.g., K �K. As mentioned
in Sec. V, in the E2 irrep, parity is not a good quantum
number and contributions from JP ¼ 1þ can appear—
indeed the points shown in grey at atEcm � 0:25 appear
to have a large overlap with operators characteristic of the
b1 meson. Since the operator basis we have used does not
sample well the inelastic spectrum, we will restrict our
analysis to the elastic region between �� and K �K
thresholds.
In Fig. 9 we show the volume dependence of the spectra

across ~P and � in the elastic region. For the phase-shift
analysis that follows in the next section we exclude points
very close to the K �K threshold since we have not included
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FIG. 5 (color online). ~P ¼ ½001�, A1 correlators evaluated
on the 243 lattice constructed from �c
ic and the lowest
momentum �� operator ��ð½001�Þ�ð½000�Þ. Shown is

eEtCðtÞ with atE ¼ atEthr �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2atm�Þ2 þ ð 2�

�L=as
Þ2

q
. Normalized

to all be equal to 1 at t=at ¼ 31. The inset shows the data at
t=at ¼ 31, indicating the relative statistical noise on the
correlators.
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FIG. 6 (color online). ~P ¼ ½001�, A1 correlators evaluated on
the 243 lattice. The statistical noise, relative to signal, is shown
for �� diagonal correlators for a set of pion momenta.
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K �K-like operators in the basis. Levels determined on the
163 lattice, which potentially suffer from the largest
unwanted exponential m�L dependence and which are
often noisy, are mostly excluded from the phase-shift
analysis.

VIII. ELASTIC SCATTERING PHASE SHIFT

Our implementation of the formalism relating elastic
�� scattering phase shifts to the finite-volume spectrum
at rest and in flight is presented in Sec. VIII of Ref. [17].
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FIG. 7 (color online). Result of variational analysis of ~P ¼ ½001�, A1 correlation matrix. For the lowest eight levels, we show the
principal correlators, the eigenvalues �nðtÞ of the variational method, Eq. (2). Plotted as eEnðt-t0Þ�nðtÞ are the data and the fit according
to the form �nðtÞ ¼ ð1� AnÞe�Enðt-t0Þ þ Ane

�E0
nðt-t0Þ. Energies are those measured in the rest frame of the lattice. The bottom-right

pane shows effective masses of �nðtÞ for the lowest five levels. Horizontal lines indicate the fitted energies, atEn.
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FIG. 8 (color online). Volume dependence of ~P ¼ ½001� spectrum in irreps A1 and E2. Black and gray points show the extracted
spectrum. Dashed lines show energy thresholds and solid lines the noninteracting meson-pair energies.
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FIG. 9 (color online). Volume dependence of elastic spectra for various ~P, �. Plotted is atEcm versus L=as. Also shown by dashed
horizontal lines are the �� and KK energy thresholds. Solid curves indicate the noninteracting �� energy levels. Points shown in gray
are excluded from the phase-shift analysis in the following section.
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Here we repeat only the essential feature, that the phase
shifts are related to the finite-volume energies by a formula
that for �� in I ¼ 1 takes the form

det

2
6664

e2i�1ðEcmÞ 0

0 e2i�3ðEcmÞ � � �
..
. . .

.

0
BBB@

1
CCCA�U

~P;�

��
pcmL

2�

�
2
�37775¼ 0:

(7)

The matrices here, in the space of ‘ contributing to the
irrep, are formally infinite dimensional, with U being a
matrix of known functions particular to the little group

irrep ð ~P;�Þ. Which values of ‘ contribute to a given ð ~P;�Þ
is determined by the subductions given in Table III. We
presume we can truncate the matrices to a finite size since
at low energy we expect �‘>3 	 �3 	 �1.

In Fig. 10 we present the determined phase shifts assum-
ing that all �‘
3 are negligible throughout the elastic
region. In this case Eq. (7) becomes one equation in one

unknown, �1ðEcmÞ, for each energy level, Ecmð ~P;�;nÞ in
the elastic region. The assumption �‘>1 � 0 will be shown
to be justified in Sec. VIII B.

A. Resonant parametrizations

The phase shift in Fig. 10 shows clear resonant behavior
in a small region around atEcm ¼ 0:152, which suggests
we might attempt to describe �1ðEcmÞ using a parametri-
zation featuring a single resonance. A popular choice is a
variant of the relativistic Breit-Wigner form with an
energy-dependent width enforcing the p2‘þ1

cm behavior as
pcm ! 0 mandated by angular momentum conservation:

tan�1ðEcmÞ ¼ Ecm�1ðEcmÞ
m2

R � E2
cm

;

where �BW
‘¼1ðEcmÞ ¼ g2

6�

p3
cm

E2
cm

:
(8)

The parametrization of the width is in terms of a coupling
constant, g, which, it has been suggested, is largely inde-
pendent of the quark mass [19,33].
We choose to fit the energy levels directly within a �2

function of the form

�2ðfaigÞ¼
X
L

X
~P�n ~P0�0n0

½EcmðL; ~P�nÞ�Epar
cmðL; ~P�n;faigÞ�

�C�1ðL; ~P�n; ~P0�0n0Þ
�½EcmðL; ~P0�0n0Þ�Epar

cmðL; ~P0�0n0;faigÞ�;
(9)

where Epar
cmðL; ~P�n; faigÞ is the nth solution of Eq. (7) with

a parametrized phase shift depending upon parameters
with values faig, e.g., the resonance mass mR and the
coupling g. Data covariance C, whose off-diagonal ele-
ments between energies evaluated on the same ensemble
can be nonzero, is estimated using jackknife.
Fitting energy levels with atEcm < 0:18 to the Breit-

Wigner form in Eq. (8), we obtain the following parameter
values, errors and correlation:

atmR ¼ 0:15241ð33Þð10Þ
g ¼ 4:83ð13Þð2Þ

1 �0:09

1

" #

�2=Ndof ¼ 48:9

29� 2
¼ 1:81;

where the first error is statistical and the second error
reflects variation of m� and � within their respective
uncertainties (see Ref. [17]). There is observed to be very
little correlation between the mass and the coupling con-
stant. The energy dependence of the resulting �1ðEcmÞ is
shown by the blue curve in Fig. 11.
A criticism of the parametrization in Eq. (8) is that the

p3
cm form, introduced to give the right threshold behavior,

continues to grow at large energies in an unrealistic way.
As seen in Fig. 11, the phase-shift approaches 180� very
slowly, allowing the effect of the resonance to be felt many
half-widths above the mass. Generally one expects the p3

cm

behavior to be damped at larger energies, and one physi-
cally motivated approach is to appeal to the idea that the
resonance has a finite spatial size and introduce ‘‘barrier
factors.’’ One implementation, commonly used in experi-
mental partial wave analysis, follows Von Hippel and
Quigg [34], by considering the interaction giving rise to
the resonance to have a sharp size R. The resulting scat-
tering wave functions are outgoing spherical Hankel func-
tions that give rise to polynomial damping factors. In the
case ‘ ¼ 1 this leads to the following modification of the
energy-dependent width:
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FIG. 10 (color online). P-wave �� elastic scattering phase
shift, �1ðEcmÞ, determined from the solution of Eq. (7) applied to
the finite-volume spectra shown in Fig. 9 under the assumption
that �‘>1 ¼ 0. Energy region plotted is from �� threshold to
KK threshold.
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�HQ
‘¼1ðEcmÞ ¼ g2

6�

p3
cm

E2
cm

1þ ðpRRÞ2
1þ ðpcmRÞ2

; (10)

where pR is the cm scattering momentum at the resonance

mass, pR ¼ 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

R � 4m2
�

q
. The barrier factor is normal-

ized such that it does not affect the width evaluated at the
resonance mass. We fit the same data as above to obtain

atmR ¼ 0:15226ð34Þð11Þ
g ¼ 5:06ð15Þð2Þ

R=at ¼ 16:6ð52Þð17Þ

1 �0:14 �0:09

1 0:32

1

2
664

3
775

�2=Ndof ¼ 43:6

29� 3
¼ 1:68;

which shows a slightly improved quality of fit, although
there is clearly some correlation between the coupling g
and the range R. The range expressed in physical units
R ¼ R

at

atm�

mphys

�

� 0:6
 0:2 fm would seem to be reasonable

on the usual hadronic scale. The resulting energy depen-
dence is shown by the red curve in Fig. 11 where it is seen
to approach 180� more rapidly than the simple Breit-
Wigner form.

The particular form of the damping function is a model-
dependent choice, and we can explore the sensitivity by
trying other parametrizations. For example, a Gaussian
form (previously considered in a quark model study [33]),

�
gau
‘¼1ðEcmÞ ¼ g2

6�

p3
cm

E2
cm

e�p2
cm=6�

2

e�p2
R=6�

2 : (11)

Fitting the same data set we obtain

atmR ¼ 0:15224ð34Þð14Þ
g ¼ 5:08ð17Þð3Þ
at� ¼ 0:029ð7Þð3Þ

1 �0:18 0:16

1 �0:47

1

2
664

3
775 ;

�2=Ndof ¼ 43:5

29� 3
¼ 1:67;

indicating that the particular functional form of the damp-
ing appears to be relatively unimportant. In physical units,

� ¼ at� � m
phys

�

atm�
� 160ð40Þ MeV. The energy dependence

is shown by the orange curve in Fig. 11 that lies almost
exactly on the red curve already described.
Another parametrization that has been used to fit experi-

mental phase-shift data is provided by Peláez and Ynduráin
(see Ref. [36] and their subsequent papers),

cot�1ðEcmÞ ¼ Ecm

2p3
cm

ðm2
R �E2

cmÞ

�
2
4 2m2

�

m2
REcm

þB0 þB1

Ecm � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s0 �E2

cm

p
Ecm þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s0 �E2
cm

p
3
5;

which, while it appears cosmetically to be very different
from a Breit-Wigner form, in fact has an energy depen-
dence that is rather similar, with the three parameters mR,
B0, B1 able to conspire to provide damping. The additional
parameter, s0, is not allowed to float and, following the
proposers’ suggestion, is set to 2m� þm�, as determined

on this lattice, at
ffiffiffiffiffi
s0

p ¼ 0:29. Fitting yields

atmR ¼ 0:15227ð34Þð12Þ
B0 ¼ 2:71ð77Þð21Þ
B1 ¼ 6:0ð33Þð9Þ

1 �0:06 �0:05

1 0:99

1

2
664

3
775 ;

�2=Ndof ¼ 43:7

29� 3
¼ 1:68;

a reasonable description of the data. The extremely high
degree of correlation between B0 and B1 suggests that they
may not be the most natural way to parametrize this
amplitude. The energy dependence is plotted in Fig. 11
using a green curve that lies almost exactly under the
orange and red curves already plotted.
We have presented the data and fits in units of the inverse

temporal lattice spacing thus far to avoid ambiguities with
how one sets the lattice scale. If we choose our usual scale
setting procedure where at ¼ atm�

mphys

�

using the� baryon mass

determined on these lattices (atm� ¼ 0:2951) and the physi-

cal � baryon mass mphys
� ¼ 1672 MeV, then the simple

Breit-Wigner fit corresponds to mR ¼ 863:5ð19Þð6Þ MeV
and �R ¼ 10:1ð6Þð1Þ MeV. As expected in a calculation
with heavier than physical mass light quarks, the resonance
mass is somewhat larger than the physical � mass. The
small width is explained by the much-reduced phase
space for decay of an 864 MeV resonance into two pions
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FIG. 11 (color online). P-wave �� elastic scattering phase
shift, �1ðEcmÞ, as determined by describing the finite-volume
spectra by resonant parametrizations as described in the text. The
barrier factor variations and the Peláez and Ynduráin fit all lie on
top of each other. Also shown as gray points are the data
previously presented in Fig. 10. Energy region plotted is from
�� threshold to KK threshold.
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of mass 391 MeV compared with the physical kinematics.
We observe from the rather similar �2=Ndof that the data do
not clearly distinguish between the various parametriza-
tions that vary only in the tails of the resonance. This may
be because of the very narrow nature of the resonance with
the small phase space for decay.

B. Role of higher partial waves

From Eq. (7) and Table III it is apparent that in principle
many partial waves contribute to the determination of the
finite-volume spectrum in each irrep, in particular when the
system is in flight. The next lowest ‘ that can contribute in
�� I ¼ 1 scattering is ‘ ¼ 3, which is leading in e.g.,

irreps ( ~P ¼ ½001�, B1) and ( ~P ¼ ½001�, B2). For the lattice
volumes we consider, the lowest energy level in these
irreps is always above the elastic region, and as such we
cannot apply Eq. (7) without concern about neglecting
other open channels (in this case K �K). If we assume that
there is zero coupling into K �K and proceed in a cavalier
manner with application of Eq. (7) we obtain points at
energies only slightly above the KK threshold that have �3

compatible with zero [roughly ð�1
 1Þ�].
One way to obtain estimates of �3 in the elastic regime is

to consider a number of approximately degenerate energy
levels coming from different irreps. By writing a version of
Eq. (7) for each one we can approximately solve that
coupled set of equations for �1, �3 at the relevant energy.
This approach was described in some detail for �� I ¼ 2
scattering in Ref. [17]. An example set of levels is (½000�,
T�
1 , n ¼ 0), (½001�, E2, n ¼ 0) and (½011�, B2, n ¼ 0),

which on the 243 lattice all have an energy atEcm �
0:153ð1Þ. Solving the coupled system of equations we
find �1¼ð145:7
2:2Þ� and �3¼ð�0:048
0:055Þ�. The
same set of levels on the 203 lattice have atEcm � 0:155ð1Þ
and give �1 ¼ ð151:1
 3:0Þ� and �3 ¼ ð0:002
 0:024Þ�.

We also tried parametrized fits to all data points, as
in the previous section but including a scattering length
parametrization for the ‘ ¼ 3 wave, p7

cm cot�3 ¼ 1=a3, as
well as a resonant parametrization of �1ðEcmÞ. The fits
were of essentially the same quality (in �2=Ndof) and gave
a3 ¼ �3:4ð33Þð6Þ � 106 � a7t with a negligible change in
the ‘ ¼ 1 Breit-Wigner parameters. This parametrization
gives �3 ¼ ð�1:3
 1:3Þ� at the K �K threshold.

In summary, the lattice data require no nonzero value of
�3 throughout the elastic region, and our analysis in the
previous section based upon �3 ¼ 0 is justified.

These observations (at m� � 400 MeV) are in accord
with experimental expectations (at the physical pion mass).
In the �� partial wave analysis of Estabrooks and Martin
[37], no F-wave amplitude was required in the elastic
region to describe ��p ! ���þn data. Above the inelas-
tic threshold, the F-wave amplitude between Ecm ¼ 1:5
and 1.9 GeV was well described by a Breit-Wigner form
with barrier factors. Subsequent experiments have deter-
mined the resonance parameters of the �3ð1690Þ with

greater precision [38]. The tail of this resonance in the
elastic region (which must vanish like p7

cm) is such that
�3 �þ1:8� at the K �K threshold. The energy-dependent
phase-shift analysis of �þp ! �þ���þþ data by
Protopopescu et al. [39] suggests a �3 which is small and
negative below the K �K threshold, with the largest devia-
tion from zero �� 1:5ð5Þ�.

IX. SUMMARY

In summary, we have used lattice field theory methods to
compute part of the discrete energy spectrum of QCD in
finite boxes. Through the known connection of the discrete
spectrum to elastic scattering amplitudes, we have mapped
out the energy dependence of the �� isospin-1 P-wave
scattering phase shift in unprecedented detail up to the K �K
threshold. The data, presented in Fig. 10, unambiguously
show the rapidly rising form expected in the presence of an
elastic resonance. As observed in Fig. 11, the phase shift
can be well described by a single � resonance. While in
principle the discrete spectrum can be sensitive to scatter-
ing in higher-partial waves, we find that no nonzero value
of F-wave (or higher) phase shift is required in the elastic
region.
The P-wave scattering phase shift is summarized in

Fig. 12, where the scale in all dimensionful quantities is
set using at ¼ atm�

m
phys

�

. A simple Breit-Wigner fit describes

the data reasonably well in terms of a single narrow reso-
nance. We note that the extracted coupling g is compatible
with other lattice determinations [18–22].
This work represents a successful application in a

resonant channel of the methodology for lattice computa-
tions of scattering phase shifts presented in Ref. [17],
where it was initially applied to a nonresonant channel.
Distillation enabled us to efficiently compute correlators
with large bases of carefully constructed fermion-bilinear
and ��-like interpolating operators, in various irreducible
representations of the relevant symmetry group and for a
range of center-of-mass momenta, with high statistical
precision. In addition, the inclusion of the necessary quark
annihilation contributions is rendered straightforward.
Variational analyses of the resulting correlators gave a
large number of finite-volume energy levels that, in turn,
allowed us to determine an unparalleled number of points
on the phase shift curve.
We plan to compute scattering in other channels

using the same technology, including situations where
experimental and phenomenological understanding is
incomplete and where we cannot assume simple para-
metrizations will describe the data. In these cases, mapping
out the phase shift in detail will be more important than
in the simple case of elastic �� scattering in isospin-1
that we have considered here, where a single vector reso-
nance is expected to dominate the scattering amplitude.
Determining the energy dependence of the scattering
amplitude in detail will inform the parametrizations.
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Future work to explore the hadron resonance spectrum will
need to consider inelastic scattering—we can reliably
extract the finite-volume spectrum above inelastic thresh-
olds by including the appropriate meson-meson-like op-
erators (e.g., K �K . . . ), following the general methodology
developed in Ref. [17].
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APPENDIX: FINITE-VOLUME PHASE-SHIFT
RELATIONS FOR �‘>1 ¼ 0

A general procedure for generating the little group irrep

matrix elements Mð ~P;�;	Þ
‘n;‘0n0 , which are used to construct the

matrix U
~P;� in Eq. (7), is provided in Ref. [17], along with

the required subductions for all ‘ � 4. In the case of equal-
mass pseudoscalar-pseudoscalar scattering (as is relevant
in this �� case), and assuming �‘>1 ¼ 0, we can reduce
Eq. (7) to the following simple forms for various
~P ¼ ½nxnynz� and irreps:

½00n�A1: cot�1ðEcmÞ ¼ 1


�3=2q

�
Z½00n�
0;0 ðq2Þ þ 2ffiffiffi

5
p 1

q2
Z½00n�
2;0 ðq2Þ

�
;

½00n�E2: cot�1ðEcmÞ ¼ 1


�3=2q

�
Z½00n�
0;0 ðq2Þ � 1ffiffiffi

5
p 1

q2
Z½00n�
2;0 ðq2Þ

�
;
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FIG. 12 (color online). Isospin-1, P-wave �� elastic scattering phase shift and Breit-Wigner parameterisation for
m� ¼ 391 MeV. Energy region plotted is from �� threshold to KK threshold.
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½0nn�A1: cot�1ðEcmÞ ¼ 1


�3=2q

�
Z½0nn�
0;0 ðq2Þ þ 1

2
ffiffiffi
5

p 1

q2
Z½0nn�
2;0 ðq2Þ þ i

ffiffiffi
6

5

s
1

q2
Z½0nn�
2;1 ðq2Þ �

ffiffiffiffiffiffi
3

10

s
1

q2
Z½0nn�
2;2 ðq2Þ

�
;

½0nn�B1: cot�1ðEcmÞ ¼ 1


�3=2q

�
Z½0nn�
0;0 ðq2Þ þ 1

2
ffiffiffi
5

p 1

q2
Z½0nn�
2;0 ðq2Þ � i

ffiffiffi
6

5

s
1

q2
Z½0nn�
2;1 ðq2Þ �

ffiffiffiffiffiffi
3

10

s
1

q2
Z½0nn�
2;2 ðq2Þ

�
;

½0nn�B2: cot�1ðEcmÞ ¼ 1


�3=2q

�
Z½0nn�
0;0 ðq2Þ � 1ffiffiffi

5
p 1

q2
Z½0nn�
2;0 ðq2Þ þ

ffiffiffi
6

5

s
1

q2
Z½0nn�
2;2 ðq2Þ

�
;

½nnn�A1: cot�1ðEcmÞ ¼ 1


�3=2q

�
Z½nnn�
0;0 ðq2Þ � i

ffiffiffiffiffiffi
8

15

s
1

q2
Z½nnn�
2;2 ðq2Þ �

ffiffiffiffiffiffi
8

15

s
1

q2
Re½Z½nnn�

2;1 ðq2Þ� �
ffiffiffiffiffiffi
8

15

s
1

q2
Im½Z½nnn�

2;1 ðq2Þ�
�
;

½nnn�E2: cot�1ðEcmÞ ¼ 1


�3=2q

�
Z½nnn�
0;0 ðq2Þ þ i

ffiffiffi
6

5

s
1

q2
Z½nnn�
2;2 ðq2Þ

�
;

where Z
~P
‘;mðq2Þ is the generalized zeta function [4] with argument q2 ¼ ðpcmL

2� Þ2.
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Richards (for the Hadron Spectrum Collaboration),
J. High Energy Phys. 07 (2012) 126.

[15] M. Peardon, J. Bulava, J. Foley, C. Morningstar, J. Dudek,
R. Edwards, B. Joó, H.-W. Lin, D. Richards, and K. Juge
(Hadron Spectrum), Phys. Rev. D 80, 054506 (2009).

[16] J. J. Dudek, R. G. Edwards, M. J. Peardon, D. G. Richards,
and C. E. Thomas, Phys. Rev. D 83, 071504 (2011).

[17] J. J. Dudek, R. G. Edwards, and C. E. Thomas, Phys. Rev.
D 86, 034031 (2012).

[18] S. Aoki et al. (CP-PACS Collaboration), Phys. Rev. D 76,
094506 (2007).

[19] X. Feng, K. Jansen, and D. B. Renner, Phys. Rev. D 83,
094505 (2011).

[20] C. Lang, D. Mohler, S. Prelovsek, and M. Vidmar, Phys.
Rev. D 84, 054503 (2011).

[21] S. Aoki et al. (CS Collaboration), Phys. Rev. D 84, 094505
(2011).

[22] C. Pelissier and A. Alexandru, Phys. Rev. D 87, 014503
(2013).
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